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Abstract—The size and complexity of large storage systems,
such as high-performance computing (HPC) systems, inhibit
rapid effective restructuring of data layouts to maintain per-
formance as workloads shift. To address this issue, we have
developed Geomancy, a tool that models the placement of data
within a distributed storage system and reacts to drops in
performance. Our approach to optimizing throughput offers
benefits for storage systems such as avoiding potential bottlenecks
and increasing overall YO throughput from 11% to 30%.

I. INTRODUCTION

High-Performance Computing (HPC) and High Throughput
Computing (HTC) systems deliver ever-increasing levels of
computing power and storage capacity; however, the full
potential of these systems is limited by the inflexibility of data
layouts to rapidly changing demands. A shift in demand can
cause a system’s throughput and latency to suffer, as workloads
access data from contended regions of the system. In a shared
environment, computers may encounter unforeseen changes in
performance. Network contention, faulty hardware, or shifting
workloads can reduce performance and, if not diagnosed and
resolved rapidly, can create slowdowns around the system.

To mitigate contention, system designers implement static
or dynamic algorithms that place data based on how recently
the files have been used similar to the caching algorithm
Least Recently Used. However, existing strategies require
manual experimentation to compare various configurations of
data which is expensive or in some cases infeasible. These
algorithms are not sufficient for all workloads because they do
not adapt as workloads change, and they may not be optimal
for all workloads.

To address this issue, we have developed Geomancy, a tool
that improves system performance by finding efficient data
layouts using reinforcement learning in real-time. Geomancy
targets systems that serve and process petabytes of data, such
as particle collision analysis [1]. Workloads on these systems
are commonly spread across multiple storage devices which
can lead to storage devices becoming contended over time. If
a heavily used storage device becomes contended, the delay
can be felt across the system. Many of these systems collect
workload metrics describing the operation of such systems,
and we can leverage these metrics as performance data to train
a predictive model.
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Performance data includes parameters such as average ac-
cess latencies, remaining storage space, number of previous
reads and writes, restrictions on reads or writes, file types that
are read or written, and number of bytes accessed. Using this
data, we build a predictive model using artificial neural net-
works that relates system time, data location, and performance.
Geomancy’s neural network uses this model to forecast when
and where a bottleneck can happen due to changing workloads.
Additionally, it preempts future drops in performance by
moving data between storage devices. If the model predicts an
improved location for a piece of data, Geomancy sends the new
location ID to the target system, which moves the data to the
new location. These models are built from the analysis of two
workloads provided by our collaborators. We experimentally
test our method in a small scale system against algorithmic
modeling, and observe an 11% to 30% performance gain in our
experiments including moving overhead compared to policies
that place data dynamically or statically according to how
frequently or recently the data has been used.

II. APPROACH

Geomancy was motivated by workload analysis of two
workloads: traces generated from a Monte Carlo physics
workload provided by Pacific Northwest National Laboratories
(PNNL) and workload traces from CERN. The exact methods
to generate the traces do not matter for the purposes of our
experiments, however each trace follows a similar setup. The
traces used all have features that describe the I/O throughput
of the system one wishes to optimize. For example, the CERN
EOS trace contains information about when a file was opened,
closed and where the action took place. We care about when
the file was opened since if a file is opened at a time when the
storage device is contended it will affect the access latency.
We also care about where since some storage devices are more
contended then others.

We approach the file layout problem as an unsupervised
deep reinforcement learning problem where the throughput of
the system is the reward. Our neural network predicts the
throughput of accessing a piece of data at every potential
location it can exist. To calculate the future throughput of an
access at a certain location, we model how each input feature
(file location, file size, or any feature describing the action
executed on the file such number of bytes read or written)
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interacts with other input features. Additionally, to avoid future
bottlenecks, Geomancy needs to know when to change the
data layout to preempt potential accesses that could cause a
bottleneck. Given a large trace of throughput measurements,
file locations, and transfer overheads, we use these features
from the traces to train a neural network.

To determine a useful model, we compared 23 neural
network architectures. We used a number of features that we
selected from the PNNL server, equalling six. Each layer in
the neural networks is represented using the following format:
number of neurons (type of layer) selected activation function.
Architectures in bold are the networks that performed the best
out of the 23 networks in terms of accuracy when predicting
future throughput of each storage point on the PNNL system.
A through model search can reveal other architectures with
better accuracy, however for the scope of the paper we limit
our search to these 23 architectures. This gives us a wide range
of networks to experiment with from fully dense networks to
common recurrent networks. From this experimentation, we
determined that a fully connected dense network of four layers
provided the highest accuracy and most reliable predictions
given our dataset.

Once the neural network has predicted the future perfor-
mance value of each available locations, the action checker
checks for the permissions and availability of the location
with the highest performance. If the location is value the
file used for prediction is moved to that location. To tackle
larger storage systems of millions of files and dozens of mount
points, we will need a data movement scheduler (implemented
either as a second neural network or algorithm) that determines
a cooldown between file movement. We have left this as
future work, and we intend on implementing this as further
development in improving larger and multi-user workloads.

ITI. RESULT

Experimentally, Geomancy outperforms both static and dy-
namic data placement algorithms by at least 11%, as shown in
Figures 1 and 2. In all figures, a vertical gray line represents
when Geomancy decides to move data. The blue lines below
each graph corresponds to how many files are moved by
Geomancy at that access number. We can see that most of
the time Geomancy only moves a small subsets of the file
to other nodes. Most static placement methods have lower
performance, and only a few randomly chosen data placements
challenges the performance gain made by Geomancy.

Geomancy accurately captures changes in performance as
the workloads runs on the target system. Those predictions are
then able to be used to change the data layout of the system.
Experimentally, we demonstrate inter-workload congestion
reduction and increases in overall throughput from 11% to
30%. Compared to algorithmic or manual data placement,
Geomancy is superior in that it reduces bottlenecks and can
anticipate when performance fluctuations may happen. By
predicting when and where performance may drop, moving
data before the slowdowns occurs stabilizes performance and
prevents fluctuations in throughput.
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Fig. 1: Geomancy’s performance compared to dynamic solu-
tions on the live system. Size of the data that Geomancy moves
ranges from 583 KB to 1.1 GB.
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Fig. 2: Geomancy’s performance compared to static solutions
on the live system. Size of the data that Geomancy moves
ranges from 583 KB to 1.1 GB.
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