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Abstract—We study a secret sharing problem, where a dealer
distributes shares of a secret among a set of participants under
the constraints that (i) authorized sets of users can recover
the secret by pooling their shares, (ii) non-authorized sets of
colluding users cannot learn any information about the secret.
We assume that the dealer and the participants observe the
realizations of correlated Gaussian random variables and that the
dealer can communicate with the participants through a one-way,
authenticated, rate-limited, and public channel. Our main result
is a closed-form characterization of the trade-off between secret
rate and public communication rate. Unlike traditional secret
sharing protocols, in our setting, no perfectly secure channel is
needed between the dealer and the participants, and the size of
the shares does not depend exponentially but rather linearly on
the number of participants and the size of the secret for arbitrary
access structures.

I. INTRODUCTION

Secret sharing has been introduced in [1], [2]. In basic secret
sharing models, a dealer distributes a secret among a set of
participants with the constraint that only pre-defined sets of
participants can recover this secret by pooling their shares,
while any other set of colluding participants cannot learn any
information about the secret.

In most secret sharing models, including Shamir’s
scheme [1], it is assumed that the dealer and each participant
can communicate over a perfectly secure channel at no cost.
While these resources could be implemented with public-key
cryptography techniques [3], in this paper, we are interested
in another approach that aims at providing a full information-
theoretic solution that would not rely on complexity-based
cryptographic results such as public-key cryptography. In
other words, we want to avoid the assumption that perfectly
secure communication channels are available at no cost. An
information-theoretic approach to secret sharing over wireless
channels has been introduced in [4] for this purpose. The
main idea is to leverage channel noise by remarking that
secret sharing over wireless channels is similar to compound
wiretap channel models [5]. This information-theoretic ap-
proach is also formulated for source models in [6], [7], where
participants and dealers hold correlated random variables.
These models are related to compound secret key generation,
e.g., [8], and biometric systems with access structures [9].

While capacity results are known for Gaussian channel
models [5], in this paper, we study the trade-off between public
communication and secret rate for a Gaussian source model
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similar to [7]. Specifically, the dealer and the participants
observe realizations of correlated Gaussian random variables,
and the dealer can communicate with the participants over
an authenticated one-way rate-limited public communication
channel. In wireless networks, independently and identically
distributed realizations of correlated random variables can, for
instance, be obtained from channel gain measurement after
appropriate manipulations [10], [11]. Our approach for the
achievability consists in handling the reliability and secrecy
requirement separately. Interestingly, the converse shows that
there is no loss of optimality in decoupling the reliability and
security requirements. The achievability is first obtained for
discrete random variables and then extended to continuous
random variables via fine quantization. In principle, one cannot
assume a specific quantization strategy to ensure the security
requirement in an information-theoretic manner, hence, the key
step in this extension is to show that information-theoretic
security holds provided that the quantization is sufficiently
fine. For the converse part, we can partly rely on techniques
developed in [12]. However, unlike in [12], our setting involves
multiple security constraints that need to be satisfied simulta-
neously, hence, the main task in the converse is to prove a
saddle point property without any degradedness assumption
on the source model.

The main features of our work can be summarized as
follows: (i) Unlike traditional secret sharing schemes [1], [2],
our model does not rely on the assumption that perfectly secure
channels between the dealer and the participants are available,
instead, our model relies on correlated Gaussian random
variables. (i) We strengthen the security of traditional secret
sharing schemes, by providing information-theoretic security
for the secret with respect to unauthorized sets of participants
during the distribution phase, i.e., when the dealer distributes
shares of the secret to participants. (iii) We establish a closed-
form expression that characterizes the optimal trade-off be-
tween secret rate and public communication rate. (iv) The
size of the shares in our coding scheme depends linearly on
the number of participants and the size of the secret, which
contrasts with traditional secret sharing schemes for which the
size of the shares can grow exponentially with the number of
the participants for arbitrary access structures [13]. (v) For
threshold access structures, i.e., when a fixed number of
participants ¢ is needed to reconstruct the secret (independently
from the specific identities of those participants), we establish
that the size of the secret that can be exchanged is not a
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monotonic decreasing function of the threshold ¢.

The remainder of the paper is organized as follows. We
set the notation in Section II and formally introduce the
problem statement in Section I1I. We present our main results
in Section IV, and their proofs in Sections V and V1. Finally,
we provide concluding remarks in Section VIL

II. NOTATION

For any a,b € R, define [a,b] £ [|a], [b]] M. For = € R,
define [z]* £ max(0, z). For a set S, let 2° denote the power
set of 5. All the logarithms are taken in base 2 throughout the
paper. Let I,;; denote the identity matrix of dimension m < M.
Let det(W) denote the determinant of a matrix W and |S|
denote the cardinality of a set 5. For a random variable X,
let % denote its variance. N ~ A(0,X) denotes a zero-
mean Gaussian random vector with covariance matrix X. The
indicator function is denoted by 1{w}, which is equal to 1 if
the predicate w is true and 0 otherwise.

II1. PROELEM STATEMENT

Consider a dealer and L participants. Define £ £ [1, L],
X 2 B and ¥V £ B Consider a Gaussian source model
(X x Ve, pxv,), where Yz £ (Yi)iec and (X,Y) are jointly
Gaussian random variables with a non-singular covariance
matrix. Let A be a set of subsets of £ such that for any T C L,
if T contains a set which belongs to A, then T also belongs
to &, ie., A is a monotone access structure [13]. We also
define U £ 25\ A as the set of all colluding subsets of users
who must not learn any information about the secret. In the
following, for any .4 £ A, for any I{ € U, we use the notation
YT £ (¥"lica and Y} £ (¥™)icu. Moreover, we assume
that the dealer can communicate with the participants over
an authenticated, one-way, rate-limited, noiseless, and public
communication channel.

Definition 1. A (2"%- R, A n) secret sharing strategy is
defined as follows:

- The dealer observes X™ and Participant | € L observes Y™
- The dealer sends over the public channel the message M to
the participants with the bandwidth constraint H(M) < nR,.
- The dealer computes a secret S € 8§ £ [1,2"%:] from X™.
- Any subset of participants A € A can compute an estimate
5(A) of S from their observations (Y*),c4 and M.

Definition 2. A rate pair (R, R,) is said to be achievable
if there exists a sequence of (2" Ry, A,n) secret sharing

strategies such that —
lim maxP[S(A) # 5] =0, (1)

N—oa AE&
Jim max I(S; M, ¥) =0, (2)
Jim log|S| — H(S) = 0. (3)

(1) means that any subset of participants in A is able to
recover the secret, (2) means that any subset of participants
in I/ cannot obtain information about the secret, while (3)
means that the secret is nearly uniform, which is meant to
maximize the uncertainty of guessing S by the users in 1. The

secret capacity region is defined as R(pxv.,4) £ {(Bp, Rs) :
(R, R,) is achievable}. For a fixed R, the supremum of
secret rates 2, such that (Rp, R.) € Ripxy..A) is called
the secret capacity and is denoted by C (A, Ry). Finally, one
can write for any A€ A and for any I{ € U

YA=HAX+T‘VVA.. {4}
Yy = HyX + Wy, (5)
where Hy € RMIXL Iy, € RUXL Wy, ~ N(0,1)4),

and Wy, ~ N(0,Iy,). The proof is omitted due to space
constraints.

IV. Main RESULTS

A. Results for general access structures

For any access structure &, we consider two sets A4* €
arg min ge4 H_,{HA and U* € arg maxyey H Hu.
Theorem 1. For any access structure A& and public commu-
nication rate Ry = 0, the secret capacity C,(A, Ry) is

Cu(A, By) -
1 oy H Hy- 272 4 0% HE* Hy-(1—2"2Re) 41

|
7% o2 HI Hy- +1

The converse and achievabilty are proved in Sections V and
V1, respectively. From Theorem 1, we obtain the following
corollary when the public communication is rate-unlimited.

+

Corollary 1. For any access structure A, and an unlimited
public communication rate, the secret capacity is given by

e e L e Ha 41 N
Rp—s+00 s(A, Rp) = g 8 or Y Hy- +1

Note that in Theorem 1 and Corollary 1, the length of the
total communication is linear with the length of the secret by
construction. Hence, the size of the share of one participant,
which comprises the public communication from the dealer
and n observations of a Gaussian random variable, scales
linearly with the length of the secret for any choice of the
access structure A. This is in sharp confrast with traditional
secret sharing models, where the size of the shares may scale
exponentially with the number of participants for general
access structures [13].

B. Results for threshold access structures

We now consider a special kind of access structure. A thresh-
old access structure with threshold ¢ € [1,L] is defined as
A; £ {AC L :|A| > t}. The complement of A, is defined
as U, £ 20\A;, = {A C L : |A| < t}. In other words,
the threshold access structure is defined such that any set of
t participants can reconstruct the secret, but no set of fewer
than ¢ participants can learn information about the secret.
Theorem 2 provides necessary and sufficient conditions to
determine whether the secret capacity increases or decreases
as the threshold ¢ increases. It also illustrates the fact that the
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secret capacity is not 2 monotonic decreasing function of the
threshold ¢{. We omit the proof due to space constraints.

Theorem 2. For any t € [1,L). consider A; €
argmin . H_,{HA and U} € arg maxy; ;. H Hy. For any
communication rate Ry = 0, for any t € [1, L], we have

Gg{ﬂq.. Rp} :_:' CS{AI'. Rp}a
and for any t € [1,L] and 1 € [1,L —t],
Cs(hy, Bp) = Colheyq, Bp) =

HE?{:*_I_..HU:_'_‘- - HE?{:* H{,{; 1+ a’i- Hﬂ—} Hul-
Hie, Haz, —HiHa; — 1+0xH Hay

Example. Consider a dealer and five participants. For o3 £
2, He £ [1,0.85,0.9,0.95,0.75], one can compare the secret
capacities for different thresholds using Theorem 2, as shown
in Figure 1. For example, in Theorem 2 with t = 4 and i = 1,
we get Cs(Ay, Bp) < Cs(As, Ry) for any Ry > 0.

0.6
o5t e —T —i=1
—i=2
—i=1
04 y E—
— . A S—— t=5
= / -
= 0.3
s/
o2t
0.l !
0 :
] 1 2 3 4 5
R [bits]
Figure 1. Secret capacity for a thmeshold access structure.

V. CONVERSE PROOF OF THEOREM 1

Define for 4 € A, U € U, Oy éHiHA,mﬂDu =
HI Hy. Consider V' an au:tiliar:,-r random variable jointly
Gauss:an with X and let G’x  be the conditional variance
of X given V. Consider also 4* € argminges 04 and
I{* £ arg maxy ey Oy. Provided that ﬂl’i-lv #0, for A € A,
i € U, define

1 oy 1 o304 +1
L(ok . A) 2 Zlog %X — —log X2~ —
P 2 W 2 " oxpOa+1
1 D_,q+1 1 JE{_}H+1
-} X
Lo(@xw, AU) £ 5 xEWD +1 286 Ou+1

We will also use the following lemmas.

Lemma 1 (Weinstein-Aronszajn identity). For any o2 € Rt
and A € B9 we have

det(Aac?AT + 1) = AT Ae® + 1.

Lemma 2. Let ¢,d € B such that ¢ = d. Then, the function
fe.qa from B to R is non-decreasing, where

1 er+ 1
fea: x> sloB gy

We now prove the converse of Theorem 1 through a series
of lemmas.

Lemma 3. Let B, € R. An upper bound on the secret capac-
ity C;(A, Rp) for the Gaussian source model (X x Ve, pxv,)

isgiver:b}*

s[4, Bp) < min min

AcA LU Iﬂ'{agc|v:-4:u:|- (6)

max
D{-:rz‘ wErk
st Toloy v AR,

The proof is omitted due to space consiraints.

Lemma 4. Let B, € By. Let A € A U € U, and assume
that O 4 > Oy Then, we have

Ia{ﬂ'gqv:-'ql:u:'

max
] z
D<oy v S0y

st Fp (0% AV Ry
=llng“§cf}u2_m”+ﬂ O4(1—-2- 2RF}+1
2 Gu+1
Proof Fix A € A and U € U. Let o3 (A, {) be an
optimal solution on the lefi-hand side of (?]l By writing
IS{J}IV..A,-H} as

()

1. 0304+1 1 0%0a+l
2 _ x4 ot X|v
IB{G-XlV!lA‘.u}_ gl'ug JXEDI.{'i‘l 9 ggxﬁ IVDH+]-1

we have that Ia{cr}w., A.l{) is a non-increasing function of
oxv by Lemma 2 because O4 = Oy. Hence, o3, (A, U)
must be the smallest 0%, € (0,0%] that satisfies the
constraint Ip{f’xw A) < R, I—Icmever Ir-"[f’xw A) is
a non-increasing function of o xn” thus we must have

Lo XW{A U), A) = Ry, from which one can deduce that

2
2 2 X 2R, " {E}
0202 —1) + 27Rs

O

ai!‘n" (A, U) =

Lemma 5. Assume that for any A € A U € U, we have
04 = Oy. Let By € Ry, We have

Is{ﬂ'?cw:-"l:u:'

min min
AcsAllel

max
] z
D<oy v S0%

s ok v AV Ry

= D{agjlz:pi_;ai -TEIE II:I.I.Tl I |::Cl'x|],r 3 .-l"-l u:l {g}

st I(e%,y ATIER,

ﬂm{:] By Lemma 2, we have for any ar?m, € (0,0%], A€ A,
el,

1 . J}GA+1 - 1 . J}OA.+1
— —-— == —_—
2 a’xwo_,q +1—12 JXWGA‘ +1
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1 %0y +1 1 o3 O0y. +1
e xburl L oxCue 1
3 %0 Ou+1° zlugagcwou.ﬂ’
hence, I{axw,..d U) = I xw,A*,H*} and we conclude

that for any "'xw € (0,0%],

_,anéﬂmmf {axw,A..H} = B{J}W‘IA*’H*}.

Then, we have

(10)

min min
AcA el

E] 2
[Ic::rxlvﬂax

st Fp(oy v -A) S Ry

Is(f-"?qv: A.U)

2 min min L (%} (A, U), A,U)

Acald
2 L(oXy (A", U), A", 1)
Is{":xW:A*:w:l

= Inax
O<oy <ok
sb Ip(crilv..ri“lﬂﬂp
(e)
= max
0ok <ok

sl Ip("-'rﬂx|v1-r‘1-.)'=_:-ﬂp

where in (a) we have defined of,(AU) =
I(o2, AU) for A € A U € U,

ﬂﬂaﬂm{ (ai'uf:-'d:a U,

arg max
Dof <oy
st Ip(oy v Al Ry
{ﬁ}huldsbecausefurany.d € A U € T, we have
I, {ﬂ’xwf-‘t:u}:-ﬂ:u} = I:JXWI:A uy, A* lU*) =
I, (a”u*,u*},,d*.,u*}, where the first inequality
holds by (10), and the second inequality holds because
I {JXW{A i), A*,l{*) is a non-increasing ﬁmcticm of
xw':-"‘l I{) by Lemma 2, and 4:r2*I (A*U*) = o3 J (A, U)
by (8) in the proof of Lemma 4, and () holds by (10). O

Next, we remark that if there exist 4 € Aand i = U
such that 04 < Oy, then Cs(4, Hy) = 0 by Lemma 3 and
Lemma 2 applied to fz - Thus, we obtain the converse

of Theorem 1 by combining Lemmas 3, 4, and 5.

V1. ACHIEVAEBILITY PROOF OF THEOREM 1

To prove the achievability part of Theorem 1, we first
prove an achievability result for discrete random variables in
Section VI-A, and then extend our result to Gaussian random
variables by a quantization argument in Section VI-B.

A. Discrete case

Our coding scheme decouples the requirements (1) and (2).
Specifically, as described next, we repeat ¢ & [ times a
reconciliation step to handle (1) and then perform a privacy
amplification step to handle (2).

1) Reconciliation step: Let n € M and € > 0. Let 7(X)
be the set of e-typical sequences with respect to px, and define
X & mjnIEgumpx)px {I} Define also (31 & -%E.

Code construction: Fix a joint probability distribution pvxy,.
on V x X x YV, where V' is an auxiliary random variable
such that V — X — ¥ forms a Markov chain. Define B, £
maxqeq H(V[Y4) — H(V|X) + 6eH(V), R, £ H(V) —

max gcp H(V|Yy) — 3eH (V). Generate 2"(R-+E.) code-
words, labeled v™(w, v/) with (w,r) € [1,27%] x [1, E"R']
by generating the symbols vyw, ) for i € [1,n] and (w,v) €
[1,27R=] x [1,2"F] mdf:pendf:nﬂ}f according to py.
Encoding: Given ", find a pair (w,v) such that
(™, v™[w,r)) € TMXV). If there are several pairs, choose
one (according to the lexicographic order); otherwise, set
(w, ) = (1,1). Define v™ £ v™(w,r) and transmit m 2 w.
Decoding: Let A £ A Given y7 and m, find v4 such
that (y7, v"(w,v4)) € T(Y4V). If there is one or more
v4, choose the smallest; otherwise, set vy = 1. Define
oy L ™ w,vy).

Probability of error: The random variable that represents the
randomly penerated code is denoted by C,. One can show
that there exists a codebook C;; such that

maxP[V" £ V] < |A|maxd(n,e,4), (1D

2
where d(n,e, A) 2 2IV||X||Val exp(—n 52l pyxy,) +

2
oxp(—(1 — 2[V||X|e ™ TEBVE gmH(V)) 4 g-neH(V) |
21XV 4le " 1#x¥,, The proof is omitted due to space con-
straints.

2) Privacy amplification step: Let g,n € M, and define
N £ ng. The reconciliation step is repeated g times such that
the dealer has V'V = (V™)7 and the participants in A € A
have (V1 9. Note that the total public communication M € M
is such that £ < max gy 1(X;V[Y4) + 6eH (V). Next,
another round of reconciliation with negligible communication
is performed to ensure that max 4c4 P[(V™)? # (V])Y] <
8(g), where limg_, .. 8(g) = 0 when n is fixed. Finally, the
dealer computes S = g(Vv, Ud} while the participants in
A € A compute S(A) = g(VY,Uyg), where g : {0,1} x
{0,1}* — {0,1}* is an extractor [14] and Uy is a sequence
of d uniformly distributed random bits such that d < N4(N)
with limpy_s 4 00 8(N) =0,

Analysis of reliability: The secrets computed by the dealer
and the participants in .4 € A are asymptotically the same for
a fixed n as g goes to infinity.

P[S(A) # 5] <P[(V3)? # (V™)) < 6(a).

Analysis of secrecy: We choose the secret length
as k £ [N[minges I(ViY4) — maxy ey IV;Yu)
mMAX el 53'[‘11 n,U) — N_”?] where ‘5 (g,n,U)
el X;V|Y) + (1 — e}[ﬂeH{Xﬂ’uV} + 2n7!
log | X|(4]Sxv e ™ #XV 1 2|8y xyy, |~ v X1 /6)]
N-1al(g,nU) + EeH(ij + N-Y2 with 6}(q,n,U)
—log(l — 2|Symygle™ #VE /%), Sxy £ supp(pxv),
Svxvy = supp(pvxvy), and Synyy £ supp(py-y;z). Using
[14, Lem. 6, Lem. 9, Lem. 10], [15, Lem. 1.1, Th. 3.2], one
can show (we skip the details due to space constraint)

max I (S;Ua¥y' M) < 5 (N),

= 4+ + e |

(12)

where 83(N) £ &*(N) + (maxueuag{n,u}w-ﬁ)k
with 8*(N) £ 9-VN/logN (k+v"ﬁ;’ ng), O (n,U) 2
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9 Syple™ T/ 4 9| Symygle WV /? where Sy 2
supp(pyz )-
Analysis of uniformiry: Similar to (12), one can show

H(S) = min H(S|UY M) = k—683(N). (13

Public communication rate: The public communication rate
corresponds to the rate of M plus the rate of Uy, e,

lim Ry = maxfl[X VIY4) +6eH(V).

N—ao
Achievable secret rate: The secret rate R, £ k/N satisfies
R, = mJnI{V Y4 - ma.xfl[V Yu) -

1/2

ﬁgﬁMmm

- N2 _ N“. (14)

B. Continuous case

We now build upon Section VI-A to show that (Rp, R.) €
R':PXYL-. A}, where

1 o2 1 o204 +1
Ry—-log X — = XA . 15
P gDngEW 2 gaxﬂwoﬂﬁﬂ- (13
— - - = _ 16

We extend Section VI-A to the continuous case by means of
quantization. As stated below, one can show that a quantization
does not affect the requirement (2).

Lemma 6. A guantization of Y;7, U € U, might lead to an
underestimation of I1(S; M,Y;}). However, if the quantized
version Yu;“ of Y;, U € U, is fine enough, then for any
d=0

ﬁgﬁf{ﬁ;m:i = rl?gacfl[S; MYy, ) + 4. (17

As in [15, Lemma 12], we jointly quantize
X,YA,Yu.I and V' to form XﬂlxﬁyﬂlYA1YﬁYu1 and V&V
such that Ay = ﬂy = ﬂyu Ay = ™ and
[Xax] = 1Yay, | = |3’.e.r [Va, | = I* with a > 0. Next,
we apply the prcu:bf for the ralSCI'EI‘.E case to the random variables
Xay.Ya, Yg, , and V. Then, we fix [ large enough
such that, for any A € A, [I(Vay; Yay, ) —I(V;Y4)| < 6/2,
for any U € U, |[I(Va,;Ya,,) — I(V; Ya)| < /2, such that
{14) becomes

Ra::'mJnI{VYA} ma.xfl[VYu:I r&gﬁcﬁf{q..n,uj

- N—”? ~-N"1-4

Note that §2(g,n,U), U € U, in the above equation hides the
terms 2e(1 —€)H (Xa [Ya,, Va, ) and 6eH(Va,, ), which do
not go to zero as [ goes to infinity. Consequently, we choose
e=n"" where o € [0,1/2]4{0,1/2}, such that if we choose
[ large enough, then n large enough, and finally g large enough,
then the asymptotic secret rate is as close as desired to

ﬂEI{V;YA] —ﬁgacf{V;Yu}, (18)

#2(N') vanishes to zero in (12), (13), and the asymptotic public
communication rate is as close as desired to

ﬁgI{V;XWAj. (19)
By taking the mumxiliary random wvariable " jointly Gaussian
with X in (18) and (19), one can obtain (15) and (16). We
skipped the details because of space consiraints.

VII. CONCLUDING REMARKS

We proposed a secret sharing scheme from Gaussian corre-
lated sources over a one-way rate-limited public channel and
characterized its secret capacity, which provides a closed-form
expression of the trade-off between public communication and
the secret rate. By conirast with a traditional secret sharing
protocol, our setting does not require perfectly secure channels
between the dealer and participants, and provides information-
theoretic security during the distribution phase, where the
dealer distributes shares of the secret to the participants.
Moreover, we have shown that the size of the shares depends
linearly on the number of participants and the size of the secret
for any access structure. This also contrasts with traditional
secret sharing schemes where the size of the shares can grow
exponentially with the number of participants for general
access siructures. We also characterized the secret capacity for
threshold access structures and showed that the secret capacity
is not a monotone function of the threshold.
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