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Wearables are poised to transform health and wellness through automation of cost-effective, objective, and
real-time health monitoring. However, machine learning models for these systems are designed based on
labeled data collected, and feature representations engineered, in controlled environments. This approach has
limited scalability of wearables because (i) collecting and labeling sufficiently large amounts of sensor data is a
labor-intensive and expensive process; and (ii) wearables are deployed in highly dynamic environments of the
end-users whose context undergoes consistent changes.We introduce TransNet, a deep learning framework that
minimizes the costly process of data labeling, feature engineering, and algorithm retraining by constructing
a scalable computational approach. TransNet learns general and reusable features in lower layers of the
framework and quickly reconfigures the underlying models from a small number of labeled instances in a
new domain, such as when the system is adopted by a new user or when a previously unseen event is to be
added to event vocabulary of the system. Utilizing TransNet on four activity datasets, TransNet achieves an
average accuracy of 88.1% in cross-subject learning scenarios using only one labeled instance for each activity
class. This performance improves to an accuracy of 92.7% with five labeled instances.
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1 INTRODUCTION
The increasing ubiquity of wearable devices with embedded sensors has created a unique opportu-
nity to transform health and wellness through automation of cost-effective, objective, continuous,
and real-time health monitoring and interventions. Currently, however, computational models (e.g.,
machine learning and signal processing) for these systems are designed based on labeled training
data collected, and representative features devised, in controlled environments. This approach for
training computational models has created several real impediments to the scalability of wearable
technologies. In particular, we note that collecting sufficiently large amounts of labeled/annotated
sensor data is a time consuming, labor-intensive, and expensive process that has also been iden-
tified as a major barrier to personalized and precision medicine [1–4]. Furthermore, wearables
are deployed in highly dynamic and uncontrolled environments of the end-users whose physical,
behavioral, social, and environmental context undergoes consistent changes. Such changes result
in drastic performance degradation of the computational models that are trained in laboratory
settings or traditional confines of healthcare environments [5–7]. Therefore, it is imperative that
we develop reconfigurable computational models with minimal human supervision as wearable
sensor systems, settings in which they are utilized, and their configuration changes.
The configuration of a wearable sensor system can change due to changes in physical sensors

(e.g., sensor addition, removal, displacement, misplacement, misorientation, upgrade), users (e.g.,
adoption of the system by a new user), context behavior (e.g., aging, changes in health conditions),
or application scope (e.g., new events to be monitored by the system). These evolutions of the system
result in a shift in the distribution of the sensor data and therefore introduce a new domain. For the
purpose of this article, we refer to domain as a configuration of the system where variations in the
distribution of the sensor data over time are minimal. However, a domain shift occurs when the
configuration of the wearable system changes. Feature engineering is an important preprocessing
task with the goal of designing discriminative attributes of the signals to transform raw sensory data
to a format that can be effectively used by an event classifier (e.g., activity recognition algorithm)
in a particular domain [8]. However, the performance of the classifier is highly dependent on the
expert-driven features [9]. As the system begins to transition from one domain to another, we will
need to secure additional supervision from a human expert by redoing the costly process of data
collection, labeling, and feature engineering.
Addressing the problem of expanding the computational capabilities of a networked wearable

system from one domain with a pre-trained classifier to a new domain with a different configuration
is quite challenging. We aim to address this problem through cross-domain knowledge transfer
to improve the learning performance of the model while avoiding the expensive data collection
and labeling, feature engineering, and algorithm retraining efforts. Our general approach relies on
learning the underlying representation of the sensory data in one domain, called source, and quickly
adapting the learned representation in a new domain, called target, with minimal supervision/
training data. The proposed approach is motivated by recent advancements in deep learning
research focused on representation learning methodologies to avoid application-specific feature
engineering.

In this article, we present development and validation of TransNet1, a deep learning framework
aimed at facilitating cross-domain knowledge transfer by learning effective data representation/
features from sensor data and constructing a computational model based on the learned features.
TransNet is composed of three main modules including a preprocessing module, a convolutional
stack, and a recognition module each of which consists of one or more processing layers in our
deep learning architecture. The features learned in the first two modules (i.e., preprocessing module

1TransNet source code and experimental data collected in this project are available at https://github.com/ali-rokni/TransNet
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and convolutional stack) are domain-agnostic and therefore the lower layers are reused when
the system is utilized in a new domain. When new labeled instances are acquired in the new
domain, these labeled instances are used to retrain the recognition module only, resulting in
TransNet to quickly master event classification in the new domain. This design strategy results
in temporal and spatial improvements of TranNet as more labeled instances are obtained in the
new domain. In addition to the knowledge transfer capabilities, TransNet offers a computationally-
simple structure through a small number of layers, automatically tunable parameters, and a small
number of training epochs. TransNet introduces a preprocessing layer including a combination of
quantization and an embedding layers that compress the input data into a lower dimension, therefore
result in a computationally-efficient design having about one-order-of-magnitude less number
of parameters compared to the state-of-the-art deep learning networks. In addition, TransNet
proposes a computationally efficient design for the application of physical activity recognition
using wearable sensors with limited resource, including power and training data that beats the
state-of-the-art activity recognition techniques.

2 PRELIMINARIES
2.1 Motivation
When used in uncontrolled environments, wearables face many forms of uncertainty that dramati-
cally impact their performance. For instance, activity recognition accuracy declines 66.3% due to
sensor displacement [5, 10], energy expenditure estimation error increases by a factor of 2.3 due
to sensor displacement [11], and activity recognition accuracy drops 61.2% when the system is
utilized by new users [6]. In the current practice, a human expert needs to repeat the costly process
of data collection and feature engineering upon a domain change, mainly due to the inherent shift
in the distribution of the sensor data. As a result, unless novel learning frameworks are designed,
recent findings [12–19] suggest that compensating for the uncertainties requires collecting and
labeling large amounts of sensor data for various configurations (i.e., new user, sensor platform,
context, event, and system configuration). We aim to address this challenge by developing a scal-
able, reconfigurable, and computationally-simple deep-learning-based semi-supervised domain
adaptation framework, TransNet, in this article.

Fig. 1 shows how TransNet can be utilized in three transfer scenarios, including transfer across
different body locations, across different users, and across different vocabulary/activities. First, we
train a deep convolution neural network on one domain (e.g., a user wearing a sensor on the wrist),
then transfer the trained network to a new domain (e.g., the user wearing the sensor on the hip),
then freeze all the layers except the classification layers including the fully connected and softmax
layers and train the network only updating the weights from the unfrozen layers using few labeled
samples in the new domain.

2.2 Pilot Application and Assumptions
Our pilot application in this paper is activity recognition where wearable inertial sensors are used
to detect human movements such as ‘walking’, ‘running’, or ‘sitting’ [20]. A sensing device typically
consists of three categories of components: (i) embedded sensors such as accelerometer, gyroscope,
and magnetometer to capture various human body attributes including 3D acceleration, 3D angular
velocity, and direction/magnitude of the magnetic field; (ii) embedded software to perform signal
processing and machine learning; and (iii) a radio module to communicate locally-processed results
to the outside world.
Each embedded sensor produces several sensor streams. For example, a 3D accelerometer mea-

sures body acceleration in 𝑥 , 𝑦, and 𝑧 directions. We assume that each sensor stream is sampled at
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Fig. 1 Several transfer learning scenarios in which TransNet can be utilized.

a fixed sampling frequency. Let 𝑆 = {𝑠1, . . . , 𝑠𝑛} be the set of all sensor streams forming a wearable
sensor network. Assume that each 𝑠𝑖 is sampled at a frequency of 𝑓 Hz. Thus, sensor stream 𝑠𝑖
produces one measurement 𝑣𝑖𝑡 = 𝑣∗𝑖𝑡 + 𝜖𝑖𝑡 at time 𝑡 where 𝑣∗𝑖𝑡 denotes the true body attribute (e.g.,
acceleration in 𝑥-axis) pronounced by 𝑠𝑖 , and 𝜖𝑖𝑡 represents measurement error and/or noise. The
collective sensor streams in 𝑆 produce a vector of the form:

V𝑖𝑡 = [𝑣1𝑡 ; 𝑣2𝑡 ; . . . ; 𝑣𝑛𝑡 ] (1)
Typically, each signal stream undergoes a smoothing process (e.g., low-pass filtering) to reduce

high frequency noise. Because the sensor continuously captures body motions in free-living settings,
‘start’ and ‘end’ of each activity is unknown a priori. Therefore, the next phase in an activity
recognition pipeline is segmentation, which identifies ‘start’ and ‘end’ points of the movements.
Because the underlying signals, due to body motions, are quasi-periodic, the common segmentation
approach is a sliding time window with a small overlap between adjacent windows and a window-
size that is large enough to include at least one instance of human activity. The segmentation
window of size𝑤 on sensor stream 𝑠𝑖 produces an input array 𝐶𝑡 = [𝐶1𝑡 ;𝐶2𝑡 ; . . . ;𝐶𝑛𝑡 ] where

𝐶𝑖𝑡 = [𝑣𝑖𝑡 , . . . , 𝑣𝑖 (𝑡+𝑤−1) ] (2)
The array 𝐶𝑡 is fed into TransNet as a collection of streaming time-series signals. We refer to

this array of filtered and segmented signal as an instance acquired at time 𝑡 .
LetA={𝑎1, 𝑎2, . . . , 𝑎𝑚} be an activity vocabulary, also called label space, composed of𝑚 activities

of interest for a given domain. The activity recognition task consists of the vocabulary A and
a conditional probability distribution 𝑃 (𝑎 |𝐶𝑡 ), which is the probability of inferring label 𝑎 ∈ A
given an observed instance 𝐶𝑡 . Fig. 2 shows the process of activity recognition. Using traditional
classification methods, a set of expert-engineered features are extracted from the segmented signals.
A feature vector is then fed to the classifier. Although these features may work well for a specific
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Fig. 2 Conventional activity recognition (based on expert-engineered features) versus TransNet (based on
deep representation learning).

domain, their effectiveness declines when the target task changes and therefore an expert needs to
re-engineer the features for the new domain. In contrast, deep representation learning approach,
which is our general approach in designing TransNet, constructs several layers of a neural network
to extract the underlying representation of the input signal such that the obtained representation is
less domain-specific and more robust to changes in the target task/domain [21–23].

3 TRANSNET ARCHITECTURE
Fig. 3 shows our proposed neural-network-based architecture for TransNet. TransNet constructs
a deep learning structure to learn a useful representation of sensory data from human activities.
The representations/ features in the lower layers are learned in the source domain and are not
domain-specific; hence, they are reused in a target domain [21, 24]. As a result, TransNet can
quickly reconfigure its recognition module with minimal training data to reliably represent the
target task.

Embedding Embedding Embedding

QuantizationQuantizationQuantization

Softmax
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Max Pooling Max Pooling Max Pooling

1D Convolution 1D Convolution 1D Convolution

Convolution 
Stack

Recognition 
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Fig. 3 Overall structure of TransNet.
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3.1 Preprocessing Module
The input layer in TransNet consists of 𝑛 channels associated with the filtered and segmented signal
streams. The input segments on each channel are passed to a quantization layer. The quantization
process aims to reduce the sensitivity of the model to small changes in sensor readings due to
domain change, and therefore makes the model more robust when transitioning from one domain
to another.
In general, a quantizer has a countable set of possible output values that have fewer members

than the set of possible input values. Therefore, we can define the quantization process, 𝑄 , as a
mapping of the input values from a larger possible set L (e.g., sensor readings) to output values in
a countable smaller set S (e.g., a fixed set of integer values).

𝑄 : L → S (3)
where |L| ≫ |S|. For example, a uniform rounding quantizer with a quantization step size equal
to some value Δ for an input value 𝑥 is defined as

𝑄 (𝑥) = Δ ·
⌊
𝑥

Δ
+ 1
2

⌋
(4)

Because the output of the quantizer has fewer members than the possible input values, quantiza-
tion leads to smaller input space, and consequently more memory-efficient representation of the
input.

By applying a rounding quantization on sensor streams on each channel, we obtain a sequence of
integer values 𝑆𝑡 = {𝑠𝑡 , . . . , 𝑠𝑡+𝑤−1} such that each 𝑠𝑖 has a range ±⌊|𝐵 |⌋ + 1 where ±|𝐵 | denotes the
dynamic range of the sensor associated with 𝑠𝑖 . These integer values can be viewed as primitives
of a human movement language as perceived by a particular sensor [25]. Although each 𝑠𝑖 can
potentially have any values within the range [−⌊|𝐵 |⌋ + 1, +⌊|𝐵 |⌋ + 1], only a small portion of this
range is used by an activity instance and this portion varies from one activity to another.
The sequence of primitives is analogous to the sequence of words in spoken language, which

is the focus of research in Natural Language Processing (NLP). In the NLP research, a common
practice is to use an embedding layer as the first layer of the network. An embedding layer converts
each input data (word) to a dense vector of a fixed size. The training objective of the embedding
layer is to learn word vector representations that are good at predicting the nearby words [26].
The network first initializes its weights by random values. It then iteratively adjusts the weights
during training to minimize the error that it makes when using words to predict their contexts. As
a result of this embedding layer, we are able to capture semantic relationships in language that
are very difficult to capture otherwise. Although the inclusion of an embedding layer was initially
incepted in the NLP research, its application has been extended to other areas. For example, the
use of embedding layers to encode student behavior in massive open online courses (MOOCs) has
been explored by prior research [27]. Because the additive representation of human movements is
similar to the representation of human speech [28], we expect an embedding layer to be an effective
approach in abstracting details of sensor readings for human activity recognition. To this end, we
feed the sequence 𝑆𝑡 to an embedding layer to generate a distributed representation of the input
data [29, 30].

Considering the analogy between a sequence of quantized sensor readings for a particular activity
with a sequence of words in a particular sentence, we aim to encode more useful information with
each sampled data point by analyzing its context (i.e., neighboring sensor reading). This approach
is also consistent with the physical properties of the human movements. For example, human gait
(i.e., walking) is composed of two phases including stance and swing. The stance phase is the time

ACM Trans. Des. Autom. Electron. Syst., Vol. 1, No. 1, Article . Publication date: April 2021.



TransNet: Minimally-Supervised Deep Learning for Wearable Systems 7

when the foot is on the ground, which comprises more than half of the walking cycle. In a swing
phase, however, one foot is on the ground and the other in the air. For part of the stance phase,
both feet will be on the ground for a period of time. While in the stance phase, acceleration samples
of an ankle-worn sensor node are very similar to that of standing activity. However, using an
embedding layer and analyzing the context of the samples, these acceleration readings of walking
are interpreted differently than those in standing because the neighboring samples are utilized for
a more accurate explanation of each sensor reading.

Furthermore, the addition of an embedding layer is useful in reducing the effect of instrumental
noise because similar activities captured by different sensors or performed by different users can
exhibit close representation in this space. In particular, while the neural network is being trained,
the embedding vectors are updated, which leads to the similarities between observations that can
be found in a multi-dimensional embedding space. To the best our knowledge, our work is the
first study that introduces an embedding layer to model inertial sensor readings in deep learning
architectures.

3.2 Convolutional Stack
The convolutional stack is composed of convolutional and max-pooling layers, as discussed in this
section.

3.2.1 Convolutional Layers. Right after the embedding layer, several 1D convolutional layers are
stacked to capture local dependencies and scale-invariant characteristics of the input. Suppose
we want to perform a 1D convolution on an input channel of length 𝑁 using a kernel of length
𝐿 ≪ 𝑁 . As shown in Fig. 4a, the convolution process slides the kernel over the input channel
and computes the dot product of the kernel and the corresponding chunk of the temporal input.
Applying this kernel on the entire input segment, we compute the dot products in a vector, referred
to as activation map or feature map. To create an analogy to the traditional feature extraction
process, a kernel can be viewed as a feature extractor and the feature map can be considered as the
corresponding feature value. While the toy example in Fig. 4a shows that the kernel slides over the
input data with a stride length of 1, the kernel can have a longer stride length (i.e., >1) in general.

(a) A simple example of 1D convolution (b) Sparse connectivity and parameter sharing:

Fig. 4 An example of 1D convolution with a kernel of length 2 and input of length 5. (a) As kernel slides over
input, the dot product of kernel and the partial input is computed as one entry of feature map.(b) The same
convolution example represented in a feed-forward neural network.

At each convolutional layer, the network uses convolution instead of general matrix multiplica-
tion. We can consider a segment of an input channel as a discrete input function 𝐼 ∈ [1, 𝑁 ] → R,
and the kernel as a discrete function𝐾 ∈ [1, 𝐿] → R. The feature map 𝐹 ∈ [1, [(𝑁 −𝐿)/𝑑] +1] → R
resulted from the convolution between 𝐼 and 𝐾 with a stride length of 𝑑 is defined as:

𝐹 (𝑖) =
𝐿∑
𝑡=1

𝐾 (𝑡)· 𝐼 (𝑡 + (𝑖 − 1)𝑑) (5)
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Fig. 5 Three different kernels operate on a multi-channel input and produce three different feature maps.

We note that increasing the stride length will reduce the length of the output.
As previously discussed, kernels act as feature extractors. To extract more features, at each

convolutional layer, we use multiple kernels where each kernel looks for a specific type of template
or concept in the input. Therefore, the output of each convolutional layer is multiple feature maps
corresponding to different kernels. Fig. 5 shows an input with 𝐶 channels. To produce the feature
map by applying kernels on all channels of this input, kernels should also have a depth of 𝐶 . We
compute multiple feature maps, each of which corresponds to one kernel. To extract more complex
features, multiple convolutional layers are stacked on top of each other. The convolutional stack
enables the network to learn the hierarchy of features. The kernels at the earlier layers usually
represent low-level features and kernels in higher layers correspond to more complex features (i.e.,
features of features) [23, 31].

As illustrated in Fig. 4b, compared to a typical feed-forward layer in neural networks, a convolu-
tional layer carries two important features: sparse connectivity and parameter sharing. Since the
length of kernels are significantly smaller than the input size, the number of connections from
the input layer to an output unit/ node in the feature map is limited to a few input nodes which
improve the memory and computational efficiency.

To model the convolutional layer as a normal feed forward layer, we replicate each small kernel
across every position of the input (except for boundaries). This phenomenon is referred to as
parameter sharing, which allows kernels to capture useful features regardless of their temporal
position. Since we use a sliding window for segmentation, the sensor readings associated with an
activity may appear shifted from one segment to another. This temporal variation of the events
across various instances leads to similar patterns occurring at different time positions. To be able to
capture the same set of patterns on the shifted signals, the convolution function should be translate-
invariant. Particularly, parameter-sharing helps the convolutional layers to become invariant to
local translations [32].

3.2.2 Max Pooling. After applying the non-linear activation function on the output of the con-
volutional layer, a pooling function is commonly used to create a more compact and manageable
representation of the data. In general, a pooling function alters the output of a unit with a summary
statistics of nearby outputs [32]. For TransNet, we use max-pooling [33], which replaces the output
of a unit with a maximum output of the nearby units.

3.3 Recognition Module
On top of the convolutional stack, TransNet has a recognition module, which starts with a densely
connected layer. Contrary to convolutional layers, instead of preserving the temporal structure
of the data, this module aggregates outputs of all channels and builds a scoring function. This
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combined representation forms an efficient feature space to classify instances of different activities.
In Fig. 6, we compare the separability power of a set of expertly engineered features with the
learned representation by TranNet. Particularly, we perform a Linear Discriminant Analysis (LDA)
on 1000 instances of different activities collected by a 3D accelerometer on a smartphone [8]. As
shown in Fig. 6a, different activities are much more distinguishable in the learned representation
by TransNet compared to the hand-crafted feature space illustrated in Fig. 6b.
Note that the notion of hand-crafted features refers to a set of features that are defined by the

system designer. In general, the choice of hand-crafted features can be informed by domain knowl-
edge. However, in many applications, the decision of what features are most effective for machine
learning algorithm design is hard to make by only incorporating prior knowledge. This situation is,
in particular, true for time-series signals where a human interpretation and understanding of the
raw sensor signals are difficult to develop. In activity recognition tasks, it is common to compute a
large set of features from inertial sensors first. The large feature set is then fed into a feature selec-
tion algorithm to choose an effective subset of features for inclusion in the classification process.
For example, in our experiments for alternative classifier design, discussed in details in Section 6.4,
we first extract 18 features from each signal segment associated with an inertial sensor stream. We
then use 𝜒2 method to eliminate irrelevant features from the feature vector. The remaining features
are referred to as final hand-crafted features that are also used to plot the data in Fig. 6b.
The recognition process finishes with a softmax function which normalizes the scores and the

activity with maximum score is returned as the predicted class. Particularly, the softmax function,
which is defined as

𝜎 (z)𝑗 =
𝑒𝑧 𝑗∑𝑚
𝑘=1 𝑒

𝑧𝑘
(6)

where the 𝑧 𝑗 is un-normalized score of activity 𝑗 . Particularly, softmax function is a generalization
of the logistic function that squashes the real value scores to the range [0, 1].

Walking
Jogging
Sitting
Standing
Upstairs
Downstairs

(a) Learned representation

Walking
Jogging
Sitting
Standing
Upstairs
Downstairs

(b) Engineered feature space

Fig. 6 Linear Discriminate Analysis on (a) learned features by TransNet (b) hand-crafted features.

4 CROSS-DOMAIN ADAPTATION
As discussed previously, wearable technologies are quite dynamic in nature and due to their
exposure to end-users their configuration and utilization change over time. Predicting all possible
system configurations and training a specific model for such dynamically evolving systems is an
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Fig. 7 A scenario of adapting TransNet weights in a new context.

unrealistic solution. Therefore, it is desirable to develop an adaptive solution capable of adapting
easily as new changes in the system occur. Representation learning via deep neural networks
enables us to learn simple-to-complex features that are not task-specific and could be conveniently
reused in other related problems and machine learning tasks. In this section, we describe our
transfer learning method that allows us to adapt the model weights for a new task with minimal
supervision. In particular, having a previously trained model in a specific domain (e.g., trained with
data from a particular user), we aim to adjust the model to perform reliably in a new domain (e.g.,
when the system is adopted by a new user with unseen sensor data) by acquiring only few labeled
instances in the new domain.
Algorithm 1 describes our basic process for conducting transfer learning using TransNet. As

illustrated in Fig. 7, in our transfer learning method, we first freeze all layers of previously trained
network except for the top layer (i.e., recognition layer). This helps us reuse the learned weights
of the lower layers in the new domain and converge faster by reducing the learnable parameters
to only the top layer. We then feed the network with one instance of each class from the new
domain. That is, the system obtains a training dataset < 𝑋𝑡𝑟 , 𝑌𝑡𝑟 > during each data acquisition
session in the new domain. The network starts to adjust the weights of the top layer by performing
multiple training epochs on the fed instances. As the training process continues, we measure
the performance of the adjusted network on the new domain as well as the fed instances. If the
performance of the network is not acceptable yet, it indicates that further training of the network
is needed. However, to prevent overfitting, we stop training with more epochs if we observe a
large gap between the performance of TransNet on < 𝑋𝑡𝑟 , 𝑌𝑡𝑟 > and that of the validation data. At
this time, if TransNet does not have the acceptable performance, we repeat the training process by
acquiring more labeled instances in the new domain.

ALGORITHM 1: Cross-domain adaptation in TransNe.
Input: Acceptable classifier error 𝜖 ; previously trained network ℎ; threshold 𝜏
Freeze all layers except the top layer;
repeat

< 𝑋𝑡𝑟 , 𝑌𝑡𝑟 >← acquire a batch of labeled training instances in the new domain;
while (train error - validation error) ≤ 𝜏 do

Update the top layer of ℎ by training for more number of epochs on < 𝑋𝑡𝑟 , 𝑌𝑡𝑟 >;
end

until classifier error ≤ 𝜖 ;
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Contrary to many traditional classifiers, which need to be trained on the entire training data,
TransNet can be used to accommodate incremental training. This online learning feature helps
TransNet to incrementally improve upon obtaining more labeled instances in the new domain
without the need for retraining from scratch. In the next subsection, we will discuss details on how
TransNet can be deployed in real-world settings for incremental learning.

5 DEPLOYMENT IN REAL-WORLD SETTINGS
To deploy TransNet in real-world situations and utilize the approach presented in Algorithm 1 for
transfer learning in end-user settings, few deployment details need to be taken into consideration.
These considerations are associated with two tasks, including the acquisition of labeled training
data and performance assessment of the classification model as TransNet is being utilized in a new
domain. Furthermore, one needs to have a reasonable understanding of the hardware capacity of
existing mobile and wearable devices. In this section, we briefly discuss these important deployment
issues.

5.1 Gathering Labeled Sensor Data in New Domains
During each data acquisition iteration in Algorithm 1, TransNet acquires labeled sensor data to form
a training dataset < 𝑋𝑡𝑟 , 𝑌𝑡𝑟 >. This can be reliably achieved by incorporating an active learning
algorithm that examines unlabeled sensor data in the new domain and selects those instances that
are most informative with respect to the existing model (i.e., evolving neural network model).
Active learning can be used to iteratively interact with a human user to retrieve important

information that can help with the improved performance of a machine learning model [34–40].
The idea of using active learning for activity recognition has been also studied in the past [41–45].
Therefore, to deploy our domain adaptation approach described in Algorithm 1, an active learning
algorithm can be utilized to acquire the labeled training data in the new domain.

ALGORITHM 2: Active learning to acquire training data for cross-domain adaptation.
Input: New domain unlabeled data X, query budget 𝐵
Output: Labeled training dataset < 𝑋𝑡𝑟 , 𝑌𝑡𝑟 >

< 𝑋𝑡𝑟 , 𝑌𝑡𝑟 >← ∅;
C ← Partition X into 𝐵 disjoint clusters {𝐶1, . . . , 𝐶𝐵 };
foreach 𝐶𝑏 ∈ C do

Compute E(𝐼𝑖 ) for all 𝑋𝑖 ∈ 𝐶𝑏 ;
Find 𝑋𝑖 ∈ 𝐶𝑏 with highest value of E(𝐼𝑖 );
Query human expert to annotate 𝑋𝑖 ;
Add labeled instance (𝑋𝑖 ,𝑌𝑖 ) to the < 𝑋𝑡𝑟 , 𝑌𝑡𝑟 >;

end

In Algorithm 2, we show a general active learning approach that can be incorporated into the
data acquisition section of Algorithm 1. This greedy algorithm iteratively chooses the best candidate
sensor data (i.e., a signal segment) from a set of unlabeled data items in the new domain for data
annotation by a human expert and for inclusion in the training dataset. Assuming that at each
iteration of the domain adaptation process, we aim to acquire 𝐵 labeled instances, Algorithm 2 first
clusters the unlabeled data into 𝐵 groups. From each cluster𝐶𝑏 , it then selects the most informative
instance according to the expected gain criterion E(𝐼𝑖 ), a measure of informativeness of the selected
instance. A commonly used criterion for the informativeness of the data is the uncertainty of the
evolving model with respect to the given sensor data. To this end, one can use entropy to measure
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how certain the model is about its predicted label for a given instance 𝑋𝑖 . Therefore, E(𝐼𝑖 ) can be
written as

E(𝐼𝑖 ) = −
𝑛∑
𝑗=1

𝑃𝑖 𝑗 log 𝑃𝑖 𝑗 (7)

where 𝑃𝑖 𝑗 denotes the probability of instance 𝑋𝑖 being classified as activity 𝑎 𝑗 ∈ A. Because the
evolving neural network model is less certain to classify instances that carry a higher entropy, such
instances will naturally be more informative if labeled and used for model training [42].

5.2 Continuous Assessment of the Evolving Target Model
When deploying TransNet in real-world settings, we also need a validation dataset based on which
the performance of the classifier is evaluated as newly acquired labeled data are being fed to the
network in the new domain. We note that the sensor data of the new domain are used to query a
human expert (e.g., the end-user) for activity labels. As mentioned previously, the sensor data are
queried in batches. Each labeled batch of the sensor data can be used as a validation dataset prior
to being fed into the neural network for model adaptation. This analysis of the performance of the
evolving network can be accomplished through a 𝑘-fold cross validation or even one-leave-out
validation strategy because the training process is computational simple as only the top layer of
the network is updated during model adaptation.

5.3 Resource Requirements of TransNet
As TransNet is implemented for cross-domain adaption in mobile devices, another consideration
when deploying it in a real-world setting is the compute and storage requirements. The main
components of the pipeline of TransNet are training data collection and pre-processing, training
the network, and the network forward-pass on the new data. Recent research has proposed promis-
ing techniques to efficiently deploy deep neural networks on mobile devices. Examples of such
techniques include distributing the training process, and network compression [46–51]. Inspired
by the previous research, to efficiently execute TransNet on mobile devices such as smartphones,
the data pre-processing and network training can be performed offline using high-performance
computer nodes or on cloud centers. Moreover, the forward-pass, which includes primarily matrix
multiplication and convolution, can be efficiently executed directly on mobile devices. Table 1 show
hardware specifications of a number of the new generation of smartphone models. We computed
the computational power and memory capacity of TransNet using one of the datasets (IRH). A
forward pass of TransNet acquires 1.025MFLOPS (floating point operations per second) and 1.34
MB RAM on the processor which is about 1000 times less than the performance power and storage
capacity in new generations of smartphones.

6 VALIDATION APPROACH
In this section, we discuss our evaluation strategy to demonstrate the effectiveness of TransNet. Our
evaluation uses data collected in experiments involving human subjects performing various daily
physical activities while wearing inertial sensor nodes. In addition to our collected experimental
data, we utilize three publicly available datasets.

6.1 Data Collection
We designed an experiment to collect wearable sensor data for daily and fitness activities. Approval
from the appropriate Institutional Review Board (IRB) was obtained prior to participant screening
and data collection. Twelve healthy subjects aged between 20 and 29 with a height range of 152.4
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Table 1 Smartphone specifications

Model Processor Performance
(GFLOPS)

Storage
Capacity (GB) RAM (GB)

Huawei nova 7 Pro 5G HiSilicon Kirin 810 67 128/256 8

LG V60 ThinQ Qualcomm SM8250
Snapdragon 865 122.38 128 8

Samsung Galaxy S20 Qualcomm Adreno 640 122.38 128 8/12
Apple iPhone 11 Apple A13 Bionic 154.9 64/128/256 4

Sony Xperia L4 Qualcomm SM6125
Snapdragon 665 115.2 64/128 6

Moto G8 Power Lite L4 Qualcomm SM6125
Snapdragon 665 115.2 64 4

Nokia 5.3 MediaTek MT6771 Helio P60 38.3 64 3/4/6

cm to 198.1 cm and diverse range of height, weight, and gender were recruited. Each participant was
asked to perform a set of 24 physical activities ranging from high intensity activities such as running
and jumping to medium and low intensity activities such as normal walking and sitting while typing.
All non-strenuous activities were performed for 1 minute while other activities were performed for
a set number of repetitions. Table 2 shows a description of these activities. Each participant wore 5
Shimmer [52] inertial sensor nodes on their ‘chest’, ‘back’, ’right-arm’, ‘left-thigh’, and ‘head’. The
relative orientation of all the sensors with respect to the body coordinates remained consistent
across all participants and throughout the data collection. The inertial sensors were sampled at
50Hz during each experimental activity. We refer to this obtained dataset as IRH in the rest of this
paper.

6.2 Publicly Available Datasets
To assess generalizability of our algorithms in settings different than our governed experiment, we
use three additional, publicly available, datasets.

6.2.1 WISDM Dataset. The first publicly available dataset we used in this study is WISDM [8].
This dataset contains 1, 048, 576 samples of one 3D accelerometer sensor collected using mobile
phones on an Android operating system. The sensors were sampled at 20Hz. The data samples
belong to 35 subjects and 6 distinctive human activities including walking, jogging, sitting, standing,
and climbing stairs.

6.2.2 OPPORTOUNITY Dataset. We used this dataset, referred to as opportunity (OPP) [53], to
evaluate our approach on locomotion activities. The dataset contains inertial sensor data collected in
an experiment with four subjects operating in a room. Each subject wore seven inertial measurement
units (IMUs) on the ‘back’, ‘right arm’, ‘left arm’, ‘upper arm’, ‘lower arm’, ‘left shoe’ and ‘right
shoe’. Because sensor nodes placed on the shoes carried a different sensor modality, we eliminated
those sensors from our analysis in this paper. Each subject performed 5 runs of activities of daily
living (ADL) following a given scenario involving Grooming, Relaxing, Preparing Coffee, Drinking
Coffee, Preparing Sandwich, Eating Sandwich, Cleaning up, wrapped in a Starting and Breaking.

6.2.3 Sport and Daily Activities. The third publicly available dataset that we used is referred to as
Sport and Daily Activities (SDA) [54, 55]. A total of 8 subjects performed 19 daily and sport activities
for 5 minutes while wearing 5 inertial sensor nodes on their ‘torso‘, ‘left arm’, ‘left leg’, ‘right arm’
and ‘right leg’. Each sensor node consisted of a 3-axis accelerometer, a 3-axis gyroscope, and a
3-axis magnetometer. The sampling frequency was set to 25Hz. In this dataset, the subjects were

ACM Trans. Des. Autom. Electron. Syst., Vol. 1, No. 1, Article . Publication date: April 2021.



14
Seyed Ali Rokni, Marjan Nourollahi, Parastoo Alinia, Seyed Iman Mirzadeh, Mahdi Pedram,

and Hassan Ghasemzadeh

Table 2 Physical activities performed by each subject.

Number Description Duration/Repetition
1 Sittings with hands on lap 1 min
2 Sittings while writing 1 min
3 Sittings while typing 1 min
4 Lying down on back 1 min
5 Lying up on right side 1 min
6 Jumping Jacks 20 times
7 Butt Kickers 20 times
8 High Knees 20 times
9 Flutter Kicks 15 times
10 Lunges 20 times
11 Crunches 20 times
12 Squats 20 times
13 Pushups 10 times
14 Walking up stairs 5th levels
15 Walk down stairs 5th levels
16 Biking at 50 rpm 1 min
17 Dips 10 times
18 Standing with arms at sides 1 min
19 Stand with arms crossed 1 min
20 Slow walk at 1.0 mph 1 min
21 Normal walk at 2.5 mph 1 min
22 Fast walk at 4.0 mph 1 min
23 Jogging at 5.0 mph 1 min
24 Running at 7.0 mph 1 min

allowed to perform the activities in their own style and were not restricted on how the activities
must be performed.

6.3 Implementation of TransNet
There are many hyper parameters and design choices while implementing TransNet. Our goal was to
design an efficient network that can be easily utilized in cross-domain knowledge transfer scenarios.
Prior research suggests that deeper networks with more parameters offer a higher learning capacity
and can potentially achieve a higher prediction performance in the source domain at the expense
of higher computation and training time [56, 57]. However, increasing complexity of the network
increases the risk of overfitting to the source domain. This in turn leads to a performance decline
in cross-domain knowledge transfer scenarios where data distribution in the target domain is
different than that of the source domain. Furthermore, computing complexity of a highly dense and
over-parameterized network limits potential implementation of a deep learning model on wearable
devices with stringent constrained resources. This motivates us to design TransNet as a simple
network with a small number of parameters and low computational complexity.

We experimentally optimized TransNet to have only two convolutional layers. Each convolutional
layer includes 20 kernels with a kernel length of 3 and an ReLU Rectified Linear Unit (ReLU) [58]
activation function given as 𝑔(𝑧) =𝑚𝑎𝑥{0, 𝑧}. Particularly, ReLU does not have gradient saturation
problem in positive region, is very computationally efficient, and converges faster than alternative
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functions such as sigmoid/tanh [32, 59]. Both covolutional layers are followed by amax pooling layer
of size 3. On top of these layers, we introduce a densely connected recognition module. TransNet
was implemented in Keras 1 with a TensorFlow 2 back-end. All the experiments are reproducible
and the source code is made publicly available.
An important tunable hyper-parameter is the learning rate which directly affects the speed of

convergence. To adaptively adjust the learning rate during optimization, we use Adaptive Momen-
tum (Adam) algorithm [60], which incorporates first and second order momentums to reconfigure
the learning rate. Additionally, we use Dropout [61] which provides a powerful regularization with
a computationally-efficient method to prevent over-fitting.

The number of training epochs is another hyper-parameter that needs to be tuned using a cross-
validation approach. Without specific time or computational constraints, the common practice is to
increase the training epochs until the validation accuracy exhibits a declining trend. In contrast to
this common practice, we stop the training in early stages of the training while the test accuracy is
still increasing. The early termination of the training process allows the learned features of TransNet
to be generic enough to be used in a target domain. Our experimental results demonstrate that
this compromise between computational complexity and prediction accuracy achieves significant
generalizability performance in cross-domain knowledge transfer. Fig. 8 shows the test accuracy of
TransNet during the first 10 epochs. In this scenario, 80% of the data were randomly selected for
training and the remaining 20% were used for testing.

Fig. 8 Accuracy increases as the number training epochs grows.

6.4 Alternative Classifiers
To have a comprehensive evaluation of TransNet on various datasets, we compare the performance
of TransNet against several machine learning algorithms with available implementations. In par-
ticular, we present the performance of several standard machine learning algorithms including
Decision Tree (DT), Logistic Regression (LR), Support Vector Machine with both Linear (LSVM)
and Gaussian (SVM) kernels, as well as two ensemble classifiers including Random Forest (RF) and
Gradient Boosting (GB) in cross-domain scenarios. As described in Section 2.2, these classifiers do
not learn their features automatically; that is, the feature extraction is incorporated as a preprocess-
ing phase for these alternative classifiers. In the remainder of this section, we discuss our approach
for designing efficient features for training the alternative classifier in an effort to provide a fair
comparison of these algorithms with TransNet.

1https://keras.io
2https://www.tensorflow.org
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6.4.1 Feature Extraction. For the alternative classifiers, we extracted 18 features from each signal
segment associated with an inertial sensor stream. Potentially, there are many different features
that can be extracted from human activity sensor signals. Inspired by prior research [8], as shown
in Table 3, we extract both morphological and statistical features from each sensor stream. For
example, while features such as median and mean capture intensity of the signal, variance and
histogram intend to capture morphology of the signal.

Table 3 Features extracted from each signal segment.

Feature Name Description
MED Median of signal segment

MNVALUE Mean of signal segment
MAX Maximum of signal segment
MIN Minimum of signal segment
P2P Peak-to-peak amplitude of signal segment
VAR Variance of signal segment

HIST (9 bins) Histogram of signal segment
PRCNT (25%, 50%, and 75%) Start-to-X% difference in amplitude

6.4.2 Feature Selection. To maximize generalizability of the alternative classifiers and reduce the
risk of overfitting, we need to control the complexity of the model. To this end, we perform feature
selection to identify the best feature set for each alternative classifier and use those features in
subsequence analysis. This allows us to demonstrate the full potential of the competing alternative
classifiers when comparing them against TransNet in cross-domain scenarios. For this study, we
use 𝜒2 method to eliminate irrelevant features from the feature vector. The remaining features are
then maintained in the feature vector to train/test the alternative classifiers.

7 RESULTS
7.1 Standard Performance
Our first analysis focused on comparing the performance of TransNet with that of the alternative
classifiers when the two domains are similar. This can be viewed as an upper bound on the accuracy
of each approach when there is no adaptation process. For the purpose of this paper, we assume
that the two domains are similar if (i) the activity vocabulary of the two domains are identical; and
(ii) the test subject is not entirely new to the system; that is, the data used to train the classification
model was trained using some labeled instances of the test subject. We governed an experiment
where 80% of the collected data were randomly selected for training and the remaining 20% were
used for testing. As stated previously, we limit the number of training epochs to 10 for TransNet.
As shown in Fig. 9a, TransNet outperformed the alternative classifiers on all the four datasets.

The accuracy of TransNet ranged from 88.7% on the OPP dataset to 97.1% on the SAD dataset.
The ensemble classifiers, Random Forest and Gradient Boosting, performed the best among the
alternative classifiers by a range of 86.4% to 87.2% onOPP and IRH datasets, respectively. Particularly,
averaged over four datasets, TransNet outperforms the best alternative approach -Gradient Boosting-
by 5.1%.
While the accuracy results shown in Fig. 9a are acceptable, in particular for TransNet and the

ensemble classifiers, we aremore interested in examining the performance of these algorithms across
domains. In the following sections, we conduct comparative analyses to demonstrate superiority of
TransNet in cross-subject and cross-vocabulary settings.
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(a) Upper-bound performance (b) Cross-subject performance

Fig. 9 Upper-bound and cross-subject accuracy of TransNet and alternative classifiers on four experimental
datasets: (a) upper-bound accuracy in similar domains obtained by splitting the data into 80% training and
20% testing sets; and (b) cross-subject accuracy obtained based on leave-one-subject-out analysis.

7.2 Cross-Subject Performance
Prior research suggests that the activity recognition performance drops significantly when the
system is utilized by a new (i.e., previously unseen) user [62]. Motivated by prior research, we were
interested in investigating the accuracy of TransNet and the alternative classifiers in cross-subject
scenarios. Thus, we performed a leave-one-subject-out evaluation of these algorithms on each
subject and dataset. Fig. 9b shows the overall accuracy of different classifiers as a result of this
analysis. An example of how this analysis was performed is as follows. TheWISDM dataset contains
labeled sensor data collected with 35 subjects. The accuracy numbers shown in Fig. 9b represent the
accuracy of each classifier averaged over all 35 cases where in each test case data from 34 subjects
were used for training and data from the remaining one subject was used for accuracy estimation
(i.e., testing).

As shown in Fig. 9b, TransNet achieved the highest overall accuracy on all datasets except
IRH. The accuracy of TransNet was 79% on both WISDM and OPP datasets, and it was 68.9%
and 58.5% on SDA and IRH datasets, respectively. These accuracy values are 10%–38% less than
the accuracy numbers reported in Section 6.3. Among the alternative classifiers, the ensemble
classifiers based on bagging (RF) and boosting (GB) outperformed the other two classifiers. These
two ensemble classifiers achieved a similar accuracy performance. An interesting observation was
that the variation in the accuracy was higher on WISDM and IRH datasets where there existed
a larger cohort of the users. Moreover, the OPP dataset exhibited the minimum variation in the
accuracy potentially because this dataset has a small subject pool compared to other datasets.
Another observation was that the accuracy was higher on OPP and WISDM datasets where the
number of activities was less than that of the two other datasets.

The above-discussed analysis and Fig. 9 suggest that a classifier exhibits an obvious performance
decline when the system is utilized by a completely new subject for whom no labeled training
data exist. This performance downgrade motivates us to develop a personalized model for activity
recognition. However, training a new classifier for each subject requires collecting sufficiently large
amounts of training instances, which is time-consuming and expensive. In the following section,
we will discuss our results on domain adaptation using TransNet.

7.3 Cross-Subject Adaptation Performance
As discussed previously, there is an obvious performance decline when the wearable system is
utilized by new users. We used our cross-domain adaptation approach discussed in Section 4 to
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update the already trained TransNet network in new subjects using only few activity instances
acquired from each new subject. The experiment governed for this purpose was similar to a leave-
one-subject-out analysis except that we incrementally fed TransNet with few labeled instances of
the new subject (i.e., test subject). From all instances of a new/test subject, we randomly chose 𝑖
instances of each activity where 𝑖 ranged from 1 to 5. Our experimental results showed that the
amount of performance gain beyond 𝑖=5 was negligible. We refer to these labeled instances as
transfer set. The remaining instances of the new subject were kept for testing. We refer to such
instances as test set. Our experiment began by initially training TransNet using training instances
from all subjects other than the test/new subject. We then froze TransNet weights except for
the top layers (i.e., the recognition module). At step 1 ≤ 𝑖 ≤ 5, TransNet updated its wights by
training on 𝑖 instances of each activity from transfer set. We reseted the TransNet weights to their
original trained network on other subjects prior to moving on with choosing a new test subject.
By performing few training epochs using instances from transfer set and updating only the top
layers, we observed a significant boost in the accuracy performance of TransNet on test set. We also
repeated our experiments with alternative classifiers to provide a fair comparative analysis. Because
the alternative classifiers are not online learners in their nature, we retrained those classifiers from
scratch using a union set of instances of other subjects and selected instances from transfer set.

(a) WISDM (b) OPP

(c) IRH (d) SDA

Fig. 10 Accuracy of different activity recognition models on the four datasets using a leave-one-subject-out
approach while incrementally adding labeled instances of the new subject to the classifiers.
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As shown in Fig. 10a, the accuracy of TransNet after the first iteration was 90.9%, which was
about 25% higher than RF and GB, of the WISDM dataset. The accuracy continued to improve as
more labeled instances were added to the network. After five iterations, TransNet achieved an
accuracy of 94.8%. Additionally, the 𝐹1 score for TransNet was 30% higher than the ensembled
classifiers with one labeled instance added to the system (Fig. 11a). The 𝐹1 score for TransNet
ranged from 87.3% with one added instance to 91.7% for five added training instances per activity.
The Logistic Regression method exhibited interesting performance. While the accuracy of Logistic
Regression was close to that of the ensembled classifiers, the 𝐹1 measure was significantly low for
Logistic Regression. This observation can be explained as follows. The activity instances of WISDM
are not balances. Therefore, the Logistic Regression prediction is higher for activities with more
instances than those with fewer examples. Furthermore, except for Linear SVM, all the algorithms
showed a trend of improved performance as the number of added instances increased.
Considering the result on the OPP dataset in Fig. 10b, TransNet achieved 82% accuracy, which

was 10% higher performance than the best alternative classifier (i.e., Logistic Regression). As shown
in Fig. 11b, the 𝐹1 score for TransNet showed a nominal improvement when more training instances
were added to the system. In addition to TransNet, Gradient Boosting exhibited a trend of both
accuracy and 𝐹1 improvement, while for other classifiers the performance either did not improve
or fluctuated as new labeled instanced were supplied.

Fig. 10c and Fig. 11c show the accuracy and 𝐹1 measure of different classifiers for cross-subject
domain-shift on IRH dataset. The accuracy of TransNet was 20% higher than that of the ensemble
classifiers. The accuracy was initially 89.8% after adding one labeled instance of each activity.
The accuracy increased to 96.2% after 5 activity instances were supplied. The 𝐹1 measure for
TransNet started from 88.9% with one personalized activity instance and grew to 96.1% after five
instances were added to the system. The difference between 𝐹1 measure of TransNet and that of
other approaches ranged from 26.2% for Random Forest to 60% for SVM. TransNet, the ensemble
classifiers and Decision Tree showed an obvious trend of improvement as a result of incrementally
adding more instances from the new subject. For Logistic Regression and SVM with Gaussian
kernel, the improvement growth was very slow; however, for SVM with linear kernel, the new
instances seemed insufficient to adjust the decision boundary.
As shown in Fig. 10d and Fig. 11d, similar patterns were observed on the SDA dataset.The

performance of TransNet in terms of both accuracy and 𝐹1 measure was 30% higher than those of
the ensemble classifiers. Both measures started at 89.2% and grew to 97% after five iterations. Except
for Logistic Regression and Linear SVM, all other classifiers showed a clear trend of improvement
when adding more labeled instances to the training phase.

Overall, our cross-subject adaptation analysis shows that TransNet achieves an average accuracy
of 88.1% in cross-subject learning scenarios using only one labeled instance for each activity class.
This performance improves to an accuracy of 92.7% with five labeled instances. The analysis in this
section shows that the features learned in the lower layers in TransNet are subject-agnostic, and
therefore they can be reused in the new subjects. This observation is consistent with the prior deep
learning research in other application areas [31].

7.3.1 Statistical Analysis. There are different statistical tests to validate the statistical significance
of the results. Dietterich has reviewed five approximate statistical tests for determining whether
one learning algorithm outperforms another on a particular learning task [63].
He showed that some widely used statistical tests have high probability of type I error (False

Positive) in certain situations. Particularly, Dietterich suggested that a t-test based on taking several
random train-test splits should never be used for comparing the performance of two learning
algorithms.
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(a) WISDM (b) OPP

(c) IRH (d) SDA

Fig. 11 F1 score for different activity recognition methods on the four datasets using a leave-one-subject-out
approach while incrementally adding labeled instances of the new/test subject to the classifiers.

However, it is shown that McNemar test has low type I error and is the only acceptable test for
comparing algorithm that can be executed only once. Particularly, this is an important consideration
in the field of deep learning.

To validate the statistical significance of our results, we compared the results of TransNet with
the best two alternative classifiers i.e. Gradient Boosting and Random Forest and the test showed,
for all of four classifiers, the results presented in previous chapter are statistical significant (with
𝑝-𝑣𝑎𝑙𝑢𝑒 < 0.01).

7.3.2 Freezing Different Layers of the Network. To demonstrate that TransNet achieves an acceptable
performance, we compared the activity recognition accuracy and F1-Score of TransNet with those
of two other networking training approaches. The first approach, denoted as ‘No Transfer’ in
Table 4, refers to the case where the neural network is trained from scratch using the labeled
data provided in the target domain. The second approach, denoted as ‘Partial Transfer’ in Table 4,
represents the case where all the layers before the second/last convolution layer remain frozen
during adaptation in the target domain. In this case, the remaining layers including the second
convolution layer and dense layers are adjusted using the target training samples. We performed
these analyses for the case where five labels of each class were available in the target setting. We
limit the analyses to cross-subject transfer learning.

ACM Trans. Des. Autom. Electron. Syst., Vol. 1, No. 1, Article . Publication date: April 2021.



TransNet: Minimally-Supervised Deep Learning for Wearable Systems 21

Table 4 shows the accuracy and F1-Score of the TransNet, those of the network trained from
scratch (i.e., without transfer learning), and those of the network that was partially trained. As
shown in these results, TransNet and partial transfer methods achieve higher performance values
than the network without transfer learning. On the OPP dataset, TranNet obtains 80.4% accuracy
and 80.5% F1-Score, and partial transfer method achieves an accuracy of 80.4%, and F1-score
of 77.7%. The accuracy and F1-Score drops to 61.2%, and 57.3%, respectively, when training the
whole network from scratch without knowledge transfer. Using the IRH dataset, TransNet and
‘No Transfer’ approaches achieve similar ranges of accuracy and F1-Score values. Specifically,
TransNet achieves 86.4% accuracy, and 86.2% F1-Score, while ‘No Transfer’ achieves an accuracy of
87.5%, and an F1-Score of 84.3%. However, partially transferring the network slightly improves the
F1-Score to 90.5%, and accuracy to 90.6% comparing to the other methods. On the WISDM dataset,
TransNet achieves 91.3% and 91.4% accuracy and F1-Score, and ‘Partial Transfer’ shows 90.2%,
and 90.1% accuracy and F1-Score, respectively. Note that accuracy and F1-Score values decline to
76.8%, and 73.2% when we retrain the network from scratch without employing a transfer learning
approach. With the SDA dataset, TransNet obtains accuracy and F1-Score of 82.0% and 81.9%,
respectively, while the F1-Score and accuracy for the case of training from scratch drop to 82.6%
and 82.2%, respectively. On the other hand, partially transferring the network shows a slightly
higher performance than TransNet in this case.

The above-mentioned results demonstrate that training the whole networkwithmany parameters
on the limited amount of labeled data in the target setting might result in overfitting of the obtained
network, resulting in a decline in the validation performance. Moreover, training the ending layers
such as the last convolution layer with the new data adapts only the high-level features extracted
by this layer to the target dataset, therefore, is less likely to result in overfitting. Additionally, we
performed a single-factor ANOVA statistical test on the F1-Score values of TransNet, ‘No Transfer’,
and ‘Partial Transfer’ networks to determine any significance in their validation results. A 𝑝-𝑣𝑎𝑙𝑢𝑒
of 0.12 suggested no significant difference among the F1-Score values.
Finally, we compare the number of the trainable parameters in
This may suggest that TransNet, which includes the fewest learnable parameters, is a more

promising network to implement on wearable devices with limited power and computational
resources.

Table 4 Comparison of activity recognition accuracy and F1-Score of TransNet, network retrained from scratch
(No Transfer), and network partially trained (Partial Transfer)

Dataset TransNet No Transfer Partial Transfer
Accuracy Fscore Accuracy Fscore Accuracy Fscore

OPP 80.4 80.5 61.2 57.3 80.4 77.7
IRH 86.4 86.2 87.5 84.3 90.6 90.5

WISDM 91.3 91.4 76.8 73.2 90.2 90.1
SDA 84.9 83.4 82.6 82.2 85.8 86.7

7.4 Cross-Location Adaptation
For a cross-location scenario, Table 6 has compared the performance TransNet with existing deep
learning methods on OPP dataset. In this section further investigation on cross-location scenarios
are performed on both IRH and SDA datasets. We excluded WISDM dataset because it only has one
location. Particularly, we performed two analysis: Model Transfer and Label Transfer.
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7.4.1 Model Transfer. In model transfer scenario, analogous to Section 4, a trained network for
one location is transferred to be used in another location. Upon obtaining new labeled instances
from the new location, the transferred network is customized for new context/location by adjusting
weights of its recognition module. Fig. 13 shows how the performance of TransNet improves by
acquiring more labeled data from the new location. For SAD dataset, the accuracy of the model
starts around 68% when the model adjusted by 5 instances per class. The classifier achieves more
than 88% accuracy upon obtaining 25 labeled instances per class. For IRH dataset, the accuracy
starts around 84% and improves to 96% after adjusting with 25 instances per class. Similar pattern
for F1-score of the classifier could be observed in Fig. 12b.

(a) Accuracy of cross-location adaptation (b) F1-score of cross-location adaptation

Fig. 12 Performance of TransNet in cross-location scenarios when a trained model for another location is
utilized and the model is updated upon acquiring new labeled instances from the new location

7.4.2 Label Transfer. In label transfer scenarios, the performance of transfer learning is sensitive
to the representation of data. This section performs the system-supervised algorithm [64] using
TransNet as a classifier for the target domain. In system-supervised method, to train a newly
added sensor, the existing sensor sends its prediction on any new observation to the added sensor.
After observing enough activities, a classifier is build on the target domain while the 𝑋 is the
target observations and 𝑌 is prediction of the source. As presented in Fig. 13a, in all three datasets,
the performance of the final classifier is improved by using TransNet in the target. Particularly,
the accuracy improvement range from about 13% for SDA dataset to 40% in OPP dataset. Similar
improvement pattern for F1-score of the classifier is illustrated in Fig. 13b.

7.5 Cross-Vocabulary Adaptation Performance
In this section, we present our results on the performance of TransNet in adapting with new types
of activities. Particularly, we present our results for expanding an activity vocabulary to recognize
entirely new activities that have remained unseen by previously trained activity recognition models.
The conventional approach for expanding an activity vocabulary learns an activity recognition
model from scratch by collecting a large number of labeled instances of the new activity, adding
those instances to the original training set, and retraining a classifier. In contrast, TransNet uses its
already trained network and adjusts its parameters using a small number of labeled instances for
the new activity class. To experiment this problem, let A be a set of activities of interest available
in a particular dataset. We randomly split A into two disjoint sets A1 and A2 such that
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(a) Accuracy of label transfer scenario (b) F1-score of label transfer scenario

Fig. 13 Performance of TransNet in cross-location scenarios when a the source model transfers its prediction
on new observation to the newly added sensor and a model is trained accordingly.

|A1 | ≃ |A2 | (8)
We trained TransNet on instances of activities in A1. Similar to our approach explained in

Section 7.3, having a trained TransNet network on A1, we first freeze all the layers except for the
recognition module. We then randomly choose a set of 5 instances of each activities in A2 and call
this set transfer set. The remaining instances of activities in A2 are used for test. We incrementally
feed instances from the transfer set to TransNet such that after 1 ≤ 𝑖 ≤ 5 iterations weights of the
top layers have been updated using 𝑖 instances of each activity. By performing few training epochs
on the instances of the transfer set, TransNet quickly learns to detect activities in A2.

We performed this experiment on the IRH and SDA datasets, which had sufficiently large number
of activity classes. As shown in Fig. 14a and Fig. 14b, using only two instances of each activity in
A2, TransNet was able to detect all instances in A2 with at least 90% accuracy on both datasets.
Specifically, for the experiment involving the IRH dataset, we randomly chose and placed 12 class
labels in A1 and inserted the remaining activity labels to A2. Similarly, for the SDA dataset, 10
class labels were selected for inclusion in A1 and the remaining 9 activity classes were placed in
A2. Similar growing performance trends were observed for the 𝐹1 measure.

7.6 Comparing with Other Deep Learning Solutions
Although there exist several deep learning methods for activity recognition using inertial sensory
data, very few have been evaluated for cross-subject problems. In this section, we compare TransNet
with ConvLSTM [57, 65] and 3DConvLSTM [66], which have a reported evaluation in cross-subject
scenarios. As shown in Table 5, an important advantage of TransNet compared to the existing deep
learning methods is that TransNet has much less number of layers and learnable parameters. While
other approaches reported to require model training using GPUs with thousands of cores, TransNet
can be trained on a computer with one core-i7 CPU. Particularly, after the initial training, adjusting
the weights requires significantly less number of learnable parameters and training epochs in
TransNet. While two other methods reported to need hundreds of training epochs, using Adam as
an adaptive learning rate, TransNet speeds up its learning rate and converges in less than 50 epochs.
We believe that this significant performance improvements are critical in developing computational
algorithms that can eventually reconfigure in light-weight and computational constrained embedded
sensors that are commonly used in various IoT applications.
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Fig. 14 TransNet accuracy and F1 measure for cross-vocabulary domain adaptation on two datasets (i.e., IRH
and SDA) with large activity vocabularies.

Table 5 Comparison in network architecture between TransNet and two deep learning methods.

Method
# Convolution

Layers # of Kernels
kernel
size

Max
Pooling Aggregator(s)

Aggregator
size

ConvLSTM 4 64-64-64-64 5 No 2 x LSTM 128 - 128
Conv3DLSTM 5 128-96-64-48-32 3 x 5 Yes 2 x LSTM 128 - 128

TransNet 2 20 - 20 3 Yes 1 x Dense 30

The simple architecture devised in TransNet not only offers low computational complexity but
also enables the model to be effective in cross-subject learning scenarios. In particular, a recent
study evaluated the performance of ConvLSTM and 3DConvLSTM in cross-subject scenarios on the
OPP dataset [66]. Table 6 summarizes the performance comparison of TransNet with ConvLSTM
[57, 65] and 3DConvLSTM [66]. In addition to the complete cross-user scenarios, [66] performed
an active learning approach to adapt the model upon receiving labeled data from the new user.
As reported in Table 6, TransNet outperforms existing approaches by about 10%. Additionally,
TransNet achieves the best performance among all algorithms in cross-subject with 5 additional
instances per class from the new user.

Table 6 F1-score Comparison of cross-domain performance

Method cross-subject cross-sub + 5 instance/class cross-location + 30%
ConvLSTM ≃ 67 ≃ 68.2 36.5

3DConvLSTM ≃68.3 ≃71.2 -
TransNet 78.8 82.1 83.8

8 RELATED WORK
Several studies based on the concept of transfer learning [67] have attempted to apply the machine
learning knowledge obtained in a source domain to a new but related target problem. For example,
authors in [64] utilized a teacher/ learner method to train a new sensor added to a wearable network.
They demonstrated that by synchronizing the existing and new sensors, the existing sensor could
provide labels of future activities. Authors in [9] proposed a synchronous dynamic view learning
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method to boost the accuracy of transferred labels even when the location of the target sensor
changes during run-time. However, both these prior studies focused on cross-sensor knowledge
transfer and required a reliable sensors node to provide labels to the target domain.
To avoid handcrafting features, the growing trend in representation learning from raw data

with deep neural networks has demonstrated significant performance gain in image classifica-
tion [59] and speech recognition [68]. In the case of wearable sensors, prior research showed that
using Convolutional Neural Networks (ConvNets) generally improves the activity recognition
performance [69–71]. Authors in [72] used ConvNets to detect activities of pedestrians for indoor
localization. In another recent approach, the motion signal was converted into a spectral image
sequence to input to independently train two ConvNets [73]. Moreover, in [74] authors showed
that ConvNets are more robust when they are used in different domains. Authors in [75] showed
that ConvNets could significantly improve the accuracy of detecting stereotypical movements in
Autism patients. In addition, other studies such as those in [57, 76] aimed to capture temporal
dependencies between high-level activities by applying Recurrent Neural Network and particularly
LSTM [77]. In these studies, ConvNet is paired with LSTM to capture movement patterns while
considering their temporal dependencies. Furthermore, [56] used Restricted Boltzman Machines
(RBMs) to develop a deep generative model capable of utilizing unlabeled data samples of triax-
ial accelerometers. In another approach, Deep Belief Networks are used on smartphone sensor
data to recognize human activities. While these studies showed the effectiveness of deep learning
methods in detecting human activities, there are a limited number of studies that used them for
transfer learning. Notably, similar to the transfer learning method explored in [31], authors in [65]
introduced a feature transfer approach for activity recognition. They showed that using at least
50% of the training data in the target domain, their approach achieves a promising performance
for transfer learning within a dataset. Then, authors in [66] extended their model and introduced
a 3DConvLSTM which requires fewer data to adapt to the new domain. Finally, [78] propose a
combinatorial transfer learning framework that learns structural similarities among the activities
in an arbitrary domain and those of a different domain through graph modeling.

Comparing to the prior research, the work presented in this article introduces an embedding layer
before the first convolutional layer. This layer allows TransNet to offer a computationally-simple
structure through a small number of layers, automatically tunable parameters, and a small number
of training epochs. The computationally-efficient design of TransNet combined with an embedding
pre-processing layer results in obtaining almost one-order-of-magnitude less number of parameters
compared to the state-of-the-art deep learning networks.
Additionally, many of the prior studies do not provide an approach for domain adaptation and

knowledge transfer. In contrast, this article provides a comprehensive analysis of transfer learning
capabilities on different datasets and in a variety of cross-domain scenarios. While other approaches
that offer transfer learning capabilities require significantly larger training data in a new domain,
TransNet quickly adapts to the new domain by acquiring a small number of training instances.

9 GUIDELINES
As our results suggest, neural networks are a promising approach to designing activity recognition
systems that can quickly adapt to new settings. However, one drawback of neural networks is that
they have to be carefully designed and engineered by human experts for each specific task and
it often takes a large amount of time to find an optimal neural network architecture for a given
machine learning task. The problem of identifying the optimal architecture for a neural network
is referred to as neural network search problem. The neural network search is a difficult problem
because not only the search space for the architecture of the network is quite large but also training
and evaluating the performance of the neural network for all architectures in the search space is
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very time-consuming [79, 80]. In this section, we briefly discuss potential approaches that can be
used to design neural networks for activity recognition systems.
One important factor in designing a neural network is the bias and variance trade-off as the

model becomes more complicated with more layers and hidden states. More complex networks
tend to be less biased to the input dataset but show more variance in general. Another factor is that
over-parametrized models are less efficient in terms of training time. Therefore, the best model is a
model with not too many or too few layers and hidden states. Nonetheless, as mentioned previously,
finding such a network is a hard problem.
In general, a neural architecture search technique requires a search strategy and an approach

for validating each candidate architecture. Common search strategies are based on reinforcement
learning, evolutionary algorithms, Bayesian optimization, and gradient descent optimization. A
common approach for validating a candidate architecture is to measure validation accuracy of the
architecture on a held-out validation set. However, this approach requires training a neural network
from scratch, which is time-consuming and power-hungry. To address this shortcoming, we can
hire a function approximation method like neural network whose goal is to learn the accuracy of
neural networks without training from scratch.
A reasonable approach for designing neural network based activity recognition systems is to

start with a simple baseline model and improve the architecture through an iterative process.
Including discretization and embedding layers in TransNet helped in achieving robustmodels. The

signal segments are discretized to reduce the sensitivity of the model to small changes and improve
the transferability of the model across domains. We feed the discretized sequence to an embedding
layer to generate a compact representation of the input data. In addition to dimensionality reduction,
this embedding layer reduces the effect of different instrumental calibration. Therefore, similar
activities captured by different accelerometers or performed by different users could have close
representation in this space.
TransNet includes a stack of 1D convolutional layers. The sparse connectivity and parameter

sharing features of ConvNets not only help in extracting useful local features on different body
locations but also reduce the computational and storage complexity of the model. In TransNet,
we chose two 1D convolutional layers because stacking too many convolutional layers increases
the training time. The common practice is to start with 1 or 2 layers and increase if the desired
accuracy was not achieved.
Another parameter is the batch size, which shows the number of inputs on which we train the

network in each iteration before updating the weights. Batch size affects the generalization error
since impacts the wideness of the final minima [81]. The smaller the batch size, the wider, the less
the generalization error will be. However, having a small batch size increases the training time.
The number of epochs is another parameter to consider when designing the model. If the

distribution of the training and validation datasets are different, training the model for too many
epochs will increase the chance of over-fitting. The general recommendation is to early stop the
training of the network based on a threshold value. We suggest stopping the training when the
difference between the validation accuracy in two consecutive epochs is less than a threshold value
(e.g., 0.01). Regularizing the model (e.g., 𝐿1 or 𝐿2 regularizers, or Dropout) is also recommended to
prevent over-fitting.

10 DISCUSSION AND FUTURE WORK
Although we evaluated the performance of TransNet for two cross-domain adaptation scenarios,
including cross-subject and cross-vocabulary, we have a suspicion that the transferability of the
learned features is not limited to these analyzed scenarios. TransNet, or a minimally refined
architecture of TransNet, may offer cross-platform, cross-modality, and hybrid knowledge transfer.
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Our ongoing work involves investigating the effectiveness of TransNet for such cross-domain
applications.
The transfer learning approach in TransNet freezes the convolution layers in the network. It

only retrains the recognition layers using the target data rather than freezing some of the initial
layers of the network and retraining the remaining layers. The reason behind this design choice is
in two folds. First, freezing more layers will reduce the complexity, and therefore, the training time
of the network in the target setting will decrease. Deployment of wearable computing systems
in a real-world setting demands the design of low-power computational solutions. Second, given
the limitations on the amount of labeled data in the end-user setting, training more layers of the
network and freezing fewer layers may result in overfitting of the model with respect to the target
data [31, 82].
As presented in Section 7, upon acquiring a few instances, TransNet can quickly master in

the new context. However, accurately labeled instances are not always available. In cases where
querying a human subject is not applicable, using predictions of other wearables or ambient sensors
can potentially help in acquiring labels in the new domain. While these obtained labels are not
always accurate, crowd-sourcing methods can be potentially utilized to increase the confidence of
such noisy labels. Additionally, label propagation methods used in prior research can be exploited
to improve the quality of the labels[9, 83].
An important aspect of TransNet is its ability to learn incrementally. In contrast to traditional

classifiers, TransNet incrementally improves itself upon receiving more number of labeled instances
without retraining from scratch. Leveraging this online learning feature, TransNet features the
capability of adapting itself in continuously changing environments. Such a reliable adaptation
approach becomes increasingly important when labeled instances from previous domains are not
available in the new domain. One major concern computational models such as TransNet regarding
incremental learning or in other words, lifelong learning from the previous domains is being
prone to catastrophic forgetting/inference. Catastrophic forgetting happens when the performance
declines significantly by replacing a part or in the worst case, all the previous knowledge with the
new data. We are planning to investigate the performance of TransNet in lifelong learning [84–86].
Recent studies show the effectiveness of deep learning methods to devise classifiers with high

accuracies. However, the number of learnable parameters are important considerations when
designing wearable embedded systems with limited memory storage and computational power.
TransNet includes a small number of layers and learnable parameters. Experimenting on different
datasets, we showed that using only 10 training epochs, TransNet can achieve a high activity
recognition performance. In the future, we would like to explore the effectiveness of our framework
in end-user settings by implementing TransNet on embedded and mobile devices for real-time
activity monitoring.
In Section 7.3, we split each experimental dataset into two disjoint activity sets (A1 and A2),

at random, and computed cross-vocabulary adaptation performance. We repeated the process to
obtain random splits with different seeds and observed a similar trend to those results shown in
Fig. 14a and Fig. 14b. Intuitively, the reason for such a consistent set of results is that the first
set, A1, is sufficiently large enough that it captures the underlying distribution of the data that
is common across various human activities. Therefore, learning the transfer set, A2, requires a
small number of labels for each activity class to adjust the parameters of the recognition layers.
Nonetheless, we expect that if A1 is a very small set (e.g, in the extreme case if the system learns
only one activity at a time), then the evolving network may not learn new activities with only
a very small number of labels similar to what we observed in Fig. 14a and Fig. 14b. A detailed
exploration of this phenomena is out of the scope of this work, and we plan to investigate it as part
of our future work.
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11 CONCLUSION
We introduced TransNet for transferring activity recognition capabilities across different domains
and constructing a personalized model with minimal supervision. We showed that the learned
features in lower layers of the network are not task-specific, and the lower layers could easily
be reused in new domains. We showed that by using representation learning, we can reuse the
general features learned from available training data and construct a model in a new domain with
1 to 5 labeled activity instances. Our analysis on four experimental datasets showed that TransNet
achieves an average accuracy of 92.7% in activity recognition in cross-subject scenarios with only 5
labeled instances per activity. Furthermore, TransNet enables the user to expand the set of activities
of interest by adjusting the classification layer after obtaining only 2 labeled instances of unseen
activity.
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