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Abstract—Wearable step counters, also referred to as activity
trackers, have been developed for health and activity monitoring,
as well as for step tracking. These trackers, however, produce
unreliable measurements during slow walking and when walking
with assistive devices (i.e., aided walking). To address this
challenge, in this article, we introduce, ParaLabel, a filter-based
step counting algorithm that is reliable against various walking
velocities and intensities. ParalLabel addresses this problem by
learning a filter cut-off frequency autonomously in a new domain
without the need for collecting sensor data and manually tuning
the algorithm parameter for a different velocity and/or pattern
of walking. We formulate this problem as a transfer learning
problem in which the new filter cut-off frequency is transferred
from a bank containing previously fine-tuned parameters from
different domain(s). Our extensive analysis using real data
collected from 15 participants while wearing an accelerometer
sensor on their chest, wrist, or left pocket demonstrates the
superiority of ParaLabel to two commercially available trackers
worn on the same body location, and state-of-the-art techniques.
ParalLabel achieves 96.3% — 99.9% accuracy during walking on
a treadmill at three different velocities, 98.2% — 99.9% accuracy
during walking with a shopping cart, and 89.3%—97.3% accuracy
while walking with the aid of a walker.

Index Terms—Step counting, wearable sensors, peak detection,
low-pass filter, frequency components, K-nearest neighbor, time-
domain features, cross-subject transfer learning.

I. INTRODUCTION

Internet-of-things (IoT) has emerged as a promising
paradigm for interconnecting computing devices such as wear-
able sensors and smartphones with cloud computing plat-
forms for seamless interactions, health monitoring, and clinical
decision making. Wearable trackers, as a rapidly growing
component of IoT, have gained much attention recently due
to their potentials to improve the health and well-being of
their users. Promoting physical activity levels is an important
factor to sustain and improve cardiovascular health [1]. An
effective direction to evaluate the activity level of individuals
is to continuously track the number of steps they take daily
[2]. Jawbone, Fitbit, Misfit, and Garmin are among many
acceleration-based tracking devices that are used to measure
and monitor physical activity. These trackers are small, non-
obtrusive, user friendly, and provide an objective indicator of
physical activity behavior. Furthermore, they intend to avoid
common sources of error in subjective measurement (e.g.,
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self-report) [1], [3]. However, these activity trackers produce
unreliable and inconsistent measurements when deployed in
uncontrolled environments in particular during irregular, low-
intensity walking [4]. These issues can potentially lead to
unsustainable utilization of wearable activity tracking devices.

Researchers have proposed several approaches to detect the
steps from signals captured by wearable inertial sensors [5]-
[8]. These algorithms detect the steps by capturing the periodic
patterns from the sensor data such as acceleration and angu-
lar velocity. A major challenge with existing step-counting
algorithms is that they experience substantial accuracy drop
during slow (< 0.8 m/s) walking [9], [10], and those requiring
an assistive tool such as walking with a walker. Although few
studies propose step-counting algorithms for free walking [11]
and wheeled walking frame [12], to the best of our knowledge,
none of the previous studies have proposed a step-counting
algorithm that generalizes to various speed and pattern of
walking such as low-intensity walking, walking with a walker
in addition to regular walking. The problem with low-intensity
walking becomes more evident knowing that directly applying
machine learning algorithms will not result in generalizable
models to different subjects and various activities. Therefore,
achieving high precision in detecting steps (e.g., > 95%
accuracy) in such situations requires manual tuning of the
algorithm parameters. As elaborated in section Section II-A,
even, the error rate of popular activity trackers such as
Fitbit increases significantly (e.g., from 3.5% to 39.1%) when
transitioning from normal walking to low intensity or aided
walking. We propose Paralabel, an autonomous filter-based
step-counting algorithm that transfers the filter parameters
learned in one setting to a new setting, without manually
fine-tuning the parameters. Therefore, ParalLabel generalizes
to various patterns and speeds in walking without the need to
collect new data and tune the parameters.

II. PRELIMINARIES

In this section, we discuss the motivations for our research
followed by a presentation of the related research.

A. Motivation

The common approach to detect steps using motion signals
such acceleration is to identify the occurrence of a particular
feature in the signal. For example, peaks in the magnitude
of the accelerometer signal show the steps taken by the user
while walking [13]. However, variations in the pattern and
the velocity of walking can easily mislead a traditional step



IEEE SENSORS JOURNAL, VOL. XX, NO. X, JANUARY 2020

°
o
o
&

FLTRVAVAIAVAVATRVAYAY AN

Magnitude

pye

Magnitude
Amplitude

o
°
3

°
N

8 0.050
3

o~
e
=

L

Magnitude
Amplitude

W

o

Ed
5.0.025
£

L

e
o

<< 0.000

0 200 400

Time (s)

(a) Walking at 2.5 &7 (Chest)

600 a

Frequency

0 200 400

Time (s)

(b) Walking at 2.5

600

0 200 400 600
Time (s)

I3

Frequency Frequency

kTm (Left pocket) (c) Walking at 2.5 kTm (Dominant wrist)

~

°
o
o~

A A AN

°

RN 2, |

Magnitude

Amplitude

Magnitude
°
°

o o
s =
3 s
o n

|

Magnitude
Amplitude

e b

Amplitude

s

e
=
3

0 200 200 600 2
Time (s) Frequency

(d) Walking at 5.0 ™ (Chest)

0 200 400

Time (s)

(e) Walking at 5.0

600

+

0 200 400

Time (s)

600 )

Frequency Frequency

kTm (Left pocket) (f) Walking at 5.0 kTm (Dominant wrist)

N
e
s

°

e

N
o

MM AN

Amplitude
Magnitude

W £ |

Magnitude

e
o

e
S
N

°

e
°
&

1

WA E |

Amplitude
o
Magnitude

=
3

o]

0 200 200 600 2
Time (s) Frequency

(g) Walking at 8.0 ™ (Chest)

0 200 400

Time (s)

(h) Walking at 8.0

600

0 200 400 600 4

Frequency Time (s) Frequency

kTm (Left pocket) (i) Walking at 8.0 kTm (Dominant wrist)

o
[

WA N\ A~AAAAS

NAVAVAVAN

I TR Y

Magnitude

F

Amplitude

o

Magnitude
°

% 0.0050
3

2
ST | (50,0025

W

Magnitude

< 0.0000

0 200 400

Time (s)

(j) Walking with a walker (Chest)

600 2

Frequency

0 200 400

Time (s)

(k) Walking with a

600

0 200 400

Time (s)

600 a

Frequency Frequency

walker (Left pocket) (1) Walking with a walker (Dominant wrist)

o N
S
o N

SRV

WAVEVEVL

°
S

Peithiinids

N
N

Magnitude

Magnitude
Amplitude
o o o

o

o

o N
o
S
S

A NN A P~

bt

Amplitude

Magnitude

L.

Amplitude

o
o
3

=
3

e
°

0 200 400

Time (s)

600 2

Frequency

0 200 400

Time (s)

600

(m) Pushing a shopping cart (Chest)

Fig. 1. (a) Magnitude signal and (b) Spectrum Amplitude from walking with

km “and 8.0 kTm for one subject.
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counting algorithm, which operates on pre-defined parameters
[14]. In what follows, we further elaborate on this challenge
by examining real-data collected with inertial sensors during
various walking activities. Figure 1 shows the magnitude and
frequency spectrum of a tri-axial accelerometer worn on the
chest, left pocket, and dominant wrist of a subject while
walking under different conditions. In particular, each sub-
figure corresponds to one specific activity performed by the
same subject. The frequency spectrum chart represents the
frequency components of a periodic signal. The spikes in the
amplitude show the cycle frequency of the signal.

As shown in Figure 1, velocity and pattern of walking, and
the location of the senor impact the shape of the signal in the
time domain. Walking at a higher velocity and regular walking
such as walking on a treadmill at 5.0 kTm and 8.0 kTm, as shown
in Figure 1-(d-i), exhibit more clear periodic signal readings
than walking at lower velocity and those performed with assis-
tive devices such as walking with a walker and shopping cart in
Figure 1-(d—i). Moreover, wearing the sensor on the dominant
wrist adopt noisier and less periodic signal comparing the
sensor on the chest and the left pocket, specifically in aided
walking such as walking with a walker, shown in Figure 1-
(1) and shopping cart, shown in Figure 1-(0). These issues
become more challenging considering that wearable sensors
need to be deployed for long-term health monitoring where
the signals captured with inertial sensors become irregular, and
noisy over time. Therefore, static algorithms fail to accurately

(n) Pushing a shopping cart (Left pocket)

0 200 400

Time (s)

600 4

Frequency Frequency

(0) Pushing a shopping cart (Dominant wrist)

a walker, walking with a shopping cart, walking on a treadmill at 2.5 kTm, 5.0

detect the steps in such conditions.

As shown in Figure 2, a trivial solution with respect to
the noisy signals is to use a low-pass filter to minimize the
effect of the high-frequency noise [15]. The peaks of the
smoothed signal represent the occurrence of the steps. On the
basis of spectrum information, the maximum amplitude in the
frequency spectrum corresponds to the step frequency while
walking. Filtering the signal with a low-pass filter with a cut-
off frequency equal to the step frequency results in a smoothed
periodic signal which peaks represent steps. However, directly
assigning the frequency with the largest amplitude to the step
frequency leads to inaccurate results because of the noise in the
accelerometer signal particularly for low-intense and irregular
walking activities [16]. To address these issues, we develop
ParalLabel, a frequency-based step-counting algorithm that
autonomously learns its parameter based on the intensity and
pattern of walking. The proposed algorithm is implemented
in the frequency domain to mitigate the influence of random
noises in time-domain.

B. Related Work

One can categorize existing step-counting algorithms into
time-domain, frequency-domain, and feature-based clustering.
The most common and simple approach to detect steps from
inertial sensors is to focus on a particular feature on the
signal and use a threshold value to identify steps [17]-[19]. In
threshold-based methods, each time the sensory data meet a
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Fig. 2. Trivial step detection algorithm based on peak detection: extracting magnitude of raw tri-axial accelerometer signal (top), and smoothing the signal

by low-pass filtering (bottom).

predefined threshold, the number of steps is increased by one.
Despite the simplicity, the main issue with these methods is the
need to estimate optimal thresholds for uncontrolled walking
such as slow-walking or aided-walking and in unconstrained
environments [20].

Several time-domain step-counting algorithms are imple-
mented based on the cyclic nature of walking. The auto-
correlation approach detects cyclic periods directly in the
time domain through evaluating auto-correlation [18], [21],
[22]. Peak detection [5] or zero-crossing counting [6] on
low-pass filtered accelerometer signals can also be used to
find specific steps. For smartphone data, which is not firmly
attached to the body, the signal magnitude is computed instead
of the orthogonal axis of the sensor. In [7], [15], the authors
apply low-pass filtering to remove interference. In [23], the
authors limit the time interval between two peaks to reduce
misjudgments. In [24], the authors apply two filters to reduce
jitters in accelerations. In [11], vertical acceleration data are
used to infer steps for unconstrained smartphones, but sensor
fusion is used to obtain vertical acceleration data. Other time-
domain algorithms include template matching techniques such
as Dynamic time warping [8], which attempts to match an
off-line-processed template of one step to the input signal to
identify each step.

The frequency-domain approaches identify the steps ac-
cording to the frequency components of successive win-
dows of measurements based on short-term Fourier transform
(STFT) [25], fast Fourier transform (FFT) [20], and con-
tinuous/discrete wavelet transforms (CWT/DWT) [25], [26].
In [20], steps are identified by extracting frequency domain
features in acceleration data through FFT, and the accuracy
of 87.52% is achieved. Additionally, FFT is employed in
[27] to smooth acceleration data and then peak-detection
is used to count the steps. In [16], steps are identified by
multiplying the step frequency extracted from the FFT of the
time-domain gyroscope signal and walking duration, and an
accuracy of 95.7% is achieved. These methods can generally
achieve high accuracy but suffer from either resolution issues

or computational overheads [16].

The feature clustering approaches apply machine learning
algorithms, e.g., Hidden Markov models (HMMs) [28], to
identify gait segments from a signal and count the steps
from the segments based on both time-domain and frequency-
domain features extracted from sensory data [29]. However,
the utility of these techniques in low-intensity activities and
across individuals has not been investigated [16].

Based on a comprehensive comparison among existing step-
counting algorithms in [4], windowed peak detection, HMM
and, CWT are considered the best step-counting algorithms.
The proposed step-counting algorithm in this paper, Paral.-
abel, benefits from the advantages of both time-domain and
frequency-domain algorithms and also devises machine learn-
ing models to enhance the generalizability of the algorithm.
ParalLabel is designed based on a simple peak detection
algorithm on a low-pass filtered signals. It estimates the
frequency parameter of the filter using time- and frequency-
domain features extracted from the sensor data. The process
of parameter estimation is autonomous and does not involve
human inputs.

The technique introduced in this paper can be viewed
as a transfer learning method for use with step counting
algorithms in wearable sensor systems. Prior research on
designing transfer learning techniques for physical activity
monitoring focused primarily on classification tasks such as
human activity recognition [30], [31]. To the best of our
knowledge, our work in this paper is the first study to design an
approach for autonomous reconfiguration of signal processing
algorithms for wearable-based step counting.

C. Contributions

In this section, we summarize the contributions of this paper.
We propose Paralabel, a robust filter-based step counting
algorithm using accelerometer signals. We propose a transfer
learning algorithm that transfers the optimal parameters from
one setting to another using a kNN classification based on
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Euclidean distance in feature space without manually fine-
tuning the parameters in the new setting. We propose to
smooth the noisy input signal using a low-pass filter and
detect the steps by identifying the peaks in the magnitude of
the smoothed signal. We evaluate ParalLabel using a dataset
of accelerometer signals collected from three smartphones
on the chest, the dominant wrist, and the left pocket of 15
subjects. We compare the performance of Paral.abel against
the Fitbit trackers and state-of-the-art frequency-based step
counting algorithms during medium to high intensity walking
(e.g., walking on a treadmill at 5.0 kTm, and 8.0 kTm), low-
intensity (e.g., walking on a treadmill at 2.5 £ and aided
walking (e.g., walking with a walker and walking with a
shopping cart).

III. PARALABEL ALGORITHM DESIGN
A. Problem Statement

As mentioned in Section II-A, the step detection task is
to identify peaks in the smoothed magnitude of the tri-axial
accelerometer signal such that the accuracy of the resulting
step-counts is bounded by a given threshold (i.e, 95%). We
devise an approach based on a low-pass filter with a variable
cut-off frequency parameter to smooth the norm signal prior to
peak detection. To achieve a high step-counting accuracy, the
signal needs to be filtered with appropriate cut-off frequency
(i.e., step frequency as noted in Section II-A). Therefore, the
main focus in the design of ParalLabel is on an optimization of
the filter parameter to guarantee a high accuracy in detecting

steps. Figure 3 shows the overall process of algorithm design
in ParalLabel.

Therefore, ParalLabel aims to estimate the filter parameter
(step frequency) of a given signal which is recorded in an
arbitrary setting (i.e., target), based on the knowledge from a
different but similar setting (source). Based on the common
analogy in machine learning, we refer to the previous domain
with known filter parameters as the source and to the new
setting as the farget. The target data contains signals collected
with a new user. The source includes data from a different
set of users than that of the target. We assume that the signal
recorded in the target setting, also referred to as the target
signal, S;, can be segmented into p smaller signals, {w,
..., wy}, each of which represents walking with a particular
step frequency. We assume that the source, S, consists of n
walking activities {a1, as, ..., a,, } with known step frequencies
{f1, f2y.-+; fn}. The problem is to learn the step frequency for
the target segments autonomously based on the training data
available in the source.

B. Problem Solution

We propose a transfer learning approach that transfers the
step frequencies from a frequency-bank which is built based on
the knowledge from the source dataset, to the target signal. The
proposed approach learns step frequencies for each segment of
the target signal based on two main phases: (i) Training phase,
in which step frequencies are computed for the activities in
the source setting; and (ii) Target frequency learning, which
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assigns step frequencies from the source dataset to the target
segments.

1) Training Phase in Source Setting: We construct a
frequency-bank from the source setting during an off-line
process. The frequency-bank is a database of features and
step frequency labels corresponding to signal segments that
represent different walking activities in the source setting.
We extract a set of representative features and estimate the
step frequency values given the step-counts, for each walking
activity in the source. Therefore, a set of observations in
feature space and a step frequency in the frequency-bank
represents each walking activity in the source setting.

Feature extraction: we extract a k-dimensional feature
vector, F's; = {fsi1, fsi2, ..., fsi} from each activity a;, in
the source dataset. The feature vector is the mean value of the
feature sets extracted using a sliding window of size 2 seconds
(200 samples) with a 50% overlap. As shown in Table I, the
extracted features include time- and frequency-domain features
such as amplitude, median, mean, variance, energy, and funda-
mental frequency of the signal that represent the pattern, and
intensity of the walking activities. As discussed previously
fundamental frequency of a periodic signal recorded while
walking also represents the step frequency. Moreover, prior
research has shown that the time-domain features such as
mean, amplitude, median, and variance are effective in phys-
ical activity recognition using wearable motion sensor data
such as accelerometer sensors [32], [33].

TABLE I
EXTRACTED FEATURES FROM EACH ACCELEROMETER DATA SEGMENT

Feature Description

AMP Amplitude of Signal Segment

MED Median of the Signal

MNVALUE  Mean of the Signal

VAR Variance

FRQ Fundamental Frequency

ENG Energy of the Signal

Step frequency estimation: we estimate the step frequency
of each walking activity a; in the source dataset, given the
number of steps taken during that activity. To this end, we
compute the step frequency by iterating over all the possible
step frequency values (with 0.1H z increments) between 2Hz
to 12Hz. We select those frequency values that result in more
than a given lower bound (e.g., 90%) on the accuracy of step-
counting matching between the steps taken and peaks extracted
from the smoothed magnitude signal.

2) Frequency-Label Learning in the Target Setting: The
goal of frequency-label learning phase is to assign frequency
values to a segment of signal such that the error of assignment
is minimized. We estimate the error of assigning f; label from
a; in frequency-bank to walking segment w; in the target based
on Euclidean distance between the representative features. The
error, therefore, is given by:

n

€j = Z(fsm‘ — ftii)? )

k=1

where £ represents the dimension of the feature vector. Symbol
n refers to the number of walking activities in the source
dataset, therefore, the number of the feature sets in the
frequency-bank. Symbols fsy; and fty; show the k;h element
of the feature vector corresponding to the signal segment @
from the source and signal segment j from the target domain,
respectively.

The process of label learning in the target setting includes
three steps: (i) walking activity identification by segmenting
the target signal; (ii) step frequency transfer from frequency-
bank to the target segments; and (ii) step detection.

Walking activity identification: because gait speed changes
over time, we assume that the target data does not necessarily
contain a single-walking activity. We extract a set of features
which are representative of the intensity and pattern of the
walking, from a sliding window over the magnitude signal
in the target setting. We classify each window into the type
of walking such as walking with a walker, walking with a
shopping cart, walking on the treadmill at 2.5 kTm, walking on

the treadmill at 5.0 %, and walking on the treadmill at 8.0
km

ho*

Algorithm 1: PARALABEL STEP-COUNTING ALGO-
RITHM
Imput: S; = {w1, wa, ..., w,} walking segments in the
target setting, feature sets
Ss ={Fs1,Fsoa, ..., Fs,} in frequency-Bank,
estimated step frequency labels
F=fi,fo, s fn
min < +Inf;
foreach segment w in Sy do
¢ < FeatureExtraction(w);
foreach entry fsin S do
if Distance(c, fs) < min then
min < Distance(c, fs);
freq < fs.f;
end
end
Qutput: freq /+ the transferred step
frequency labels */

Step frequency transfer: we develop a transfer learning
approach, shown in Algorithm 1, which performs 5-nearest-
neighbor classification to transfer the step frequency labels
from the frequency-bank to the target segments. Paralabel
computes the Euclidean distance between the target segments
and the frequency-bank entries in the feature space. The
function Distance(.,.) computes the Euclidean distance be-
tween two k-dimensional feature vectors. We label each target
segment by the step frequency of the most similar entry from
the frequency-bank.

Step detection: Paralabel applies a low-pass filter to each
segment of the target signal to remove the high-frequency
noises. The cut-off frequency of the low-pass filter is set to
the step frequency of the signal segment which is learned from
the previous step. The peaks of the smoothed signal represent
the steps while walking. More information on the design
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and implementation of the low-pass filter of the proposed
algorithm is provided in Section I'V-B.

The time complexity of Algorithm 1 is O(n X p), where n
and p denote the number of entries in the frequency-bank in
the source setting, and the number of signal segments in the
target setting, respectively. While this approach is feasible for
small source datasets and short target signals, it may limit the
scalability of ParalLabel for deployment with large datasets.
Therefore, we also propose an extension to Paralabel, called
Augmented Paralabel that improves the time complexity of
the original algorithm.

The design process of Augmented Paral.abel is shown in
Algorithm 2. We cluster the frequency-bank entries using
the K-means clustering algorithm [34], [35]. Each cluster is
represented by the centroid which is a mean value of the
member of the cluster according to their representation in
the feature space. Augmented Paralabel, classifies each new
segment in the target, into an existing cluster with the closest
centroid to the feature vector representing that segment. The
closeness is computed as the Euclidean distance between
the centroid and feature vector. The algorithm assigns the
frequency label of the closest member of the chosen cluster
from the previous step, as the label for the new signal segment.

IV. VALIDATION APPROACH

This section describes the experimental setup, dataset, and
methodologies used to validate the Paral.abel step-counting
algorithm.

A. Experimental Design

We conducted a study with healthy adults who performed
multiple physical activities while wearing various data collec-
tion wearable devices.

1) Recruitment and Participant: We recruited 15 subjects,
seven females and eight males, between 21 and 31 years old
to participate in the pre defined protocol. Washington State
University (WSU) Institutional Review Board (IRB) approved
the study protocol. Our selection criteria included the absence
of conditions that might cause gait abnormalities such as
fractures and broken bones, as well as neurological impair-
ments. The protocol exclusion criteria included inability to
walk on a treadmill, inability to walk with an assisting device,
and inability to perform 30 minutes of light to moderate
physical activity (MET < 6) with multiple rests in between.
We informed all the participants about the goal of the study,
methodology, and testing procedure before the data collec-
tion. The participants were asked to complete a questionnaire
including age, gender, and physical conditions. We recruited
the participants through direct contact and advertisement in
EECS school at WSU. Table II shows the physical statistics
and demographic information of the participants in the study.

2) Collection Devices: Each participant wore three Fitbit
trackers including Zip, One, and Flex as well as three Samsung
Galaxy smartphones S6 on three different body-locations si-
multaneously. The Fitbit Zip, One, and Flex were worn on the
chest, left pants pocket, and dominant wrist of the participants.

Algorithm 2: AUGMENTED PARALABEL STEP-
COUNTING ALGORITHM

Input: S; = {w1, wo, ..., w,} walking segments in the
target setting, feature sets
Ss = {Fs1, Fsa,..., Fs,} in frequency-Bank,
estimated step frequency labels
F=Ff,fe.fn
minDist < +Inf; /> the minimum distance
among the pairs of the instances
in the feature set of the target
and source sensors */
C + Cluster(FrequencyBank)
foreach walking segment w in S; do
¢ < FeatureExtraction(w);
C « ClusterSelection(c,C)
foreach entry fs in C do
if Distance(c, fs) < minDist then
minDist < Distance(c, fs)
freq <« fs.f;

end

end
Output: freq /» the dataset of the
target data unit with estimated
step frequency labels */
Function ClusterSelection(f, C)
maxCor < —Inf; /* the maximum
correlation value between the f
and the clusters’ feature set in
set of clusters C */
foreach cluster c in C' do
if Distance(f,c) > mazCor then
maxCore < Distance(f,c);
Cselected < C 3
end
return Cselected

The Fitbit trackers were selected as the widely-used off-the-
shelf activity trackers and step counting devices to compare
against the proposed step counting algorithm based on the
ground truth step counts from the video data. We note that the
results from a prior study suggested no significant difference
in the number of steps recorded by the Fitbit trackers Zip, One,
and Flex when a subject wore them on the same location of the
body [36]. The smartphones were placed on the same location
as the Fitbit trackers for a fair comparison. The smartphones
were used to collected tri-axial raw accelerometer data with
sampling frequency @Q100H z during the experiment using a
custom Android 5.0.2 application. We also recorded the feet

TABLE 11
PHYSICAL AND DEMOGRAPHIC CHARACTERISTICS OF PARTICIPANTS.

Variable All Subjects (15) Female (7) Male (8)
Age (y) 21-31 24-26 23-31

Height (cm) 155-189 155-178 175-189
Body Mass (kg) 47-86 47-75 65-86

BMI (kgm-2) 19-24.8 19-24.8 20.1-24.8
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experiment on one of the participants.

of the participants during the experiment using a camera. The
ground truth step counts were manually counted by looking
at the recorded videos from the feet of the participants during
the experiment.

3) Physical Activities: We included two categories of phys-
ical activities in this study: (1) walking on a treadmill at 2.5
k,;”, walking on a treadmill at 5.0 km, and walking on a
treadmill at 8.0 km ; (2) walking W1th a shopping cart, and
walking with a Walker We asked the participants to perform
each activity for 5 minutes.
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Fig. 5. The actual number of steps taken by participants during different
walking activities. Activities 1 to 5 refer to walking on a treadmill at 2.5

kT walking on a treadmill at 5.0 k;L" walking on a treadmill at 8.0 km

walking with a shopping cart, and walking with a walker, respectively.

Figure 5 compares the number of steps during each activity
where activities labeled 1 to 5 on the x-axis refer to walking
on a treadmill at 2.5 km , walking on a treadmill at 5.0 km
walking on a treadmlll at 8.0 K walking with a shopplng
cart, and walking with a walker, respectively. The average
step-counts for the users were 464.7, 641.0, 777.5, 242.5, and
430.1 with standard deviations of 57.4, 118.8, 81.4, 16.3, 71.3,
during activities 1 to 5, respectively.

B. Comparison Method and Implementation Details

1) Activity Type Classification: To identify different walk-
ing activities, described in Section III-B, we used an ensemble

tree classifier that took features extracted from a sliding
window of size 2 seconds (e.g., 200 samples) and overlap of
50% over magnitude signal as input and produced the walking
activity class. We labeled the windows with 6 types of Walking
including walking with the treadmill at 2.5 km, 5.0 £ and
8.0 k}’L”, walking with a walker, walking with a shopplng cart,
and not walking. The signals that were identified as walking
were used for further analysis, namely step-counting.

2) Low-Pass Filter: Filtering is a traditional method of
improving response in noisy conditions [37]. Low-pass filters
are designed based on two parameters, order and cut-off
frequency. The order of a filter represents the complexity of
its transfer function; The less order value the more efficient
the filter would be in terms of computational complexity. On
the other hand, the cut-off frequency of a filter represents the
threshold for eliminating higher frequency components of the
signal [38]. Out of several implementations of the low-pass
filter, we selected the Butter-worth implementation for our
study [39], [40]. We implemented a low-pass filter with order
10 and a variable cut-off frequency parameter. We computed
the cut-off frequency of the filtered as:

cf:f;2

where f denotes the step frequency and F, refers to the
sampling rate of data collection device. Each signal segment
in the target setting was filtered by the cut-off frequency
values estimated based on the step frequency numbers from
the frequency-bank. As soon as the signal is filtered based
on a given filter parameter set (cut-off frequency and order),
each peak on the filtered signal represents one step taken by
the user while walking.

3) Comparison Approach: We compared the performance
of the proposed algorithm against three other methods. (1) The
results obtained with a commercially available step-counter
(i.e., Fitbit). We chose Fitbit trackers in our study because of
their popularity and that they are shown to be among the most
accurate step-counting devices [3], [41] (2) A conventional
step-counting algorithm, which uses the dominant frequency
of the signal as the filter parameter. The dominant frequency
is computed based on the Discrete Fourier Transform of the
target signal. We refer to this approach as frequency-based.
Implementation details of the frequency-based approach are
described in Section II-A. (3) A conventional step-counting
algorithm that uses the median point of the frequencies in
Figure 7 with respect to the activity type and location of the
sensor, as the cut-off frequency value of the low-pass filter
prior to peak detection. We refer to this method as the Median.
Although, computation of the median frequency requires pre-
processing of a training dataset, the purpose to implement such
a method is to compare ParalLabel against the case when we
assign an average filter parameter to each type of walking.

4) Performance Metrics: We computed the absolute error
(error rate) of step-counting to demonstrate the need for
developing new step-counting algorithms that take into account
various walking activities. The development of ParaLabel is
motivated by the results obtained in this analysis (see the
Results section). The absolute error, €, can be computed as:

2
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e=1— Stepsestimatcd (3)

S tep Sactual
We computed the accuracy of step-counting, «, as the ratio
of correctly counted steps by an algorithm to the ground truth

step-counts. This accuracy measure is given by:

_ Stepsestimated (4)
Stepsactual

We compute the CoV for each algorithm over the subjects
based on the equation below.

cov =2 (5)
u

where o and p are respectively the standard deviation and
mean of the F1-Score in lying posture detection over different
folds.

5) Complexity Analysis & Design Specifications: Con-
structing the source filter bank and training the ensemble
tree classifier on the signal for walking activity detection
are performed offline on a server computer. These offline
data processing and system design efforts do not affect the
complexity of Paralabel in the target domain.

We use a moving window (e.g., of 2 seconds length) to
segment the input signal into distinct walking types (e.g.,
walking at 2.5 kTm). To detect the walking types, the features
in Table I are extracted from each window and classified into
a walking class using an ensemble tree classification model.
To transfer the filters from the filter bank to the target signal
segments, for each segment of the target signal, we compute
the Euclidean distance between its representative feature vec-
tor and all the filter bank entries. Since Paral.abel extracts a
constant number of the features, both feature extractions and
distance computation run in linear time.

As described in the methodology sections of the paper,
the entries in the filter bank are labeled with optimal filter
frequency values. To detect steps in the target domain, we
use the label of the entry with the smallest distance as our
filter parameter. To reduce the complexity of filtering, we
use a Butterworth filter of order 2 to implement the low-
pass filter. We detect the peaks on the magnitude of the
smoothed signal using a peak detection algorithm. In general,
step counting methods based on peak-detection are shown to
be computationally simple [42]. The run-time complexity of
filtering and peak detection is a function of the segment length.
It is reasonable to assume that the signal length is bounded
by a constant value, Length,,,,. Therefore, we can assume
that the algorithmic computations for each signal segment are
limited to a constant upper-bound.

We also assume that the input signal is partitioned into
m walking segments and there are n entries in the filter
bank. Therefore the time complexity of the entire algorithm is
O(mxn). Moreover, we reduce the computational complexity
of Paralabel by clustering the filter bank entries offline in
the source setting when reducing the entries significantly
by replacing a group of features with the centroid of their
corresponding cluster.

We implemented our algorithms using MATLAB signal
processing toolbox on a Laptop computer with a 16 GB

RAM and an Intel Core i7 processor running at 2.5 GHz.
As discussed previously, the time complexity of Paralabel
and Paral.abel+ running in the target setting is low enough
to be implemented on common wearable devices such as a
smartphone or a smartwatch. For example, an Apple iPhone
11 consists of two 5.65 GHz Lightning and four 1.8 GHz
Thunder CPU cores, a storage capacity of up to 256 GB,
and a 6 GB of RAM. Also, a Samsung Galaxy S20 contains
two Mongoose M5, two Cortex-A76, and four Coretx-AS5
processing units, 128 GB of storage capacity, and up to 12 GB
of RAM. As another example, Apple Watch 5 has an Apple
S5 processor with 32 GB of RAM, and a Samsung Galaxy
watch has a Dual-core 1.15 GHz processor with a 4 GB of
storage. As a future direction to this study, we will investigate
the strengths and limitations of deploying Paral.abel for in-the-
field step counting to compare its performance against existing
algorithms in terms of step counting accuracy and technology
acceptance.

V. RESULTS

This section presents results on the performance of the pro-
posed reliable step-counting approach. In the first subsection,
we present results that derive our motivation for developing an
accurate step-counting algorithm for low-intensity and aided
walking activities. In the second subsection, we investigate the
results of the estimated step frequencies in the source setting.
The third subsection contains the results on the walking
activity identification in the target setting. The last subsection
of the results provides the evaluation results of the proposed
step-counting algorithm, Paralabel, and compare it to the
state-of-the-art step-counting approaches.

A. Performance of state-of-the-art

Figure 6 compares the step-counting error of a Fitbit tracker
worn on the chest, and the frequency-based algorithm. For the
frequency-based step-counting, we used the accelerometer data
collected using a smartphone worn approximately on the same
body-location as the Fitbit tracker.

The Fitbit tracker miscounted 4.6%, 1.4%, 5.7% of the steps
during walking on a treadmill at 8.0 k}—’bn, 5.0 k}—i", and 2.5
k}—’:‘, respectively. The absolute errors of the tracker increase
to 10.1% and 83.8% for walking with a shopping cart and a
walker as shown in Figure 6. The average error of the Fitbit
tracker during moderate-to-high-intensity walking activities is
2.9%. However, it grows to 33.2% and 46.9% during low-
intensity and aided walking, respectively.

Compared to the Fitbit, the frequency-based algorithm
achieved a better performance during walking with a walker.
Specifically, the frequency-based algorithm obtained an abso-
lute error of 19.4% during walking with a walker. However,
the algorithm did not maintain a high accuracy during walking
on a treadmill and walking with a shopping cart. Specifically,
the algorithm achieved 16.6%, 18.9%, 11.5%, 67.5% error in
counting the steps during walking on a treadmill at 8.0 kTm,
walking on a treadmill at 5.0 kTm, walking on a treadmill at
2.5 Ich and walking with a shopping cart, respectively.
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Fig. 6. The step-counting error of different approaches: Models used in an activity tracker (i.e., Fitbit) and a machine-learning-based model (i.e., frequency-

based step-counting).

These results necessitate the design of a reliable and re-
configurable step-counting algorithm that maintains the high
accuracy level of the current trackers in moderate-to-high-
intensity walking, while achieving a high accuracy in low-
intensity and aided walking activities as well. The remainder
of this section presents our evaluation of Paralabel.

B. Step Frequency Estimation

Given a signal segment from source dataset collected from
a participant while walking, We computed the step frequency
by a brute-force search process and the ground-truth step
counts. Since human step frequency can range from 0.1Hz
when standing still to 12H z for vigorous running. We applied
low-pass filters with cut-off frequency values from 0.1Hz to
12H =z with a step size of 0.01Hz and recorded the accuracy
of detecting steps in the smoothed signal. Figure 7 shows the
distribution of the cut-off frequency values that resulted in step
counting accuracy of more than 95% for different walking
activities and sensor locations. In each sub-figure, activity
numbers 1 to 5 refer to walking on a treadmill at 2.5 kTm,
walking on a treadmill at 5.0 kTm walking on a treadmill at
8.0 %, walking with a walker and walker with a shopping
cart, respectively.

The estimated step frequencies exhibit a similar range
during the same activity for all three locations. For the chest
sensor, mean value and range of estimated step frequencies are
4.04Hz (2.5Hz to 5.75Hz), 5.36Hz (3Hz to 8.25Hz), 7.01Hz
(4.25Hz to 11Hz), 2.86Hz (2Hz to 4Hz) and 4.02Hz (2Hz to
6.5Hz) for walking activities 1 to 5, respectively. For pocket
sensors, mean value and range of estimated step frequencies
are 4.26Hz (2.5Hz to 6.5Hz), 5.86Hz (3Hz to 9.75Hz), 6.56Hz
(3.75Hz to 9Hz), 2.21Hz (1.75Hz to 3Hz) and 3.81Hz (2.5Hz

to 5.75Hz) for walking activities 1 to 5,respectively. For wrist
sensor, mean value and range of estimated step frequencies are
4.25Hz (2.75Hz to 6.25Hz), 5.86Hz (3.5Hz to 9.75Hz), 6.98Hz
(4.5Hz to 10.75Hz), 2.10Hz (1.5Hz to 3Hz) and 3.75Hz (2.5Hz
to 5.5Hz) for walking activities 1 to 5, respectively.

C. Target Walking Activity Identification

We apply an ensemble-tree classifier on the magnitude
signal to detect the type of walking activity. The red squares
show the identified walking activities in the sample target
signal. The ensemble-tree classifier achieves high accuracy of
93.3%, 90.7%, and 88.6% in detecting the type of walking
from the data collected by the sensor on the chest, pocket, and
wrist, respectively. The reason for the decline in the accuracy
of the wrist sensor is that subjects might exhibit extra hand
movements with different patterns that are a source of the
noise to the collected signal. The sensor in the pocket is not
as accurate as of the sensor on the chest, since, the smartphone
is free in the pocket while it is firmly attached to the chest.

D. Step Detection Performance Evaluation

In this section, we compare the accuracy and running time of
the ParalLabel and augmented Paralabel in the target setting.
Then, we evaluate the accuracy of the ParalLabel against state-
of-the-art approaches including frequency-based, and Fitbit
trackers mode for the chest, dominant wrist, and left pocket
locations. The step-counting accuracies are reported for each
walking activity including walking on a treadmill at 2.5 &™,
walking on a treadmill at 5.0 km walking on a treadmill at 8.0
km “walking with a shopping cart, and walking with a walker.

“h’
The values reported in the results section are averaged over
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all the subjects and all the analyses are done by the leave-one-
subject-out validation technique.

1) Performance of Augmented ParaLabel: We compare the
accuracy of step-counting inFigure 8a and the running time in
Figure 8b, of the ParalLabel and augmented Paral.abel algo-
rithms. We refer to the augmented ParalLabel as ParalLabel+ in
Figure 8. ParalLabel+ shows a negligible accuracy drop while
it decreases the running time by 33.1% on average, compared
to Paralabel. We expect the gap between the running time
of the two algorithms to increase as the source dataset be-
comes larger, which means the frequency-bank contains more
entries. Therefore, we report the result of both Paral.able and
augmented Paral.abel methods against state-of-the-art step-
counting approaches, in the remainder of the results section.

[ Paralabel I Paralabel+ [ ParalLabel
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Fig. 8. Average step-counting accuracy and running time of the Paralabel and
Paralabel+ algorithms for the chest, left pocket and dominant wrist sensor
locations.

2) Comparison against State-of-the-art: Table III shows the
average accuracy and coefficient of variation for the proposed
algorithms Paral.abel, ParalLabel+, and comparison models,
Fitbit, filtering with the median frequency per walking activity
(Median), and filtering with an adaptive frequency based on
the signal (frequency-based) during different walking activities
when the sensor was worn on the chest, dominant wrist, and
in the left pocket.

Chest: Fitbit algorithm correctly identified 95.4%, 95.5%,
97.3%, and 99.3% of the steps taken during treadmill activities
walking on a treadmill at 2.5 kTm, walking on a treadmill
at 5.0 k,—zn and walking on a treadmill at 8.0 Em - and
walking with a shopping cart, respectively. The step-counting

accuracy of Fitbit drops to 49.6% when walking with a walker.
The proposed algorithm, Paral.abel, could maintain the high
performance across all the activities dependent of the intensity
and pattern; it achieved 99.1%, 98.4%, 99.0%, 99.8%, and
97.3% during walking on a treadmill at 2.5 £™ walking on a
treadmill at 5.0 kTm and walking on a treadmill at 8.0 %,
walking with a shopping cart and walking with a walker.
Overall, Augmented ParalLabel achieves higher accuracy than
the Fitbit algorithm and slightly lower accuracy than the
ParalLabel. The frequency-based algorithm obtains competitive
results during the walking on a treadmill at 2.5 kTm, and
walking on a treadmill at 8.0 £ while its accuracy drops
to 72.5%-87.1% for the other activities. While setting the
filter parameter to the median frequency for each activity
drops the accuracy significantly to a range of 34.6%-87.1%.
These results demonstrate that pre-defining a frequency for
each activity obtains poor performance because subjects might
perform the same activity with a different pattern and intensity.
While adaptive filtering frequency for the signal of activities
from a different intensity might not be an optimal solution to
recognize the steps as well.

As shown in Table III, ParalLabel obtains the lowest ac-
curacy variation to mean ratio comparing to the state-of-the-
art methods. ParalLabel achieves 0.00, 0.05, 0.03, 0.00, 0.08
CoV during walking on a treadmill at 2.5 £ walking on
a treadmill at 5.0 kTm walking on a treadmill at 8.0 kTm
walking with a shopping cart, and walking with a walker.
These results demonstrate the consistency of the results across

all 15 participants in the experiments.

Left pocket: Fitbit trackers achieve > 95.3% step counting
accuracy during the treadmill activities, while their accuracy
drops to 79.2% and 6.5% during walking with a shopping cart
and walking with a walker. The frequency-based algorithm
obtains > 96.7% step counting accuracy for all the activities
except walking with a walker in which the accuracy slightly
drops to 91.0%. Predefined filtering frequency (median value)
for each activity decreases the step counting accuracy to
59.6%, 71.8%, and 45.0% for walking on the treadmill at
2.5 kTm, 5.0 kTm, and 8.0 k%, while increases to 88.5%,
and 57.2% for walking with a shopping cart and walking
with a walker. On the other hand, the promising results of
the frequency-based method compared to the Fitbit tracker is
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TABLE III
COMPARISON BETWEEN THE MEAN ACCURACY AND COEFFICIENT OF VARIATION OF STEP DETECTION ACCURACY OVER DIFFERENT PARTICIPANTS FOR
VARIOUS WALKING ACTIVITIES AND BODY LOCATIONS.

Mean Value (%)

Coefficient of Variation

Location  Activity Freq-

Freq-

Median  Fitbit Paral.abel ParaLabel+ Median Fitbit Paral.abel ParalLabel+

Based Based
2.5 kTm walking 50.8 95.4 92.9 99.1 96.0 0.48 0.04 0.30 0.00 0.21
g 5.0 kTm walking 70.3 95.5 87.1 98.4 97.5 0.15 0.06 0.24 0.05 0.11
5 8.0 kTm walking 34.6 97.3 90.6 99.0 95.9 0.32 0.10 0.32 0.03 0.15
Pushing a cart 68.9 99.3 84.9 99.8 99.0 0.39 0.24 0.46 0.00 0.05
Using a walker 87.1 49.6 72.5 97.3 91.4 0.13 0.96 0.69 0.08 0.12
< 2.5 kTm walking 59.6 97.6 96.1 99.4 97.0 0.32 0.10 0.03 0.01 0.11
§ 5.0 kTm walking 71.8 95.3 98.8 98.5 96.2 0.10 0.09 0.11 0.00 0.08
f‘ 8.0 k,—m walking 45.0 99.2 98.5 99.9 96.4 0.30 0.13 0.04 0.00 0.06
3 Pushing a cart 88.5 79.2 96.7 98.2 92.1 0.11 0.36 0.29 0.07 0.20
= Using a walker 57.2 6.5 91.0 95.4 90.3 0.16 1.90 0.33 0.10 0.23
- 2.5 kTm walking 66.8 94.1 82.3 96.3 93.9 0.42 0.12 0.35 0.07 0.20
§ 5.0 kT’” walking 78.4 99.9 90.0 99.1 94.0 0.13 0.01 0.15 0.05 0.09
s Z 8.0 walking 43.8 99.7 98.5 99.9 96.8 0.40 0.05 0.15 0.05 0.21
é’ ‘; Pushing a cart 72.9 98.9 43.0 99.2 95.5 0.17 0.06 1.21 0.03 0.10
Using a walker 67.1 17.7 84.1 89.3 82.1 0.12 1.87 0.23 0.01 0.23

because the accelerometer signal readings from left pocket
represent the motion of the left foot while walking, therefore
the frequency component of such signal highly correlates
with the step frequency of the users. ParalLabel improves the
performance even more to > 95.4% step counting accuracy
during the treadmill activities, walking with a shopping cart,
and walking with a walker. In particular , ParaLabel achieves
99.4%, 99.4%, 99.4%, 99.4%, and 99.4% during walking on
a treadmill at 2.5 %, walking on a treadmill at 5.0 % and
walking on a treadmill at 8.0 %, walking while pushing a
walker and walking with a walker, respectively.

Dominant wrist: the step-counting accuracies of the Fitbit
tracker are 94.1%, 99.9% and 99.7% during walking on a
treadmill at 2.5 kTm, walking on a treadmill at 5.0 kTm and
walking on a treadmill at 8.0 k,—T, respectively, because the
hands are free to swing alongside the body while walking,
therefore, represent the step frequency. The frequency-based
algorithm could detect > 90.0% of the steps taken during
walking on a treadmill at 5.052  and 8.0’“7’”, however, the
step counting accuracy drops to 82.3% while walking on a
treadmill at a slower pace of 2.5%”. We note that the accuracy
of the frequency-based method drops significantly to 43.0%
while walking with a shopping cart because both hands are
holding the cart, therefore the frequency components of the
signal from the dominant wrist are not an accurate representa-
tion of the step frequency. Low step counting accuracy (e.g.,
43.8%-78.4%) when using predefined frequencies based on the
type of walking in the Median method demonstrates the cross-
subject variations in the pattern of performing the same walk-
ing activity. On the other hand, ParalLabel achieves 99.4%,
98.5% and 99.9% step-counting accuracy during walking on
a treadmill at 2.5 kTm walking on a treadmill at 5.0 kTm and
walking on a treadmill at 8.0 ’“,—Lm, respectively. Moreover, it
improves the accuracy of the frequency-based algorithm and
Fitbit model to 89.3% during walking with a walker and 99.9%
during walking with a shopping cart, respectively. However,
the accuracy drops to 17.7% during walking with a walker for

the Fitbit tracker on the dominant wrist.

VI. CONCLUSIONS

We proposed Paralabel, a step-counting algorithm based
on peak detection techniques, the frequency component of
the signal and other frequency, and time-domain features
extracted from the input signal. The proposed approach ex-
hibits kKN N classification to transfer the frequency labels from
frequency-bank to the target. Paralabel achieved high step
counting accuracy during the walking activities regardless of
the intensity and pattern of the walking. We evaluated the
proposed algorithm using data collected from three locations
including the chest, the left pocket, and the dominant wrist
on the 15 users. Paralabel achieved step counting accu-
racy of 96.3% — 99.4%, 98.4% — 99.1%, 99.8% — 99.9%,
98.2% — 99.9%, and 89.3% — 97.3% during walking on a

treadmill at 2.5 kTm, walking on a treadmill at 5.0 kTm and
walking on a treadmill at 8.0 kTm, walking while pushing

a walker and walking with a walker. Moreover, Paralabel
achieved the lowest variation to mean accuracy ratio (ranged
from 0.00 for walking on the treadmill at 2.5 kT"’ to 0.10
for walking with a walker) comparing to the state-of-the-art.
These results demonstrate the consistency of the performance
of the proposed algorithm across all 15 participants in the
experiments. We further, proposed an upgraded version of
ParalLabel to reduce the time and computational complexity
of the algorithm by clustering the frequency-bank prior to
label transfer. We were able to maintain high accuracy while
decreasing the running time by 33.1%.
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