Prospects for surrogate neutron capture measurements with radioactive ion beams and GODDESS

Jolie A. Cizewski¹, Andrew Ratkiewicz^{1,2}, Alexandre Lepailleur¹, Steven D. Pain³, Heather Garland¹, Harrison Sims¹, David Walter¹

Rutgers University, New Brunswick, NJ 08901, USA cizewski@physics.rutgers.edu
Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

Abstract. Neutron capture reactions are responsible for the synthesis of almost all of the elements heavier than iron through s-process and r-process nucleosynthesis. Uncertainties in (n,γ) rates on neutron-rich nuclei can have significant impact on the predictions of observed r-process abundances for different astrophysical scenarios. The $(d,p\gamma)$ reaction has recently been demonstrated to be a valid surrogate for (n,γ) . This reaction has been measured in inverse kinematics with Gammasphere ORRUBA: Dual Detectors for Experimental Structure Studies (GODDESS) where the Gammasphere array of Compton-suppressed HPGe detectors is coupled to the Oak Ridge Rutgers University Barrel Array (ORRUBA) of position-sensitive silicon-strip detectors. Preliminary results from the $(d,p\gamma)$ measurement with 134 Xe beams are reported.

Keywords: Neutron-transfer reactions, radioactive-ion beams, neutron capture.

1 Introduction

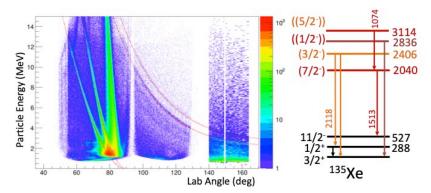
The neutron capture (n,γ) reaction is responsible for the synthesis of almost all of the elements heavier than iron. The slow s-process proceeds close to the line of nuclear stability. In contrast, waiting points for the rapid neutron capture r-process are very neutron-rich isotopes far from stability. Reproducing the observed r-process abundance pattern is a sensitive measure of the astrophysical r-process site(s) and requires knowledge of the properties of and (n,γ) reaction rates on isotopes near the waiting points, nuclei far from stability and with very short half lives [Mum16].

Understanding (n,γ) rates near the r-process path is especially challenging because this reaction can not be measured directly, because short-lived $(t_{1/2} << 100 \text{ days})$ targets cannot be manufactured and the lack of a pure neutron target for studies with radioactive ion beams. Near the N=82 shell closure at ^{132}Sn , neutron capture is dominated by direct-semi-direct (DSD) capture that depends sensitively on the excitation energies and spectroscopic factors of the $3p_{1/2}$ and $3p_{3/2}$ neutron configurations. These properties have been measured [Jon10,Koz10,Man19] in (d,p) reactions with radioactive ion beams of $^{132,130,128,126}\text{Sn}$ and the DSD capture cross sections as a function of neutron

energy have been deduced [Koz10,Man19]. While the 132 Sn(n, γ) cross section is expected to be dominated by DSD capture, for N<82 isotopes the contribution from statistical capture, modeled in a Hauser-Feshbach formalism, is expected to dominate over DSD processes [e.g., Chi08]. Therefore a validated surrogate for neutron capture is required to deduce the (n, γ) rate.

The neutron transfer $(d,p\gamma)$ reaction has recently been demonstrated to be a valid surrogate for neutron capture [Rat19]. The (d,p) reaction can also inform DSD capture. To deduce the (n,γ) cross section, the γ -decay probabilities as a function of excitation energy of several discrete gamma-ray transitions are measured. The measured decay probabilities are fit with level density and gamma-ray strength function models [Esc18] with (d,p)-induced compound nucleus formation and spin-parity weights calculated from non-elastic breakup of the deuteron [Pot16]. Surrogate $(d,p\gamma)$ measurements require a radioactive ion beam of intensity >10⁴ pps, a large solid angle, segmented array of charged particle detectors, and a high-efficiency gamma-ray detector array.

2 GODDESS and ¹³⁵Xe


Gammasphere ORRUBA: Dual Detectors for Experimental Structure Studies (GODDESS) [Pai17] was commissioned in 2015 at Argonne National Laboratory. Gamma radiation was measured with the 110-detector Gammasphere array of Compton-suppressed HPGe detectors coupled to the Oak Ridge Rutgers University Barrel Array (ORRUBA) of position-sensitive silicon-strip detectors [Pai07]. Accelerated beams of 134 Xe and 95 Mo from the ATLAS accelerator interacted with CD2 targets. Both charged-particle singles and particle-gamma coincidence events were recorded. The rectangular position-sensitive silicon-strip SX3 detectors of the ORRUBA barrel were supplemented with pie-shaped, highly-segmented QQQ5 detectors that formed annular arrays mounted at angles upstream and downstream of the ORRUBA barrel. At forward angles both the QQQ5 and many of the SX3 detectors were mounted in a Δ E- E telescope to enable particle identification.

Preliminary particle-energy as a function of laboratory angle data with the ^{134}Xe beam are displayed in Figure 1. At the largest laboratory angles (that correspond to the most forward center of mass (c.m.) angles for the (d,p) reaction), only (d,p)-reaction protons are expected to be observed. Forward of 90° in the laboratory, the spectrum is dominated by elastic scattering on the CD₂ target. Angular distributions of reaction protons at smaller lab (larger c.m.) angles can be deduced from proton particle identification with $\Delta E\text{-}E$ telescopes. The red dotted lines are kinematic curves expected for ground and new $E_x{>}2.0$ MeV states. The gap in counts between the ground and $E_x{>}2.0$ MeV states in ^{135}Xe corresponds to the gap in excitations below and above the N=82 shell closure.

A preliminary, partial level scheme of 135 Xe is displayed in Figure 1. The states at 2.04 and 2.40 MeV are likely $7/2^-$ and $3/2^-$ states with significant $2f_{7/2}$ and $3p_{3/2}$ strength, respectively. These assignments are consistent with their decay patterns, preliminary angular distributions of the proton data, and systematics of the N=81 isotone 131 Sn. The states at 2.83 and 3.11 MeV have highly tentative $1/2^-$ and $5/2^-$ assignments based on

systematics and the decay pattern. Gamma rays in 134 Xe, the surrogate (n,n' γ) nucleus, are observed for proton gates above the neutron separation energy.

Analysis of the 134 Xe(d,p γ) reaction is ongoing and will include proton angular distribution analysis to support the tentative J^{π} assignments. It is unlikely that there will be sufficient statistics in this commissioning experiment to deduce a surrogate (n,γ) cross section. We anticipate that there will be sufficient statistics in the subsequent measurement with 95 Mo beams for a surrogate (n,γ) analysis, as well as an extension of the 96 Mo level scheme.

Figure 1. (Left) Histogram of particle energy vs lab angle for the 134 Xe + CD₂ measurement. Kinematic curves (red dotted) for the ground and \approx 2 MeV states in 135 Xe (angles >80°) and deuteron and proton elastic scattering (angles <90°) are indicated. (Right) Preliminary partial level scheme for 135 Xe with transitions measured with Gammasphere and deduced from particle-gamma coincidences. Only the $3/2^+$ ground and $1/2^+$ 288-keV states and $t_{1/2}$ 15-min $11/2^-$ 527-keV isomer were known. The states at 2040 and 2406 keV are likely ($7/2^-$) and ($3/2^-$) states, respectively, based on the preliminary analysis. The states at 2836 and 3114 keV are assigned highly tentative ($(1/2^-)$) and ($(5/2^-)$) J^π values, respectively, based on systematics and the decay pattern. Additional analysis is required before more definite spin-parity values can be assigned.

3 Summary and Future Prospects

Techniques to measure the $(d,p\gamma)$ reaction with radioactive ion beams have been developed with GODDESS: the coupling of ORRUBA to a high-efficiency gamma-ray detector array. Preliminary results from the commissioning experiment with ¹³⁴Xe beams identify for the first time excitations in ¹³⁵Xe above the N=82 shell gap. The analysis of the ⁹⁵Mo(d,p γ) reaction is proceeding. We are approved to measure the (d,p γ) reaction as a surrogate for (n, γ) with ORRUBA coupled to the GRETINA [Fal16] gamma-ray detector array. Fission fragment ¹⁴³Ba and ⁸⁰Ge beams would be deployed, the latter to inform neutron capture for (weak) r-process nucleosynthesis.

Acknowledgements. We thank all of the collaborators on the GODDESS project for their contributions. This work was supported in part by the U.S. Department of Energy

National Nuclear Security Administration Grant No. DE-NA0000979 (Stewardship Science Academic Alliances, Rutgers), Contract No. DE-AC52-07NA27344 and LDRD 16-ERD-022 (LLNL), Office of Science, Office of Nuclear Physics Contract No. DE-AC05-00OR22725 (ORNL), and the National Science Foundation.

References

- [Chi08] Chiba, S. et al.: Direct and semi-direct capture in low-energy (n,γ) reactions of neutron-rich tin isotopes and its implications for r-process nucleosynthesis, Phys. Rev. C 77, 015809 (2008).
- [Esc18] Escher, J.E. et al., Constraining Neutron Capture Cross Sections for Unstable Nuclei with Surrogate Reaction Data and Theory, Phys. Rev. Lett. 121, 052501 (2018), these proceedings and references therein.
- [Fal16] Fallon, P, Gade, A. and Lee, I.Y.: GRETINA and Its Early Science, Annu. Rev. Nucl. Part. Sci. 66, 321–39 (2016) and references therein.
- [Jon10] Jones, K.L. et al.: The magic nature of 132Sn explored through the single-particle states of 133Sn Nature (London) 465, 454 (2010); Phys. Rev. C 84, 034601 (2011).
- [Koz12] Kozub, R.L. et al.: Neutron Single Particle Structure in 131Sn and Direct Neutron Capture Cross Sections, Phys. Rev. Lett. 109, 172501 (2012).
- [Man19] Manning, B. et al.: Informing Direct Neutron Capture on Tin Isotopes Near the N = 82 Shell Closure, submitted to Phys. Rev. C R (2019, in press).
- [Mum16] Mumpower, M.R., Surman, R., McLaughlin, G.C. and Aprahamian, A.: The impact of individual nuclear properties on r-process nucleosynthesis, Prog. Part. Nucl. Phys. 86, 86 (2016).
- [Pai07] Pain, S.D. et al.: Development of a high solid-angle silicon detector array for measurement of transfer reactions in inverse kinematics, Nucl. Instrum. Meth. B, 261, 110 (2007)
- [Pai17] Pain, S.D. et al.: Direct reaction measurements using GODDESS. Physics Procedia 90,455-462 (2017).
- [Pot16] Potel, G., Nunes, F.M. and Thompson, I.J.: Establishing a theory for deuteron-induced surrogate reactions, Phys. Rev. C 92, 034611 (2015).
- [Rat19] Ratkiewicz, A. et al.: Towards Neutron Capture on Exotic Nuclei: Demonstrating $(d,p\gamma)$ as a Surrogate Reaction for (n,γ) , Phys. Rev. Lett. (2019, in press).