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ABSTRACT We address the problem of inferring an undirected graph from nodal observations, which are
modeled as non-stationary graph signals generated by local diffusion dynamics that depend on the structure
of the unknown network. Using the so-called graph-shift operator (GSO), which is a matrix representation
of the graph, we first identify the eigenvectors of the shift matrix from observations of the diffused signals,
and then estimate the eigenvalues by imposing desirable properties on the graph to be recovered. Different
from the stationary setting where the eigenvectors can be obtained directly from the covariance matrix of the
measurements, here we need to estimate first the unknown diffusion (graph) filter – a polynomial in the GSO
that preserves the sought eigenbasis. To carry out this initial system identification step, we exploit different
sources of information on the arbitrarily-correlated input signal driving the diffusion on the graph. We first
explore the setting where the observations, the input information, and the unknown graph filter are linearly
related. We then address the case where the relation is given by a system of matrix quadratic equations, which
arises in pragmatic scenarios where only the second-order statistics of the inputs are available. While such a
quadratic filter identification problem boils down to a non-convex fourth-order polynomial minimization,
we discuss identifiability conditions, propose algorithms to approximate the solution, and analyze their
performance. Numerical tests illustrate the effectiveness of the proposed topology inference algorithms in
recovering brain, social, financial, and urban transportation networks using synthetic and real-world signals.

INDEX TERMS Network topology inference, graph learning, graph signal processing, (non-)stationary graph
processes, network diffusion, system identification, semidefinite relaxation.

I. INTRODUCTION
Consider a network represented as a weighted and undirected
graph G, consisting of a node set N of cardinality N , an edge
set E of unordered pairs of elements in N , and edge weights
Ai j ∈ R such that Ai j = A ji �= 0 for all (i, j) ∈ E . The edge
weights Ai j are collected in the symmetric adjacency matrix
A ∈ R

N×N . More broadly, one can define a generic graph-
shift operator (GSO) S ∈ R

N×N as any matrix having the
same sparsity pattern than that of G [3]. Although the choice

of S can be adapted to the problem at hand, it is typically
chosen as either A, the Laplacian L := diag(A1)− A, or their
normalized counterparts [4].

Our focus in this paper is on identifying graphs that ex-
plain the structure of a random signal. Formally, let x =
[x1, . . ., xN ]T ∈ R

N be a zero-mean graph signal with covari-
ance matrix Cx = E[xxT ], in which the ith element xi denotes
the signal value at node i of an unknown graph G with shift
operator S. We state that the graph S represents the structure
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of the signal y ∈ R
N if there exists a linear diffusion process

in the GSO S that generates the signal y from the input signal
x, that is

y = α0

∞∏
l=1

(IN − αl S)x =
∞∑

l=0

βl S
l x, (1)

for some set of parameters {αl} or, equivalently, {βl}. While
S encodes local one-hop interactions, each successive appli-
cation of the shift in (1) percolates x over G; see e.g. [5]. The
product and sum representations in (1) are common equiva-
lent models for the generation of random network processes.
Indeed, any process that can be understood as the linear prop-
agation of an input signal through a static graph can be written
in the form in (1), including heat diffusion [6], consensus and
the classic DeGroot model of opinion dynamics [7], as well as
symmetric structural equation models (SEMs) [8] as special
cases. When x is white so that Cx = IN , (1) is equivalent to
saying that the graph process y is stationary in S; see e.g., [9,
Def. 1], [10], [11] and Section II-A for further details. Here
though, we deal with more general non-stationary signals y
that adhere to linear diffusion dynamics as in (1), but where
the input covariance Cx can be arbitrary. This is, for instance,
relevant to (geographically) correlated sensor network data,
urban population mobility patterns, or models of opinion dy-
namics among polarized groups.

The justification to state that S represents the structure of
y is that we can think of the edges of S as direct (one-hop)
relations between the elements of the signal. The diffusion
described by (1) modifies the original correlation by inducing
indirect (multi-hop) relations. In this context, our goal is to
recover the fundamental relations dictated by S from a set of
independent samples of a non-stationary random signal y, as
well as realizations of x, or more pragmatically, knowledge of
Cx. This additional information on the input x is the price paid
to accommodate the more general non-stationary generative
models for y, and is not needed when identifying the structure
of stationary graph signals [12], since Cx = IN in that case.

Relation to prior work. Under the assumption that the
signals are related to the topology of the graph where they
are supported, the goal of graph signal processing (GSP) is
to develop algorithms that fruitfully leverage this relational
structure, and can make inferences about these relationships
when they are only partially observed [3], [4]. Many GSP ef-
forts to date assume that the underlying network is known, and
then analyze how the graph’s algebraic and spectral character-
istics impact the properties of the graph signals of interest.
However, such an assumption is often untenable in practice
and arguably most graph construction schemes are largely
informal, distinctly lacking an element of validation.

Network topology inference is a prominent task in Net-
work Science [8, Ch. 7], [13]. Since networks typically en-
code similarities between nodes, several topology inference
approaches construct graphs whose edge weights correspond
to nontrivial correlations or coherence measures between sig-
nal profiles at incident nodes [8], [14]. Acknowledging that

the observed correlations can be due to latent network ef-
fects, alternative methods rely on inference of full partial
correlations [8, Ch. 7.3.2]. Under Gaussianity assumptions,
there are well-documented connections with covariance se-
lection [15] and sparse precision matrix estimation [16]–[21],
as well as neighborhood-based regression [22]. Extensions
to directed graphs include SEMs [23], [24], Granger causal-
ity [14], [25], or their nonlinear (kernelized) variants [26],
[27]. Recent GSP-based network inference frameworks pos-
tulate instead that the network exists as a latent underlying
structure, and that observations are generated as a result of a
network process defined in such graph [12], [13], [28]–[32].
Different from [29]–[32] that operate on the graph domain,
the goal here is to identify graphs that endow the given ob-
servations with desired spectral (frequency-domain) charac-
teristics. Works have recently explored this approach by iden-
tifying a GSO given its eigenvectors [12], [28], or given an
estimate of the invertible diffusion kernel that generates the
Gaussian observations [33], but all rely on measurements of
stationary graph signals. Different from [31], [32], [34], [35]
that infer structure from signals assumed to be smooth over
the sought graph, here the measurements are related to the
graph via filtering. Network processes that can be represented
as graph filters [cf. (1)] include heat diffusion [29], consensus
and opinion formation [36], and consumption levels in a net-
work of connected consumers [37]. Moreover, widely adopted
smoothness models [31], [32], [34], [35] are subsumed as
special cases where graph filters have a low-pass frequency
response.

Paper outline. In Section II, we formulate the problem of
identifying a GSO that explains the fundamental structure of
a random signal diffused on a graph. While for stationary y
the sought GSO shares its eigenvectors with the signal’s co-
variance matrix [9], [10], [12], in the general (non-stationary)
setting dealt with here this no longer holds and we elaborate
on the ensuing challenges (Section II-A). Still, the graph’s
eigenvectors are preserved by the polynomial graph filter that
governs the underlying diffusion dynamics (1). This moti-
vates a novel two-step network topology inference approach
whereby we: i) identify the GSO’s eigenbasis from a judicious
graph filter estimate; and ii) rely on these spectral templates
to estimate the GSO’s eigenvalues such that the inferred graph
exhibits desirable structural characteristics such as sparsity;
see also Section II-B. The estimation of the graph diffusion
filter in step i), which is not required when the signals are
stationary [12], has merit on its own and is of interest be-
yond topology inference. Feasibility of this additional system
identification task requires extra information on the excitation
signal x. Section III addresses the setup where direct observa-
tions of the inputs are available so that the unknown filter ma-
trix and the input-output signal pairs are linearly related. The
focus in Section IV shifts to scenarios where second-order sta-
tistical information is used, and the relationship between the
input-output covariances and the filter is quadratic. In practice,
the output covariance matrix is estimated from signals, and we
provide a (topology recovery) performance analysis for the
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setting where the diffusion graph filter is known to be positive
semidefinite (PSD). Identifiability conditions are discussed
for the general (non-PSD) case. Section V develops projected
gradient descent and semidefinite relaxation-based algorithms
with complementary strengths, to deal with the (non-convex)
fourth-order polynomial minimization associated with the re-
covery problem in Section IV. Numerical tests with synthetic
and real-world data corroborate the effectiveness of the novel
approach in recovering the topology of social, brain, finan-
cial, and transportation networks (Section VI). Concluding
remarks and future directions are outlined in Section VII.

Relative to its conference precursors [1], [2], in this journal
paper we consider identification of undirected graphs from
observations of diffused non-stationary processes in various
settings through a unified presentation along with full-blown
technical details (including extended discussions and unpub-
lished proofs in the Appendices for all the theoretical results).
Some noteworthy novel pieces include: (i) a theoretical upper
bound in the functional dependence of the end-to-end GSO
estimation error in terms of the sample size; (ii) a projected
gradient algorithm for graph filter identification with a num-
ber of desirable features relative to the alternating-directions
method of multipliers variant in [1]; and (iii) a comprehensive
performance evaluation protocol. Relative to the preliminary
numerical tests conducted in [1], [2], here we incorporate
more meaningful figures of merit, we study the effect of input
signal richness and different graph topologies in the recovery
performance, we expand the comparison with competing ap-
proaches – both classical statistical methods and more recent
GSP algorithms–, and we include a real-world firm-clustering
application using Yahoo stock price data.

Notation. The entries of a matrix X and a (column) vector
x are denoted by Xi j and xi, respectively. Sets are represented
by calligraphic capital letters and XI denotes a submatrix of X
formed by selecting the rows of X indexed by I. The notation
T and † stands for transpose and pseudo-inverse, respectively;
0 and 1 refer to the all-zero and all-one vectors; while IN

denotes the N × N identity matrix. For a vector x, diag(x) is a
diagonal matrix whose ith diagonal entry is xi. The operators
⊗, �, and vec(·) stand for Kronecker product, Khatri-Rao
(column-wise Kronecker) product, and matrix vectorization,
respectively. ‖X‖p denotes the �p norm of vec(X) whereas
‖X‖M(p) is the matrix norm induced by the vector �p norm.
Lastly, ker(X) refers to the null space of X and the spectral
radius of matrix X is denoted by λmax(X).

II. PROBLEM STATEMENT
Consider the generative model in (1), whereby the properties
of the graph signal y depend on those of the excitation input x
and the underlying graph G represented by the GSO S. Given
i.i.d. realizations of the output and prior information on the
input, the goal is to infer a parsimonious graph representation
that explains the structure of y. Alternatively, we can state that
the goal is to recover the sparse GSO which encodes direct
relationships between the elements of y from observable indi-
rect relationships generated by a diffusion process.

To formally state the problem, consider the symmetric GSO
S associated with the undirected graph G. Define the eigen-
vector matrix V := [v1, . . . , vN ] and the eigenvalue matrix
� := diag(λ1, . . . , λN ) to write S = V�VT . Now observe
that while the diffusion expressions in (1) are polynomials
on the GSO of possibly infinite degree, the Cayley-Hamilton
theorem asserts that they are equivalent to polynomials of
degree smaller than N . Upon defining the vector of coeffi-
cients h := [h0, . . . , hL−1]T ∈ R

L and the symmetric graph
filter H :=∑L−1

l=0 hl Sl ∈ R
N×N [3], the generative model in

(1) can be rewritten as

y =
(

L−1∑
l=0

hl S
l

)
x = Hx, (2)

for some particular h and L ≤ N . With this notation in place,
we can formally define our problem of interest.

Problem 1: Given a set Y := {y(p)}Pp=1 of P i.i.d. samples
of a graph non-stationary random signal y adhering to the net-
work diffusion model (2) possibly contaminated by additive
noise, identify the sparse GSO S assuming:

a) knowledge of the respective input signals {x(p)}Pp=1; or
b) sparsity of the input signals; or
c) that the inputs signals are drawn from a zero-mean dis-

tribution with known covariance matrix.
Problems 1-a and 1-b assume knowledge about the realiza-

tions of the inputs that give rise to the observations in Y . These
problems are respectively treated in Sections III-A and III-B.
In contrast, Problem 1-c assumes statistical knowledge of the
inputs but does not assume knowledge of the specific real-
izations of x. We tackle this more challenging version of the
problem in Section IV. In particular, we divide our analysis
between the cases where H in (2) can be assumed PSD (Sec-
tion IV-A) and the more general setting where this assumption
need not hold (Section IV-B).

Fundamental to the topology inference approach towards
solving Problem 1 is that, because H is a polynomial on S,
then: i) all such graph filters (spanned by the unknown coeffi-
cients h) have the same eigenvectors; and ii) such eigenvectors
are the same as those of the shift, namely V. In other words,
while the diffusion implicit in H obscures the eigenvalues
of the GSO, the eigenvectors V are preserved as spectral
templates of the underlying network topology. It is worth men-
tioning that the implicit assumption in the eigenvectors preser-
vation is that

∑L−1
l=0 hlλ

l
i �= 0 for i = 1, . . . , N and λk �= λl for

k �= l [cf. (2)]. This is a pragmatic assumption that we carry
in the analysis, otherwise the eigenvector v j corresponding to∑L−1

l=0 hlλ
l
j = 0 or vm and vn corresponding to λm = λn would

be obscured. Next, Section II-A describes how to leverage (2)
to obtain the GSO eigenbasis from a set of nodal observations
Y , by first estimating the unknown graph filter H. We show
that the information in Y is in general not enough to uniquely
recover H. Hence, we will resort to additional knowledge on
the input signal x (either realizations, sparsity properties, or,
second-order statistical information) and also possibly on the
structure of the graph filter H. Section II-B outlines how to
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use the spectral templates V to recover the desired GSO by
estimating its eigenvalues � and, as a byproduct, the sparse
graph shift S = V�VT itself.

A. STATIONARY VERSUS NON-STATIONARY OBSERVATIONS
Consider that the P observations in Y correspond to indepen-
dent realizations of a process y adhering to the generative
model in (2). The goal is to use Y to estimate the spectral
templates V of the filter H that governs the diffusion in (2).

To gain insights, suppose first that x is white so that Cx =
IN [12]. Then the covariance matrix of y = Hx is

Cy := E[yyT ] = E[Hx(Hx)T ] = HE[xxT ]H = H2. (3)

In obtaining the third equality we used that H is symmetric,
because it is a polynomial in the symmetric GSO S. If the
GSO is drawn from a distribution of random graphs (see the
numerical tests in Section VI-A), then the expectation in (3)
should be understood as conditioned on S. Using the spectral
decomposition of S = V�VT to express the filter as H =∑L−1

l=0 hl (V�VT )l = V(
∑L−1

l=0 hl�
l )VT , we can diagonalize

the covariance matrix as

Cy = V

(
L−1∑
l=0

hl�
l

)2

VT . (4)

Such a covariance expression is precisely the requirement for
a graph signal to be stationary in S [9, Def. 2.b]. Remarkably,
if y is graph stationary, or equivalently if x is white, (4)
shows that the eigenvectors of the shift S, the filter H, and
the covariance Cy are all the same. As a result, to estimate
V from the observations {y(p)}Pp=1 one can form the sample

covariance Ĉy = 1
P

∑P
p=1 y(p)(y(p) )T and use its eigenvectors

V̂ as a consistent estimator of V. The estimates V̂ can be then
used to recover S [12], [28]; see also Section II-B.

In this context, the novel and broader focus of the present
paper is on identifying the GSO S that is considered to be the
best possible description of the structure of a non-stationary
signal y = Hx [cf. (2), where x is not white]. We emphasize
the distinction that graph non-stationarity of y is meant with
respect to the GSO S. There is formally no temporal compo-
nent to the problem here. Observations {y(p)}Pp=1 are i.i.d. and
hence stationary in the usual sense.

For generic (non-identity) input covariance matrix Cx, we
face the challenge that the signal covariance [cf. (3)]

Cy = HCxH (5)

is no longer simultaneously diagonalizable with S. This rules
out using the eigenvectors of the sample covariance Ĉy as
spectral templates of S. Still, as argued following (2), the
eigenvectors of the GSO coincide with those of the graph
filter H that governs the underlying diffusion dynamics. This
motivates using realizations of observed signals together with
additional information on the excitation inputs x (either re-
alizations of the graph signals, sparsity assumptions, or the
covariance matrix Cx [24]) to identify the filter H, with the
ultimate goal of estimating its eigenvectors V. This system

FIGURE 1. Schematic view of the two-step network inference method for
(left) stationary and (right) non-stationary observations from diffusion
processes. The main differences between both approaches lie in Step 1.
For non-stationary processes, covariance matrices are no longer
simultaneously diagonalizable with S, thus requiring a more challenging
system identification step in order to estimate H (see Sections III-V). In
both cases, the output of Step 1 is an estimate V̂ of the eigenvectors of the
sought shift. During Step 2, this estimate is combined with a priori
information about the shift in an optimization problem to obtain the
estimate S∗, as described in Section II-B.

identification task in the graph setting is the subject dealt with
in Sections III and IV, but before moving on, we close the loop
by showing how to recover S given its estimated eigenbasis V̂;
see also the comparative schematic in Fig. 1.

B. USING THE SPECTRAL TEMPLATES TO
RECOVER THE SHIFT
Given estimates V̂ of the filter eigenvectors, recovery of S
amounts to estimating its eigenvalues �. Among all possi-
ble �, we seek eigenvalues that confer desirable structural
properties to S. In particular, the adopted criterion will be
to find � in order to minimize the number of edges in S,
with the goal of identifying a sparse graph. At the same time,
we should account for the discrepancies between V̂ and the
actual eigenvectors of S, due to finite sample size constraints
and unavoidable errors in estimating the filter H. Accordingly,
we build on [12] and seek for the shift operator S that: (a)
is optimal with respect to sparsity-promoting criteria such as
f (S) = ‖S‖1; (b) belongs to a convex set S that specifies the
desired type of GSO (e.g., the adjacency A or Laplacian L);
and (c) is close to V̂�V̂T as measured by the Frobenius-norm
matrix distance. Formally, we solve the convex problem

S∗ := argmin
�,S∈S

‖S‖1, s. to ‖S− V̂�V̂T ‖2F ≤ ε, (6)

where ε is a tuning parameter chosen based on a priori in-
formation on the imperfections. The constraint S ∈ S in (6)
incorporates a priori knowledge about S. If we let S = A
represent the adjacency matrix of an undirected graph with
non-negative weights and no self-loops, we can explicitly
write the convex set S as follows

SA := {S | Si j ≥ 0, S ∈ HN , Sii = 0,
∑

j

S j1 = 1}. (7)

The first condition in SA encodes the non-negativity of the
weights whereas the second condition incorporates that G is
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undirected, hence, S must belong to the set HN of real and
symmetric N × N matrices. The third condition encodes the
absence of self-loops, thus, each diagonal entry of S must be
null. Finally, the last condition fixes the scale of the admissible
graphs by setting the weighted degree of the first node to 1,
and rules out the solution S = 0. Other GSOs (e.g., the Lapla-
cian L and its normalized variants) can be accommodated in
our framework via minor modifications to S . We refer to [12]
for further details including a discussion of the identifiability
and recovery performance associated with the problem in (7).
Lastly, it should be noted that even when S is a sparse matrix,
the associated filter H will, in general, be dense. Thus, sparsity
cannot be leveraged in the identification of H.

III. (BI)LINEAR GRAPH FILTER IDENTIFICATION
Consider m = 1, . . . , M diffusion processes on G, and assume
that the observed non-stationary signal ym corresponds to an
input xm diffused by an unknown graph filter H =∑L−1

l=0 hl Sl ,
which encodes the structure of the network via S. In this sec-
tion, we show how additional knowledge about realizations
of the input signals xm can be used to identify H and, as a
byproduct, its eigenvectors V. We consider settings in which
this extra information comes either from direct observation of
{xm}Mm=1, or through an assumption on input signal sparsity.
In the context of online media-based marketing campaigns or
rumor (fake news) diffusion over social networks, the observ-
able input graph signal could correspond to the initial exci-
tation instilled by those known (often paid) influencers [38].
In neuroscience, the observed inputs may represent controlled
external stimuli aimed at exciting a few neural regions via e.g.,
transcranial magnetic stimulation [39], [40].

A. INPUT-OUTPUT SIGNAL REALIZATION PAIRS
Suppose first that realizations of M output-input pairs
{ym, xm}Mm=1 are available, which can be arranged in the data
matrices Y = [y1, . . ., yM ] and X = [x1, . . ., xM ]. The goal is
to identify a symmetric filter H ∈ HN such that the observed
signal ym and the predicted one Hxm are close in some sense.
In the absence of measurement noise, this simply amounts to
solving a system of M linear matrix equations

ym = Hxm, m = 1, . . . , M. (8)

When additive noise is present, using the workhorse least-
squares (LS) criterion the filter can be estimated as

H∗ = argmin
H∈HN

M∑
m=1

‖ym −Hxm‖22. (9)

Because H is symmetric, the free optimization variables in (9)
correspond to, say, the lower triangular part of H, meaning
the entries on and below the main diagonal. These NH :=
N (N + 1)/2 non-redundant entries can be conveniently ar-
ranged in the so-termed half-vectorization of H, i.e., a vector
vech(H) ∈ R

NH from which one can recover vec(H) ∈ R
N2

via duplication. Indeed, there exists a unique duplication ma-
trix DN ∈ {0, 1}N2×NH such that one can write DN vech(H) =

vec(H) [41]. The MoorePenrose pseudoinverse of DN , de-
noted as D†

N , possesses the property vech(H) = D†
N vec(H).

With this notation in place, several properties of the solution
H∗ of (9) are stated next.

Proposition 1: Let Mr denote the rank of matrix X ∈
R

N×M . Then, it holds that:
a) The entries of the symmetric filter H∗ that solves (9) are

vech(H∗) = [(XT ⊗ IN
)

DN
]†

vec(Y). (10)

b) rank((XT ⊗ IN )DN ) ≤ NH − (N−Mr+1)(N−Mr )
2 .

c) The minimizer of (9) is unique if and only if Mr = N .
Proof: See Appendix VII-A.
Proposition 1 asserts that if the excitation input set {xm}Mm=1

is sufficiently rich – i.e., if M ≥ N and the excitation signals
are linearly independent –, then the solution H∗ to (9) can be
uniquely determined in closed form. Interestingly, the fact that
H has only N (N + 1)/2 different entries cannot be exploited
to reduce the number M of input signals required for this
uniqueness result. The reason is that the matrix (XT ⊗ IN )DN

is rank deficient if XT has a non-trivial null space. In other
words, when using input-output pairs to estimate the filter
H one needs the same number of pairs for uniqueness in the
solution to (9), regardless of whether the graph is symmetric
or not.

As explained in Section II-B, once H∗ is estimated using
(10), the next step is to decompose the filter as H∗ = V̂�̂V̂T

and use V̂ as input for the GSO identification problem (6). Ob-
taining such an eigendecomposition is always possible since
filter estimates H∗ ∈ HN are constrained to be symmetric.

B. SPARSE INPUT SIGNALS
It is not uncommon to encounter application domains in
which the diffused graph signals adhere to linear network
dynamics y = Hx and the input x is sparse, having only
a few nonzero entries [5], [7], [29], [42]. Sparsity in x is
well-motivated due to its practical relevance and modeling
value – network processes such as y are oftentimes the
diffused version of few localized sources, hereby indexed
by supp(x) := {i : xi �= 0} [29], [42]. For instance, opinion
formation processes in social networks have been modeled
using graph filters (see e.g., [5], [7]), and sparse x could
represent the initial opinion of those few influential actors that
instilled the observed status-quo. Similar ideas are naturally
relevant to linear network dynamics encountered with
rumor spreading, adoption of new technologies, epidemic
outbreaks [42], as well as with the identification of heat,
pollutants, or seismic localized sources [29].

Given realizations of M diffusion processes {ym}Mm=1 ar-
ranged as columns of matrix Y ∈ R

N×M , a possible blind
formulation of the graph filter identification problem amounts
to finding H ∈ HN such that ‖Y−HX‖ is small for some
matrix norm of interest, where the unobserved matrix X =
[x1, . . ., xM ] is assumed to be sparse. Different from Sec-
tion III-A, the formulation is termed blind because input
realizations are now unavailable and the resulting bilinear
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problem entails finding the decomposition factors up to un-
avoidable scaling and permutation ambiguities. In the ab-
sence of noise, recent fundamental results and accompanying
algorithms developed in [43] can be brought to bear here.
Regarding identifiability, it is established therein that M =
O(N log N ) samples are sufficient to uniquely determine the
decomposition with high probability, under the assumption
that X is generated by a sparsity-inducing Bernoulli-Gaussian
or Bernoulli-Rademacher process [43, Theorem 1]. From an
algorithmic standpoint, an efficient dictionary learning pro-
cedure called Exact Recovery of Sparsely-Used Dictionar-
ies (ER-SpUD) is proposed that solves a sequence of linear
programs with varying constraints. Under the aforementioned
assumptions, the algorithm exactly recovers H and X with
high probability. This result holds when: (i) the sparsity level
measured by the expected number of nonzero elements in each
column of X is at most of order

√
N ; and (ii) the number of

samples M is at least of order N2 log2 N .

IV. QUADRATIC GRAPH FILTER IDENTIFICATION
In a number of applications, realizations of the excitation
input process xm may be challenging to acquire, but infor-
mation about the statistical description of xm could still be
available. For instance, consider opinion formation models
in social networks and suppose (e.g., socio-economic or de-
mographic) features for each of the agents are measurable,
while initial beliefs (namely the entries of xm) are challenging
to acquire. It is conceivable that agents with similar features
will exhibit correlated beliefs (akin to homophily) [44], hence
one could build a model of Cx,m = E[xmxT

m] based on said
features. As a second example, consider financial networks
comprising stocks as nodes and their interdependencies as
links. Publicly-traded stock prices (ym) are known to depend
on stock purchases by investors (xm), whose details are often
hidden from the public for privacy and strategic reasons. On
the other hand, each publicly-traded company may broad-
cast monthly statistical summaries of purchases of its stock
(Cx,m); see for example the setting considered in [24] that
also informs the experiments in Section VI-D. To be specific,
assume that the excitation input processes are zero mean and
their covariance Cx,m is known. Further suppose that for each
input process xm, we have access to a set of output observa-
tions {y(p)

m }Pm
p=1, which are then used to estimate the output

covariance as Ĉy,m = 1
Pm

∑Pm
p=1 y(p)

m (y(p)
m )T . Since under (2)

the ensemble covariance is Cy,m = E[ymyT
m] = HCx,mH [cf.

(5)], the aim is to identify a filter H such that matrices Ĉy,m

and HCx,mH are close.
Assuming for now perfect knowledge of the signal covari-

ances, the above rationale suggests studying the solutions of
the system of matrix quadratic equations

Cy,m = HCx,mH, m = 1, . . . , M. (11)

To gain some initial insights, consider first the case where
M = 1 and henceforth drop the subindex m so that we can

write (11) as (5). Given the eigendecomposition of the sym-
metric and PSD covariance matrix Cy = Vy�yVT

y , the prin-
cipal square root of Cy is the unique symmetric and PSD

matrix C1/2
y which satisfies Cy = C1/2

y C1/2
y . It is given by

C1/2
y = Vy�

1/2
y VT

y , where �
1/2
y stands for a diagonal matrix

with the nonnegative square roots of the eigenvalues of Cy.
With this notation in place, introduce the matrices Cxyx :=

C1/2
x CyC1/2

x and Hxx := C1/2
x HC1/2

x . Clearly, Cxyx is both
symmetric and PSD. Regarding the transformed filter Hxx,
note that by construction we have that Hxx is symmetric.
Moreover, if H is assumed to be PSD (see Section IV-A for
examples of such filters), then so will be Hxx. These properties
will be instrumental towards characterizing the solutions of
the matrix quadratic equation Cy = HCxH in (5), which can
be equivalently recovered from the solutions Hxx of

Cxyx = C1/2
x CyC1/2

x = C1/2
x HCxHC1/2

x = H2
xx. (12)

This relationship has the same quadratic form as its counter-
part for the stationary case [cf. (3)], with the identifications
Cxyx ↔ Cy and Hxx ↔ H.

Remark 1. (Input realizations versus covariances): If input
signals are available as in Section III-A, these could be used
to estimate input covariances. However, tackling the problem
when input-output realization pairs are given entails solving
a linear matrix equation (8). On the other hand, filter iden-
tification based on covariance information requires solving a
system of quadratic matrix equations (11), which is in general
more challenging. Moreover, estimating covariances a priori
typically requires a larger sample relative to the one needed to
solve the linear system identification task directly.

A. POSITIVE SEMIDEFINITE GRAPH FILTERS
Let us suppose first that H is PSD (henceforth denoted H ∈
H+N ), so that Hxx in (12) is PSD as well. Such filters arise,
for example, with heat diffusion processes of the form y =
(
∑∞

l=0 β l Ll )x with β > 0, where the Laplacian shift L is PSD
and the filter coefficients hl = β l are all positive. Another
example of a PSD filter arises when H models a finite-horizon
application of consensus dynamics, i.e., y = (I− αL)Lx for
small enough diffusion rate α. In this setting, the solution of
(12) is unique and given by the principal square root

Hxx = C1/2
xyx. (13)

Consequently, if Cx is nonsingular (so that the excitation in-
puts are not degenerate), the definition of Hxx can be used to
recover H via

H = C−1/2
x C1/2

xyxC−1/2
x . (14)

The previous arguments demonstrate that the assumption H ∈
H+N gives rise to a strong identifiability result. Indeed, if
{Cy,m}Mm=1 are known perfectly, a PSD graph filter is identi-
fiable even for M = 1.

However, in pragmatic settings where only empirical co-
variances are available, then observation of multiple (M >

1) diffusion processes can improve the performance of
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the system identification task. Given empirical covariances
{Ĉy,m}Mm=1 respectively estimated with enough samples Pm to
ensure that they are of full rank, for each m define Ĉxyx,m :=
C1/2

x,mĈy,mC1/2
x,m. The quadratic equation (12) motivates solving

the LS problem

H∗ = argmin
H∈H+N

M∑
m=1

‖Ĉ1/2
xyx,m − C1/2

x,mHC1/2
x,m‖2F . (15)

Whenever the number of samples Pm – and accordingly the
accuracy of the empirical covariances Ĉy,m – differs signif-
icantly across diffusion processes m = 1, . . . , M, it may be
prudent to introduce non-uniform coefficients to downweigh
those residuals in (15) with inaccurate covariance estimates.
The following proposition offers insights on the solution to
(15), and extensions to weighted LS criteria are straightfor-
ward.

Proposition 2: Define the matrices X=[C1/2
x,1⊗C1/2

x,1 ,

. . ., C1/2
x,M ⊗ C1/2

x,M ]T and Ȳ = [Ĉ1/2
xyx,1, . . ., Ĉ1/2

xyx,M ]T . Then,
the filter H∗ that solves (15) can be found as

vec(H∗) = X
†
vec(ȲT ). (16)

Moreover, if M = 1 and matrix Cx,1 is nonsingular, the mini-
mizer H∗ is unique and given by

H∗ = C−1/2
x,1 Ĉ1/2

xyx,1C−1/2
x,1 . (17)

Proof: To show (16) one can follow steps similar to those
for (10) in Proposition 1. The identifiability result for M = 1
follows from the arguments leading to (14), noting that the
cost in (15) vanishes if H∗ is selected to satisfy Ĉ1/2

xyx,1 =
C1/2

x,1 H∗C1/2
x,1 . Left and right multiplying both sides of the

equality by C−1/2
x,1 , (17) follows. �

Particularizing our discussion to the case of M = 1, (17)
reveals that as the number of observations P increases, the
estimated graph filter H∗ tends to the true one [cf. (14)]. Upon
performing the eigendecomposition of H∗ and solving (6),
we ultimately obtain an estimate S∗ of the underlying graph.
Naturally, an increase in P leads to a better estimate S∗.

The remainder of this section is devoted to characterizing
this dependence analytically. To this end, some notation must
be introduced. Define W = V� V and the set D containing
the indices of vec(S) corresponding to the diagonal entries
of S. Furthermore, denote by Dc the complement of D and
partition Dc into K and Kc, with the former indicating the
positions of the non-zero entries in the true GSO S. Based
on this notation we define the matrix M = (I−WW†)Dc

where the set Dc selects rows of I−WW†, i.e., M is the
orthogonal projector onto the kernel of WT constrained to the
off-diagonal elements in Dc. Finally, with e1 denoting the first
canonical basis vector, we construct the matrix

R = [M, e1 ⊗ 1N−1]. (18)

With this notation in place, the following recovery result
holds.

Proposition 3: Consider the estimate S∗P obtained by solv-
ing (6), where the eigenvectors V̂ are procured from the
eigendecomposition of H∗ [cf. (17)] computed based on P
observations in Y := {y(p)}Pp=1. Assume that:

A-1) The input process x is sub-Gaussian;
A-2) H has no repeated eigenvalues;
A-3) rank(RK ) = |K|;
A-4) There exists a constant μ > 0 such that

‖IKc (μ−2RRT + IT
Kc IKc )−1IT

K‖M(∞) < 1.

Under these assumptions, there exists a P0 such that for all
P > P0 we have that, with probability at least 1− δ

‖S∗P − S‖1 ≤ CδP−1/4, (19)

where the term Cδ contains the dependencies on all other
variables except for P.

Proof: See Appendix B. �
Proposition 3 characterizes an upper bound in the func-

tional dependence of the end-to-end estimation error of the
proposed two-step procedure in terms of the number of ob-
servations P. We first observe that the error vanishes with
increasing P, rendering S∗ in (6) a consistent estimator under
the conditions stated in Proposition 3. Moreover, the func-
tional form in (19) provides a guideline for the design of
observational studies and data collection, revealing that, e.g.,
doubling the number of observations implies modifying the
error bound by a factor of 2−1/4 ≈ 0.84, leading to an error
reduction of 16%.

B. SYMMETRIC GRAPH FILTERS
Consider now a more general (but not less relevant) setting
whereby H is only assumed to be symmetric, and once more
let M = 1 to simplify notation. Widely adopted (symmetric)
SEMs of the form y = (I− A)−1x are subsumed by (2) and
will not be PSD in general. The same holds true for arbitrary
polynomials of the adjacency matrix of unweighted, undi-
rected graphs with no self loops. With the unitary matrix
Vxyx denoting the eigenvectors of Cxyx and with b ∈ {−1, 1}N
being a binary (signed) vector, one can conclude that solutions
of (12) have the general form (see Appendix C)

Hxx = C1/2
xyxVxyxdiag(b)VT

xyx. (20)

If the input covariance matrix Cx is nonsingular, all symmetric
solutions H ∈ HN of (12) [and hence of (5)] are given by

H = C−1/2
x C1/2

xyxVxyxdiag(b)VT
xyxC−1/2

x . (21)

In the absence of the PSD assumption, the problem for
M = 1 is non-identifiable. Inspection of (21) shows there are
2N possible solutions to the quadratic equation (5), which
are parametrized by the binary vector b. For the PSD set-
ting in Section IV-A the solution is unique and corresponds
to b = 1.

For M > 1, the set of feasible solutions to the system of
equations (11) is naturally given by
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Hsym
M =

M⋂
m=1

{
H ∈ HN | bm ∈ {−1, 1}N and

H = C−1/2
x,m C1/2

xyx,mVxyx,mdiag(bm)VT
xyx,mC−1/2

x,m

}
.

(22)

It is thus conceivable that as M grows and, therefore, the
number of equations increases, the cardinality of Hsym

M shrinks
and the problem is rendered identifiable (up to an unavoidable
sign ambiguity because if H ∈ HN is a solution of (11), so
is −H). Next, we show that even with two excitation inputs
having covariances Cx,1 and Cx,2 with identical eigenvectors,
uniqueness can be established as long as their eigenvalues are
sufficiently different.

Proposition 4: Consider the system of quadratic equations
(11) for M = 2 and suppose Cx,1 = Udiag(λ1)UT and Cx,2 =
Udiag(λ2)UT . Then (11) has a unique symmetric solution
H = V�VT that is identifiable up to a sign ambiguity if the
following conditions hold:

A-1) All eigenvalues in λ1 are distinct;
A-2) λ1,i λ2, j �= λ1, j λ2,i for all i, j;
A-3) V and U do not share any eigenvector; and
A-4) rank(H) = N .
Proof: See Appendix D. �
Conditions A-1) and A-2) encode a notion of richness on

the excitation signals. In fact, condition A-2) is the specifica-
tion for M = 2 of a generalizable requirement based on the
Kruskal rank of a matrix related to the eigenvalues of the ex-
citation processes (see Appendix D). Under this perspective,
it becomes apparent that a larger M facilitates the fulfillment
of this more general requirement, leading to the expected con-
clusion that the more input processes we consider, the easier
it becomes to identify H. Moreover, from the proof arguments
it follows that symmetry of H is essential (see Lemma 2 in
Appendix VII-D). Actually, if one lifts the symmetry assump-
tion and all input covariances have the same eigenvectors, the
problem remains non-identifiable even for high values of M
(regardless of the input covariance eigenvalues).

V. ALGORITHMS
Building on the findings in Section IV-B, here we propose
two algorithms with complementary strengths to tackle the
quadratic filter identification problem when the only assump-
tion is for H to be symmetric (undirected graph), but not
(necessarily) PSD.

A. PROJECTED GRADIENT DESCENT
Going back to the beginning of Section IV, given realizations
{y(p)

m }Pm
p=1 of the diffusion processes the goal is to identify a

symmetric filter H ∈ HN that drives {HCx,mH}Mm=1 close to
the empirical covariances {Ĉy,m}Mm=1. Such quadratic func-
tions of H can be formed under perfect knowledge on the input
covariances {Cx,m}Mm=1.

Algorithm 1: Graph Filter Identification Using PGD.

1: Input: {Cx,m, Ĉy,m}Mm=1, step size η > 0, tol. δ > 0.
2: Initialize k = 0 and H0 ∈ HN at random.
3: repeat

4: ∇ε(Hk)=
M∑

m=1
HkCx,mHT

k HkCx,m − Ĉy,mHkCx,m.

5: H̄k =
((
Hk − η∇ε

(
Hk
))+ (Hk − η∇ε

(
Hk
))T)

/2.
6: Hk+1 = Hk + αk (H̄k −Hk ), αk chosen via line

search.
7: k← k + 1.
8: until ‖Hk −Hk−1‖F ≤ δ

9: Return Ĥ = Hk

Accordingly, adopting a constrained LS criterion yields a
graph filter estimate

H∗ = argmin
H∈HN

1

4

M∑
m=1

‖Ĉy,m −HCx,mHT ‖2F . (23)

Weighted variants of the criterion could also be pertinent here,
as discussed following (15). Problem (23) is a non-convex
fourth-order polynomial optimization, which can potentially
have multiple solutions. Since finding H∗ is challenging, we
seek algorithms capable of finding stationary solutions.

A viable approach is to rely on projected gradient descent
(PGD) to obtain the provably convergent iterations tabulated
under Algorithm 1, where ε(H) denotes the cost function in
(23) [45, Prop. 2.3.1]. The updates entail multiplications and
additions of N × N matrices, and accordingly the computa-
tional complexity per iteration is O(MN3). The factor M can
be shaved off by parallelizing the computation of the gradi-
ent in Algorithm 1. Taking into account all these desirable
features, Algorithm 1 markedly improves upon its precursor
in [1]. Since multiple stationary points exist, we typically
run Algorithm 1 for I random initializations. Among the I
estimated filters we select the one whose eigenvectors lead
to the sparsest graph shift S when solving (6); see also the
numerical tests in Section VI.

Remark 2. (Combining multiple sources of information):
The formulations in (8) and (23) can be combined if both
input covariances and pairs of input-output realizations are
available. It is also relevant in scenarios where the inputs are
not zero mean but their first and second moments are known.
Defining μ̂y,m := 1

Pm

∑Pm
p=1 y(p)

m and μx,m := E[xm], a natu-

ral cost would be ε̃(H) = ε(H)+ ν
∑M

m=1 ‖μ̂y,m −Hμx,m‖2,
where ε(H) is the cost function of (23) and ν is a tuning
parameter. PGD iterations similar to those in Algorithm 1 can
be derived to minimize the cost ε̃(H).

B. SEMIDEFINITE RELAXATION
Here we show that the graph filter identification task can also
be tackled using semidefinite relaxation (SDR) [46], a con-
vexification technique which has been successfully applied
to a wide variety of non-convex quadratically-constrained
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quadratic programs (QCQP). To that end, we first cast the filter
identification problem as a Boolean quadratic program (BQP),
see Appendix E for a proof.

Proposition 5: For m = 1, . . . , M consider matrices
Am := (C−1/2

x,m Vxyx,m)� (C−1/2
x,m C1/2

xyx,mVxyx,m) ∈ R
N2×N

and unknown binary vectors bm ∈ {−1, 1}N . Define
� ∈ R

N2(M−1)×NM as

� :=

⎡
⎢⎢⎢⎣

A1 −A2 0 · · · 0 0
0 A2 −A3 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · AM−1 −AM

⎤
⎥⎥⎥⎦ (24)

and b := [bT
1 , . . . , bT

M ]T ∈ {−1, 1}NM . If rank(�) = NM −
1, then the filter can be exactly recovered (up to a sign) as
vec(H∗) = A1b∗1, where b∗1 is the first N × 1 sub-vector of
the solution to the following BQP problem

b∗ = argmin
b∈{−1,1}NM

bT �T �b. (25)

Problem (25) offers a natural formulation for the prag-
matic setting whereby {Cy,m}Mm=1 are replaced by sample
estimates, and one would aim at minimizing the residu-
als

∑M−1
m=1 ‖Âmbm − Âm+1bm+1‖22 = ‖�̂b‖22 in the LS sense.

Given a solution of (25) with �̂ replacing �, H ∈ HN can be
estimated as [cf. (21)]

Ĥ = 1

M

M∑
m=1

C−1/2
x,m Ĉ1/2

xyx,mV̂xyx,mdiag(b∗m)V̂T
xyx,mC−1/2

x,m .

(26)
Even though the BQP is a classical NP-hard combinatorial

optimization problem [46], via SDR one can obtain near-
optimal solutions with provable approximation guarantees.
To derive the SDR of (25), first introduce the NM × NM
symmetric PSD matrices W := �T � and B := bbT . By con-
struction, the binary matrix B has rank one and its diag-
onal entries are Bii = b2

i = 1. Conversely, any matrix B ∈
R

NM×NM that satisfies B � 0, Bii = 1, and rank(B) = 1 nec-
essarily has the form B = bbT , for some b ∈ {−1, 1}NM . Us-
ing these definitions, one can write bT Wb = trace(bT Wb) =
trace(WbbT ) = trace(WB) and accordingly (25) is equiva-
lent to

minimize
B

trace(WB)

subject to: B � 0, rank(B) = 1,

Bii = 1, i = 1, . . . , NM. (27)

The only source of non-convexity in (27) is the rank con-
straint. We follow the usual practice of relaxing the above
problem by dropping the rank constraint [46] to obtain the
convex SDR

B∗ = argmin
B

trace(WB)

s. to B � 0,

Bii = 1, i = 1, . . . , NM, (28)

Algorithm 2: Graph Filter Identification Using SDR.

1: Input: W = �T � ∈ HNM and L ∈ N.
2: Solve the SDP in (28) to obtain B∗.
3: for l = 1, . . . , L do
4: Draw zl ∼ N (0, B∗).
5: Round b̂l = sgn(zl ).
6: end for
7: Determine l∗ = argminl=1,...,Lb̂T

l Wb̂l .
8: Return b̂l∗

which coincides with the bidual (dual of the dual) prob-
lem of (25). Problem (28) is a semidefinite program (SDP)
and can be solved using an off-the-shelf interior-point
method [47].

It is immediate that a rank-one optimal solution B∗ =
b∗(b∗)T of (28) solves the original BQP as well; however, in
general rank(B∗) �= 1. To generate a feasible solution of (25)
from B∗, we adopt the so-termed Gaussian randomization pro-
cedure [46], [48]. The overall method is tabulated under Algo-
rithm 2 and the quality of the rounded solutions is evaluated
via computer simulations in Section VI. The computational
complexity is discussed under Remark 3.

Interestingly, it is possible to derive theoretical approxima-
tion guarantees for the feasible solutions generated via the
SDR scheme in Algorithm 2. Leveraging a result in [48], a
guarantee for the BQP (25) follows immediately.

Corollary 1: Let b∗ be the solution of (25) and b̂l∗ be
the output of Algorithm 2. For γ = (1− 2

π

)
λmaxNM, where

λmax is the largest eigenvalue of W, then

γ + 2

π
(b∗)T Wb∗ ≥ E

[
(b̂l∗ )

T Wb̂l∗
] ≥ (b∗)T Wb∗. (29)

Notice that although the bounds in (29) offer guarantees in
terms of the expected objective value, particular realizations
b̂l∗ tend to fall within those bounds with high probability if L
is chosen sufficiently large.

All in all, the recipe to estimate the graph filter via the
SDR approach entails the following steps. First we calculate
{Âm}Mm=1 from {Ĉy,m, Cx,m}Mm=1 using the expression in the
statement of Proposition 5, and form �̂ as in (24) to finally
obtain Ŵ = �̂

T
�̂. Next, a feasible solution b̂l∗ to the BQP is

obtained after running Algorithm 2 with Ŵ and an appropriate
choice of L as inputs. Finally, Ĥ is estimated using (26).

Remark 3. (SDR versus PGD): Although SDR has well-
documented merits when dealing with non-convex BQPs (and
other QCQPs) in applications such as MIMO detection [49]
and transmit beamforming [50], it has so far not been explored
for graph filter identification or network topology inference.
The relaxation entails dropping a rank constraint after “lift-
ing” a (binary) vector-valued problem with NM variables to
a matrix-valued one with NM(NM + 1)/2 variables. This in-
curs an increase in memory and computational cost, since the
complexity of a general-purpose interior point method to solve
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the resulting SDP is O(N7M7log(1/ε)), for a prescribed solu-
tion accuracy ε > 0 [46]. The additional cost could hinder the
applicability of the SDR approach in Algorithm 2 to problems
involving very large networks. In those scenarios, the PGD
iterations in Algorithm 1 can still find stationary solutions
with lower memory requirements and O(MN3) complexity
per iteration. While nothing can be said a priori on the quality
of the aforementioned stationary points, the more costly SDR-
based solutions offer a quantifiable approximation guarantees
as asserted in Corollary 1. Even though the focus here is not
on pushing algorithmic scalability to the limit, the recovery
performance of the proposed methods could serve as a bench-
mark for faster (possibly randomized) algorithms that can
handle larger graphs. Since the desired solution of (28) has
rank one, we envision future algorithmic improvements using
large-scale SDP solvers based on e.g., the Burer-Monteiro
factorization [51].

VI. NUMERICAL TESTS
We study the recovery of synthetic and real-world graphs
to assess the performance of the proposed network topology
inference algorithms. To this end, we adopt the formulation
in (6) to recover a sparse adjacency matrix that is close in
the Frobenius-norm sense to being diagonalized by the es-
timated eigenbasis V̂. A comprehensive numerical evalua-
tion is carried out whereby we: (i) study the graph inference
performance in controlled synthetic settings (Section VI-A);
(ii) carry out comparisons with some state-of-the-art algo-
rithms (Section VI-B); (iii) use this framework to gain insights
about urban mobility patterns in New York City from data of
Uber pickups in 2015 (Section VI-C); and (iv) cluster com-
panies using a graph obtained from time series of their daily
opening and closing stock prices (Section VI-D).

A. PERFORMANCE ASSESSMENT
Throughout this section, we infer networks from the obser-
vation of diffusion processes that are synthetically generated
via graph filtering as in (2). We consider the filter H1 =∑2

l=0 hl Sl , where the coefficients {hl} are drawn uniformly
at random on [0,1]. As a measure of recovery error, we adopt
‖S∗ − S‖F /‖S‖F (averaged over independent realizations of
the experiment), where S∗ is the solution of (6) and S denotes
the ground-truth GSO. To directly assess edge-support recov-
ery, we also compute the F-measure defined as the harmonic
mean of edge precision and recall (precision is the percentage
of correct edges in S∗, and recall is the fraction of edges in S
that are successfully retrieved).

Inference of PSD graph shifts. We consider the karate
club social network studied by Zachary [52], which is rep-
resented by a graph G consisting of N = 34 nodes or mem-
bers of the club and undirected edges symbolizing friend-
ships among them. Denoting by Ln the normalized Laplacian
of G, we define the graph-shift operator S = I− γ Ln with
γ = 1/λmax(Ln), modeling the diffusion of opinions between
the members of the club. A graph signal y can be regarded

FIGURE 2. Recovery error and F-measure in recovering Zachary’s karate
club social network as a function of the number P of opinion profiles
observed, and parametrized by the number of topics M. As expected, the
graph estimate becomes increasingly accurate with increasing values of P
and M.

as a unidimensional opinion of each club member regarding
a specific topic, and each application of S can be seen as
an opinion update. Our goal is to recover Ln – hence, the
social structure of the Karate club – from the observations
of opinion profiles. We consider M different processes in
the graph – corresponding, e.g., to opinions on M different
topics – and assume that an opinion profile ym is obtained
by diffusing through the network an initial belief xm (cf. (2)).
More precisely, for each topic m = 1, . . . , M, we model xm as
a zero-mean Gaussian process with known covariance Cx,m.
The input covariances are generated as Cx,m = Um|�m|UT

m,
where the diagonal matrix |�m| has diagonal entries equal to
the absolute values of i.i.d. samples drawn from a standard
normal distribution. Matrix Um collects the eigenvectors of
a symmetric matrix with i.i.d. standard normal entries. We
are then given a set {y(p)

m }Pp=1 of independent opinion profiles

generated from different sources {x(p)
m }Pp=1 diffused through

filter H1 of unknown nonnegative coefficients. From these
P opinion profiles we first form an estimate Ĉy,m of the
output covariance. Leveraging that S is PSD and hl ≥ 0 for
l = 0, 1, 2 (cf. Section IV-A), then we estimate the filter H1

via (16) and solve (6) using the eigenbasis V̂ of the estimated
filter. Set S is modified accordingly for the recovery of a nor-
malized Laplacian instead of an adjacency matrix; see [12].

In Fig. 2 we plot the recovery error as a function of
the number of observations P for three different values of
M ∈ {1, 5, 10}. As P increases, the estimate Ĉy,m becomes
more reliable entailing a better estimation of the underlying
filter and, ultimately, leading to more accurate eigenvectors
V̂. Hence, we observe a decreasing error with increasing P.
Moreover, for a fixed number of observations P, the error in
the estimation of Ĉy,m can be partially overcome by observing
multiple diffusion processes, thus, larger values of M lead to
smaller graph recovery errors. Similar trends can be observed
for the F-measure in Fig. 2, corroborating the efficacy of the
approach in identifying the GSO support.
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FIGURE 3. Recovery error and F-measure in estimating random graphs
from M = 10 processes and P = 106 observations for each process. As N
increases, the output covariances become less accurate and the
performance of Algorithm 1 deteriorates. The SW graph with rewiring
probability 0.1, which is close to a regular graph, is the easiest to identify
while the purely random ER graph is the hardest.

Inference of random graphs. Here we evaluate the perfor-
mance of Algorithm 1 on three different types of random
graphs for a varying number of nodes N . We consider the
recovery of the adjacency matrix S = A for: i) Erdős-Rényi
(ER) graphs with edge probability p = 0.3; ii) Barabási-
Albert (BA) preferential attachment graphs generated from
μ0 = 0.5N initially placed nodes, where each new node is
connected to μ = 0.3N existing ones; and iii) small world
(SW) graphs with rewiring probability 0.1 and mean degree
of 0.3N . The parameter choices yield roughly equal mean
degrees across all three graph models.

We consider M = 10 different processes in the respective
graphs, where we observe P = 106 outputs for each pro-
cess. The given output signals {y(p)

m }Pp=1 are generated using
the same procedure described under Inference of PSD graph
shifts. Then we estimate the filter H1 via Algorithm 1 and
solve (6) using the eigenbasis V̂ of the estimated filter. Fig. 3
depicts both the relative recovery error and the F-measure
versus the number of nodes N for the ER, BA, and SW random
graphs. As N increases for a fixed number of observations,
the estimate Ĉy,m becomes less reliable for larger graphs
and as a result, the performance deteriorates. However, for
N ∼ 20− 80, we observe a reasonable recovery of the sought
graphs. These observations are valid across all graph models.
We also find that the SW graph with rewiring probability 0.1,
which is close to a regular graph, is the easiest to identify
while the purely random ER graph is the hardest. For such
unweighted graphs, this is aligned with findings in [12]. The
preferential attachment BA graph which relies on a copying
procedure that introduces correlation [8, Ch. 6.4.1], falls in
between the SW and ER ends of the spectrum.

Inference with a fixed signal budget. In practice, we esti-
mate output covariances from observed signals via sample av-
eraging. In particular, assume that we estimate the covariance
of each of the M processes by observing P independent graph

FIGURE 4. (top) Error in recovering a collaboration network using SDR for
varying budgets (number of processes M times the signals observed per
process P). (bottom) Counterpart of the top plot but for the F-measure
showing the success in recovering the GSO support. For a fixed budget it is
better to allocate the sensing resources in learning M = 2 processes as
accurately as possible, rather than having a coarser estimate of more
(M > 2) processes.

signals. For the cases where the total budget of signals M × P
is fixed, this numerical test studies the trade-off between M
and P as it pertains to recovery performance. Is it better
to have accurate estimates of a few processes’ covariances
(larger P and smaller M), or instead, coarser estimates of
more processes (smaller P and larger M)? In order to answer
this question, we run an experiment whose goal is to recover
the adjacency matrix of the collaboration network of N = 31
scientists working in the field of Network Science [53], and
model the diffusion of ideas among the scientists via simple
linear dynamics as per H1. The input signals are i.i.d., gen-
erated using the same procedure described under Inference of
PSD graph shifts. We observe outputs {y(p)

m }Pp=1 and imple-
ment Algorithm 2 for L = 10 random draws to recover the
collaboration graph from M processes, each inferred from P
signals such that M × P is fixed.

Fig. 4 (top) depicts the recovery error as a function of the
total budget (M × P) of observed signals, parametrized by
M ∈ {2, 3, 4, 5}. The corresponding counterparts for the F-
measure are shown in Fig. 4 (bottom). As expected, the perfor-
mance enhances (i.e., increase in F-measure and decrease in
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recovery error) for increasing budget for all values of M, since
we can better estimate the covariances of all the processes.
More interestingly, for a fixed budget it is better to consider
only M = 2 processes. Given that SDR can often recover the
filter with perfect knowledge of M = 2 covariances, it is better
to focus on just two processes and obtain the most accurate
estimates of the associated covariances.

Moreover, to emphasize the importance of the richness of
the input processes, we repeat the experiment for a setting
where the input covariances are similar to each other. To
generate these covariances, we replace {Cx,m}Mm=2 with Cx,1 +
(10−8)× {Cx,m}Mm=2 for M = 2, 3; see the dashed lines in
Fig. 4 for the associated recovery performance. Notice that
for (M × P) ≤ 104 the recovery error and the F-measure are
comparable to (though slightly larger than) the correspond-
ing counterparts in the original setting. More interestingly,
for larger values of the budget the recovery error for the
setting of similar covariance matrices saturates. Intuitively,
we know that for M = 1 the problem is non-identifiable (cf.
Section IV-B). For practical purposes, the setting with similar
covariance matrices behaves as having only one input process,
thus resulting in an insurmountable error even for increasing
values of M.

B. PERFORMANCE COMPARISON
We compare the performance of the proposed approach with
baseline statistical approaches as well as with relevant coun-
terparts in the GSP literature.

Comparison with statistical approaches. We analyze the
performance of Algorithm 2 in comparison with two
workhorse statistical methods, namely, (thresholded) corre-
lation [8, Ch. 7.3.1] and graphical lasso [16]. Our goal is
to recover the adjacency matrix of an undirected and un-
weighted graph with no self-loops. To that end, we are given
(a varying number of) observed graph signals, which are mod-
eled as the output of M = 2 different diffusion processes.
We test the recovery of adjacency matrices S = A of ER
graphs with N = 20 nodes and edge probability p = 0.2. The
zero-mean Gaussian inputs have covariance matrices Cx,m =
Um|�m|UT

m, where the diagonal matrix |�m| is generated as
in Inference of PSD graph shifts. We consider two types of
filters and respectively two generative mechanisms for Um: (i)
the second-order filter H1 already defined, while Um collects
the eigenvectors of a symmetric matrix with i.i.d. standard
normal entries; and (ii) filter H2 = (κI+ S)−1/2C−1/2

x , where
κ is selected to ensure that κI+ S is positive definite and Cx
is the average of Cx,1 and Cx,2. Under (ii), U1 = U2 = V are
the eigenvectors of S to ensure that H2 is a polynomial on S,
i.e., a graph filter.

We vary the number of diffused observed signals from P =
10 to 106 in powers of 10. Output signals are generated by
passing the inputs through a graph filter. For each combination
of filter type and number of observed signals, we generate 10
ER graphs that are used for training and 20 ER graphs that are
used for testing. Based on the 10 training graphs, the optimal

FIGURE 5. Performance comparison in recovering random graphs between
the proposed Algorithm 2, graphical lasso, and correlation-based methods
for general second-order filters (H1) and specific filters (H2) as a function
of the number of observations for a fixed M = 2. We adopt two
performance measures, namely, (top) relative recovery error, and (bottom)
the F-measure on the detected edges.

threshold for the correlation method and the regularization
parameter for graphical lasso are determined and then used
for the recovery of the 20 testing graphs. In Fig. 5 we plot the
performance of the three methods as a function of the number
of filtered graph signals observed for filters H1 and H2, where
each point is the mean of the recovery error (top) or the mean
of the F-measure (bottom) over the 20 testing graphs. When
considering a general second-order graph filter H1, our pro-
posed algorithm outperforms the other two baseline statistical
methods. This is expected since the graph recovered by graph-
ical lasso corresponds to the penalized maximum-likelihood
estimate of the precision matrix C−1

y = H−1
1 C−1

x H−1
1 , that

bears no direct relation with S. However, for the specific
case of graph filter H2, where the sought GSO matches the
precision matrix in the off-diagonal entries, graphical lasso
outperforms the other two methods as expected. Indeed, while
Algorihm 2 still suceeds in learning the topology of the ran-
dom graph in this setting, Fig. 5 (bottom) shows it does so with
two orders of magnitude more observations than graphical
lasso.

Comparison with GSP methods. We finally compare the re-
covery performance of the proposed algorithms with the SEM
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inference method based on parallel factor (PARAFAC) tensor
decomposition in [24], the algorithm in [12] which assumes
that the observed graph processes are stationary, and a variant
of the latter using a whitening transformation. We study a
symmetric structural brain graph with N = 66 nodes or neural
regions and edge weights given by the density of anatomical
connections between regions [54]. Graph filter-based diffu-
sion models with impulsive sources over the brain connectiv-
ity network [cf. (2)] were adopted and validated to model the
progression of brain atrophy [55]. To compare with [24, Al-
gorithm 1], we draw zero-mean Gaussian inputs with diagonal
covariance matrices Cx,m = |�m|, where |�m| is generated as
in Inference of PSD graph shifts. We then generate output sig-
nals from the diffusion filter H3 = (I− A)−1 (corresponding
to a symmetric SEM), thus, output covariances satisfy Cy,m =
H3Cx,mH3 for each m. Assuming perfect knowledge of the
second-order statistics {Cx,m, Cy,m}Mm=1, we first estimate the
graph filter using either the PGD approach in Algorithm 1
or the SDR approach in Algorithm 2, and then solve (6) to
recover the adjacency matrix of the brain network.

Fig. 6 depicts the recovery error (top) and the F-measure
(bottom) versus M for: (i) Algorithms 1 and 2; (ii) a baseline
GSP-based method that exploits signal stationarity [12]; (iii)
a variant of the latter where we adopt a whitening trans-
formation as in (12) and re-run the algorithm in [12] using
the eigenvectors of Cxyx as spectral templates; and (iv) the
tensor-based approach in [24]. First, we notice that the perfor-
mance of both the PGD and SDR algorithms as well as [24,
Algorithm 1] improves for increasing M. Moreover, the SDR
approach uniformly (in M) outperforms all other methods. Re-
call that this gain in performance comes at the price of a higher
computational complexity (relative to the PGD approach) as
explained in Remark 3 and is due to exploiting the structure
of the solution in formulating the topology inference problem.
Also, [24, Algorithm 1] outperforms the PGD algorithm, since
it is tailored for SEMs matching this simulation setup. Finally,
both proposed methods outperform the algorithm in [12] (with
or without pre-whitening) for all M. This is expected due to
the model mismatch suffered when incorrectly assuming that
the observed graph processes are stationary, and accordingly
using the output covariance eigenvectors (or eigenvectors of
Cxyx, if whitened) as spectral templates of S.

C. UNVEILING URBAN MOBILITY PATTERNS
FROM UBER PICKUPS
We implement our SDR graph topology inference method
(Algorithm 2) in order to detect mobility patterns in New York
City from Uber pickups data.1 We have access to times and lo-
cations of pickups from January 1st to June 29th 2015 for 263
known location IDs. For simplicity, we cluster the locations
into N = 30 zones based on their geographical proximity;
these are shown as red pins in Fig. 7. These zones represent
the nodes of the graph to be recovered. The total number of

1Dataset [Online]. Available: https://github.com/fivethirtyeight/uber-tlc-
foil-response

FIGURE 6. (top) Error in recovering a brain network as a function of the
number M of graph processes observed for different recovery algorithms.
We assume perfect second-order statistical knowledge of the processes
and a graph filter corresponding to a symmetric SEM. SDR outperforms
PGD at the expense of higher computational complexity (cf. Remark 3).
Also, [24, Algorithm 1] has a superior performance relative to the PGD
algorithm due to the specific filter and set up. The mismatched stationarity
assumption in [12] explains its worse performance, even when using a
whitening transformation as in (12). (bottom) Counterpart of the top plot
but depicting the F-measure as a figure of merit, where similar trends are
observed.

pickups aggregated by zone during a specific time horizon
can be regarded as graph signals defined on the unknown
graph. More specifically, we consider M = 2 graph processes:
weekday (m = 1) and weekend (m = 2) pickups. Moreover,
we consider that the pickups from 6am to 11am constitute the
inputs of our process whereas the pickups from 3pm to 8pm
comprise the outputs of our process. To be more precise, for
a specific day we aggregate all the pickups within 6–11am to
form an input signal x and similarly we group all the pickups
within 3-8pm to generate the associated output signal y. If
the day considered is a weekday, we think of this pair as
being generated from process m = 1, and if it is a weekend
we consider the pair coming from process m = 2. We repeat
this procedure for all the days included in the period of study,
and estimate input-output covariance pairs {Ĉx,m, Ĉy,m}2m=1.
We then run Algorithm 2 to infer an underlying graph filter
Ĥ and solve (6) given the estimated eigenbasis of Ĥ to find
a sparse mobility pattern. The modeling presumption is that
throughout the day, the population diffuses over an unknown
graph of mobility patterns we seek to identify. By looking
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FIGURE 7. New York City’s mobility pattern inferred from 2015 Uber
pickups data. Most edges connect Manhattan with the other boroughs
indicating that Uber is widely used to commute to/from the suburbs.
Airports (Kennedy, Newark, and LaGuardia) can also be distinguished as
high degree nodes.

at aggregates over a large number of trips, the population
flows and mobility patterns in the city can be reasonably well
approximated by linear diffusion dynamics; see also [29].

The recovered graph is depicted in Fig. 7, where the weights
of the recovered edges are represented by the line widths in
the figure. Given the nature of the input and output processes
considered, the graph obtained is a sparse description of the
mobility pattern of people throughout the day. Notice that
most connections occur between Manhattan and the other bor-
oughs (Queens, Bronx, Staten Island, Brooklyn, and Newark),
while only a few edges connect zones within Manhattan.
This indicates that people use Uber to commute from their
homes in the suburbs to their work (or leisure activities at the
weekends) in the city. These findings are consistent with ex-
ploratory research of this same dataset [56] as well as a recent
New York Times article that writes: “The ride-hail app has
increasingly shifted its focus to the city’s other four boroughs,
where frustration over subway overcrowding and delays and
fewer taxi options have made it the ride of choice for many. As
a result, Uber is booming in the other boroughs, with half of
all Uber rides now starting outside Manhattan...” [57]. Lastly,
observe that the JFK, Newark and, LaGuardia airports are
strongly connected with Manhattan and the other boroughs,
as expected.

D. CLUSTERING FIRMS FROM HISTORICAL STOCK PRICES
We implement our SDR topology inference approach in an-
other real-world setting where we consider historical stock
price data from Yahoo.2 Opening and closing prices are ob-
tained from 18th May 2012 to 30th December 2016 for
the top 50 firms that have had the most wealth creation to

2Data [Online]. Available: https://finance.yahoo.com/lookup?s=API

shareholders in aggregate among all companies with common
stock in the Center for Research in Security Prices (CRSP)
database since July 1926 until December 2016 [58, Table
5].3 We consider the N = 48 firms analyzed as nodes in a
graph and the stock prices of the 1160 days studied as graph
signals defined on the graph. Our goal is then to recover
the edges of this graph from the observed stock prices. We
consider M = 4 graph processes for each three-month period
of stock market activity. Moreover, the opening and closing
prices of each day are respectively considered as inputs and
outputs of the graph processes. A similar procedure to the one
in Section VI-C is used to estimate input-output covariance
pairs {Ĉx,m, Ĉy,m}4m=1. We then run Algorithm 2 to infer an
underlying graph filter Ĥ and solve (6) given the estimated
eigenbasis of Ĥ to reveal a sparse graph of inter-dependencies
among the N companies.

The recovered graph is shown in Fig. 8. In order to (indi-
rectly) test the validity and usefulness of the obtained graph,
we run the Louvain community detection algorithm [59] and
analyze the resulting clusters, depicted in different colors in
Fig. 8. Notice that firms that broadly belong to the same
economic sector are indeed clustered into the same commu-
nities. For example, the blue community represents the firms
that are mostly related to energy and oil industry, the purple
community mostly relates to technology, telecommunication,
and finance, the yellow community highly relates to health-
care and pharmaceutics, the orange community represents the
aviation industry, and the green one embodies the food, drink,
and retail sectors.

VII. CONCLUDING SUMMARY
We studied the problem of inferring an undirected network
from observations of non-stationary signals diffused on the
unknown graph. Relative to the stationary setting, the main
challenge is that the GSO eigenvectors differ from those of the
signal covariance matrix. To overcome this hurdle, we lever-
age that the sought eigenbasis is preserved by the polynomial
graph filter that governs the diffusion process. As a result, the
novel approach is to first identify the GSO eigenvectors from
a judicious graph filter estimate, and then we rely on these
spectral templates to estimate the eigenvalues by imposing
desirable properties (such as edge sparsity) on the graph to be
recovered. We propose different estimators of the symmetric
diffusion filter depending on whether: i) explicit realizations;
or, ii) second-order statistical information is available from the
input-output graph signal pair. These estimators arise as solu-
tions of systems of linear and quadratic matrix equations, re-
spectively. We thus investigate identifiability properties of the
resulting problems and bound the topology recovery error for
the special case of PSD diffusion filters. We also develop PGD
and SDR algorithms with complementary strengths to com-
pute near-optimal solutions of the said system of quadratic

3Of the 50 firms mentioned, DuPont was excluded from the analysis for
having excessive missing data and Pfizer and Warner Lambert were merged
into a single one (since Pfizer bought Warner Lambert in 2000), resulting in a
total of N = 48 firms analyzed.
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FIGURE 8. The sparse network topology inferred from Yahoo’s stock price data. Firms that represent similar sectors of the economy tend to be clustered
together. For example, the blue community collects firms from the energy sector whereas the orange cluster relates to the aviation industry.

equations. The overall network topology inference pipeline is
validated via comprehensive numerical tests on real social and
structural brain networks. Moreover, we show how the devel-
oped graph inference tools can be utilized to unveil mobility
patters in New York City from data of Uber pickups and to
reveal inter-dependencies between firms from their historical
stock prices.

The network topology inference problem addressed here is
admittedly challenging, and our solutions are not without their
limitations. The heavily data-driven nature of the approach
along with the generality of the postulated model come at
the price of increased sample and computational complexi-
ties. For these reasons, the developed tools are better suited
for problems where the number of nodes is not excessively
large and the observations are abundant. This is often the case
for gene-regulatory networks, molecular contact structures,
functional brain connectomes, power grids, and transportation
networks, just to name a few examples. As future work, it
is of interest to expand the scope of the proposed topology
inference framework to accommodate i) sampling whereby
observations are only acquired from a limited subset of nodes;
and ii) directed graphs that represent the structure of signals
(possibly) generated via nonlinear network interactions. In
addition to scalable SDP solvers, adaptive algorithms that
can track slowly-varying graphs, thus providing memory and
computational savings by processing the signals on-the-fly,
are subject of ongoing investigation.

APPENDIX

A. PROOF OF PROPOSITION 1
To show that a) is true, note first that the cost in (9)
can be compactly rewritten as ‖Y−HX‖2F . Using the Kro-
necker product and the matrix vectorization operator, we
can further rewrite it as ‖Y−HX‖2F = ‖vec(Y)− (XT ⊗
IN )vec(H)‖22. Moreover, the redundant entries in vec(H) can
be removed using the duplication matrix DN , to yield ‖Y−
HX‖2F = ‖vec(Y)− (XT ⊗ IN )DN vech(H)‖22. This LS cost

can be minimized using the Moore-Penrose pseudoinverse as
vech(H∗) = [(XT ⊗ IN )DN ]†vec(Y), so (10) follows.

In order to prove that the b) holds true, we denote by
{vi}N−Mr

i=1 a basis of the null space ker(XT ). We use these vec-
tors to form all non-repeated symmetric matrices of the form
Vi j = vivT

j + v jvT
i , and then collect the NH distinct entries

of those symmetric matrices into vector ṽi j = D†
N vec(Vi j ) =

D†
N (vi ⊗ v j + v j ⊗ vi ).
Lemma 1: Define the set Vker = {ṽi j : i ≤ j, 1 ≤ j ≤

N −Mr}, then it holds that: i) any of the (N −Mr + 1)(N −
Mr )/2 elements of Vker belongs to ker[(XT ⊗ IN )DN ]; and ii)
the elements in Vker are linearly independent.

Proof: To establish i), we need to show that if ṽi j ∈ Vker,
then [(XT ⊗ IN )DN ]ṽi j = 0. Indeed, we have that

[(XT ⊗ IN )DN ]ṽi j =
(
(XT ⊗ IN )DN

)
D†

N vec(Vi j )

= (XT ⊗ IN )vec(Vi j )

= (XT ⊗ IN )(vi ⊗ v j + v j ⊗ vi )

= (XT vi ⊗ IN v j )+ (XT v j ⊗ IN vi )

= 0,

where the last equality follows because vi, v j ∈ ker(XT ).
To prove ii) we first define a matrix Ṽker whose columns

correspond to the vectors in Vker and write Vker = DN Ṽker.
Notice that if Vker is full column rank, then all the columns in
Ṽker must be linearly independent since DN is just a repli-
cation operator. Hence, we need to show that vectors vi j

and vi′ j′ (both columns of Vker) are orthogonal unless both
i = i′ and j = j′. To see why this is true, note that vi j =
vi ⊗ v j + v j ⊗ vi and so

vT
i jvi′ j′ =

[
(vT

i ⊗ vT
j )+ (vT

j ⊗ vT
i )
] [

(vi′ ⊗ v j′ )+ (v j′ ⊗ vi′ )
]

= (vT
i vi′ ⊗ vT

j v j′ )+ (vT
i v j′ ⊗ vT

j vi′ )

+ (vT
j vi′ ⊗ vT

j v j′ )+ (vT
j v j′ ⊗ vT

i vi′ ) = 0
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since in all four summands there is at least one inner product
that is zero, hence their sum vanishes as well. �

From Lemma 1, we conclude that the dimension of ker(XT )
is at least the cardinality of Vker. Since |Vker| = (N −Mr +
1)(N −Mr )/2, it follows that rank[(XT ⊗ IN )DN ] is at most
NH − (N −Mr + 1)(N −Mr )/2.

Finally, to see that c) is true, first notice that whenever
N < Mr , then b) guarantees that rank((XT ⊗ IN )DN ) < NH.
Consequently, the Moore-Penrose minimizer is not the unique
LS minimizer. By contrast, if N = Mr then X becomes full
rank and, consequently, (XT ⊗ IN ) is also full rank. Given
that DN is a full column rank matrix, (XT ⊗ IN )DN is also
full column rank and the Moore-Penrose minimizer becomes
the unique LS minimizer, as wanted. �

B. PROOF OF PROPOSITION 3
Throughout this proof, the unspecified norm ‖ · ‖ applied to a
matrix refers to the induced �2 norm, also denoted as operator
norm. We first quantify the error in estimating H attributable
to having access to a finite number P of signals. From (17) it
follows that

‖H−H∗‖ = ‖C−1/2
x C1/2

xyxC−1/2
x − C−1/2

x Ĉ1/2
xyxC−1/2

x ‖
≤ ‖C−1

x ‖‖(C1/2
x CyC1/2

x )1/2 − (C1/2
x ĈyC1/2

x )1/2‖
≤ ‖C−1

x ‖‖C1/2
x CyC1/2

x − C1/2
x ĈyC1/2

x ‖1/2,

where the first inequality follows from the definition of Cxyx
in (12) and the submultiplicative property of the matrix norm,
while the second inequality follows from [60]. A new appli-
cation of the submultiplicative property readily yields

‖H−H∗‖ ≤ ‖C−1
x ‖‖Cx‖1/2‖Cy − Ĉy‖1/2.

Finally, relying on the sub-Gaussianity of the input [cf. A-1)],
we may bound the distance between the sample covariance of
y and its true covariance with probability 1− δ as [61]

‖H−H∗‖ ≤ ‖C−1
x ‖‖Cx‖1/2C′δP−1/4. (30)

In order to quantify the distance between the true eigenvectors
V and those V̂ estimated from H∗ we rely on the Davis-Kahan
theorem [62] to obtain, for all i,

‖vi − v̂i‖2 ≤
√

8 ‖H−H∗‖
γ

, (31)

where γ > 0 is the minimum difference between two eigen-
values of H. Assumption A-2) guarantees that, indeed, γ is
bounded away from zero.

Our goal is to leverage assumptions A-3) and A-4) to claim
that the conditions needed to invoke [12, Prop. 2] hold for
large enough P. However, to leverage [12, Prop. 2] in es-
tablishing the sought bound (19), we need to find a matrix
S′ = V̂�′V̂T and a constant ε such that

‖S− S′‖2F +
⎛
⎝∑

j

S′1 j − 1

⎞
⎠

2

≤ ε2. (32)

Notice that, without loss of generality, we assumed that∑
j S1 j = 1 for the true GSO. Let us propose the matrix

S′ = V̂�V̂�, where � denote the eigenvalues of the true S,
and compute the ε needed for (32) to hold. We have that

‖S− S′‖F =
∥∥∥∥∥
∑

i

λiviv�i −
∑

i

λiv̂iv̂�i

∥∥∥∥∥
F

≤
∑

i

λi‖viv�i − v̂iv̂�i ‖F

≤ 2N
∑

i

λi‖vi − v̂i‖2, (33)

where the first inequality is an immediate application of the
triangle inequality and the second one follows from expanding
the Frobenius norm. Regarding the second term in (32) we can
leverage the fact that

∑
j S1 j = 1 to obtain∑

j

S′1 j − 1 =
∑

j

(S′1 j − S1 j ) =
∑

i j

λi([v̂i]1[v̂i] j − [vi]1[vi] j )

≤ 2N
∑

i

λi‖vi − v̂i‖2, (34)

where the second equality stems from the eigendecomposition
of S′ and S whereas the inequality follows the same reasoning
as in (33). Combining (33) and (34), we have that (32) is
satisfied if we select

ε =
√

8N
∑

i

λi‖vi − v̂i‖2 ≤ C′′δ P−1/4, (35)

where the inequality is derived from (30) and (31) by absorb-
ing all quantities that do not depend on P into the constant C′′δ .
Having identified an S′ and an associated ε such that (32) is
satisfied, we may rely on [12, Prop. 2] to establish that for all
P > P0, with high probability,

‖S∗P − S‖1 ≤ CP0ε ≤ CδP−1/4, (36)

where the final inequality follows by substituting ε as in (35)
and merging all constants into Cδ . �

C. DERIVATION OF (20)
Recall that the matrix Cxyx is symmetric and PSD, and hence,
it can be eigendecomposed as Cxyx = Vxyxdiag(λxyx )VT

xyx

with VxyxVT
xyx = I and [λxyx]i ≥ 0 for all i. Our goal is to

show that, if Hxx is symmetric, then any solution to

Cxyx = HxxHT
xx. (37)

has the form given in (20), that is

Hxx = C1/2
xyxVxyxdiag(b)VT

xyx, (38)

where C1/2
xyx is the principal square root of Cxyx, and b ∈

{−1, 1}N is a binary signed vector.
Focus first on (38) and observe that C1/2

xyx =
Vxyxdiag(λ̄xyx )VT

xyx, with [λ̄xyx]i ≥ 0 and [λ̄xyx]2
i = [λxyx]i

for all i. Hence, (38) can be alternatively written as
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Hxx = Vxyxdiag(λ̄xyx )VxyxVT
xyxdiag(b)VT

xyx

= Vxyxdiag(λ̄xyx � b)VT
xyx. (39)

We now shift focus to (37). The symmetry of Hxx implies
that: i) the eigendecomposition Hxx = VHxdiag(λHx )VT

Hx is
guaranteed to exist; and ii) the right-hand-side of (37) can be
written as HxxHT

xx = H2
xx = VHxdiag2(λHx )VT

Hx. Since this
latter matrix has to be equal to Vxyxdiag(λxyx )VT

xyx, the left-
hand-side of (37), we readily have that: a) the eigenvectors of
Cxyx coincide with the eigenvectors of Hxx; and b) the eigen-
values of the two matrices of interest satisfy diag(λxyx ) =
diag2(λHx ). This is exactly the form in (39), with [λ̄xyx]i =
|[λHx]i|, [b]i = sign([λHx]i ) and Vxyx = VHx. �

D. PROOF OF PROPOSITION 4
From (11) it follows that

Cy,1 = HCx,1H = HUdiag(λ1)UT H = Qdiag(λ1)QT ,

where we have implicitly defined Q := HU. Notice that the
basis U is completely determined since all eigenvalues in λ1

are distinct [cf. A-1)]. Similarly, for the second diffusion pro-
cess we obtain that Cy,2 = Qdiag(λ2)QT . Furthermore, if we
define the matrix Rx = [λ1,λ2]T ∈ R

2×N , and the N × N × 2
tensor Cy (with slices along the third mode given by Cy,1 and
Cy,2), then the partial symmetric PARAFAC decomposition
of Cy factors into the matrices Q, Q, and Rx; see [24], [63].

Recall that the Kruskal rank of a matrix A ∈ R
N×M (de-

noted by kr(A)) is defined as the maximum number k such
that any combination of k columns of A constitutes a full rank
submatrix. In this way, from condition A-2) it follows that
kr(Rx ) = 2 and from the invertibility of H [cf. A-4)] it follows
that kr(Q) = N . Leveraging established results on the unique-
ness of PARAFAC tensor decompositions (see [24, Theorem
1]), it holds that a PARAFAC decomposition of Cy recovers
Q and Rx up to scaling and rotation ambiguities. However,
given that we know Rx a priori, part of those ambiguities
can be resolved; see e.g. [24, Lemma 1]. To be more precise,
it holds that we can recover Q′, where Q′ = Qdiag(b̄) for
some unknown b̄ ∈ {−1, 1}N . However, the following lemma
establishes how to uniquely recover b̄, and the uniqueness of
H = QUT = Q′diag(b̄)UT follows.

Lemma 2: Vector b̄ ∈ {−1, 1}N can be found as the only
vector (up to sign) such that Q′diag(b̄)UT is symmetric.

Proof: Combining the facts that H = Q′diag(b̄)UT for
the true b̄ and that H is symmetric, we can conclude that
Q′diag(b̄)UT is symmetric. Thus, we are left to show that
no other b′ ∈ {−1, 1}N leads to a symmetric Q′diag(b′)UT .
To show this, begin by defining the symmetric matrix
P := Udiag(b̄)diag(b′)UT . Hence it follows that if indeed
Q′diag(b′)UT = (Q′diag(b′)UT )T then

HUdiag(b̄)diag(b′)UT = Udiag(b̄)diag(b′)UT H. (40)

This means that H and P must commute and this requires them
to be simultaneously diagonalizable. However, since U and V
(the eigenbasis of H) do not share any eigenvector [cf. A-3)],

this can only happen if P = I or P = −I. Hence, we must have
that b′ = b̄ or b′ = −b̄ and identifiability of b̄ is guaranteed.�

E. PROOF OF PROPOSITION 5
Using properties of the Khatri-Rao product, feasible graph
filters H ∈ Hsym

M satisfy the system of equations [cf. (22)]

Ambm = vec(H), m = 1, . . . , M, (41)

with matrices Am defined in the statement of the proposi-
tion and for some binary vectors bm ∈ {−1, 1}N . Based on
(24), the equations in (41) can be compactly and equivalently
rewritten as

�b = 0, A1b1 = vec(H). (42)

Under the assumption that the covariances {Cy,m}Nm=1 are
perfectly known, then the filter H can be uniquely identi-
fied (up to a sign ambiguity) provided rank(�) = NM − 1.
This way, ker(�) has dimensionality one and the basis vec-
tor b∗ = [(b∗1)T , . . . , (b∗M )T ]T ∈ {−1, 1}NM of the aforemen-
tioned null space can be used to recover the filter via A1b∗1 =
vec(H). Moreover, the desired solution of (42) can be equiva-
lently obtained from the BQP

b∗ = argmin
b∈{−1,1}NM

‖�b‖22,

which is identical to (25). �
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