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Abstract—Recent advances in cyber-infrastructure have en-
abled digital data sharing and ubiquitous network connectivity
between scientific instruments and cloud-based storage infras-
tructure for uploading, storing, curating, and correlating of large
amounts of materials and semiconductor fabrication data and
metadata. However, there is still a significant number of scientific
instruments running on old operating systems that are taken
offline and cannot connect to the cloud infrastructure, due to
security and network performance concerns. In this paper, we
propose BRACELET - an edge-cloud infrastructure that augments
the existing cloud-based infrastructure with edge devices and
helps to tackle the unique performance & security challenges that
scientific instruments face when they are connected to the cloud
through public network. With BRACELET, we put a networked
edge device, called cloudlet, in between the scientific instruments
and the cloud as the middle tier of a three-tier hierarchy. The
cloudlet will shape and protect the data traffic from scientific
instruments to the cloud, and will play a foundational role in
keeping the instruments connected throughout its lifetime, and
continuously providing the otherwise missing performance and
security features for the instrument as its operating system ages.

I. INTRODUCTION

With the proliferation of digital technologies, instrumen-
tation, and pervasive networks for data collection, sharing,
and analysis, there are increasing needs for advanced cyber-
infrastructure to support data-driven and interdisciplinary sci-
entific research. However, related efforts [1] mainly focus on
homogenous, well-organized data in an offline or batch manner
(e.g., in astronomy and high energy physics), and much less
effort has been on long-tail data, i.e., data of small or medium
sizes collected during day-to-day research, or “dark data”, i.e.,
unpublished data including results from failed experiments and
records viewed as ancillary to published studies. Therefore, in
material sciences for example, it often takes a long time from
the discovery of new materials to fabrication of new and next-
generation devices based on the new materials [2].

In order to speed up new discoveries, there have been recent
efforts [3, 4] that focus on enabling digital data sharing and
ubiquitous network connectivity between scientific instruments
(e.g., SEMs, TEMs, AFMs) and cloud-based storage infras-
tructure for uploading, storage, curation, and correlation of
large amounts of materials and semiconductor fabrication data
and metadata. However, there is still a significant number of
scientific instruments that run their scientific software tools on
old operating systems (e.g., Windows XP, Windows NT, Win-
dows 2000). Since these OSes cannot operate at the network
speed of a powerful cloud and are not patched with the latest
security patches, the instruments are taken offline and cannot
connect to the cloud infrastructure. This is because if these

instruments were put on the network, they would be destroyed
by viruses and might represent major security threats and
performance bottlenecks to the very expensive instruments and
the overall network infrastructure. Furthermore, this situation
will not go away, since instrument companies do not upgrade
their instrument software at the same frequency with which the
computing companies upgrade their OSes'. Even more recent
OSs, such as Windows 7, will become obsolete in the near
future, and scientific instruments running on Windows 7 will
eventually join the group of offline instruments. As a result,
the current networked solution for scientific instruments is
not evolvable and represents a major barrier to accelerating
the pace of discovery and deployment of advanced cyber-
infrastructure.

In order to bridge the security and performance gaps
between disconnected scientific instruments and cloud-based
cyberinfrastructure, in this paper, we propose BRACELET,
an edge-cloud infrastructure that introduces networked edge
device, called cloudlet, in between scientific instruments and
cloud as the middle tier of a three-tier hierarchy. The intro-
duction of cloudlets poses several challenges. First, cloudlets
need to be integrated seamlessly with the existing cloud-based
cyberinfrastructure to securely offloading scientific data across
edge and cloud. Second, recent survey [5] has shown highly
dynamic characteristic of data being uploaded from scientific
instruments. Hence, it is important for the hierarchical edge-
cloud infrastructure to allow data processing across edge and
cloud to provide better load balancing at peak workloads. This
becomes more challenging considering that the scientific data
workloads are often represented by a workflow model with
complex interactions and dependencies between tasks.

To address the above challenges, we design BRACELET
by extending the state-of-the-art cloud-based microservice
cyberinfrastructure [3, 4] to the edges. Specifically, we design
an edge-cloud microservice execution and coordination mech-
anism to support: (1) securely offloading scientific data to the
edge and to the cloud, and (2) seamlessy executing scientific
workflows across edge and cloud. We have validated the design
of BRACELET on real edge-cloud environment of campus
cyberinfrastructure and we summarize our contributions as
follows:

o« We present the first edge-cloud microservice cyberin-

frastructure that tackles both performance and security
challenges of scientific instruments’ lifetime connectivity.

U1t is often that the instrument companies (e.g., GE, Siemens) stop aug-
menting/updating their scientific softwares when OSes are upgraded to newer
versions or when new OS patches come up. Hence, to make use of the
instruments, scientific users have to run the instruments on older OSes.
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Fig. 1: A sample of simple workflow to process raw DM3 file
generated from digital microscope.

o We present a security design to ensure that BRACELET
is able to protect vulnerable scientific instruments from
external threats.

The remaining of the paper is organized as follows. We
first provide some background information about our targeted
environment in Section II. In Section III, we give an overview
of BRACELET’s architecture and we describe in details both
the edge-cloud execution model and the security design. After
that, in Section IV, we present in details our system imple-
mentation. We then present our evaluation results in Section V
and in Section VI, we conlude the paper.

II. BACKGROUND

To better understand the target environment of material-
related instruments, we provide some background information
on the current state of cyberinfrastructure in materials-related
environment, types of data generated from the instruments,
and example of workflows used to process that kind of data.

The state-of-the-art cyberinfrastructure in materials-related
environment [3] uses a two-tier architecture that connects mod-
ern scientific instruments directly to a cloud-based infrastruc-
ture to support capturing data from instrument, transferring,
and processing the digital data in real-time and in trusted
manner before archiving, further analysis, visualization for
more efficient interpretation and sharing of the experimental
results. Data generated from instrument is often in raw format
that it requires additional data processing to extract useful
information. With materials-related data (and scientific data
in general), the data processing step often involves executing
a workflow (i.e., a form of a directed acyclic graph) of tasks on
the raw data, where, each task performs a specific processing
on the data. Figure 1 shows an example of a data processing
workflow of three tasks that involves processing of raw DM3
file generated from a digital microscope. In the first task, the
raw file is unpacked into image part and metadata. Next, the
raw image is processed and multiple previews of different sizes
are generated. In the last task, the final data is stored in the
database and metadata is indexed to make it searchable. All
tasks are performed on the cloud-based infrastructure.

To support processing heterogeneous types of data uploaded
from instruments, latest data cyberinfrastructures [3, 4] lever-
age a microservice-based design, in which each data process-
ing task is modeled as a microservice with independent request
queue and a set of task consumers to handle requests (more
on this in Section III). This microservice-based approach has
demonstrated its effectiveness in handling complex workflows
under dynamic workfload situations.
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Fig. 2: Overview of BRACELET system.

However, as motivated in Section I, since a large number of
scientific instruments are still offline, it is intuitive to introduce
an intermediate component (entity), or an edge device, to help
to connect these instruments to the cloud-based infrastructure.
The introduction of the edge devices not only helps to protect
vulnerable instruments from security threats but also opens
opportunities for off-loading computation from the cloud-
based cyberinfrastructure, to the edges. In addition, as recently
shown in [6], the hierarchical edge-cloud architecture is also
more efficient in handling peak workloads, compared to a flat
edge-cloud architecture that does not take into account the
hierarchy structure. In Section III, we present our solution to
tackle both computation and security challenges of microser-
vices over hierarchical edge-cloud architecture.

III. BRACELET ARCHITECTURE

An overview of BRACELET’s 3-tier architecture is presented
in Figure 2. In particular, the first tier, i.e., instrument tier,
includes scientific instruments attached to computers running
old operating systems that could not directly connect to the
cloud (the new instruments that run with more advanced
operating systems can connect directly to the cloud in the
existing 2-tier architecture). On each instrument’s computer,
users use a uploader client to upload experiment data upstream.
The second tier, i.e., the edge or cloudlet tier?, includes
edge-based devices, or cloudlets, that consist of two network
interfaces: one connects to instruments’ VLAN and another
connects to the cloud via public network. Lastly, on the third
tier, i.e., cloud tier, we deploy a cloud-based infrastructure
that connects to the public network. The cloud-based tier
supports data processing, curation, storage, correlation, and
search of scientific experiment data uploaded from instruments
via cloudlets.

A. BRACELET’s Micro-service Architecture

Figure 3 shows the detailed microservice architecture of
BRACELET and its performance components. To enable seam-
less integration of cloudlets to the existing 2-tier cloud-
based infrastructure, we design BRACELET by extending the
cloud-based microservice architecture [3, 4] to the edges. In
particular, while the cloud-based infrastructure operates on
the full 5-layer architecture, the cloudlets operates on three

2From now, we will use edge, edge device and cloudlet interchangably.
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Fig. 3: Detailed architecture of BRACELET system.

layers to enable computational offloading of tasks to the edges
and seamless communication between edge- and cloud-based
components. In the following, we describe all the layers in
details.

1) Infrastructure Layer: Infrastructure layer provides a
level of abstraction and virtualization of all computation
and storage resources across cloud and edges. We leverage
container technology for virtualization and use a container
orchestration engine to manage the container allocation across
edge-cloud infrastructure.

2) Execution Layer: We design execution layer using a
microservice workflow execution model across cloud and
edges. Experiment data uploaded from instruments will be
handled by a specific type of data processing workflow, each
workflow type corresponds to a directed acyclic graph (DAG)
of a subset (or all) types of data processing tasks that system
supports. We model each task as a microservice® with its own
request queue that stores the task’s requests, and a set of
task consumers that subscribe to the request queue to perform
actual processing of the task’s requests.

The communication between dependent tasks in a workflow
follows the publish-subscribe mechanism. When a task request
arrives at the queue, a task consumer subscribing to the
queue will pick up the request to process it. After processing
the request, the consumer asks the coordination layer (to be
described shortly) about the subsequent tasks of the workflow
and publish the request to the corresponding queues of the
subsequent tasks. We assume that all workflow data and
intermediate results between tasks are stored in a shared
storage system that can be accessed by all microservices across
cloud and edges.

A microservice can be deployed on a cloudlet (or multiple
cloudlets), on cloud, or on both cloud and cloudlets. The
publish-subscribe message bus is available across cloud and
edges to enable seamless communication between edge- and
cloud-based microservices.

3) Coordination layer: On top of the execution layer is
the coordination layer that consists of a rask dependency
service, or TDS, that maintains the dependencies between
tasks of a workflow (i.e., task dependencies are essentially

3From now, we will use fask and microservice interchangably.

the directed edges of workflow’s task graph) and responds to
task dependency lookups from the execution layer.

The separation of task coordination from the execution of
tasks enables more flexible and scalable workflow composition
(i.e., we can support new workflow types by simply creating
new set of task dependencies between the existing tasks). To
offer high availability and high performance, we designed TDS
as an ensemble of multiple TDS instances running on both
cloud and edges and maintain a replica of task dependency
data on each instance.

To coordinate resource allocation across cloud and edges,
coordination layer maintains a control endpoint on each cloud
and edge side. The cloud control endpoint is the centralized
entity that receives new resource allocation from the adaptation
layer (to be described shortly) and informs other edge control
endpoints to implement new allocation.

4) Monitoring layer: Monitoring layer captures perfor-
mance metrics of workflows, microservices, and TDS. These
metrics are stored in a performance logs database. Performance
data is used by adaptation layer (to be described shortly)
to make resource allocation decisions. Although monitoring
services are running on the cloud, they still can seamlessly
communicate with components running on edges to collect the
performance metrics, thanks to the deployment of coordination
and execution layers across cloud and edges.

5) Adaptation layer: Adaptation layer is the brain of
BRACELET system. This layer consists of a system perfor-
mance model that is trained on the performance logs collected
by monitoring layer and provides near future performance
predictions to help resource allocation module to dynamically
allocate resources for microservices across cloud and edges.

B. Edge Cloud Microservice Execution Model

Since data can be uploaded to the cloud either via a cloudlet
or directly from advanced instruments (which are able to
connect directly to the cloud without cloudlet), all microser-
vices have to be deployed on the cloud, so that they can be
ready to support processing all types of workflows. For each
cloudlet, depending on the types of data that is uploaded from
instruments to the cloudlet, microservices of the corresponding
data processing workflows have to be deployed on the cloudlet.
Therefore, the initial deployment of microservices on cloud
and cloudlets can be decided in advance with knowledge
of the types of uploaded data*. For example, if the system
supports all types of workflows, then microservices of all tasks
A, B, C,D are deployed on the cloud. If only data corresponding
to workflow Wf1l is uploaded through an edge named E1,
then initial deployment on E1 will include microservices
of the tasks in Wf1, namely A.E1 B.E1, and C.E1 (i.e., the
edge-specific suffix is used to differentiate with cloud-based
deployments of A, B, and C).

With the above initial deployment, the execution of a work-
flow across cloud and edge can be conveniently handled by
the cloud control endpoint via dynamic configuration of task
dependencies on TDS. For example, to execute a workflow
Wf1 across edge E1 and cloud (e.g., processing requests of task
A and B on E1, and of task C on the cloud), the cloud control

4This is a reasonable assumption since the type of uploaded data is specific
to the type of instrument, which is known information.
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Fig. 4: BRACELET’ security component design.

endpoint simply creates a new edge-based workflow type on
TDS, namely Wf1.E1 that directs requests of task A and B
to their E1-based microservice deployments, namely A.E1 and
B.E1 (task C is still handled by its cloud-based microservice
deployment). Table I shows an example of the dependency
table if the tasks of workflow W f1 are placed on the cloud
and Table II shows the dependency table if W f1 is placed
on the edge. After creating the new workflow type Wf1l.E1,
cloud control endpoint will inform edge control endpoint at
E1 to use WE1.E1 as the workflow type to process all requests
for Wf1 of data being uploaded via E1 (instead of the initial
cloud-only version of workflow Wf1 as shown in Table I).

C. BRACELET'’s Security Design

BRACELET’ security components (Figure 4) are designed
to help protect vulnerable scientific instruments once they are
connected to the edge-cloud cyberinfrastructure. They consist
of a software firewall that is configured with whitelisting rules
to enable only data traffic from instruments to the cloud
and certain control traffic from the cloud to the cloudlet.
Furthermore, each cloudlet also includes a network security
monitor component to listen to and capture meta-data of all
network traffic in and out of the cloudlet. The security monitor
component is also capable of applying customizable scripts to
filter and analyze network traffic to detect and alert of potential
attacks. All network monitoring logs are collected, parsed,
and transformed by a logger component, and stored into a
network logs database. Real-time network traffics and statistics
can be queried and visualized to BRACELET’s admin by the
network log visualization component. In our implementation,
we use Bro [7] as the network security monitor at cloudlet and
use ELK stack [8] (i.e., Elastic-Logstash-Kibana) for logging,
storing, and visualizing the collected network security logs.

In addition to data-driven security monitoring and detection
at cloudlet, all vulnerable scientific instruments are connected
to private instrument network via a managed switch so that
instrument’s MAC layer address is checked to ensure that the
instrument can only talk to cloudlet and not to other peer
instruments. At application level, users are required to login on
each instrument in order to upload data, and the login sessions
are additionally verified with instrument reservation database
as part of the two-factor authentication process.

IV. SYSTEM IMPLEMENTATION

We implement BRACELET by extending the implementation
of the existing cloud-based micro-service infrastructure [3, 4]
to the edges. The whole edge-cloud infrastructure cluster is
managed by a single Kubernetes [9] container orchestration

TABLE 1. Example depen-
dency table of a cloud work-

TABLE II: Example depen-
dency table of edge workflow

flow Wf1. Wfl.
Job type | From | To Job type | From To
Wil Start A WIL.ET [ Start | AEI
Wi1 A B WITL.ElT | AEl | BEI
WTT B C WIIL.LET | B.EI C
Wil C End WFLE] C End

engine. Specifically, the cloud-based system is deployed on
a cluster of two nodes, each node is equipped with an Intel
Xeon quad core processor, 1.2Ghz per core, and 16GB of
RAM. Two cloudlets, each cloudlet is equipped with Intel
Core 17 CPU 3.4Ghz and 8GB of RAM, are connected to the
cloud-based system as remote nodes in the Kubernetes cluster.
Each cloudlet has its own locality tagging to differentiate it
from other cloudlet and cloud-based nodes. This locality tag
is used by cloud controller to place computation specifically
to the microservices running on the edge. The main reasons
why we deploy edge- and cloud-based components in a
single Kubernetes cluster are two fold: i) to simplify service
discovery between microservice running on edges and cloud
(i.e., microservices run on the same overlay network managed
by the Kubernetes cluster), and ii) to provide a single, global
view of resources for the cloud controller.

Each microservice is implemented with a RabbitMQ [10]
request queue and a set of Docker container-based task
consumers that are deployed as a ReplicationController’ set
on Kubernetes. TDS service is based on Apache Zookeeper
[11] coordination system to ensure strong consistency and
high availability. We configure Zookeeper and RabbitMQ
using ensemble and cluster mode respectively so that we
have a Zookeeper and RabbitMQ endpoint on each edge and
cloud side (i.e., to improve availability and enable seamless
communication between microservices). Monitoring layer’s
implementation is similar to the one in [4], and we use
Tensorflow [12] to build microservice performance model used
in the adaptation layer.

V. EVALUATION

To evaluare BRACELET, we use the MDP workflow ensem-
ble [3, 4] that supports processing experimental data generated
by digital microscopes. MDP consists of three types of work-
flows and four types of tasks. We implemented various mi-
croservice computation placement strategies in BRACELET’S
to show how the cloudlet can help reduce the average delay
of processing sudden spikes in the incoming requests. We
compare the following placement strategies:

e Bandwidth-optimized: Initially, all requests are handled
by cloud-based micro-services. When performance guar-
antee is violated, the processing of requests that arrive
from an edge is offloaded to the edge-based micro-
services. As shown in [6], this approach helps to improve
the efficiency of cloud resource utilization when serving
the peak workload.

SReplicationController is a concept in Kubernetes that consists of a set of
replicas of a container. Kubernetes helps to ensure that a specified number of
these container replicas (i.e., corresponds to m (k) in our case) are running
at any time.
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o Delay-optimized: Initially, requests arriving from an edge
are handled by edge-based micro-services. When per-
formance violation occurs, the processing of requests is
offloaded to the cloud-based micro-services.

o Performance model-based strategy: The proposed strat-
egy in Bracelet and it is a machine learning-based ap-
proach that uses historic data to learn a performance
model for the average delay of tasks on both the edge and
the cloud. A greedy strategy is then used to decide the
placement of tasks across edge and cloud. The approach
is described in details in our technical report [13].

e No provisioning: All requests are handled by cloud-based
micro-services. Edge microservices are never provisioned
in this strategy.

The result in Figure 5 shows that the three approaches that
utilize the edge are able to handle the sudden spikes in a more
efficient manner compared to the no provisioning strategy.
The Performance model-based placement strategy outperforms
other approaches by dynamically evaluating different place-
ment options using an accurate performance model [13].

VI. CONCLUSIONS AND FUTURE WORK

In conclusion, we have presented the first edge-cloud mi-
croservice cyber-infrastructure that tackles both performance
and security challenges of scientific instruments’ lifetime con-
nectivity. We extended the microservice architecture to support
seamless coordination and task across edge and cloud. We also
presented a security design to protect vulnerable instruments
from security threats.
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