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ABSTRACT

This article investigates double/debiased machine learning (DML) under multiway clustered sampling
environments. We propose a novel multiway cross-fitting algorithm and a multiway DML estimator based
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on this algorithm. We also develop a multiway cluster robust standard error formula. Simulations indicate

that the proposed procedure has favorable finite sample performance. Applying the proposed method to
market share data for demand analysis, we obtain larger two-way cluster robust standard errors for the price

coefficient than nonrobust ones in the demand model.

1. Introduction

We propose a novel multiway cross-fitting algorithm and a
double/debiased machine learning (DML) estimator based on
the proposed algorithm. This objective is motivated by recently
growing interest in use of dependent cross-sectional data and
recently increasing demand for DML methods in empirical
research. On the one hand, researchers frequently use mul-
tiway cluster sampled data in empirical studies, such as net-
work data, matched employer-employee data, matched student-
teacher data, scanner data where observations are double-
indexed by stores and products, and market share data where
observations are double-indexed by markets and products.
On the other hand, we have witnessed rapidly increasing
popularity of machine learning methods in empirical stud-
ies, such as random forests, lasso, post-lasso, elastic nets,
ridge, deep neural networks, and boosted trees among oth-
ers. To date, available DML methods focus on iid sampled
data. In light of the aforementioned research environments
today, a new method of DML that is applicable to multi-
way cluster sampled data may well be of interest by empirical
researchers.

The DML was proposed by the recent influential article by
Chernozhukov et al. (CCDDHNR, 2018a). They provided a
general DML toolbox for estimation and inference for structural
parameters with high-dimensional and/or infinite-dimensional
nuisance parameters. In that article, the estimation method
and properties of the estimator are presented under the typi-
cal microeconometric assumption of iid sampling. We advance
this frontier literature of DML by proposing a modified DML
estimation procedure with multiway cross-fitting, which accom-
modates multiway cluster sampled data. Even for multiway
cluster sampled data, we show that the proposed DML proce-
dure works under nearly identical set of assumptions to that of

KEYWORDS
Double/debiased machine
learning, Multiway clustering,
Multiway cross-fitting

CCDDHNR (2018a). To our best knowledge, the present article
is the first to consider generic DML methods under multiway
cluster sampling.

Another branch of the literature following the seminal work
by Cameron, Gelbach, and Miller (2011) proposes multiway
cluster robust inference methods. Menzel (2017) conducted
formal analyses of bootstrap validity under multiway cluster
sampling robustly accounting for non-degenerate and degen-
erate cases. Chen, Linton, and Van Keilegom (2018) devel-
oped empirical process theory under multiway cluster sampling
which applies to a large class of models. We advance this prac-
tically important literature by developing a multiway cluster
robust inference method based on DML. In deriving theoret-
ical properties of the proposed estimator, we take advantage
of the Aldous-Hoover representation employed by the preced-
ing articles. To our knowledge, the present article is the first
in this literature on multiway clustering to develop generic
DML methods.

1.1. Relations to the Literature

The past few years have seen a fast growing literature in machine
learning based econometric methods. For general overviews
of the field, see, for example, Athey and Imbens (2019) or
Mullainathan and Spiess (2017). For a review of estimation
and inference methods for high-dimensional data, see Belloni,
Chernozhukov, and Hansen (2014a). For an overview of data
sketching methods tackling computationally impractically large
number of observations, see Lee and Ng (2019). The DML
of CCDDHNR (2018a) is built upon Belloni, Chernozhukov,
and Kato (2015), which proposes to use Neyman orthogonal
moments for a general class of Z-estimation statistical prob-
lems in the presence of high-dimensional nuisance parameters.
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This framework is further generalized in different directions
by Belloni et al. (2017) and Belloni et al. (2018). CCDDHNR
(2018a) combined the use of Neyman orthogonality condi-
tion with cross-fitting to provide a simple yet widely appli-
cable framework that covers a large class of models under
iid settings. The DML is also compatible with various types
of machine learning based methods for nuisance parameter
estimation.

Driven by the need from empiricists, the literature on clus-
ter robust inference has a long history in econometrics. For
recent review of the literature, see, for example, Cameron and
Miller (2015) and MacKinnon (2019). On the other hand, cop-
ing with cross-sectional dependence using a multiway cluster
robust variance estimator is a relatively recent phenomenon.
Cameron, Gelbach, and Miller (2011) first provided a mul-
tiway cluster robust variance estimator for linear regression
models without imposing additional parametric assumptions
on the intra-cluster correlation structure. This variance esti-
mator has significantly reshaped the landscape of economet-
ric practices in applied microeconomics in the past decade.!
In contrast to the popularity among empirical researchers,
theoretical justification of the validity of this type of pro-
cedures was lagging behind. The first rigorous treatment of
asymptotic properties of multiway cluster robust estimators are
established by Menzel (2017) using the Aldous-Hoover rep-
resentation under the assumption of separable exchangeabil-
ity. The asymptotic theory of Menzel (2017) covers both non-
degenerate and degenerate cases. Focusing on non-degenerate
situations, Chen, Linton, and Van Keilegom (2018) further
extended this approach to a general empirical process theory.?
Using this asymptotic framework, MacKinnon, Nielsen, and
Webb (2019) studied linear regression models and examine
the validity of several types of wild bootstrap procedures and
the robustness of multiway cluster robust variance estimators
under different cluster sampling settings with Gaussian limiting
distributions.

Despite of the popularity of both machine learning and
cluster robust inference among empirical researchers, rela-
tively limited cluster robust inference results exist for machine
learning based methods. Inference for machine learning based
methods with one-way clustering is studied by Belloni et al.
(2016), Kock (2016), Kock and Tang (2019), Semenova et al.
(2018) and Hansen and Liao (2019) for different variations
of regularized regression estimators and Athey and Wager
(2019) for random forests. Chiang and Sasaki (2019) inves-
tigated the performance of lasso and post-lasso in the par-
tially linear model setting of Belloni, Chernozhukov, and
Hansen (2014b) under multiway cluster sampling. To our best
knowledge, there is no general machine learning based pro-
cedures with known validity under multiway cluster sampling
environments.

TAs of July 31, 2020, Cameron, Gelbach, and Miller (2011) has received over
2,700 citations. The majority of these citations came from applied economic
articles.

2See also Davezies, D’Haultfoeuille, and Guyonvarch (2019) for further gen-
eralization of the empirical process theory for dyadic data under joint
exchangeability assumption.

2. Setup

We begin with an introduction of the data structure of multiway
clustering (Section 2.1) and the econometric structure of Ney-
man orthogonal score (Section 2.2).

2.1. Multiway Clustering

Suppose  that the researcher observes a sample
{Wij|ie {1,...,N},j e {1,...,M}} of  double-indexed
observations of size NM. It is two-way clustered if units in
the cluster { W, }]Ail are dependent for any given i € {1,...,N}

and units in the cluster {Wl]}f\i1

jell,....,M}.
To fix ideas, consider the case of market share data that
consist of N markets and M products. For any given market

are dependent for any given

) . M .
i, the M observations {W,-j}j:1 across different products are

subject to a common demand shock in the ith market, and
this common shock can induce dependence within the ith
market cluster { Wj; }]Ail Likewise, for any given product j, the
N observations {W,--}fil across different markets are subject
to a common supply shock from the producer of product j,
and this common shock can induce dependence within the
jth product cluster {W,]}fil In this way, the fundamentals of
economics, namely supply and demand, may well cause two
ways of dependence or two-way clustering in market share data.
In addition to the market share data, similar two-way depen-
dence structures are shared by network data, matched employer-
employee data, matched student-teacher data, and scanner data
among others.

Under the assumption of two-way clustering (a formal state-
ment of which is postponed until Assumption 1 in Section 4),
the random vector Wj; can be represented by the structure

Wl] = t(UiO) U0j> UI])

for some function t (unknown to econometricians), where
{Uj | GG)) € N2 \ {(0,0)}} are independent uniform random
variables (and unobservable by econometricians). This repre-
sentation is called the Aldous-Hoover representation, and serves
as a key mathematical device to develop asymptotic statistical
theories under two-way clustering. Intuitively, Ujp can be con-
sidered as the ith market fixed effect representing the demand
shock in this market, Up; can be considered as the jth product
fixed effect representing the supply shock by the produce of this
product, and Uj; is the idiosyncratic shock. This representation
also motivates the two-way fixed effect model

Wij=1 (Uio,Uq;»Usj)
—
YijZX;jﬂ—i-T( o, Vj’Uij) ie{l,...,N}je{l,...,M}.
T ——
Un Uy
Without assuming additivity among «;, y; and Uj;, this panel
structure can be analyzed by allowing for the possibility of two-
way cluster dependence in the sole error term Wj; in Yj; =
Suppose that the researcher is interested in the mean
E[¥(W;j)] for some scalar-valued function . If there were no



dependence in the data {W,J| ie{l,...,N},je {1,...,M}},
then the standard econometric theory implies that the standard
error of the sample mean ﬁ Zfil ZAil Y (Wy) is SEy =
\/VNM(W(Wij)) /(NM). On the other hand, if the researcher
suspects the two-way dependence as described above, then
he/she would instead like to employ the two-way-cluster-robust
standard error

SE; = \/(,&lﬁl + [12T2)/C, (2.1
where C = min{N,M}, i1 = C/N, ip = C/M,
Tl = 37 L Ljm Ljm V(W y(Wy) and T, =

VD DA D ij\il ¥ (Wij) ¥ (Wyj). This idea of two-way
cluster-robust standard errors dates back to the seminal article
by Cameron, Gelbach, and Miller (2011),> and has been widely
used in empirical economic researches as mentioned in the
introduction.

2.2. Neyman Orthogonal Score

2.2.1. Motivation of Neyman Orthogonal Score

We next introduce the concept of Neyman orthogonal score as
an important component of the DML. To fix ideas to this end,
consider as a concrete example the partially linear IV model (cf.
Okui, Small, Tan and Robins, 2012 ; CCDDHNR, 2018a, Section
4.2) translated into double-indexed data

Yij =Djjbo + g10(Xij) + € El€yl Xy, Zij] = 0,
Zij =mo(Xy) + ij E[v;|X;] = 0.

(2.2)
(2.3)

The researcher observes the random vector W; =
(Yii, Dij,X{j, Z;)', whose four components are interpreted
as the outcome, endogenous regressor, exogenous regressors,
and instrumental variable, respectively. The parameter vector 6
is an object of interest. The functions, g1 and my, are unknown
and need to be estimated by a machine learner, such as a kernel
smoother, series estimator, lasso, ridge, elastic nets, and neural
networks among others. However, the naive idea of plugging
machine-learned g; and m in the standard IV regression
estimation framework would not work well, because g; and m
typically converge to g1p and my, respectively, at rates that are
slower than the desired rate for an estimator of 6y, which is of
order 1/ \/E if observations are two-way cluster dependent -
see the expression in Equation (2.1) in Section 2.1.

A Neyman orthogonal score is a useful device to mitigate
these effects of slow convergence rates of machine learners. To
see this, consider the function i defined by

Y(w;6,m) = (y — (d — £2(x)0 — g1 (%)) (z — m(x)),

where w = (y,d,x,2z) and n = (g1,8,m). If we set 59 =
(810> §20, mo) where g10(X) = E[Y|X], g0(X) = E[D|X] and
my(X) = E[Z|X], then it holds under the model (2.2) and (2.3)
that

(2.4)

E[y (Wij; 60, m0)] = 0.

3While the formula that we display here consists of two terms, ji1I'1 and
12T, the formula suggested by Cameron, Gelbach, and Miller (2011)
consists of one additional term to deduct double-counted terms by ji1T
and 15 T5. Since this additional term (or the effect of double counting) is
asymptotically negligible, we omit it here for the sake of succinctness.
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Furthermore, if the projections take the linear forms, g10(x) =
(%) Bo> g20(x) = p(x)'yo and mo(x) = p(x)'& with possibly
high-dimensional basis p(x), for simplicity, then it also holds
under the model (2.2) and (2.3) that

0
— B[y (Wi;; 0o, =0,
o [ (Wij; 60, )] -

0
a—E[l/f(Wij;Qo, m] =0,
4 n=no

0
—E Wi 6o, =0.
08 [ (Wij; 60, )] -

These three ‘orthogonality’ equations imply that the moment
condition E[(W;;;6p,1n0)] = 0 is insensitive to local pertur-
bations of 1 in a neighborhood of ny. Because of this insen-
sitivity, even slowly converging errors of the machine learner
7 = (81,82, m), such as the lasso estimator of (8o, yo, £o), will
exercise only ignorable effects on E[y (Wy; 6p, 7)1, thus allowing
for estimation of 6 with the desired rate 1/,/C of convergence.
With these properties, this function ¥ is said to be a Neyman
orthogonal score function for the model (2.2) and (2.3) - see
Okui et al. (2012) and CCDDHNR (2018a).

2.2.2. The Definition of Neyman Orthogonal Score

While the above discussion is specific to the example of model
(2.2) and (2.3) and is informal, we now present a formal and
general definition of Neyman orthogonal score according to
CCDDHNR (2018a). The structural model is assumed to entail
the moment restriction

E[y (W11360,10)] = 0

for some score ¥ that depends on a low-dimensional parameter
vector §# € ® C R% and a nuisance parameter n € T for a
convex subset T' of a normed linear space.

Let T = {n —no : n € T}, and define the pathwise derivative

map Dy 5 T — R% by Dyln = nol = 0, {ELY (Wits 60,0 +

(2.5)

r(n — r;o))]} for all r € [0,1). Also denote its limit by

9y EY (W11500,m0)[n — nmol = Doln — nol. We say that the
Neyman orthogonality condition holds at (6, 170) with respect
to a nuisance realization set 7, C T if the score y satisfies
Equation (2.5), the pathwise derivative D,[n — 1] exists for all
r €[0,1) and 7 € T, and the orthogonality equation

O Evr (W15 600, 10) [ — 1ol =0

holds for all n € 7,.

As an extended definition, we also say that the A, Neyman
near-orthogonality condition holds at (6, o) with respect to a
nuisance realization set 7, C T if the score v satisfies Equation
(2.5), the pathwise derivative D,[n — no] exists for all r € [0, 1)
and 7 € T, and the orthogonality equation

sup ||8,7E1/I(W11;90>770)[77 - 770]H = An

n€Tu

(2.6)

(2.7)

holds for all n € T, for some positive sequence {A,}, such that
An = o(min{N, M}~1/2). This definition relaxes the require-
ment of Neyman orthogonality, and allows for the derivative to
be nonzero.
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2.2.3. Construction of Neyman Orthogonal Score

Although orthogonal scores are readily available for certain
models, not all scores are orthogonal. The recent literature
provides recipes to construct an orthogonal score from a pos-
sibly nonorthogonal score. We refer interested readers to Cher-
nozhukov et al. (2018b) as well as CCDDHNR (2018a). Here,
for the convenience of readers, we provide a recipe according to
CCDDHNR (2018a, Section 2.2).

Let € ® C R% and B € B C R, where B is convex,
be the target and nuisance parameters. Although g is finite-
dimensional, its dimension can be high. Suppose that the true
parameter solves the optimization problem

sup E[£(W11;0, 8)]
0e0,peB

for a known criterion function £. In this setting, with the nui-
sance parameter redefined by

n=(B,vecoplzy)) € T =B x R%%,
the function v defined by

0
V¥ (w;0,m) = 80L(w; 0, B) — JopT g 350 )

is a Neyman orthogonal score, where Jyg and Jgg are given by

<]99 Jog
Jgo  Jpp

E(Wu;@:ﬁ)]

)= sm'|
a'p’) Lo p)

6=60,8=Po

2.3. Example: Demand Analysis

Section 2.1 introduces multiway clustering and Section 2.2
introduces Neyman orthogonal score, with emphases on market
share data and the partially linear IV model. In this section, we
present a framework of demand analysis as a concrete example
that highlights both of these two points together.

Example 1. Consider the model of Berry (1994) in which con-
sumer c derives the utility

3,']' + X,‘jac =+ €cij

from choosing product i in market j, where &; independently
follows the Type I Extreme Value distribution, o, is a random
coefficient, and the mean utility §;; takes the linear-index form

5,‘]‘ = D,’je() + €ij.

In this framework, Lu, Shi, and Tao (2019, Equation (9))
derived the partially linear equation

Yij = D,‘j@() +g()(X,‘j) + €jj

for estimation of 6, where Y;; = log(S;;) — log(Se;) denotes
the observed log share of product i relative to the log of
the outside share. Since Dj; usually consists of the log of the
endogenous price of product i in market j, researchers often
use instruments Z;; such that E[e;|X;;, Z;] = 0. This yields
the reduced-form Equation (2.2), together with the innocuous
nonparametric projection equation (2.3). The Neyman orthog-
onal score (2.4) is readily available for estimation of 6y in this
demand model.

Since the random vector Wj; = (Yj;, Djj, Xjj, Zij) is double-
indexed by product i and market j, the sample naturally entails
two-way clustering as discussed in Section 2.1. Specifically, for
each product i, the cluster {W;; }in | is likely dependent through
a supply shock by the producer of product i. Similarly, for each
market j, the cluster {Wij}gi , is likely dependent through a
demand shock in market j. O

As discussed in Section 2.1, assuming two-way clustering for
the error term ¢;; effectively allows for two-way fixed effects in
the structure. In other words, the error term can be understood
to be a possibly nonlinear and nonadditive function €; =
Te (@, ¥j» Ujj) of product fixed effect ar;, market fixed effect y; and
idiosyncratic shock Uj;. This structure generalizes the common
additive two-way fixed effect panel models.*

3. Procedure

Now that the setup has been introduced in Section 2, we
proceed with presenting the DML procedure. We first review
the DML based on the conventional cross-fitting that works
under iid sampling. After illustrating limitations of the conven-
tional cross-fitting under multiway clustering, we then move
on to presenting our proposed multiway cross-fitting algo-
rithm and the multiway cluster robust DML based on this
algorithm.

3.1. Conventional Cross-Fitting

3.1.1. The Role of Cross-Fitting under Random Sampling

For convenience of reviewing the conventional cross-fitting,
consider an iid sample {W;}?_, just within the current section.
With the Neyman orthogonal score (2.4) where x is assumed to
be a scalar for simplicity of writing, we can write the asymptotic
linear representation for /n(6 — 6p) as

V(0 — 6g) = A* + B* + C* + 0y(1), (3.1)

where A* is asymptotically normal, B* consists of terms like
75 YL@ (X)) — g10(X0) ((X;) — mo (X)), and C* consists
of terms like % Z?Zl@l (X)) — g10(X;))vi.> See CCDDHNR
(2018a, pages C4-C5) for an analogous discussion in the case
of Robinson’s (1988) model.

The typical term % N@X) — goX)mX) —
mo(X;)) in B* consists of products of machine learning errors,
and is asymptotically negligible if each of these machine learn-
ing errors g1 (X;) — g10(X;) and m(X;) — mo(X;) vanishes at a rate
that is faster than the order of n~'/4 (yet possibly slower than
the order of n~1/2). This property owes to the Neyman orthog-
onality of . The typical term % YL@ X)) — g10(X))vi in
C*, on the other hand, is asymptotically negligible by the law of
iterated expectations and Markov inequality, if the sample that
is used to obtain g; is different from and independent of the

4The term “fixed effect” also usually entails the endogeneity, which concerns
the identification problem. This additional feature is also accommodated if
the instrument Zj; is exogenous to e;j.

>See Appendix F in the supplementary appendix for a full influence function
representation with concrete expressions.



sample that is used to evaluate the sum. It is this argument about
the C* term that leads us to the idea of cross-fitting under an
iid sampling.

Randomly split {1,...,n} into two folds, I; and I,. Let
Q11 (respectively, g12) denote a machine learner for gig
using the subsample {W;}icr, (respectively, {Wi}icr,). Since
the sample is iid, {Wi}ic;, and {Wi}icf, are independent
subsamples. Therefore, g1; is independent of {W;}icr,, and

thus n—‘//g Zieh ©@11(X;) — g10(X;))v; can be made asymptot-
ically negligible by the aforementioned argument. Similarly,

n—*ﬁ Yie L (€12(Xi) — g10(X;))v; can be made asymptotically neg-
ligible. Each of these two sums uses only a half of the whole
sample of size n. To improve the efficiency, we want to use the
whole sample by averaging the estimates associated with the two
folds. The average

1
7 F\/z Z@u(xi) — g10(X))vi

iel}

ﬁ

+
n/2

Z@lz(Xi) — g10(X))v;i

iely

is the split-half counterpart of the typical term in C*. The
asymptotic negligibility of each of the two subsample means
imply that of this whole sample mean.

Extending this heuristic idea, the general cross-fitting under
an iid sampling proceeds as follows. With a fixed positive integer
K > 1, randomly partition {1, ..., n} into K folds {1, ..., Ix}.
Note that, for each k € {l1,...,K}, observations in Ij are
independent of its complement I; = {1,...,N} \ Ix and vice
versa by the iid sampling assumption. For each k € {1,...,K},
obtain an estimate

M = ﬁ((Wi)ie1;>

of the nuisance parameter 1 by some machine learning method
using only the subsample of those observations with i € I;. In
turn, we define 6 as the solution to

K
1 1 ~
—E —E Wi;0,1%) =0,
K s A Y (Wi 0,71)

ielj

(3.2)

where |Ii| denotes the cardinality of the set Ij. Here, it is crucial
that 7y is independent of I in each of the K inner sums to vanish
terms in C*. ~

With this cross-fitting operation, the solution 6 allows for
the asymptotic linear representation (3.1) with the B* and cr
terms asymptotically negligible. Thus, this DML estimator 6
(CCDDHNR, 2018a) enjoys the root-n asymptotic normality
solely based on the A* term under the iid sampling.

3.1.2. Limitation of the Conventional Cross-Fitting under
Multiway Clustering

Let us now turn back to the case of using the two-way cluster

dependent data as in Section 2. In this case, the random splitting

of the sample { W,]| ief{l,...,N}Lje{l,. ..,M}} of size NM

into K folds will not ensure the independence between observa-

tion in Iy from I} forany k € {1,...,K}.
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An alternative idea might be to randomly split the clusters
in one of the cluster dimensions, say the N market clusters
{{le}gl, s {WNj}inl}, into K folds {I1, . . ., Ix}. However, this
will not ensure the independence between observation in Ij
from I} either. To see this, note that Iy contains observations
from the set of products j € {1,..., M} as well as I;; contains
observations from the same set of products j € {1,...,M}. A
common supply shock induced by producers of these products
may well cause dependence between observation in I and those
in I;.

3.2. The Multiway Cross-Fitting and the Multiway Cluster
Robust DML

In light of the non-applicability of the conventional cross-fitting
under multiway clustering pointed out in Section 3.1.2, we
now propose a novel multiway cross-fitting algorithm and the
multiway cluster robust DML based on it. For any r € N, we
use the notation [r] = {1,...,r}. With a fixed positive integer
K > 1, randomly partition [N] into K parts {I;,...,Ix} and
[M] into K parts {J1,...,Jk}. For each (k,£) € [K]?, obtain an
estimate

Tke =7 (W) (i) e NI < (IMTV) )

of the nuisance parameter 1 by some machine learning method
using only the subsample of those observations with multiway
indices (4,7) in ([N]\ Ix) x ([M]\ J¢). In turn, we define 9, the
multiway double/debiased machine learning (multiway DML)
estimator for 0y, as the solution to

1 ~
= 2 Ewlv W87l =0, (33)

(kO €[KT?

where, with |I| and |J¢| denoting the cardinalities of Ij and Jy,
respectively, E, ko [f(W)] = m Z(i Delixe f(Wj) denotes
the subsample empirical expectation using only those observa-
tions with multiway indices (i, ) in Iy X J;.

We call this procedure the K?-fold multiway cross-fitting.
Note that, for each (k,£) € [K]?, the nuisance parameter esti-
mate 7y is computed using the subsample of those observations
with multiway indices (i,j) € (IN]\ Ixr) x (IM] \ J¢), and in
turn the score term E, y¢ [ (W, Tke)] is computed using the
subsample of those observations with multiway indices (i, j) €
Ix % J¢. This two-step computation is repeated K2 times for every
partitioning pair (k, £) € [K]?. Figure 1 illustrates this K*-fold
cross-fitting for the case of K = 2 and N = M = 40 (with each
side of a small square block representing 10 clusters), where the
cross-fitting repeats for K2(= 22 = 4) times.

Remark 1. This estimator is a multiway-counterpart of DML2
in CCDDHNR (2018a). It is also possible to consider the
multiway-counterpart of their DMLI. With this said, we focus
on this current estimator following their simulation finding that
DML2 outperforms their DML1 in most situation settings due
to the stability of the score function. O

Remark 2 (Higher Cluster Dimensions). When we have o-
way clustering for an integer @ > 2, the above algorithm
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Score Nuisance

Nuisance Score

Figure 1. An illustration of 22-fold cross-fitting.

can be easily generalized into a K*-fold multiway DML esti-
mator. See Appendix C in the supplementary appendix for a
generalization. O

Recalling the notation C = N A M, we propose to estimate
the asymptotic variance of \/_ (6 — 6p) by
&> =] 'TqY, (34)

where T and ] are given by

p_1 11| A 1]l .
F=— Wil "
K2 Z =(|1||]|)2 Z Z V(Wi 0, k) ¥ (Wigs 6, ke)

(k0)elK]2 il j,' e

1 P~ "~ N\
s |]2| Z Zlb(Wij;@,nkz)llf(Wﬂj;@,nkz) and
anm* o7, e
(3.5)
~ 1 3 R
]=ﬁ Z Ey ke {ﬁ'ﬁ(W;@,nu) 925], (3.6)

(kO€[K]?

accounting for multiway cluster dependence, similarly to the
existing multiway cluster robust formula (2.1). For a dy-
dimensional vector r, the (1 — a) confidence interval for the
linear functional '8y can be constructed by

Cly = [F0 £ & 11 — a/2),/r52r/C),

where & denotes the standard normal CDFE. Summarizing all
the above procedures, we present the following step-by-step
guidance for implementation of the multiway cluster robust

DML.

Algorithm 1 (K?-fold Multiway Cluster Robust DML). Let
K=2.
1. Randomly partition [N]into K parts {I, . .., Ix}and [M]into

Kparts {J1,...,Jx}.

2. For each (k,¢) € [K]*: obtain an estimate 7j, =
7 (Wi e (NI x ((M1\J)) ©f the nuisance parameter 7 by
some machine learning method using only the subsample of
those observations with multiway indices (i, j) in ([N]\ I) x
M1\ Jo). N

3. Solve the equation % > Eukelv(W;0,7k)] = 0 for 6

(kO)€[K]?
to obtain the multiway DML estimate 6.

4. Let the multlwely DML asymptotic variance estimator be
given by o o2 =] 1I‘(] 1y where T and ] are give in (3.5)
and (3.6), respectively.

Score Nuisance

5. Report the estimate 6, its standard error \/2/C, and/or the
(1 — a) confidence interval

Cl, == [§i 1 - a/z),/EZ/g} .

For the partially linear IV model introduced in Section 2,
Algorithm 1 with more details about the procedure in each step
is as follows.

Algorithm 2 (K*-fold Multiway Cluster Robust DML for Partially
Linear IV Model with Lasso). Let K = 2.

1. Randomly partition [N]into K parts {I;, . ..

K parts {J1,...,Jk}.
2. For each (k, £) € [K]*:

, Ix} and [M] into

a. Run a lasso of Y on X to obtain gy x¢(x) = ¥’ Ekg using
observations from I x Jj.

b. Run a lasso of D on X to obtain gy ¢ (x) =
observations from Ili X ]E.

c. Run a lasso of Z on X to obtain migs(x) =

observations from I x Jj.

x'Vie using
%' &g using

3. Solve the equation

Y Earel(Yy — XjBre — 0(D

(kO€lK]?

ij Xz/]J//\kZ))

(Zj — XjEre)] =

for 6 to obtain the multiway DML estimate 6.

4. Letej; = Yji— XU,BM 6(Djj— nyk@) Uij = Djj— lejf/\kg, and
v,] = Zjj— Xyék/g for each (i, j) € Ix x J; for each (k, £) € [K]?,
and let the multiway DML asymptotic variance estimator be
given by

1 S (A
o= ]_lﬁ ZZ{ (D2 > D Eititity
k=1 ¢=1 il jj'ely
LA

Z 281]1’1]/1’\1]8 }(] 1)

i,i' €l j€Jp

(III 7h?

where

ne [UifVij].

. 1 K K
f=——zZ[Z]E
=1

5. Report the estimate g, its standard error /52 /C, and/or the
(1 — a) confidence interval

Cl, = [5:& o1 — a/Z),/EZ/Q} .



For the sake of concreteness, we present this algorithm
specifically based on lasso (in the three sub-steps under step 2),
but another machine learning method (e.g., post-lasso, elastic
nets, ridge, deep neural networks, and boosted trees) may be
substituted for lasso.

4. Theory of the Multiway DML

In this section, we present formal theories to guarantee that the
multiway DML method proposed in Section 2 works. We first
fix some notations for convenience. The two-way sample sizes
(N, M) € N? will be index by a single index n € N as (N, M) =
(N(n), M(n)) where M(n) and N(n) are nondecreasing in n and
M(n)N(n) is increasing in n. With this said, we will suppress
the index notation and write (N, M) for simplicity. Let {P,}, be
a sequence of sets of probability laws of {Wj};; - note that we
allow for increasing dimensionality of Wj; in the sample size .
Let P = P, € P, denote the law with respect to sample size
(N, M). Throughout, we assume that this random vector Wj; is
Borel measurable. Recalling the notation C = N A M, define
uN = C/N and uy = C/M, and suppose that uy — LN,
Upm — fAp. We write a < b to mean a < c¢b for some ¢ >
0 that does not depend on n. We also write a <p b to mean
a = Op(b). For any finite dimensional vector v, ||v|| denotes the
£, or Euclidean norm of v. For any matrix A, ||A|| denotes the
induced £;-norm of the matrix. For any set B, |B| denotes the
cardinality of the set.

We state the following assumption on multiway clustered
sampling.

Assumption 1 (Sampling). Suppose C — o0o. The following
conditions hold for each n.

i (Wij)jene is an infinite sequence of separately exchange-
able p-dimensional random vectors. That is, for any permu-
tations 7r1 and 7, of N, we have

d
Wi ipenz = Wi (hma()) iy en2-

i (Wiijene is dissociated. That is, for any (cj,c;) € N2,
(Wiielerljelea] 18 independent of (Wijieley1¢ el
iii. For each n, an econometrician observes (W) ie[N},je[m]-

The separate exchangeability in part (i) is similar to the
identical distribution assumption. It means that the N markets
i € {1,...,N} and the M products j € {1,..., M} have no
identities, and are supposed to have ex ante identical distribu-
tions. Therefore, shuftling the labels of the markets and labels
of the products separately does not affect the joint distribution
of data®. While we maintain this assumption that is similar to
the identical distribution assumption, we do relax independence
assumption. The dissociation in part (ii) implies that observa-
tions are independent if they do not share the same market
or the same products. On the other hand, if two observations
share either the same market or the same product, then they are
allowed to be arbitrarily dependent, as discussed in Section 2.1.

5For example, this imposes (W11, W12) 4 (W31, W>5). But it does not impose
that (Wq1, Wy2) and (Wq4, W>3) to be identically distributed.
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Consider linear Neyman orthogonal scores i of the form

Yws0,m) = Y (w;n)0 + 1//b(w; 1), for all

w e supp(W), 0 € ©, neT. (4.1)

A generalization to nonlinear score follows from linearization
with Gateaux differentiability as in Section 3.3 of CCDDHNR
(2018a). We focus on linear scores as they cover a wide range of
applications.

Letcg > 0,¢c1 > 0,5 > 0, g > 4 be some finite constants
with ¢g < ¢1. Let {8,}n>1 (estimation errors) and {A,}u>1
(probability bounds) be sequences of positive constants that
converge to zero such that §, > 9—1/2. Let K > 2 be a fixed
integer. Let Wy denote a copy of Wy that is independent from
the data and the random set 7, of nuisance realization. With
these notations, we consider the following assumptions.

Assumption 2 (Linear Neyman Orthogonal Score). For C > 3
and P € Py, the following conditions hold.

i. The true parameter value 6 satisfies (2.5).

ii. 1 is linear in the sense that it satisfies (4.1).

iii. The map n +— Ep[yy(Wo;0,1)] is twice continuously
pathwise differentiable on T.

iv. 1 satisfies either the Neyman orthogonality condition (2.6)
or more generally the Neyman 1, near orthogonality con-
dition at (0y, o) with respect to a nuisance realization set
TnC Tas

An = sup ||3,Epy (Woos 60, n0)[n — mol|| < 8,.C7/2.

n€Tn

v. The identification condition holds as the singular values of
the matrix Jy := Ep[v¥*(Wyo; no)] are between ¢ and ¢;.

Assumption 3 (Score Regularity and Nuisance Parameter Estima-
tors). Forall C > 3 and P € P, the following conditions hold.

i. Let K > 1 be a fixed integer. Given random subsets I C
[N] and ] C [M] such that |I| x |J]| = |[NM/K?], the
nuisance parameter estimator 77 = 7((Wj) ijyerexjc), where
the complements are taken with respect to [N] and [M],
respectively, belongs to the realization set 7, with probability
at least 1 — A, where 7, contains 7.

ii. The following moment conditions hold:

my == sup (Ep[ ||y (Woos 60, |14 < c1,
n€Tn

m), == sup (Ep[||¥*(Woos )11 < cy.
neTy

ili. The following conditions on the rates r,, 7, and A/, hold:

rn == sup ||Ep[¥*(Woo; 1)1 — Ep[¥r* (Woo; no)1l| < 8p,
n€Tn

1, == sup (|[Ep[v (Woo; 60, )]
n€Tn

— Ep[¥/(Woo3 60, n0)1112)'/? < 8n,

Ay=sup  [197Ep[v (Woo; 60, no + r(n — no)1l|

re(0,1),neT,

<8,/4/C.



8 H.D. CHIANG ET AL.

iv. All eigenvalues of the matrix

[':=anIN + amlym
= anEp[y¥ (W11; 60, 10)¥ (W12; 60, 1m0)']
+ amEp[¥ (W11 600, 10) ¥ (W21 60, 1m0)' 1.

are bounded from below by cj.

Remark 3 (Discussion of the Assumptions). Assumption 1 is
similar to those of the preceding work on multiway cluster
robust inference (see Menzel 2017; Chen, Linton, and Van Kei-
legom 2018; Chiang and Sasaki 2019). Menzel (2017) did not
invoke the dissociation, and follows an alternative approach to
inference. Our theory could also proceed without this assump-
tion and instead with conditional inference similarly to Menzel
(2017). The other articles assume both the separate exchange-
ability and dissociation, and conduct unconditional inference
as in this article. See Kallenberg (2006, Corollary 7.23 and
Lemma 7.35) for representations with and without the dissocia-
tion under the separate exchangeability. Assumption 2 is closely
related to Assumptions 3.1 of CCDDHNR (2018a). It requires
the score to be Neyman near orthogonal - see their Section
2.2.1 for the procedure of orthogonalizing a non-orthogonal
score. It also imposes some mild smoothness and identification
conditions. Assumption 3 corresponds to Assumption 3.2 of
CCDDHNR (2018a). It imposes some high level conditions on
the quality of the nuisance parameter estimator Part (iv) ensures
a non-degenerate limit distribution under the rate of ,/C. [

Remark 4 (Partial Distributions). Since the separate exchange-
ability in Assumption 1 (i) implies that the marginal distri-
butions of {Wjj};jenz are identical, the stated conditions in
Assumptions 2 and 3 (i)—(iii) based on Wy apply to those based
on Wj; for all i and j as long as W; is independent of 7, which
depends on a part of data through 7((Wjj)(ijiercxjc). We state
Assumptions 2 and 3 (i)-(iii) based on the independent copy
Woo rather than arbitrary Wj; to avoid additional explanation of
the potential dependence relationship between Wj; and 7,,. Sim-
ilarly, Assumption 3 (iv) is stated based on Wy, Wi and Wy
due to the dependence structure implied by Assumption 1(ii).
This differs from CCDDHNR (2018a). W11, W12 and W51 can
be replaced by Wj;, Wiy and Wy;, respectively, for any i # 7,
j # j because of the 1dent1cal distribution implied by separate
exchangeability. O

The following result presents the main theorem of this article,
establishing the linear representation and asymptotic normality
of the multiway DML estimator. It corresponds to Theorem 3.1
of CCDDHNR (2018a), and is an extension of it to the case of
multiway cluster sampling.

Theorem 1 (Main Result). Suppose that Assumptions 1, 2 and 3
are satisfied. If §, > C~1/% for all C > 1, then

VCo (@ - 0)-‘/_ZZx/f(wz,Hop(pn)«»N(oug)

i=1 j=1

holds uniformly over P € P,, where the size of the remainder
terms follows

pn = C V2 41y + 1, + CV20 + CV20, < 68,

the influence function takes the form () =
—o~! To lw(-; 60, M0), and the asymptotic variance is given
by
=1 T, (42)
A proof of this theorem is provided in Appendix A.1 in the
supplementary appendix.
As is commonly the case in practice, we need to estimate the
unknown asymptotic variance. The following theorem shows
the validity of our proposed multiway DML variance estimator.

Theorem 2 (Variance Estimator).
required by Theorem 1, we have

G% =0+ Op(pn).

Furthermore, the statement of Theorem 1 holds true with 62 in
place of o2.

Under the assumptions

A proof of this theorem is provided in Appendix A.2 in the
supplementary appendix.

Theorems 1 and 2 can be used for constructing confidence
intervals.

Corollary 1. Suppose that all the Assumptions required by The-
orem 1 are satisfied. Let r be a dy -dimensional vector. The (1—a)
confidence interval of '8 given by

=[F0 £ "' (1 — a/2),/r'52r/C]

satisfies

sup |Pp(r'6y € Cl,) — (1 — a)| — 0.
PePy,

As in Section 3.4 of CCDDHNR (2018a), we can also repeat-
edly compute multiway DML estimates and variance estimates
S-times for some fixed S € N and consider the average or
median of the estimates as the new estimate. This does not have
an asymptotic impact, yet it can reduce the impact of a random
sample splitting on the estimate.

5. Simulation Studies
5.1. Simulation Setup

Consider the partially linear IV model introduced in Section 2.
We specifically focus on the following high-dimensional linear
representations

Yij =Dij90 + X:]CO + €
Djj =Zjmyo + Xj; 720 + Vijs
l] _X éO + Vi,

where the parameter values are set to ) = w9 = 1.0 and ¢y =
70 = & = (0.5,.0.5%,---,0.59MX)Y for some large dim(X).
The primitive random vector (lej, €ijs Vjjs Vij)/ is constructed by

Xij=(0- wX )(x + a)l a; —I—a)é{aJX,

€= (1— 0)2)0[ + o] + o5,
Uij=(1—w1 w)a + iy + wyag, and
Vi=(0- wl—a)z)ot +a)loz —i—w;ozjv



Table 1. Simulation results based on 5,000 Monte Carlo iterations.
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N M C dim(X) K (K?) Machine learning Bias SD RMSE Cover
25 25 25 100 2 (4) Ridge 0.069 0.074 0.102 0.835
Elastic Net 0.010 0.079 0.080 0.963

Lasso 0.005 0.080 0.080 0.965

50 50 50 100 2 (4) Ridge 0.014 0.047 0.049 0.940
Elastic Net —0.002 0.048 0.048 0.956

Lasso —0.001 0.049 0.049 0.955

25 25 25 200 2 (4) Ridge 0.190 0.053 0.197 0.118
Elastic Net 0.016 0.077 0.079 0.969

Lasso 0.006 0.080 0.080 0.968

50 50 50 200 2 (4) Ridge 0.037 0.046 0.058 0.876
Elastic Net —0.000 0.048 0.048 0.960

Lasso —0.002 0.048 0.048 0.962

25 25 25 100 3(9) Ridge 0.042 0.074 0.085 0.962
Elastic Net 0.004 0.074 0.074 0.993

Lasso 0.002 0.075 0.075 0.992

50 50 50 100 39 Ridge 0.007 0.048 0.049 0.962
Elastic Net —0.001 0.047 0.047 0.972

Lasso —0.001 0.048 0.048 0.963

25 25 25 200 3(9) Ridge 0.081 0.067 0.105 0.896
Elastic Net 0.005 0.073 0.073 0.994

Lasso 0.003 0.076 0.077 0.992

50 50 50 200 39 Ridge 0.018 0.047 0.050 0.944
Elastic Net —0.002 0.048 0.048 0.968

Lasso —0.003 0.049 0.049 0.968

NOTES: Results are displayed for each of the three machine learning methods, including the ridge, elastic net, and lasso. Reported statistics are the bias (Bias), standard
deviation (SD), root mean square error (RMSE), and coverage frequency for the nominal probability of 95% (Cover).

with two-way clustering weights (wi( R a)é( ), (0], 05), (@], ®5),
and (@), ®)), where afj( ,af, and a}( are independently gener-
ated according to

X X X
o a0 ~ N
0 1 dim(X)—2  dim(X)—1
X X 531(' X)—3 Sfi(' x)—-2
1 0 im(X)— im(X)—
Sx Sx Sx Sx
0, : :
dim(X)—2 dim(X)—3 0 1
Sfi(' -1 Sd' x)-2 X X
im(X)— im(X)— 1 0
Sx Sx Sx Sx

(e 0)s (af s e)', and (af,@)')" are independently generated

according to
€
> v >
%

of € 1
) (3 o
i i €V

and ai}/ ,a;, and oth are independently generated according to

=i

ai}/,ay,ajv ~ N(0, 1).

The weights (0}, ®X), (@, w5), (@V,wy), and (o), ®))
specify the extent of dependence in two-way clustering in Xj;,
€ij» Ujj, and Vj;, respectively. The parameter sx specifies the
extent of collinearity among the high-dimensional regressors
Xij. The parameter s¢,, specifies the extent of endogeneity. We
set the values of these parameters to (a){(, a)é() = (0}, w5) =
(@, 0)) = (0], wy) = (0.25,0.25) and sx = s¢,, = 0.25.

5.2. Results

Monte Carlo simulations are conducted with 2500 iterations
for each set. Table 1 reports simulation results. The first four
columns in the table indicate the data generating process (N,
M, C, and dim(X)). The next column indicates the integer K
for our K2-fold cross-fitting method. We use K = 2 and 3
in the simulations for the displayed results, since 2*(~ 5) and
32(~ 10) are close to the common numbers of folds used in
cross-fitting in practice. The next column indicates the machine
learning method for estimation of 7jx,. We use the ridge, elastic
net, and lasso. The last four columns of the table report Monte
Carlo simulation statistics, including the bias (Bias), standard
deviation (SD), root mean square error (RMSE), and coverage
frequency for the nominal probability of 95% (Cover).

For each covariate dimension dim(X) € {100, 200}, for each
choice K € {2,3} for the number K? of multiway cross-fitting,
and for each of the three machine learning methods, we observe
the following patterns as C = N A M increases: 1) the bias
tends to zero; 2) the standard deviation decreases approximately
at the ,/C rate; and 3) the coverage frequency converges to
the nominal probability. These results confirm the theoretical
properties of the proposed method. We ran several other sets of
simulations besides those displayed in the table, and this pattern
remains the same across different sets.

Comparing the results across the three machine learning
methods, we observe that the ridge entails larger bias and
smaller variance relative to the elastic net and lasso in finite
sample. This makes the coverage frequency of the ridge less
accurate compared with the elastic net and lasso. This result
is perhaps specific to the data-generating process used for our
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simulations. On one hand, the choice K = 3 (i.e., 9-fold) of the
multiway cross-fitting contributes to mitigating the large bias
of the ridge relative to the choice K = 2, and hence K = 3
produces more preferred results for the ridge. On the other
hand, the choice K = 2 tends to yield preferred results in
terms of coverage accuracy for the elastic net and lasso. In light
of these results, we recommend the elastic net or lasso along
with the use of 22- fold (i.e., 4-fold) cross-fitting. This number
of folds in cross-fitting is in fact similar to that recommended
by CCDDHNR (2018a) for iid sampling—see their Remark 3.1
where they recommended 4- or 5-fold cross-fitting.

6. Empirical lllustration: Demand Analysis with
Market Share Data

Let us revisit the demand model of Example 1. Recall that, for
the consumer demand model of Berry (1994) introduced in
Example 1, Lu, Shi, and Tao (2019, Equation (9)) derive the
partial-linear equation

Yij = Djjf + go(Xj) + €j (6.1)
for estimation of 6, where Y;; = log(S;j) — log(Se;) denotes
the observed log share of product i relative to the log of the
outside share in market j, D;; denotes the log price of product
i in market j, and Xij denotes a vector of observed attributes of
product i in market j. To deal with the likely endogeneity of Dj;,
researchers often use instruments Z;; such that Ep[e;| Xjj, Z;] =
0. Such instruments often consist of observed attributes of other
products in the market.

The implied Equation (6.1) together with this mean inde-
pendence assumption yields the reduced-form model (2.2). Fur-
thermore, we write the innocuous nonparametric projection
equation (2.3). Therefore, we apply Algorithm 2 in Section 3.2
for the two-way cluster robust DML estimation of 6y with a
robust standard error.

We present an application of the proposed algorithm to the
U.S. automobile data of Berry, Levinsohn, and Pakes (1995). The
sample consists of unbalanced two-way clustered observations
with N = 557 models of automobiles and M = 20 markets. (At
first glance, it may appear that C = N A M = 20 is too small
for an application of asymptotic theories. While the distribution
indeed concentrates at the rate of 1/,/C, the effective sample size
from the view point of the CLT is in fact N + M, which is 20 +
557 in this application. This is because we apply the CLT to the
Hiéjek projection (see Lemma 1 in the supplementary appendix)
which consists of N+M independent summands.) The observed
attributes Xj; consist of horsepower per weight, miles per dollar,
miles per gallon, and size. The instrument Z;; is defined as the
sum of the values of these attributes of other products.

For the purpose of highlighting the effect of clustering
assumptions, we report estimates and standard errors under the
zero-way cluster robust DML (based on the iid assumption)
and the one-way cluster robust DML (based on clustering along
each of the product and market dimensions), as well as the two-
way cluster robust DML (along both of the product and market
dimensions). The number K = 4 of folds of cross-fitting is
used for the zero- and one-way cluster robust DML, while the
number K? = 4 of folds of two-way cross-fitting is used for the

Table 2. Estimates and standard errors of the coefficient 6y of log price in the
demand model.

0-Way 1-Way 1-Way 2-Way

Product
Instrument (Zj;) — Product Market x Market
Horsepower/weight —5.763 —5.719 —5.815 —5.659
of other products (0.460) (0.640) (1.024) (1.211)
Miles/dollar —6.121 —6.056 —6.191 —6.121
of other products (0.607) (0.865) (1.491) (3.963)
Size —5.684 —5.641 —5.727 —5.593
of other products (0.413) (0.565) (0.892) (1.015)

NOTES: The first column indicates the instrumental variable. The second column
shows the results of the DML by lasso not accounting for clustering with the
number K = 4 of folds for cross-fitting. The third and fourth columns show the
results of the 1-way cluster-robust DML by lasso clustered at product and market,
respectively, with the number K = 4 of folds for cross-fitting. The fifth column
shows the results of the 2-way cluster-robust DML by lasso with the number
K2 = 4 of folds for two-way cross-fitting. All the results are based on the average
of 10 rerandomized DML.

two-way cluster robust DML following the recommendations
from Section 5 and those by CCDDHNR (2018a, Remark 3.1).
To mitigate the uncertainty induced by sample splitting, we
compute estimates based on the average of 10 rerandomized
DML following CCDDHNR (2018a, Section 3.4) with variance
estimation according to CCDDHNR (2018a, Equation 3.13)
adapted to our two-way cluster-robustness.

Table 2 summarizes the results. For each of the zero-, one-,
and two-way cluster robust DML, both the point estimates and
standard errors are similar across all the choices of instrument.
Furthermore, the point estimates are also similar across all of
the zero-, one-, and two-way cluster robust DML. On the other
hand, the standard errors tend to increase as the assumed num-
ber of ways of clustering increases. In other words, the zero-way
cluster robust DML reports the smallest standard error while the
two-way cluster robust DML reports the largest standard error.
To robustly account for possible cross-sectional dependence
of observations in such two-way cluster sampled data as this
market share data, we recommend that researchers use the two-
way cluster robust DML although it may incur larger standard
errors as is the case with this application.

7. Conclusion

In this article, we propose a multiway DML procedure based
on a new multiway cross-fitting algorithm. This multiway DML
procedure is valid in the presence of multiway cluster sampled
data, which is frequently used in empirical research. We present
an asymptotic theory showing that multiway DML is valid under
nearly identical regularity conditions to those of CCDDHNR
(2018a). The proposed method covers a large class of econo-
metric models as is the case with CCDDHNR (2018a), and
is compatible with various machine learning based estimation
methods. Simulation studies indicate that the proposed pro-
cedure has attractive finite sample performance under various
multiway cluster sampling environments for various machine
learning methods. To accompany the theoretical findings, we
provide easy-to-implement algorithms for multiway DML. Such
algorithms are readily implementable using existing statistical
packages.



There are a couple of possible directions for future research.
First, whereas we focused on linear orthogonal scores that cover
a wide range of applications, it may be possible to develop
a method and theories for nonlinear orthogonal scores as in
CCDDHNR (2018a; Section 3.3). Second, whereas we focused
on unconditional moment restrictions, it may be possible and
will be important to develop a method and theories for con-
ditional moment restrictions (Ai and Chen 2003, 2007; Chen,
Linton, and Van Keilegom 2003; Chen and Pouzo 2015). We
leave these and other extensions for future research.
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