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Abstract—We study a secret sharing problem, where a dealer
distributes shares of a secret among a set of participants under
the constraints that (i) authorized sets of users can recover
the secret by pooling their shares, (ii) non-authorized sets of
colluding users cannot learn any information about the secret.
We assume that the dealer and the participants observe the
realizations of correlated Gaussian random variables and that the
dealer can communicate with the participants through a one-way,
authenticated, rate-limited, and public channel. Our main result
is a closed-form characterization of the trade-off between secret
rate and public communication rate. Unlike traditional secret
sharing protocols, in our setting, no perfectly secure channel is
needed between the dealer and the participants, and the size of
the shares does not depend exponentially but rather linearly on
the number of participants and the size of the secret for arbitrary
access structures.

I. INTRODUCTION

Secret sharing has been introduced in [1], [2]. In basic secret
sharing models, a dealer distributes a secret among a set of
participants with the constraint that only pre-defined sets of
participants can recover this secret by pooling their shares,
while any other set of colluding participants cannot learn any
information about the secret.

In most secret sharing models, including Shamir’s
scheme [1], it is assumed that the dealer and each participant
can communicate over a perfectly secure channel at no cost.
While these resources could be implemented with public-key
cryptography techniques [3], in this paper, we are interested
in another approach that aims at providing a full information-
theoretic solution that would not rely on complexity-based
cryptographic results such as public-key cryptography. In
other words, we want to avoid the assumption that perfectly
secure communication channels are available at no cost. An
information-theoretic approach to secret sharing over wireless
channels has been introduced in [4] for this purpose. The
main idea is to leverage channel noise by remarking that
secret sharing over wireless channels is similar to compound
wiretap channel models [5]. This information-theoretic ap-
proach is also formulated for source models in [6], [7], where
participants and dealers hold correlated random variables.
These models are related to compound secret key generation,
e.g., [8], and biometric systems with access structures [9].

While capacity results are known for Gaussian channel
models [5], in this paper, we study the trade-off between public
communication and secret rate for a Gaussian source model
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similar to [7]. Specifically, the dealer and the participants
observe realizations of correlated Gaussian random variables,
and the dealer can communicate with the participants over
an authenticated one-way rate-limited public communication
channel. In wireless networks, independently and identically
distributed realizations of correlated random variables can, for
instance, be obtained from channel gain measurement after
appropriate manipulations [10], [11]. Our approach for the
achievability consists in handling the reliability and secrecy
requirement separately. Interestingly, the converse shows that
there is no loss of optimality in decoupling the reliability and
security requirements. The achievability is first obtained for
discrete random variables and then extended to continuous
random variables via fine quantization. In principle, one cannot
assume a specific quantization strategy to ensure the security
requirement in an information-theoretic manner, hence, the key
step in this extension is to show that information-theoretic
security holds provided that the quantization is sufficiently
fine. For the converse part, we can partly rely on techniques
developed in [12]. However, unlike in [12], our setting involves
multiple security constraints that need to be satisfied simulta-
neously, hence, the main task in the converse is to prove a
saddle point property without any degradedness assumption
on the source model.

The main features of our work can be summarized as
follows: (i) Unlike traditional secret sharing schemes [1], [2],
our model does not rely on the assumption that perfectly secure
channels between the dealer and the participants are available,
instead, our model relies on correlated Gaussian random
variables. (ii) We strengthen the security of traditional secret
sharing schemes, by providing information-theoretic security
for the secret with respect to unauthorized sets of participants
during the distribution phase, i.e., when the dealer distributes
shares of the secret to participants. (iii) We establish a closed-
form expression that characterizes the optimal trade-off be-
tween secret rate and public communication rate. (iv) The
size of the shares in our coding scheme depends linearly on
the number of participants and the size of the secret, which
contrasts with traditional secret sharing schemes for which the
size of the shares can grow exponentially with the number of
the participants for arbitrary access structures [13]. (v) For
threshold access structures, i.e., when a fixed number of
participants t is needed to reconstruct the secret (independently
from the specific identities of those participants), we establish
that the size of the secret that can be exchanged is not a

2020 IEEE Information Theory Workshop (ITW)

978-1-7281-5962-1/21/$31.00 ©2021 IEEE 361



monotonicdecreasingfunctionofthethresholdt.
Theremainderofthepaperisorganizedasfollows. We

setthenotationinSectionIIandformallyintroducethe
problemstatementinSectionIII.Wepresentourmainresults
inSectionIV,andtheirproofsinSectionsVandVI.Finally,
weprovideconcludingremarksinSectionVII.

II.NOTATION

Foranya,b∈R,definea,b [a,b]∩N.Forx∈R,
define[x]+ max(0,x).ForasetS,let2Sdenotethepower
setofS.Allthelogarithmsaretakeninbase2throughoutthe
paper.LetIm denotetheidentitymatrixofdimensionm∈N.
Letdet(W)denotethedeterminantofamatrixW and|S|
denotethecardinalityofasetS.ForarandomvariableX,
letσ2X denoteitsvariance.N ∼ N(0,Σ)denotesazero-
meanGaussianrandomvectorwithcovariancematrixΣ.The
indicatorfunctionisdenotedby1{ω},whichisequalto1if
thepredicateωistrueand0otherwise.

III.PROBLEMSTATEMENT

ConsideradealerandLparticipants.DefineL 1,L,
X R,andY R.ConsideraGaussiansourcemodel
(X×YL,pXYL),whereYL (Yl)l∈Land(X,YL)arejointly
Gaussianrandomvariableswithanon-singularcovariance
matrix.LetAbeasetofsubsetsofLsuchthatforanyT ⊆L,
ifTcontainsasetwhichbelongstoA,thenTalsobelongs
toA,i.e.,Aisamonotoneaccessstructure[13]. Wealso
defineU 2L\Aasthesetofallcolludingsubsetsofusers
whomustnotlearnanyinformationaboutthesecret.Inthe
following,foranyA∈A,foranyU∈U,weusethenotation
YnA (Ynl)l∈A andY

n
U (Ynl)l∈U. Moreover,weassume

thatthedealercancommunicatewiththeparticipantsover
anauthenticated,one-way,rate-limited,noiseless,andpublic
communicationchannel.

Definition1. A(2nRs,Rp,A,n)secretsharingstrategyis
definedasfollows:
-ThedealerobservesXnandParticipantl∈LobservesYnl.
-ThedealersendsoverthepublicchannelthemessageM to
theparticipantswiththebandwidthconstraintH(M)≤nRp.
-ThedealercomputesasecretS∈S 1,2nRs fromXn.
-AnysubsetofparticipantsA∈Acancomputeanestimate
S(A)ofSfromtheirobservations(Ynl)l∈AandM.

Definition2.Aratepair(Rp,Rs)issaidtobeachievable
ifthereexistsasequenceof(2nRs,Rp,A,n)secretsharing
strategiessuchthat

lim
n→∞

max
A∈A
P[S(A)=S]=0, (1)

lim
n→∞

max
U∈U
I(S;M,Yn

U)=0, (2)

lim
n→∞

log|S|−H(S)=0. (3)

(1)meansthatanysubsetofparticipantsinAisableto
recoverthesecret,(2)meansthatanysubsetofparticipants
inUcannotobtaininformationaboutthesecret,while(3)
meansthatthesecretisnearlyuniform,whichismeantto
maximizetheuncertaintyofguessingSbytheusersinU.The

secretcapacityregionisdefinedasR(pXYL,A) {(Rp,Rs):
(Rp,Rs)isachievable}.ForafixedRp,thesupremumof
secretratesRssuchthat(Rp,Rs)∈ R(pXYL,A)iscalled
thesecretcapacityandisdenotedbyCs(A,Rp).Finally,one
canwriteforanyA∈AandforanyU∈U

YA=HAX+WYA, (4)

YU=HUX+WYU, (5)

whereHA ∈R
|A|×1,HU ∈R

|U|×1,WYA ∼ N(0,I|A|),
andWYU ∼N(0,I|U|).Theproofisomittedduetospace
constraints.

IV. MAINRESULTS

A.Resultsforgeneralaccessstructures

ForanyaccessstructureA,weconsidertwosetsA ∈
argminA∈AH

T
AHA andU ∈argmaxU∈UH

T
UHU.

Theorem1.ForanyaccessstructureAandpubliccommu-
nicationrateRp≥0,thesecretcapacityCs(A,Rp)is

Cs(A,Rp)=

1

2
log
σ2XH

T
U HU 2

−2Rp+σ2XH
T
A HA (1−2

−2Rp)+1

σ2XH
T
U HU +1

+

.

TheconverseandachievabiltyareprovedinSectionsVand
VI,respectively.FromTheorem1,weobtainthefollowing
corollarywhenthepubliccommunicationisrate-unlimited.

Corollary1.ForanyaccessstructureA,andanunlimited
publiccommunicationrate,thesecretcapacityisgivenby

lim
Rp→+∞

Cs(A,Rp)=
1

2
log
σ2XH

T
A HA +1

σ2XH
T
U HU +1

+

.

NotethatinTheorem1andCorollary1,thelengthofthe
totalcommunicationislinearwiththelengthofthesecretby
construction.Hence,thesizeoftheshareofoneparticipant,
whichcomprisesthepubliccommunicationfromthedealer
andnobservationsofaGaussianrandomvariable,scales
linearlywiththelengthofthesecretforanychoiceofthe
accessstructureA.Thisisinsharpcontrastwithtraditional
secretsharingmodels,wherethesizeofthesharesmayscale
exponentially withthenumberofparticipantsforgeneral
accessstructures[13].

B.Resultsforthresholdaccessstructures

Wenowconsideraspecialkindofaccessstructure.Athresh-
oldaccessstructurewiththresholdt∈ 1,Lisdefinedas
At {A⊆L:|A|≥t}.ThecomplementofAtisdefined
asUt 2L\At= {A ⊆L:|A|<t}.Inotherwords,
thethresholdaccessstructureisdefinedsuchthatanysetof
tparticipantscanreconstructthesecret,butnosetoffewer
thantparticipantscanlearninformationaboutthesecret.
Theorem2providesnecessaryandsufficientconditionsto
determinewhetherthesecretcapacityincreasesordecreases
asthethresholdtincreases.Italsoillustratesthefactthatthe
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secretcapacityisnotamonotonicdecreasingfunctionofthe
thresholdt.Weomittheproofduetospaceconstraints.

Theorem 2. For any t ∈ 1,L,considerAt ∈
argminA∈AtH

T
AHAandUt∈argmaxU∈UtH

T
UHU.Forany

communicationrateRp≥0,foranyt∈ 1,L,wehave

Cs(A1,Rp)≥Cs(At,Rp),

andforanyt∈ 1,Landi∈ 1,L−t,

Cs(At,Rp)≥Cs(At+i,Rp)⇐⇒

HTUt+i
HUt+i−H

T
Ut
HUt

HTAt+i
HAt+i−H

T
At
HAt

≥
1+σ2XH

T
Ut
HUt

1+σ2XH
T
At
HAt

.

Example.Consideradealerandfiveparticipants.Forσ2X
2,HL [1,0.85,0.9,0.95,0.75]T,onecancomparethesecret
capacitiesfordifferentthresholdsusingTheorem2,asshown
inFigure1.Forexample,inTheorem2witht=4andi=1,
wegetCs(A4,Rp)≤Cs(A5,Rp)foranyRp≥0

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

.

Figure1.Secretcapacityforathresholdaccessstructure.

V.CONVERSEPROOFOFTHEOREM1

DefineforA∈ A,U∈U,OA HTAHA,andOU
HTUHU.ConsiderV anauxiliaryrandomvariablejointly
GaussianwithX andletσ2X|V betheconditionalvariance
ofX givenV.ConsideralsoA ∈argminA∈AOA and
U ∈argmaxU∈UOU.Providedthatσ

2
X|V =0,forA∈A,

U∈U,define

Ip(σ
2
X|V,A)

1

2
log

σ2X
σ2X|V

−
1

2
log

σ2XOA+1

σ2X|VOA+1
,

Is(σ
2
X|V,A,U)

1

2
log

σ2XOA+1

σ2X|VOA+1
−
1

2
log

σ2XOU+1

σ2X|VOU+1
.

Wewillalsousethefollowinglemmas.

Lemma1(Weinstein–Aronszajnidentity).Foranyσ2∈R+

andA∈Rq×1,wehave

det(Aσ2AT+Iq)=A
TAσ2+1.

Lemma2.Letc,d∈R+ suchthatc≥d.Then,thefunction
fc,dfromR+ toRisnon-decreasing,where

fc,d:x→
1

2
log
cx+1

dx+1
.

WenowprovetheconverseofTheorem1throughaseries
oflemmas.

Lemma3.LetRp∈R+.Anupperboundonthesecretcapac-
ityCs(A,Rp)fortheGaussiansourcemodel(X×YL,pXYL)
isgivenby

Cs(A,Rp)≤min
A∈A
min
U∈U

max
0<σ2X|V≤σ

2
X

s.t.Ip(σ
2
X|V,A)≤Rp

Is(σ
2
X|V,A,U).(6)

Theproofisomittedduetospaceconstraints.

Lemma4.LetRp∈R+.LetA∈A,U∈U,andassume
thatOA≥OU.Then,wehave

max
0<σ2X|V≤σ

2
X

s.t.Ip(σ
2
X|V,A)≤Rp

Is(σ
2
X|V,A,U)

=
1

2
log
σ2XOU2

−2Rp+σ2XOA(1−2
−2Rp)+1

σ2XOU+1
. (7)

Proof.FixA ∈ AandU ∈ U.Letσ2X|V(A,U)bean
optimalsolutionontheleft-handsideof(7).Bywriting
Is(σ

2
X|V,A,U)as

Is(σ
2
X|V,A,U)=

1

2
log
σ2XOA+1

σ2XOU+1
−
1

2
log
σ2X|VOA+1

σ2X|VOU+1
,

wehavethatIs(σ
2
X|V,A,U)isanon-increasingfunctionof

σ2X|V byLemma2becauseOA ≥OU.Hence,σ
2
X|V(A,U)

mustbethesmallest σ2X|V ∈ (0,σ2X]thatsatisfiesthe

constraintIp(σ
2
X|V,A)≤ Rp. However,Ip(σ

2
X|V,A)is

anon-increasingfunctionofσ2X|V,thus we musthave

Ip(σ
2
X|V(A,U),A)=Rp,fromwhichonecandeducethat

σ2X|V(A,U)=
σ2X

σ2XOA(2
2Rp−1)+22Rp

. (8)

Lemma5.AssumethatforanyA∈A,U∈U,wehave
OA≥OU.LetRp∈R+.Wehave

min
A∈A
min
U∈U

max
0<σ2X|V≤σ

2
X

s.t.Ip(σ
2
X|V,A)≤Rp

Is(σ
2
X|V,A,U)

= max
0<σ2X|V≤σ

2
X

s.t.Ip(σ
2
X|V,A )≤Rp

min
A∈A
min
U∈U
Is(σ

2
X|V,A,U). (9)

Proof.ByLemma2,wehaveforanyσ2X|V∈(0,σ
2
X],A∈A,

U∈U,

1

2
log

σ2XOA+1

σ2X|VOA+1
≥
1

2
log

σ2XOA +1

σ2X|VOA +1
,
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−
1

2
log

σ2XOU+1

σ2X|VOU+1
≥−
1

2
log

σ2XOU +1

σ2X|VOU +1
,

hence,Is(σ
2
X|V,A,U)≥Is(σ

2
X|V,A,U)andweconclude

thatforanyσ2X|V∈(0,σ
2
X],

min
A∈A
min
U∈U
Is(σ

2
X|V,A,U)=Is(σ

2
X|V,A,U). (10)

Then,wehave

min
A∈A
min
U∈U

max
0<σ2X|V≤σ

2
X

s.t.Ip(σ
2
X|V,A)≤Rp

Is(σ
2
X|V,A,U)

(a)
=min
A∈A
min
U∈U
Is(σ

2
X|V(A,U),A,U)

(b)
=Is(σ

2
X|V(A,U),A,U)

= max
0<σ2X|V≤σ

2
X

s.t.Ip(σ
2
X|V,A )≤Rp

Is(σ
2
X|V,A,U)

(c)
= max

0<σ2X|V≤σ
2
X

s.t.Ip(σ
2
X|V,A )≤Rp

min
A∈A
min
U∈U
Is(σ

2
X|V,A,U),

where in (a) we have defined σ2X|V(A,U) =

argmax
0<σ2X|V≤σ

2
X

s.t.Ip(σ
2
X|V,A)≤Rp

Is(σ
2
X|V,A,U)forA ∈ A,U ∈ U,

(b)holdsbecauseforanyA ∈ A,U ∈ U, wehave
Is(σ

2
X|V(A,U),A,U) ≥ Is(σ

2
X|V(A,U),A,U) ≥

Is(σ
2
X|V(A,U),A,U), where the first inequality

holdsby(10),andthesecondinequalityholdsbecause
Is(σ

2
X|V(A,U),A,U)isa non-increasingfunction of

σ2X|V(A,U)byLemma2,andσ
2
X|V(A,U)≥σ

2
X|V(A,U)

by(8)intheproofofLemma4,and(c)holdsby(10).

Next,weremarkthatifthereexistA∈ AandU∈U
suchthatOA <OU,thenCs(A,Rp)=0byLemma3and
Lemma2appliedtofσ2X,σ2X|V.Thus,weobtaintheconverse

ofTheorem1bycombiningLemmas3,4,and5.

VI.ACHIEVABILITYPROOFOFTHEOREM1

ToprovetheachievabilitypartofTheorem1,wefirst
proveanachievabilityresultfordiscreterandomvariablesin
SectionVI-A,andthenextendourresulttoGaussianrandom
variablesbyaquantizationargumentinSectionVI-B.

A.Discretecase

Ourcodingschemedecouplestherequirements(1)and(2).
Specifically,asdescribednext,werepeatq∈Ntimesa
reconciliationsteptohandle(1)andthenperformaprivacy
amplificationsteptohandle(2).
1)Reconciliationstep:Letn∈Nand >0.LetTn(X)

bethesetof-typicalsequenceswithrespecttopX,anddefine
µX minx∈supp(pX)pX(x).Definealso1

1
2.

Codeconstruction:FixajointprobabilitydistributionpVXYL
onV×X×YL,whereVisanauxiliaryrandomvariable
suchthatV−X−YLformsaMarkovchain.DefineRv
maxA∈AH(V|YA)−H(V|X)+6H(V),Rv H(V)−

maxA∈AH(V|YA)−3H(V). Generate2
n(Rv+Rv) code-

words,labeledvn(ω,ν)with(ω,ν)∈ 1,2nRv × 1,2nRv ,
bygeneratingthesymbolsvi(ω,ν)fori∈ 1,nand(ω,ν)∈
1,2nRv × 1,2nRv independentlyaccordingtopV.
Encoding: Givenxn, find a pair(ω,ν) suchthat
(xn,vn(ω,ν))∈Tn(XV).Ifthereareseveralpairs,choose
one(accordingtothelexicographicorder);otherwise,set
(ω,ν)=(1,1).Definevn vn(ω,ν)andtransmitm ω.
Decoding:LetA ∈ A.GivenynA andm,findν̃A such
that(ynA,v

n(ω,̃νA))∈T
n(YAV).Ifthereisoneormore

ν̃A,choosethesmallest;otherwise,setν̃A =1. Define
vnA vn(ω,νA).
Probabilityoferror:Therandomvariablethatrepresentsthe
randomlygeneratedcodeisdenotedbyCn.Onecanshow
thatthereexistsacodebookCnsuchthat

max
A∈A
P[Vn=VnA]≤|A|max

A∈A
δ(n,,A), (11)

whereδ(n,,A) 2|V||X||YA|exp(−n
(− 1)

2

1+1
µVXYA)+

exp(−(1−2|V||X|e−n
(− 1)

2

1+1
µV X)2nH(V))+2−nH(V)+

2|X||YA|e
−n2

1µXYA.Theproofisomittedduetospacecon-
straints.
2)Privacyamplificationstep:Letq,n∈N,anddefine
N nq.Thereconciliationstepisrepeatedqtimessuchthat
thedealerhasVN =(Vn)qandtheparticipantsinA∈A
have(VnA)

q.NotethatthetotalpubliccommunicationM ∈ M

issuchthatH(M)N ≤maxA∈AI(X;V|YA)+6H(V).Next,
anotherroundofreconciliationwithnegligiblecommunication
isperformedtoensurethatmaxA∈AP[(V

n)q=(VnA)
q]≤

δ(q),wherelimq→∞ δ(q)=0whennisfixed.Finally,the
dealercomputesS=g(VN,Ud),whiletheparticipantsin
A∈AcomputeS(A)=g(VNA,Ud),whereg:{0,1}

N ×
{0,1}d→{0,1}kisanextractor[14]andUdisasequence
ofduniformlydistributedrandombitssuchthatd≤Nδ(N)
withlimN→+∞ δ(N)=0.
Analysisofreliability:Thesecretscomputedbythedealer
andtheparticipantsinA∈Aareasymptoticallythesamefor
afixednasqgoestoinfinity.

P[S(A)=S]≤P[(VnA)
q=(Vn)q]≤δ(q).

Analysis of secrecy: We choosethe secretlength
ask N[minA∈AI(V;YA)− maxU∈UI(V;YU)−
maxU∈Uδ

2(q,n,U)− N−1/2], whereδ2(q,n,U)
I(X;V|YU) + (1 − )[2H(X|YUV) + 2n−1 +

log|X|(4|SXV|e
−n2µXV + 2|SVXYU|e

− 2nµV XYU/6)] +
N−1δ1(q,n,U)+6H(V)+N−1/2 with δ1(q,n,U)

−log(1−2|SVnYnU|e
− 2qµVnYn

U
/6
),SXV supp(pXV),

SVXYU supp(pVXYU),andSVnYnU supp(pVnYnU).Using
[14,Lem.6,Lem.9,Lem.10],[15,Lem.1.1,Th.3.2],one
canshow(weskipthedetailsduetospaceconstraint)

max
U∈U
I(S;UdY

N
UM)≤δ

3(N), (12)

where δ3(N) δ(N)+ maxU∈Uδ
0(n,U)+2−

√
N k

withδ(N) 2−
√
N/logN k+

√
N/logN ,δ0(n,U)
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2|SYnU|e
− 2qµYn

U
/3
+2|SVnYnU|e

− 2qµVnYn
U
/3
,whereSYnU

supp(pYnU).

Analysisofuniformity:Similarto(12),onecanshow

H(S)≥min
U∈U
H(S|UdY

N
UM)≥k−δ

3(N). (13)

Publiccommunicationrate:Thepubliccommunicationrate
correspondstotherateofM plustherateofUd,i.e.,

lim
N→∞

Rp=max
A∈A
I(X;V|YA)+6H(V).

Achievablesecretrate:ThesecretrateRs k/Nsatisfies

Rs≥min
A∈A
I(V;YA)−max

U∈U
I(V;YU)−max

U∈U
δ2(q,n,U)

−N−1/2−N−1. (14)

B.Continuouscase

WenowbuilduponSectionVI-Atoshowthat(Rp,Rs)∈
R(pXYL,A),where

Rp=
1

2
log

σ2X
σ2X|V

−
1

2
log

σ2XOA +1

σ2X|VOA +1
, (15)

Rs=
1

2
log

σ2XOA +1

σ2X|VOA +1
−
1

2
log

σ2XOU +1

σ2X|VOU +1
. (16)

WeextendSectionVI-Atothecontinuouscasebymeansof
quantization.Asstatedbelow,onecanshowthataquantization
doesnotaffecttherequirement(2).

Lemma6.AquantizationofYnU,U∈U,mightleadtoan
underestimationofI(S;M,Yn

U).However,ifthequantized
versionYUn

∆n
ofYnU,U∈U,isfineenough,thenforany

δ>0

max
U∈U
I(S;MYn

U)≤max
U∈U
I(S;MYUn

∆n
)+δ. (17)

As in [15, Lemma 1.2], we jointly quantize
X,YA,YU,andV toformX∆X,Y∆YA,Y∆YU,andV∆V
suchthat∆X = ∆YA = ∆YU = ∆V = l−a and
|X∆X|=|Y∆YA|=|Y∆YU|=|V∆V|=l

awitha>0.Next,
weapplytheproofforthediscretecasetotherandomvariables
X∆X,Y∆YA,Y∆YU,andV∆V.Then,wefixllargeenough
suchthat,foranyA∈A,|I(V∆V;Y∆YA)−I(V;YA)|<δ/2,
foranyU∈U,|I(V∆V;Y∆YU)−I(V;YU)|<δ/2,suchthat
(14)becomes

Rs≥min
A∈A
I(V;YA)−max

U∈U
I(V;YU)−max

U∈U
δ2(q,n,U)

−N−1/2−N−1−δ.

Notethatδ2(q,n,U),U∈U,intheaboveequationhidesthe
terms2(1−)H(X∆X|Y∆YUV∆V)and6H(V∆V),whichdo
notgotozeroaslgoestoinfinity.Consequently,wechoose
=n−α,whereα∈[0,1/2]\{0,1/2},suchthatifwechoose
llargeenough,thennlargeenough,andfinallyqlargeenough,
thentheasymptoticsecretrateisascloseasdesiredto

min
A∈A
I(V;YA)−max

U∈U
I(V;YU), (18)

δ3(N)vanishestozeroin(12),(13),andtheasymptoticpublic
communicationrateisascloseasdesiredto

max
A∈A
I(V;X|YA). (19)

BytakingtheauxiliaryrandomvariableVjointlyGaussian
withX in(18)and(19),onecanobtain(15)and(16). We
skippedthedetailsbecauseofspaceconstraints.

VII.CONCLUDINGREMARKS

WeproposedasecretsharingschemefromGaussiancorre-
latedsourcesoveraone-wayrate-limitedpublicchanneland
characterizeditssecretcapacity,whichprovidesaclosed-form
expressionofthetrade-offbetweenpubliccommunicationand
thesecretrate.Bycontrastwithatraditionalsecretsharing
protocol,oursettingdoesnotrequireperfectlysecurechannels
betweenthedealerandparticipants,andprovidesinformation-
theoreticsecurityduringthedistributionphase,wherethe
dealerdistributessharesofthesecrettotheparticipants.
Moreover,wehaveshownthatthesizeofthesharesdepends
linearlyonthenumberofparticipantsandthesizeofthesecret
foranyaccessstructure.Thisalsocontrastswithtraditional
secretsharingschemeswherethesizeofthesharescangrow
exponentially withthenumberofparticipantsforgeneral
accessstructures.Wealsocharacterizedthesecretcapacityfor
thresholdaccessstructuresandshowedthatthesecretcapacity
isnotamonotonefunctionofthethreshold.
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