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Abstract
One significant challenge to biodiversity assessment and conservation is persistent gaps 
in species diversity knowledge in Earth’s most biodiverse areas. Monitoring devices that 
utilize species-specific advertisement calls show promise in overcoming challenges asso-
ciated with lagging frog species discovery rates. However, these devices generate data at 
paces faster than it can be analyzed. As such, automated platforms capable of efficient data 
processing and accurate species-level identification are at a premium. In addressing this 
gap, we used TensorFlow Inception v3 to design a robust, automated species identifica-
tion system for 41 Philippine frog species (genus Platymantis), utilizing single-note audio 
spectrograms. With this model, we explored two concepts: (1) performance of our deep-
learning model in discriminating closely-related frog species based on images representing 
advertisement call notes, and (2) the potential of this platform to accelerate new species 
discovery. TensorFlow identified species with a ~ 94% overall correct identification rate. 
Incorporating distributional data increased the overall identification rate to ~ 99%. In apply-
ing TensorFlow to a dataset that included undescribed species in addition to known spe-
cies, our model was able to differentiate undescribed species through variation in “cer-
tainty” rate; the overall certainty rate for undescribed species was 65.5% versus 83.6% for 
described species. This indicates that, in addition to discriminating recognized frog spe-
cies, our model has the potential to flag possible new species. As such, this work represents 
a proof-of-concept for automated, accelerated detection of novel species using acoustic 
mate-recognition signals, that can be applied to other groups characterized by vibrational 
cues, seismic signals, and vibrational mate-recognition.
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Introduction

Species new to science are continuously being described, and therefore many evolutionary, 
ecological, and behavioral phenomena and processes remain to be discovered (Scheffers 
et  al. 2013; Tonini et  al. 2020). However, habitat destruction is triggering the rapid loss 
of species unknown to science (Bryan et  al. 2013; Tapley et  al. 2018). Recent efforts to 
overcome this arms race between species discovery and extinction (González-del-Pliego 
et  al. 2019; Klein et  al. 2015) have focused on development of automated monitoring 
devices, such as passive recorders for monitoring species with acoustic mate-recognition 
signals (i.e., bats, birds, frogs, crickets; Chen and Wiens 2020). Research using conven-
tional recordings and new automated devices, however, has generated exorbitant quantities 
of data, at a pace faster than they can be analyzed (Brabant et al. 2018). As such, a need for 
automated processing tools and acoustic species identification has emerged.

Patterns of seasonal phenology, diel activity, habitat use, and focal species monitoring 
have been the subject of acoustic signal inventories (Sugai et  al. 2019) and biodiversity 
assessments (Wimmer et al. 2013). The use of advertisement calls for integrative amphib-
ian species delimitation and identification has increased steadily (Brown and Stuart 2012; 
Philippe et al. 2017; Vieites et al. 2009), but automating species discovery from environ-
mental recordings has not been applied widely.

The advertisement calls of amphibians are primary phenotypes for mate-recognition 
(Gerhardt 1994; Wells and Schwartz 2007) and analyses of temporal and spectral acoustic 
data have been used widely to assign populations to species (Feinberg et al. 2014; Gerhardt 
1978; Vignal and Kelley 2007). Once species-specific signals have been characterized 
quantitatively, automated classification methods can be employed for identification and 
assignment of species from natural soundscapes (Aide et al. 2013; Zhao et al. 2017). How-
ever, fundamental challenges arise when species new to science are recorded: classification 
is prevented by an absence of their temporal/spectral signal properties in training data sets.

The successful application of deep-learning algorithms to automated species identifica-
tion systems (e.g., images from camera traps (Villa et al. 2017) and dorsal/ventral views of 
insects (Khalighifar et al. 2019; Rzanny et al. 2017; Villa et al. 2017)), suggests that the 
unique anuran signals (Gerhardt 1994; Narins and Capranica 1977) characterized in sound 
spectrograms (sensu Wells 2010) could be exploited for image-based species identifica-
tion. To explore this possibility, we selected the Philippine frog genus Platymantis (family 
Ceratobatrachidae), for three reasons. First (A) Platymantis has been the focus of inten-
sive surveys of advertisement call variation (Brown et al.1997a, b, 1999a, b), and the fast 
pace of species description (Brown and Stuart 2012; Brown and Gonzalez 2007; Diesmos 
et  al. 2015), and identification of candidate species for future taxonomic studies (Brown 
et al. 2015a,b) demonstrate the prevalence of considerable underestimated species diversity 
(Brown et al. 2013, 2015b). Additionally, (B) as the focus of recent molecular phylogenetic 
analyses, Platymantis is a demonstrably monophyletic, Philippine-endemic clade (Brown 
et al. 2015b), sister to the similarly-diverse Papuan genus Cornufer. Thus, the geographic 
and systematic understanding of Platymantis is much improved over earlier work (Inger 
1954). Third, (C) calls of nearly all recognized Platymantis species (AmphibiaWeb 2020, 
https​://amphi​biawe​b.org) are available in the public domain. The combination of availa-
ble call resources (large samples of calls from recognized and undescribed species), and a 
robust phylogeny as an historical framework render Platymantis a promising focal system 
for research in automating species identification, with intended future expansion of the sys-
tem to incorporate comparative phylogenetic methods.

https://amphibiaweb.org
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Automation offers a solution for tasks requiring repetition when experienced workers 
are lacking or cost-prohibitive (Gaston and O’Neill 2004). Recent computer science devel-
opments in image classification and signal processing provide new tools that may improve 
biodiversity assessment in taxa representing visual identification challenges (Guirado et al. 
2019; MacLeod et  al. 2010). Although automated species identification systems using 
handcrafted feature extraction has shown promising results (Gurgel-Gonçalves et al. 2017; 
Holmgren et al. 2008; Kumar et al. 2012), it requires advanced expertise and programming 
to accomplish robust performance.

In recent years, a robust group of classifiers has been introduced (Deep Neural Net-
works, DNNs; Schmidhuber 2015), which outperform existing methods in various clas-
sification tasks (Ramcharan et al. 2017; Smith et al. 2019). One of the state-of-the-art DNN 
platforms is TensorFlow (Abadi et al. 2016), an open-source software platform designed 
by the Google Brain Team (https​://www.resea​rch.googl​e.com/teams​/brain​). One crucial 
advantage of applying TensorFlow is the Transfer Learning technique, which is a shortcut 
for achieving high-performance classification. This approach involves using a large dataset 
to train a model, and then re-training with a new calibrating dataset both to improve identi-
fication rates at lower computational cost.

Here, we applied TensorFlow Inception v3 (Szegedy et al. 2016), implemented in the 
Linux environment (Ubuntu, version 18.04; https​://www.ubunt​u.com), to explore the chal-
lenge of automating frog species identification. We explored two major challenges in this 
study: (1) whether TensorFlow is able to discriminate among species of Philippine forest 
frogs, based on simple visual-image representations of auditory signals, and (2) whether 
TensorFlow could go beyond simple inventory to accelerate new candidate species dis-
covery by objectively identifying undescribed species. To address these questions, we 
designed an automated, DNN-based species identification system for 41 described versus 
undescribed Platymantis species, which we tested using single-note call spectrograms. 
This study thereby lays a foundation for automated identification capabilities in biodiver-
sity conservation and assessment via auditory signals.

Methods and materials

Data processing

We obtained and analyzed frog recordings from two sources: (1) a large collection of 
Philippine frog advertisement calls collected, archived (by RMB and colleagues), 
and made publicly available via Cornell University’s Laboratory of Ornithology and 
Macaulay Library of Natural Sounds (https​://www.macau​layli​brary​.org), and (2) recent 
collections (2005–2019) of numerous undescribed species (review: Brown et al. 2015b; 
Diesmos et  al. 2015), to augment sample sizes of previously described species and 
add distinctive new candidate species identified with genetic and phenotypic charac-
ters (RMB, unpublished data). We consider candidate species as unconfirmed (await-
ing validation and formal description) but likely to eventually be recognized as new 
species, if they are demonstrably diagnosable via at least three out of four independent 
data streams: discrete phenotypic differences (traditional taxonomic characters), discrete 
spectral (frequency-related) or structural (presence/absence of syllables or notes) bio-
acoustic traits, genetically divergent monophyletic haplotype clades (we do not adopt 
arbitrary cut-offs or genetic distance thresholds), and allopatry on different Philippine 

https://www.research.google.com/teams/brain
https://www.ubuntu.com
https://www.macaulaylibrary.org
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Pleistocene Aggregate Island Complexes (PAICs). The majority of species we charac-
terize as such, actually possess all four sets of attributes. Additional collection-associ-
ated natural history information, frog microhabitats, community composition, recording 
methodology (device information, digitization specifications), and metadata are avail-
able via the Macaulay Library portal and the KU Herpetology online Specify database, 
as well as via GBIF, iDigBio, and other aggregators; behavioral context of calls, and 
qualitative descriptions of calls are available in original descriptions (e.g., Brown et al. 
2015a; Brown and Gonzalez 2007; Siler et al. 2007, 2010).

We surveyed 175 recordings, representing 20 species (Fig.  1) using the cross-plat-
form audio editor Ocenaudio (https​://www.ocena​udio.com). This software is based 
on Ocen Framework, a powerful library to simplify and standardize manipulation and 
analysis of audio files. We clipped 20 high-quality single notes per each species, and 
saved each as 32-bit, single-channel WAV files (44.1 kHz sampling rate). To standardize 
temporal scale across comparisons, we designated a duration of one second; all known 
Platymantis species’ single notes fit this range. To do so, we added silence in equal 
length to the beginning and the end of each clipped single note. Then, we used R pack-
ages warbleR (Araya‐Salas and Smith‐Vidaurre 2017) and Seewave (Sueur et al. 2008) 
to generate spectrograms across a standardized range of frequencies, 1.0–5.5 kHz; all 
known Platymantis calls fall within this range (Fig.  1). To generate oscillograms, we 
chose a fast-Fourier transformation (FFT) of 512 points, with 90% overlap between two 
successive windows. We saved all spectrograms as Portable Network Graphics (PNGs).

Fig. 1   Examples of images used for identification of 20 currently recognized species of Philippine forest 
frogs, genus Platymantis (Brown et  al. 2015b), available from the Cornell Lab of Ornithology Macaulay 
Library. Each spectrogram has the same time duration (one second), and frequency limits (1–5.5 kHz)

https://www.ocenaudio.com
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Model architecture

Convolutional neural networks (CNNs) are a subset of DNNs that are specialized for image 
classification tasks and pattern recognition. One of the main advantages of CNNs is the 
ability to perform automated feature extraction, eliminating the need for hand-crafted fea-
ture extraction. CNN architecture is built on three types of layers: (1) convolutional lay-
ers, which are the most important because they apply hierarchical feature extraction and 
decomposition of input images; (2) pooling layers, which carry out operations to reduce 
numbers of parameters and necessary computation; and (3) fully connected layers, which 
perform the actual classification at the end of the pipeline.

CNNs require large training datasets to achieve accurate classification rates. Although 
training on a large dataset provides a powerful framework, building and training a CNN 
from scratch is both computationally expensive and time consuming. To overcome these 
limitations, we used a transfer learning technique. Transfer learning means using experi-
ence acquired from classification task A in classification task B. This technique allows the 
user to retrain the final layer of an existing model on the training set associated with a new 
classification task. One of the most successfully implemented models of transfer learning 
is Inception v3 (Szegedy et al. 2016)—a CNN, implemented in TensorFlow (Abadi et al. 
2016). This CNN consists of 48 layers, and is trained on > 1 M images from the ImageNet 
database (http://www.image​-net.org). Inception v3 is widely recognized for outperforming 
other models in challenges involving classifying images into thousands of classes (Russa-
kovsky et al. 2015).

Classification challenges

We designed four classification challenges using single-note spectrograms and we assessed 
whether TensorFlow (Inception v3) is capable of successfully identifying Platymantis spe-
cies based on frequency distributions of individual call notes of each species. For the train-
ing process, we modified two parameters of the model: (1) number of training steps, and 
(2) validation percentage. We explored different numbers of training steps and compared 
results to find an optimum balance between computing time and classification efficiency. 
Given our limited number of images per species (n = 20), we increased the validation 
parameter to 20%. For the same reason, we used a leave-one-out cross validation technique 
(Molinaro et al. 2005) to evaluate model performance in Challenges 1, 3, and 4. The four 
classification challenges we explored are as follows:

1.	 Applying TensorFlow to identify species available from the Cornell Library of Natural 
Sounds We applied TensorFlow to data from the Macaulay Library, including 20 recog-
nized species of Platymantis (from among 33 described forms; Brown et al. 2015b), as 
classes for input. We generated 400 spectrograms (20 per species) for the identification 
challenge.

2.	 Challenging TensorFlow with species not in the reference library We trained TensorFlow 
on all images (i.e., 400 spectrograms) from Challenge 1 as an image reference library. 
Then, we applied the trained model to a test dataset from 22 robustly-identified species 
from recent field surveys by RMB. We addressed two questions: (1) could TensorFlow 
identify species existing in its reference library among the unknown species when they 
constitute new recordings obtained from different individuals? And, more importantly, 

http://www.image-net.org
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(2) how does TensorFlow perform when it encounters species that do not exist in its 
reference library? To answer these questions, we generated 20 spectrograms per spe-
cies for this new dataset, resulting in a total of 440 spectrograms, to be subjected to 
identification using the CNN developed in Challenge 1.

3.	 Challenging TensorFlow to identify all 41 species for which recordings are available 
We increased the number of species in the TensorFlow reference library to 41 by add-
ing 21 new, undescribed species (one species in the new dataset was already present 
in reference library, owing to a recent taxonomic change; Brown et al. 2015b). Then, 
we followed the same procedure as in Challenge 1, to test performance on a reference 
library that is twice as large as the original (i.e., 41 classes).

4.	 Faunal region-based identification in natural species pools We used distributional data 
(Brown et al. 2015b; Diesmos et al. 2015) to create subsets of species, with the goal of 
generating separate classification tasks with lower numbers of classes (species) per task 
(local species pools, reflecting documented patterns of co-distributed species from the 
archipelago’s faunal regions). First, we grouped the 41 species (20 described species, 
plus 21 undescribed candidate species) based on Philippine islands they inhabit, result-
ing in 15 subsets of co-occurring species in “communities” of 3 to 27 species (Fig. 2). 
Then, we trained and tested the classifier employing the set of samples from the species 

Fig. 2   Map of the Philippines, 
with Pleistocene Aggregate 
Island Complex (PAICs) faunal 
regions (colored shading) used 
to create realistic species pools 
(Challenge 4) to enhance identifi-
cation. Map simplified to include 
only PAICs relevant to this study; 
see Diesmos et al. (2015) for 
full enumeration of species pool 
composition for each PAIC
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found on those islands. Finally, we calculated the overall correct identification rate 
across 15 islands to compare with that based on the full reference library.

Results

We calibrated models for classification challenges using different numbers of training 
steps, and considered two factors to find optima for training TensorFlow (Khalighifar et al. 
2019): correct identification rate and processing time. As a result, for all challenges except 
Challenge 3, we chose 4000 training steps as an optimum number. For Challenge 3, given 
the number of species (41 species), 8000 training steps proved to be the optimum number. 
The details of results associated with each classification task are as follows:

Challenge 1

We created a confusion matrix to depict TensorFlow’s initial results with 20 species 
(Fig. 3). The overall correct identification rate was 94.3%. We achieved 100% correct iden-
tification rate for 11, and 90% or above for 17, species. The lowest identification rates were 
for closely-related species Platymantis isarog and P. montanus, with 70 and 75% correct 

Fig. 3   Confusion matrix for 20 currently recognized species of Philippine forest frogs, genus Platymantis 
(Brown et  al. 2015b), using a leave-one-out cross-validation technique. Red = correct identification; yel-
low = misidentifications. All values of zero are removed for ease of visualization
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classification, respectively. We did not detect any systematic errors in TensorFlow classifi-
cation, such as repeatedly confusing one species with another.

Challenge 2

TensorFlow provides each image identification task with two elements/features: suggested 
species names and a certainty rate. Certainty rate can be a factor by which to evaluate clas-
sifier performance on test images as well. After applying TensorFlow on a testing dataset 
consisting of 22 species, we considered two factors to evaluate model performance: (1) 
number of images per class assigned to a species present in reference library, and (2) aver-
age certainty rate associated with those identifications (Fig. 4). Among the 22 species in 
the test dataset, only one, P. isarog, was also present in the reference library; however, the 
remainder were new to the training set. As a result, it was impossible for TensorFlow to 
provide a correct answer for the other 21 species. The overall certainty rate for those 21 
species was 65.5%. However, in Challenge 1, the overall certainty rate for the 20 species 
present in reference library was 83.6%. A Mann–Whitney U test (Python 3.8.2) comparing 
certainty rates associated with species present in the reference library (n = 20) to species 

Fig. 4   Confusion matrix resulting from challenging TensorFlow with potential species unknown to the ref-
erence library—numeric species identifiers from Brown et al. (2015b). Columns = species in the reference 
library; rows = potential unknown species, with exception of P. isarog (see text). Red numbers = certainty 
rates below 40%; black = 41–85%; green > 85%. Far right column = average certainty rate for species iden-
tifications
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new to the library (n = 21) indicated that TensorFlow yielded a significantly lower certainty 
rate for the latter group (U = 56379.5, P = 1.09e–19).

Certainty rates in Challenge 2 ranged from 38.4 to 98.1%. TensorFlow yielded an over-
all certainty rate ≥ 90% for only 2 of the 22 species in our test dataset, one of which was a 
correct identification. That is, all images associated with P. isarog identified as P. isarog 
with an average certainty rate of 98.1%. In contrast, all P. diesmosi images were identified 
as P. insulatus with a 94.3% average certainty rate. Another species with a relatively high 
average certainty rate was P. sp. 4, a taxon originally described as “P. rivularus” (Taylor 
1923), which is expected to be elevated from synonymy of P. subterrestris with ongoing 
studies (Brown et al. 2015b). Individuals of this population were identified as P. isarog, P. 
guentheri, and P. montanus, with an average certainty rate of 87.8%. The lowest certainty 
rates yielded by TensorFlow were for three undescribed species, P. sp. 12 (onomatopoei-
cally nicknamed “churink” with a 38.4% average certainty rate), P. sp. 44 (“Ee-yow” with 
a 50.1% average certainty rate), and P. biak (with a 51.7% average certainty rate), which 
were classified as 10, 7, and 6 different species, respectively. Among the species in the 
reference library, the most frequently suggested species was P. guentheri, which was sug-
gested for 15 of 22 species in our test dataset. However, regarding two evaluation factors 
mentioned above, in none of those cases, could P. guentheri be considered as the primary 
identification for those species (Fig. 4).

Challenge 3

Training TensorFlow on all 41 species, we observed a mere 0.2% decline in overall cor-
rect identification rate (i.e., overall correct identification rate for 41 species was 94.1 ver-
sus 94.3% for 20 species in Challenge 1). Although we added 21 species to the reference 
library, we observed no negative impact on correct identification rates, even though such 
impacts were noted in our previous work (Khalighifar et al. 2019). TensorFlow was able 
to identify 37 of 41 species with ≥ 90% correct identification rate; 17 species were identi-
fied with 100% identification rate. The lowest correct identification rates were for P. isarog 
and P. sp. 3 (sensu Brown et al. 2015b) with 70% (Supplementary Table S1). Similar to 
Challenge 1, no species was detected to be mis-identified repeatedly as another species in 
particular.

Challenge 4

Classifier accuracy generally improves as the number of classes that must be distinguished 
decreases (Khalighifar et al. 2019). To improve accuracy and reduce numbers of species, 
we used geographic information (species distributions from Diesmos et al. 2015) to refine 
identification efforts. Species subsets ranged from 3 on Gigante, Panay, and Romblon to 27 
on Luzon (Fig. 5). As expected, TensorFlow was able to increase the overall identification 
rate from 94.1 to 98.7% by incorporating distributional information.

Average identification rates for more than half of the islands (8 of 15) were 100%. Luzon 
Island hosts 27 species, and scored the lowest overall identification rate, 94.6%. We noticed 
that another factor affecting overall identification rate for each island was species composi-
tion. That is, for some islands with lower numbers of species, we nonetheless found a lower 
overall identification rate as well. For example, species from Siargao and Dinagat islands, 
with the same species composition (Platymantis corrugatus, P. dorsalis, P. guentheri, and 
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P. rabori) had a lower overall correct identification rate than Mindanao Island, a far larger 
landmass with at least six species (96.3% versus 100%).

Discussion

To improve bioacoustic monitoring and to automate rapid candidate species discovery, 
we explored CNN Inception v3 as a means to automate several key inferential tasks. We 
successfully identified Platymantis species with an impressive overall identification rate 
(94.3%) based on single call note characteristics, a surprising result for field biologists 
(RMB and colleagues) who are accustomed to discovering and describing Platymantis spe-
cies based on temporal patterns of note repetition, complex call elements, and rich spectral 
properties of many calls (Brown and Gonzalez 2007; Brown et al. 2015b; Siler et al. 2007, 
2010). Incorporating distributional data (grouping species by Pleistocene island bank-
based faunal regions) allowed us to create realistic subsets of species pools. By referencing 
relevant, naturally-occurring species pools, we further increased overall identification rates 
to 98.7%. In addition, our model was able to flag species new to the reference library, indi-
cating potential to recognize novel species in the field. This suggests that our model could 
provide a powerful framework for automated species identification and new species discov-
ery in hard-to-access regions, as well as those with high rates of undiscovered biodiversity.

Deep neural networks

TensorFlow’s flexible architecture allows easy adaptation and deployment on different plat-
forms including desktops, clusters of servers, edge devices, and mobile phones (https​://

Fig. 5   Island-based identification for 20 currently-recognized species of Philippine forest frogs (Brown 
et al. 2015b) and 21 new, undescribed Platymantis species, incorporating biogeographic information (island 
bank-based faunal regions; Brown et al. 2013) and species distribution information (Diesmos et al. 2015). 
Note that although we incorporated distributional information (PAICs) in our analyses, this figure summa-
rizes individual island results. Each point is only associated with two elements; (1) number of species per 
island (x-axis), and (2) correct identification rates (y-axis)

https://www.tensorflow.org/
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www.tenso​rflow​.org/). Inception v3 is a sophisticated network given the number of layers 
(48), and is already trained on more than a million images.

However, one major challenge was the number of call notes (input spectrograms) avail-
able for each species. To address this, future studies should access more recordings per 
species, particularly those represented now by recordings of few individuals. Despite this 
limitation, our study is a novel use of a deep-learning platform to distinguish between 
closely-related species of frogs using simple, single-note, two-dimensional depictions of 
primary mate-recognition cues (mating calls). A second challenge, also related to sample 
size, was model validation. We would have been more satisfied with our evaluation if we 
had more recordings from numerous individuals to utilize k-fold cross-validation (Kohavi 
1995) instead of leave-one-out approaches, because the former offers greater independence 
between calibration and evaluation datasets.

Taxonomic identification

In this study, we demonstrate the efficacy of deep learning technology for reliably identi-
fying—and distinguishing among—closely-related frog species, as exemplified by single-
note call segments (Fig. 1). Given known phylogenetic relationships (Brown et al. 2015b), 
we were surprised that multiple closely-related species pairs were distinguished from one 
another perfectly (100% success). For example, species pairs P. indeprensus and P. mim-
ulus (both members of the subgenus Lupacolus), P. hazelae and P. montanus (subgenus 
Tirahanulap), and P. levigatus and P. insulatus (subgenus Lahatnanguri) could each be 
predicted, by virtue of their close phylogenetic relationships, to have similar spectral (fre-
quency-related) and temporal (time-related) call properties—which they do (Fig. 1). Still, 
with only a single isolated note per species, TensorFlow is able to distinguish them and 
correctly classify species’ identity, when presented with a large sample of positively identi-
fied individual notes (i.e., known populations of confidently-identified species, based on 
fully documented voucher specimens deposited in biodiversity repositories).

That said, illustrative examples of how the methods failed in our study—cases where 
identification was problematic, attributed to multiple species, or when a sample of notes 
were classified to wrong species—are worthy of consideration. In these cases (Supple-
mentary Table  S1), two categories of identification errors emerge: Type A stems from 
closely-related species, with brief, pure-tone, constant-frequency calls, whose calls are 
exceptionally simple, intra-specifically invariant, and even inter-specifically quite difficult 
to distinguish. Referred to as “cloud frogs,” members of subgenus Tirahanulap (former 
“P. hazelae Group” species; Brown et al. 2015b; Diesmos et al. 2015) are all diminutive 
(1–3  g body mass), primarily higher-elevation moist, closed-canopy shrub frogs. Their 
close phylogenetic relationships (Brown et al. 2015b) and remarkably similar microhabi-
tat preferences render it no surprise to us that TensorFlow had difficulty distinguishing P. 
isarog, P. montanus, P. sp. 3, P. sierramadrensis, and P. lawtoni. Another category of error 
was exemplified (Type B) by instances of apparent convergence in frequency modulation, 
exemplified by unrelated species such as P. dorsalis (subgenus Lupacolus), P. guentheri 
(Tahananpuno), and the amplitude-modulated, rapidly-repetitive pulse-train calls of taxa 
like P. luzonensis, P. sp. 6, and P. sp. 8. (Tahananpuno). In these taxa, it is little surprise 
that single-note call components are occasionally mis-specified by TensorFlow, given that 
they are essentially homologous call elements (Brown et al. 2015b), temporally arranged to 
differ only by numbers of notes per call and calling rate (Brown et al. 2015b; Brown et al. 
1997a, b, 1999a, b). However, given that only a few closely-related species pairs exhibit 

https://www.tensorflow.org/
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overlapping, sympatric geographic ranges (Diesmos et al. 2015), our confidence is further 
bolstered with the confirmation that automated discrimination can be enhanced by limita-
tion of species classes to realistic species pools (Brown et al. 2013; see below). In sum-
mary, we take these results as encouraging in that the efficacy of automated species identi-
fication can be improved with biogeographic information.

Our refinement of the method, using biogeographically-relevant species sets and limit-
ing species identifications to co-distributed taxa, resulted in a dramatic improvement in 
method performance (Fig. 4), particularly when considering caveats discussed above. By 
limiting the possible universe of a species’ identification to the biogeographically-relevant 
species pools, i.e., we both (1) improved performance of identifications of known taxa, and 
(2) drew attention to (analytically singled out) unknown, new, or undescribed taxa (Figs. 2, 
3). These features will be valuable in identifying taxa for subsequent ‘validation’ of uncon-
firmed candidate species, using independent data streams (phenotypic data, genetic infor-
mation, bioacoustics, biogeographical information, ecological characteristics, etc.).

Across broader taxonomic scales and phylogenetic relationships (e.g., Chan and Brown 
2017), other means (biogeographic realm, ectomorph type, classification, etc.) of restrict-
ing/limiting candidate species pools may prove useful for ‘fine-tuning’ of TensorFlow’s 
automation of species recognition. Additional caveats for future consideration include (1) 
single notes per species and (2) sample sizes, which will be limited for rare species, those 
that occur at naturally low abundances, or taxa characterized by reduced detection proba-
bilities due to cryptic microhabitat preferences, narrow activity patterns, or seasonally-lim-
ited reproductive cycles (Wells 2010). Avenues for future development of these methods 
in our immediate plans include application to additional taxonomic groups (e.g., insects, 
birds), and automation of call detection from environmental sound samples as a precursor 
step to automated species identification.
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