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Abstract
Signage systems are critical for communicating spatial information during wayfinding among a plethora of noise in the
environment. A proper signage system can improve wayfinding performance and user experience by reducing the perceived
complexity of the environment. However, previous models of sign-based wayfinding do not incorporate realistic noise or
quantify the reduction in perceived complexity from the use of signage. Drawing upon concepts from information theory,
we propose and validate a new agent-signage interaction model that quantifies available wayfinding information from signs
for wayfinding. We conducted two online crowd-sourcing experiments to compute the distribution of a sign’s visibility and
an agent’s decision-making confidence as a function of observation angle and viewing distance. We then validated this
model using a virtual reality (VR) experiment with trajectories from human participants. The crowd-sourcing experiments
provided a distribution of decision-making entropy (conditioned on visibility) that can be applied to any sign/environment.
From the VR experiment, a training dataset of 30 trajectories was used to refine our model, and the remaining test dataset
of 10 trajectories was compared with agent behavior using dynamic time warping (DTW) distance. The results revealed
a reduction of 38.76% in DTW distance between the average trajectories before and after refinement. Our refined agent-
signage interaction model provides realistic predictions of human wayfinding behavior using signs. These findings represent
a first step towards modeling human wayfinding behavior in complex real environments in a manner that can incorporate
several additional random variables (e.g., environment layout).
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Introduction

Wayfinding and orientation in built environments are
essential aspects of people’s daily lives. Many of these
environments are unfamiliar and thus require wayfinding
assistance. There are various types of “knowledge in
the world” (i.e., external knowledge) [1] that can help
individuals find their way such as signs, maps, landmarks,
and fixed geometric aspects of the environment [2–5].
Signs can be particularly easy to understand because they
require less abstraction than you-are-here maps, to adapt
because they can accommodate changes to the environment,
and to quantify because they allow for the measurement
of relevant information [6]. Indeed, recent research has
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validated the importance of the perception, interpretation,
and usage of the directional information provided by
signage systems for improving evacuations [7]. In order
for agent-signage interaction to be effective, signs should
communicate meaningful navigation information among a
plethora of noise, and the agent must be able to perceive
and interpret such information. A proper signage system
can reduce the perceived complexity of the environment
and improve wayfinding performance and user experience
[8]. However, existing measures [9, 10] are insufficient
by themselves for assisting designers in the reduction of
complexity/uncertainty (i.e., information) using signage.

The most important features of a biological, cognitive
system are the abilities to perceive, act, and learn. Many
researchers have built computational models of intelligent
cognitive systems [11–13] that can cooperate with other
agents in a shared workspace towards a common goal [14],
perform decision-making during path-planning and avoid
obstacles with flying drones [15], and perceive information
from an unfamiliar dynamic environment [12]. These
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abilities can also be characterized in terms of Shannon
information theory [16, 17]. Indeed, Fuster and colleagues
[18] defined the perception-action cycle as the circular
exchange of information from the environment to sensory
and motor structures and back to the environment via goal-
directed behavior.

Information theory is a branch of mathematics used to
describe the manner in which uncertainty can be quantified,
manipulated, and represented [19, 20]. This uncertainty can
be used to characterize the transmission of information
in various communication systems [21], including those
from computer science [22], philosophy [23], physics [24],
and cognitive science [25]. Information may be transferred
within and between internal and external representations of
space [26, 27] and requires a source, channel, and receiver.
For example, we define the source as the wayfinding
information afforded by a signage system, the channel as the
agent’s sensory and perceptual apparatuses used to interpret
the information, and the receiver as the knowledge of a
sign’s directional information acquired by an agent. During
the process of information flow from the source to the
receiver, there is a loss of information that can occur for
various reasons. Here, we do not investigate these reasons
but instead focus on the quantity of information that is lost.
Information theory quantifies such loss during transmission
as uncertainty caused by the noisy channel and can be used
as the foundational principle for quantifying wayfinding
information in the environment.

With a similar focus on environmental constraints, Wang
and colleagues [28] suggest that humans use a model-based
predictive approach to anticipate the physical dynamics
of the environment and plan a movement. Researchers
have also generated smooth movement trajectories for
agents using optimization algorithms such as particle
swarm [29]. With the present approach, we employ
information theory in order to provide realistically smooth
trajectories along uncertainty gradients for agent path
planning. For an artificial agent to demonstrate realistic and
purposeful behavior, this agent should possess the abilities
to explore, identify, and internalize information from its
immediate surroundings. Recently, Marghi and colleagues
[30] argued in favor of developing information processing
frameworks that focus more on learning and the formation
of internal models than direct geometric processing of
spatial information for reasoning.

In the present work, we develop and test a biologically
inspired computational model of human-signage interaction
based on information theory. Towards this end, we conducted
two crowd-sourced online experiments and one VR lab-
based experiment to refine and validate our proposed cogni-
tive model. There are four main contributions of this paper:

– An information-theoretic approach to quantify the
information provided by a signage system and to
facilitate wayfinding in an environment.

– Two crowd-sourced experiments to compute the param-
eters of an agent-signage interaction model.

– An information gain-based approach for spatial
decision-making from signs.

– A VR experiment to refine and validate the proposed
agent-signage interaction model.

To anticipate, our refined information theoretic model
substantially improved the extent to which we can
predict human wayfinding trajectories in virtual reality.
Because of its foundation in information theory, the
model affords greater flexibility with respect to different
sources of information and noise and can be used in the
future to predict wayfinding behavior in more complex
environments.

Background and Prior Work

According to Gibson [31], an agent’s perception depends on
the pick up of invariant information from the environment.
In his theory, affordances are the invariants that are
relevant for the interaction between an agent and an object
[32]. Heft [33] has applied this theory to the influence
of environmental properties on navigation behavior, and
Norman [34] has expanded the concept of affordances to
include design thinking. These environmental properties
may include the design and placement of signage.

In order for signs to provide ecologically relevant
information, they need to be visible and interpretable
[35]. An appropriate signage system can facilitate the
communication of wayfinding information from the world
to the individual agent [36]. Previous research has
demonstrated that signage has distinct advantages over
maps for navigating the built environment [37, 38]. Indeed,
O’Neill [38] found that signs with text led to a reduction
in incorrect turns and an overall increase in wayfinding
efficiency compared with graphic signage (i.e., an arrow;
see also [39]). Studies that have employed simulations
and user experiments have suggested that the focus of
visual attention can be improved with signage redesigns [9,
35]. Also, signage can elucidate the relationship between
crowding and well-being [39], reduce simulated casualties
[40], and improve simulated evacuation times [41].

For the most part, agent circulation and evacuation models
have neglected the agents’ interaction with the signage sys-
tem [42]. In such models, the underlying assumption is that
agents have full knowledge of the world and can compute
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the route beforehand. This oversimplification leads to inac-
curate simulation results because these models do not incor-
porate signage detection errors. Filippidis and colleagues
[42] presented the first evacuation model (BuildingEXO-
DUS) to include agent-signage interaction using the concept
of Visual Catchment Area (VCA). The VCA of a sign is the
region in which an agent can physically perceive wayfind-
ing information from a sign and can be approximated with a
circle [43]. Indeed, analyses based on the VCA can be used
to improve the wayfinding design process by visualizing the
VCA of a sign together with path circulation and optimizing
the sign location and orientation to maximize sign’s visibil-
ity around the nearby circulation paths [44]. The VCA of a
sign is calculated using the location of the sign, the height
of the agent, the viewing angle, and the size of the letter-
ing on the sign. Xie and colleagues [41, 45] experimentally
computed the detection rate and compliance rate (i.e., accu-
racy) of a sign in terms of familiarity, relative orientation,
and level of directional information conveyed by the sign.
They found that the environment in which the signs were
positioned influenced human-signage interaction. However,
these authors assumed that participants in their experiment
apprehended information from the sign and would have
acted consistently once they detected the sign.

Other researchers have proposed different methods for
designing signage systems and modeling agent-signage
interactions for evacuations and wayfinding scenarios. For
example, Tseng and colleagues [46] used Building Informa-
tion Modeling (BIM) technology for designing the signage
system of a public building that was more effective than
traditional procedures. They also suggested that the archi-
tectural plan and signage layout can be processed simul-
taneously in a BIM collaborative environment. Similarly,
Motamedi and colleagues [47] proposed a system for opti-
mizing the arrangement of directional and identification sig-
nage in BIM-enabled environments. Their system estimated
optimal signage arrangement based on signage visibility
and legibility for a 3D pedestrian model. However, signage
detection and interpretation was not considered [47], and
the agents’ paths were not affected by the navigation infor-
mation provided by signage. Consequently, the empirical
evaluation of cascading decisions along a route containing
several signs (i.e., wayfinding) was infeasible.

Different models of wayfinding behavior have assessed
agent-signage interaction with various signage parameters.
For example, Hajibabai and colleagues [48] proposed a
wayfinding simulation in a 2D environment model using
directional signage for emergency evacuation during a fire.
The agents in this simulation could decide their routes of
movement based on perceived signage and fire propagation.
However, the visibility and legibility of the signs were

estimated using simple heuristics, and signage detection
was not considered. Recently, signage-based wayfinding
simulation has advanced by incorporating different signage
parameters. Chen and colleagues [49] proposed and tested
a wayfinding simulation algorithm based on 3D structural
information, including doorway width and height, the
contrast and intensity of the signage, and room illumination.
Along with Morrow and colleagues [50], this study [49] is
difficult to apply to the evaluation of a signage system with
respect to wayfinding because the proposed model did not
incorporate agent-signage interaction.

Simulations of human-signage interaction also require
the optimization of sign placement in order to improve
wayfinding. For example, Lin and colleagues [51] proposed
a cellular automata model for optimizing directional signs in
terms of congestion to facilitate occupants’ wayfinding in an
airport terminal. Other researchers have optimized similar
simulations in terms of visibility [52, 53]. For example,
Tam and colleagues [52] optimized a binary linear model
for sign placement in terms of the ratio of the number of
available sight lines and the total number of sight lines
that exist throughout the terminal. Similarly, Zhang and
colleagues [53] proposed another model based on cellular
automata for human-signage interaction during a simulated
evacuation based on the coverage area of individual signs
and the overall coverage of the signage system.

Some researchers [35, 54] have proposed schemes for
wayfinding simulation based on agents’ perception of
directional and identification signage in a 3D environment
model. In these simulations, each successive walking
direction of each agent was determined autonomously based
on navigation information from the perceived signage.
Signage perception was determined using estimations of
signage visibility and legibility that were based on the
visual perception of the pedestrian model. However, the
detection of the perceived sign and the interpretation of
information provided by the sign were not considered in
these simulations.

Information theory may provide the flexibility required to
incorporate various physiological (e.g., visual acuity), phys-
ical (e.g., VCA), and psychological (e.g., interpretation)
factors into agent-based wayfinding models. Previously,
information theory has been employed to measure scene
complexity in computer graphics [55] and to automatically
compute ideal viewing positions for polygonal scenes based
on viewpoint entropy measures [56]. Turkay and colleagues
[57] proposed an information theory-based framework that
automatically controls the movement of the virtual cam-
era in a crowded environment. They have extended their
framework to control the behavior of an agent in crowd sim-
ulations to include variability in and realism of movement
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[58]. While Turkay and colleagues [58] focused on individ-
ual differences among agents in a crowd, the present work
emphasizes the cognitive capacity of an individual agent
given knowledge in the world.

Preliminaries

In this paper, we examine dominant physical and psycho-
logical factors such as a sign’s visibility, the agent’s height,
and spatial decision-making.

Signage and Environment Model

In the proposed model, a signage system consists of a
set of signs. Individual signs are represented by their
legibility attributes along with a list of goal locations.
These attributes include saliency, text legibility distance,
sign visibility distance, sign type, comprehension time, and
content. Each sign is considered an asset, and the sign’s
property is assigned during its creation as a property-set in
BIM [59]. Table 1 in Appendix A lists the sign’s attributes
and describes each attribute in detail.

Grid Maps

In the proposed framework, the navigable surface of a
3D environment is divided into an array of rectangular
grid cells. This array is a virtual grid map of the 2D
floor plan that is used as a reference point for an agent’s
location. The size of a grid cell is set to 1 m by 1
m because it approximates the average step length and
size of an adult. The selection of this particular grid cell
size allows us to match agents’ step size to the step size
of human participants in later VR studies. In addition,
this grid cell size provides a balance between computing
time and the similarity of simulated trajectories. Each grid
cell has several parameters that store essential wayfinding
information. These parameters can include whether the grid
cell is walkable or obstructed, a binary list of the sign’s
visibility value, and a list of the entropy values of each sign
from that grid cell. For a comprehensive list of grid cell
parameters, see Appendix B.

Agent Model

We embed two physical aspects of humans (i.e., visual
acuity and height) into the agent framework. In the proposed
model, the agent’s visual acuity is considered normal (i.e.,
20/20). An average eye height of 1.72 m is considered for
the dynamic sign visibility check.

Visual Perception Model

In wayfinding research, visual cues in the built environment
are a human’s primary source of distal information [60].
Indeed, several researchers have developed vision-based
techniques for enabling mobile robots and virtual agents to
detect and react to information in their environment [61]. In
order to realistically model the interaction between agents
and their environment, a human-like visual perception
model should focus on the first-person perception of signage
while considering dynamic occlusions [62]. In our model,
both the horizontal and vertical fields of view (FOV)
are modeled to realistically simulate the agents’ visual
perception. The effective horizontal FOV is 120 degrees in
order to account for human neck rotation [63] during search
behavior (i.e., before the sign is detected). The effective
vertical FOV is 60 degrees once a sign is detected to
simulate focused visual attention.

Visual Catchment Area

The VCA of a sign is the region in which an agent can
physically perceive wayfinding information from a sign.
The calculation of a sign’s VCA is described below:(

b

sin(o)

)2

= x2 +
(

y − b

tan(o)

)2

(1)

Here, o is the angular separation of the sign and the agent, b
is half of the size of the sign’s surface, and P(x,y) represents
the agent’s location. The center of the VCA is at location
(0, b

tan(o)
) with a radius of b

sin(o)
.

In our proposed signage visibility model, we simplify the
calculation of the sign’s VCA as suggested by [43]. The
VCA of a sign can be reliably simplified to an approximate
circle with its radius equal to half of the viewing distance
for the sign’s lettering height. For all of the experiments
conducted for this paper, we have used a lettering height of
152 mm and have considered the radius of the VCA circle
to be 20 m.

Dynamic Sign Visibility Check

The dynamic sign visibility check is a runtime sign visibility
test for dynamic occlusion. When an agent enters the VCA
of a sign, a dynamic visibility check is performed to check
for any occlusion (from another agent or physical barriers)
in the visual field of the agent. Five rays are cast from the
eye position of the agent to a sign (see Fig. 1a). Here, the
default value is 1.72 m (i.e., the approximate average height
of an observer’s eye above the floor). These five rays are cast
towards the center and four corners of the sign. If three out
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Fig. 1 Visualization of the dynamic sign visibility check. a Five rays
are cast from the eye position of two agents towards two different
signs. b Revised VCA after the dynamic sign visibility check with

occlusion. When there is an obstacle between the agent and the sign,
the grid cells contain no information (visualized here in white)

of five rays hit the sign unobstructed, the sign is considered
visible. Figure 1 b illustrates the manner in which obstacles
affect the VCA of a sign.

QuantifyingWayfinding Information
in a Sign

We apply the principles of information theory to quantify
the information provided by signage in a virtual envi-
ronment. While many physical and psychological factors
influence the effectiveness of signage systems (e.g., color,
contrast, interpretability, and attentiveness), we focus exclu-
sively on signage visibility and decision-making confi-
dence.

According to information theory, entropy represents the
amount of uncertainty in a random variable as a probability
distribution. The Shannon entropy of a discrete random
variable X that can take possible events of x1, ..., xn is

H(X) = E(I (X)) = −
n∑

i=1

p(xi) log2 p(xi) (2)

We model the entropy of a sign’s visible information P(l, s)

as a measure of the navigation-relevant information that
is available to an agent at location l from sign s. Let
X(l, sa) be a random variable that represents a particular
piece of information at a location l and sign sa . The
probability of a particular value for the random variable
X(l, sa) will depend on the distance of sign sa from
the location l and the relative angle between location l

and sign sa . The probability distribution is generated by
sampling information X from sign sa at l for 1000 iterations.
Based on our experiments, we found 1000 samples to
provide a reasonable trade-off between the granularity of
calculations and computing time. Further investigations are

needed to determine the sensitivity of our calculations to this
parameter.

The uncertainty function U(l, sa) represents the likeli-
hood of viewing information from a sign sa at location l as
a function F :

U(l, sa) = F(μ, σ) (3)

μ is proportional to the distance and relative angle between
sign sa and location l. Larger distances and relative angles
between sign sa and location l result in higher values for
μ (i.e., closer to 1), and σ represents the decision-making
confidence at location l conditioned on μ.

These two relationships form the basis of I (sa) (i.e.,
the actual information contained in sign sa) and can be
combined with Eq. 3 to calculate P(l, sa):

P(l, sa) = Noise(I (sa), U(l, sa)) (4)

P(l, sa) is the entropy of the sign sa for an agent at location
l. We then substitute P(l, sa) for p(x) using Shannon’s
entropy equation (Eqs. 2) and 4 to obtain a measure of
entropy for a sign from the observer’s location.

The work conducted by Filippidis and colleagues [42]
assumes a relationship of the relative direction between the
agent and the sign with the probability of being visible. In
this paper, we empirically compute the essential measures
of sign visibility confidence (μ) inside the sign’s VCA and
the sign’s decision-making confidence ( σ ) after the sign’s
detection. Sign visibility confidence is vital to assess the
accuracy of sign legibility from various locations for an
agent. Because spatial decision-making after sign detection
is dependent on the sign’s legibility, we compute decision-
making confidence conditioned on the sign’s visibility. To
understand the relationship between the two measures and
to generate two distributions, we conducted two online
crowd-sourcing experiments using Amazon Mechanical
Turk (AMT) [64]. AMT is an online crowd-sourcing service
in which anonymous workers complete web-based tasks.
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The advantages of an online study include lower cost, faster
data collection, and greater experimental control compared
with real-world studies. While real-world studies can
provide better ecological validity, they are often infeasible
in this context.

The first experiment investigated sign visibility as a
function of observation angle and distance. In the second
experiment, we assessed decision-making confidence as a
function as a sign’s visibility. Together, these experiments
were used to compute the relationship between decision-
making confidence and sign visibility.

Experiments

Experiment 1: Sign Visibility as a Function of Observation
Angle and Distance

The purpose of this study was to determine the relationship
between the visibility of a sign from various viewing
distances and observation angles within the VCA of a sign.
Specifically, the experiment tested the hypothesis that the
visibility of a sign is a continuous measure rather than a
binary value inside the VCA (cf, [43]).

Design

We used the Unity 3D game engine (https://unity3d.com/)
in order to generate the layout of a simple environment,
including a basic wall and floor with gray textures (see
Fig. 2a). For each trial, the sign was placed on a wall at
a height of 3 m from the floor. For an example of a sign,
see Fig. 2b. For the text on each sign, five characters were

a

b

Fig. 2 Example stimuli from Experiment 1. a A screenshot of a sign
in the testing environment. b A sign with five characters that were
randomly generated

randomly chosen from a pool including “A-Z” and “0–9.”
We excluded characters such as “S” and “5,” “0” and “o,”
and “1” and “l” because they are difficult to distinguish from
one another. We also excluded special characters because
they are not commonly used on signs. We used alphabetic
letters and numbers because this arrangement is most
common (e.g., “GATE A24”). The generated characters
were then written on a sign with a green background and
white font. The text height was selected to be 152 mm.

The VCA of each sign was calculated with a radius of
20 m as described in “Visual Catchment Area.” The VCA
was then divided into grid cells that were 0.5 m2. To reduce
the number of grid cells, we used a semi-circle VCA instead
of the entire VCA. Every other grid cell was then selected
from the remaining grid cells. In total, 108 grid cells at
various distances and angles from the sign were selected
as the final locations. A First-Person Character (FPC) was
created in Unity 3D with a height of 175 cm, and the camera
was placed at an approximate height of 172 cm in order
to approximate eye position. Screenshots were then taken
inside of Unity 3D by rotating the FPC to face the sign
directly from each of the selected grid cells.

We conducted a pilot experiment in order to choose
the resolution of these screenshots. A high-resolution
photograph of an “EXIT” sign was taken in a real
environment at a distance of 30 m. The photograph was
then scaled at three different resolutions (i.e., 2600 ×
1462, 2700 × 1288, and 3000 × 1688) and printed on
high-quality paper. Fifteen participants (7 women and 8
men) were taken to the same “EXIT” sign in the real
environment and asked to stand at the same place from
which the photograph was taken. Three different resolution
photographs were then shown to the participants, and they
were asked to select which of these three photographs was
visually closer to the real-world view of the sign. Eight
participants selected the photograph with the 2700 × 1288
resolution, five participants selected the photograph with the
2600 × 1462 resolution, and only two participants selected
the photograph with the 3000 × 1688 resolution. Based on
these results, we chose a resolution of 2700 × 1288 to be
used in all experiments. In order to fit the image on various
desktop screens on a web-browser, these screenshots were
then cropped to a resolution of 600 × 400 by keeping the
sign at the center as shown in Fig. 2a.

In order to maintain participants’ focus and attention, the
experiment was divided into two smaller sub-experiments,
each with 54 randomly selected signs. Each sub-experiment
was created using a popular online survey platform named
Qualtrics (https://www.qualtrics.com/uk/). A link to each
sub-experiment was then added to the AMT platform with
the assistance of the ETH Decision Science Laboratory
(DeSciL). The DeSciL is a multidisciplinary experimental
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laboratory dedicated to the study of human decision-making
behavior [65]. In total, 45 min were required for 108
participants to complete the online experiment.

Procedure

Ethics approval was acquired for all experiments from
the ethics commission at ETH Zurich (EK 2016-N-73).
Participants were asked to complete a consent form before
starting the experiment. After informed consent, they were
given an online eye test in order to select those with 20/20
visual acuity. After the eye test, participants were given
three practice trials in order for them to become familiar
with the questionnaire. They were explicitly instructed
not to perform any zoom operations in order to avoid a
penalty. Participants were then shown the 54 different sign
images and asked to type the text from each sign into
the textbox provided just below the image. Participants
were told beforehand that the text was not case-sensitive.
After the presentation of the 54 images, they were asked
to enter demographic details, including their gender, year
of birth, number of HITS submitted on AMT, and visual
acuity. Finally, participants could provide feedback on the
experiment in another textbox.

Participants

Participants on AMT are mostly located in the USA and
India. Besides having to be located in these countries, there
were no other eligibility criteria. Of the AMT participants
who reported their gender, 55.37% selected male, 44.62%
selected female, and 0.006% selected other. The age of

participants ranged from 18 to 54 years. Data were collected
from 307 participants for this experiment.

Results

A total of 307 participants (154 for one sub-experiment
and 153 for the second sub-experiment) completed the
experiment. The data from two participants were discarded
because they performed poorly on the visual acuity
test. Participants who performed a zoom operation and
participants who entered random text (e.g., “AAAAA”) were
also discarded. After eliminating these data, 120 responses
from the first sub-experiment and 134 responses from the
second sub-experiment were analyzed.

Levenshtein distances (LD) were used to analyze
responses [66]. LD measures the similarity between two
strings by calculating the minimum number of editing
required to convert the incorrect sequence into the correct
sequence (i.e., edit distance). For example, LD for the two
strings “XPGT1” and “XPCT1” is 1 because only one
editing step is required to change “C” in the latter string
to match “G” in the former string. The mean LD (mLD)
for each image was used to calculate visibility error in
percentage.

The K-Nearest Neighbor (KNN) [67] search was con-
ducted to find the nearest visibility error (number of neigh-
bors = 1, NSMethod = “kdtree”) for those grid cells that
were excluded from the experiment by referencing the vis-
ibility error computed for all 108 grid cells (see Fig. 3).
A visibility error range of 0 to 33% was computed from this
experiment. Consistent with [43], the results revealed a grad-
ual decrease in visibility towards the perimeter of the VCA.

Fig. 3 The K-Nearest Neighbor (KNN) search algorithm was used to
estimate visibility error for the grid cells that were not considered in
Experiment 1. Red indicates higher error (%), and blue indicates lower

error. Each dot represents one grid cell from Experiment 1. a Visibil-
ity error plot for the 108 grid cells tested in Experiment 1. b Visibility
error plot for every grid cell within a sign’s VCA after applying KNN
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Experiment 2 - Relationship Between Decision-Making
Confidence and the Visibility of a Sign

The goal of Experiment 2 was to assess the relationship
between decision-making confidence and the visibility of a
sign from various locations.

Design

Again, we used AMT to collect data for Experiment 2.
To generate a set of screenshots, we first computed the z-
score values for the visibility error (in %) from Experiment
1 for each grid cell inside the VCA. Grid cells with z-
scores above 0 (i.e., greater than the mean z-score) were
further considered. In order to reduce the number of grid
locations for the experiment, one side of the circular VCA
was discarded because the VCA is symmetrical. Grid cells
with non-unique z-scores were also discarded to remove
redundancy. Grid cells with unique z-scores were randomly
selected. To balance the two halves of the VCA, half of
the grid cells were randomly selected and replaced with
the corresponding grid cells from the other half of the
circle. The final selected grid cells are visualized in Fig. 4a.
Screenshots were taken from these grid cells using the same
resolution as in Experiment 1. An example sign for this
experiment is shown in Fig. 4b. The height of the lettering
was also maintained at 152 mm.

Fig. 4 Stimuli from Experiment 2. a The grid cell locations (red dots)
selected to generate screenshots. b Example of a sign

Procedure

Participants were asked to complete a consent form at
the beginning of Experiment 2. After consent, participants
were given three practice examples to become familiar with
the experiment. Similar to Experiment 1, participants were
instructed not to perform zoom operations in order to avoid
a monetary penalty. Participants were asked to select the
correct direction to reach a particular gate for each of 57
different screenshots with randomly selected goal locations.
Possible direction choices included left, right, and none
of the above. Participants were informed before beginning
the trial that the goal location may not be mentioned on
some of the signs. The none of the above option was added
to prevent guessing based on a subset of the characters
displayed on the sign. Participants were asked to enter their
basic demographics, including gender, year of birth, number
of HITS submitted on AMT, whether they wear corrective
lenses, and their feedback on the experiment.

Participants

Of the AMT participants who reported their gender,
54.31% chose male, and 45.69% chose female. The age of
participants ranged from 18 to 64 years old. A total of 171
participants’ data were collected for Experiment 2. The data
from 20 participants were discarded because of guesswork,
premature abortion of the experiment, and the performance
of zoom operations.

Results

The relationship between decision-making confidence
and visibility confidence is plotted in Fig. 5a. With a
100% sign visibility, maximum decision-making confidence
was found to be 88%. Using the data from both
experiments, conditional entropy [P(A|B)] between the
visibility and decision-making was computed for each
grid cell (see the “Quantifying Wayfinding Information
in a Sign” section).

Simple linear regression in R was used to predict
decision-making confidence given the visibility confidence
of a sign. Here, R2 represents the fit of the linear regression
model, yint represents the value at which the line intersects
the y-axis, Bvis represents the slope of the line for the
relationship between decision-making confidence and sign
visibility, pB represents the probability of obtaining this
coefficient or anything more extreme by chance, and the
95% CIB represents an estimated range of values that is
likely to contain the true slope. This regression revealed a
significant relationship between sign visibility and decision-
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Fig. 5 Results of Experiment 2. a Scatterplot of the significant rela-
tionship between sign visibility and decision-making confidence. Even
with a 100% visible sign, some participants decided incorrectly. b Den-
sity map visualization of wayfinding decision entropy from each grid

cell within a sign’s VCA from Experiment 2. Grid cells in a warmer
color (red) represent high entropy/uncertainty and grid cells with a
colder color (blue) represent low entropy/uncertainty

making confidence, R2 = 0.161, yint = 40.74, Bvis = 0.47,
pB = 0.00112, 95% CIB = [0.195, 0.741].

We computed wayfinding decision entropy conditioned
on sign visibility using Eq. 4 for each grid cell inside a sign’s
VCA. In Fig. 5b, we visualize decision entropy as a density
map inside a sign’s VCA.

Information-Theoretic Model of Agent
Wayfinding

In this section, we propose an agent-signage interaction
model that is grounded in spatial decision-making with a
signage system. Experiment 1 highlighted the continuous

Fig. 6 Overview of the agent-signage interaction model. Each box
represents a particular state of the agent, and the arrows represent tran-
sitions between states. Emphasis is placed on the information gain

phase during which the agent moves down an uncertainty gradient
towards grid cells with higher decision-making confidence
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relationship between distance/angle and a sign’s visibility.
Experiment 2 revealed a linear relationship between decision-
making confidence and sign visibility. The proposed model
was informed by data from these two experiments.

During a wayfinding task, agents search for cues that can
help them navigate their surroundings. In the presence of a
relevant sign, agents can pick up the wayfinding information
it affords. The agent’s interaction with a sign can be divided
into a series of phases, including searching for a sign,
detecting a sign, approaching a sign, gaining information
from a sign, decision-making, and acting on the decision.
Figure 6 presents the steps involved in the proposed signage-
based agent wayfinding system. Below, we describe these
phases in detail.

Exploration Phase

The interaction of an agent with a sign starts when the agent
first notices its presence. An agent may be outside of the
sign’s VCA and unable to perceive what is written on the
sign. However, the agent can still see and walk towards the
signboard in the absence of any intermediate signs.

Decision Node Phase

While exploring, if an agent approaches a decision point
(e.g., a location with a potential change in direction) and has
not found the relevant sign, the exploration phase changes
to the decision node phase. In the decision node phase, a
random directional decision is made based on the number of
directional choices possible at that intersection. The agent

then moves in the chosen direction, and the agent switches
back to the exploration phase.

Signage Discovery Phase

When an agent finds a sign or a set of signs and is within
one or more signs’ VCAs, the agent state is changed from
the exploration phase to the signage discovery phase. This is
shown as location B in Fig. 7a. Detected signs are added to
a list, and the nearest sign is selected to be approached first.
The iteration through the list is based on the nearest sign and
stops when either the agent has found a correct sign with
some confidence or none of the signs has the correct goal
information. In the former scenario, the signage discovery
phase is changed to the information gain phase. In the latter
scenario, the agent state returns to the exploration phase.

Information Gain Phase

During a wayfinding task, an agent has to choose a particular
route from several possible route options. Before making a
decision, humans intuitively reduce uncertainty as much as
possible. The information gain phase captures this process
of reducing uncertainty in a computational model. The
process of information gain begins when an agent is within
the VCA of a sign. In Fig. 5b, we present the decision-
making entropy at individual grid cells. Notably, there is a
gradual reduction in decision-making entropy with the con-
current reduction of distance and relative angle from a sign.

In Fig. 7, we demonstrate this process in detail. This
phase begins when an agent enters the VCA of a sign. Once

Fig. 7 Detailed diagram of the information gain phase. a Overview
of an agent’s interaction with a sign. b Zoomed-in view of nine grid
cells within a sign’s VCA. The agent can move to any of the neighbor-
ing grid cells indicated by the arrows. X is the entropy of perceiving
the sign from that grid cell, and D is the distance (in meters) between
the grid cell and the sign. Movement towards the next grid cell is

determined by searching the neighboring grid cells (1–8) from the cur-
rent agent location at grid 5. c Zoomed-out view of a larger section of
a sign’s VCA. Grid cells with darker shades of green indicate higher
entropy/uncertainty. An example agent’s path is shown by the curve
marked with orange triangles 1 to 7
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inside the VCA, the agent moves to the adjacent grid cell
with the lowest entropy value among all neighboring cells.
If all the neighboring cells have the same entropy value, then
the agent moves to the grid cell nearest to the sign. This
information gain process continues until the agent crosses a
low entropy threshold. Once an agent reaches a grid cell at
or below this threshold, the agent acts on this information
by switching to the execute signage phase.

Two important parameters for the information gain phase
are Lookahead Distance (LD) and T hreshold Entropy

(T E) value. LD is the number of grid cells between an
agent’s current location and the grid cells being considered
during the information gain phase. A smaller LD would
result in constant jitter in the approach towards the sign, and
a larger LD would result in a smoother approach towards
the sign. Both extremes are unrealistic, so we conducted a
virtual reality (VR) experiment in order to determine the
ideal value (see the “VR-based Experimental Optimization
and Evaluation of Agent Wayfinding Model” section). T E

is the value below which the agent decides to act on the
information gained from a sign, thus marking the end of the
information gain phase. This parameter was held at 0.54 bits
for all reported simulations.

Execute Signage Phase

In this phase, the agent acts on the decision by walking
towards the directional vector indicated by the sign (see
location E in Fig. 7a). This phase ends once an agent sees
the final goal and is within its VCA. Otherwise, the agent
state changes back to the exploration phase after the execute
signage phase, and the wayfinding process continues.

Disorientation Phase

The disorientation phase begins when the agent cannot find
a sign that indicates the correct goal and is disoriented.
Specifically, this phase starts when an agent has walked
more than two times the inter-sign distance (e.g., 2 × 40 m
for the simulations below). This parameter may be adjusted
to match different wayfinding scenarios.

Fail-Safe Phase

This phase is reached when an agent attempts to explore
the environment and cannot locate a valid sign. The
disorientation phase changes to the fail-safe phase after
the agent has walked more than four times the inter-sign
distance (e.g., 4×40 m for the simulations below). Here, the
agent abandons the search for its goal and continues with the
next task on their task list. When there are no further tasks
to be performed, the agent exits the building via the nearest
available known exit.

VR-based Experimental Optimization
and Evaluation of AgentWayfindingModel

The primary aims of the VR experiment were to inform
the parametric design of an agent-signage interaction model
and to understand the human-signage interaction process.
We conducted this VR experiment with 40 participants
(tested individually). Participants were asked to locate
a goal using a sequence of two signs. For each of
nine trials, walking trajectories were collected from the
participants during the wayfinding task. The resulting
dataset was randomly divided into two groups of 30 and
10 participants. We used the larger group (30 participants)
to compute the two identified parameters as discussed in
the “Information-Theoretic Model of Agent Wayfinding”
section. The second group of 10 participants was used to
validate the revised agent-signage interaction framework.

Design

A Manhattan-style 3D grid network (see Fig. 8) was created
using Autodesk Revit [68] and then imported into Unity
3D. The 3D environment included two directional signs,
each at one of three possible locations. This resulted in nine
different combinations of signs. Three possible locations for
sign placement were chosen systematically and placed at the
top-center (S1/S4/S9/S12), center-center (S2/S5/S8/S11),
and bottom-center (S3/S6/S7/S10) of the four intersections
as shown in Fig. 8. For each trial, only a pair of directional
signs were shown. The 3D environment also had a few
foil signs (i.e., signs that indicated the direction of non-
targets) and a destination sign at each possible destination.

Fig. 8 3D environment used for the VR experiment. S1 to S12
indicates possible sign locations that were used for the experiment.
D1 to D6 indicates possible target goal locations for the participant’s
wayfinding task
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The designs of these signs were based on the signs used
in Experiment 2. Participants were tested with a desktop
computer with a mouse-and-keyboard control interface. The
computer used for the experiment was a custom build
Lenovo PC running Windows 10 with Intel Core i7 with
3.4 GHz processor and 16 GB RAM. The computer was
connected to a Samsung monitor with 28-inch diagonal and
a resolution of 3840 × 2160 pixels. A standard bluetooth
enabled Logitech keyboard and mouse were used as input
peripheral devices.

Procedure

Before starting the experiment, participants were briefed
about the VR setup, their rights as participants, and the

experimental tasks. Participants sat on a chair positioned
at the center of the screen at a distance of 1.5 m. With
an interactive video, participants were then trained on
the usage of the mouse-and-keyboard control interface
for navigating in the virtual environment. For every trial,
participants were randomly assigned a start location from
the nine starting points (see Fig. 8). Participants were then
shown instructions for the wayfinding task in which they
searched for a particular destination (e.g., “Gate C2”).
Each participant completed 9 trials, each containing two
directional signs. The text on the directional signs and
the sign locations were randomly varied for every trial.
The trial ended when either the participant successfully
reached the vicinity of the destination or made a incorrect
turn. Participants were informed beforehand that the task

Fig. 9 a–i Trajectory visualization for 30 participants (black) and 30 simulated agents (blue) over 9 trials with different combinations of sign pairs.
The look ahead distance was set to 2 grid cells (2 m). Notably, we observe incorrect decision-making by some participants in trials 4, 5, and 8
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might end abruptly and that this was unrelated to their
performance. We recorded participants’ trajectories and the
time required to complete each trial.

Participants

A total of 40 people (15 men and 25 women) participated
in the VR experiment. All participants were students from
the National University of Singapore (NUS). No other
eligibility criteria were set. Participants’ age ranged from 19
to 31 years old (Mean = 23.3, Standard Deviation = 2.37).
The self-reported rating of their wayfinding ability on a 100-
point rating scale ranged from 60 to 100 units (Mean =
84.75, Standard Deviation = 12.40).

Results

We collected 360 trajectories in total, 15 of which
were towards an incorrect destination (see Fig. 9). We
selected all of the trajectories from 30 randomly selected
participants and compared them with 30 simulated agents.
The trajectories for the simulated agents were based
on the agent-signage interaction model as discussed in
the “Information-Theoretic Model of Agent Wayfinding”
section. The default value for LD was 2, and the default
value for TE was 0.54 bits (i.e., entropy value computed
from the 88.2% decision-making confidence obtained in
Experiment 2). A small delta value of 0.01 was introduced
to generate variation in the agents’ trajectories. Incorrect
trajectories were not included in the computation of these
parameters. These errors may be attributable to the front

directional arrows shown on both trials 5 and 8 instead of
left/right directional arrows. These front directional arrows
may have been confusing because they were less common
(2 of 9 trials).

Participants’ and agents’ trajectories differed during the
information gain phase, but the grid cells at which the deci-
sions were executed were similar for both participants and
agents. Most of the participants appeared to walk in a
straight line using approximately the shortest unobstructed
path in the direction of the sign, assuming the sign was visi-
ble, in order to minimize the travel time. The agents’ trajec-
tories were straight until they exited the sign’s VCA. Once
an agent entered a sign’s VCA, its trajectory changed by
walking towards the immediate grid location. We observed
that this lookahead information gain continues until the
agent was in direct alignment with the sign in considera-
tion. Afterwards, the trajectory was mostly straight until the
agent decided to act on the apprehended information from
a sign. This location was decided based on the T E value of
0.54 bits. On average, the grid cells at which the decisions
were executed varied in the visibility range of 80–100%.

Participants’ trajectories demonstrated that, once a sign
was detected and visible, people tend not to make an
immediate decision and navigate towards the next sub-goal
location. Instead, they tended to approach a sign in order
to gain more wayfinding information and improve decision-
making confidence inside the sign’s VCA before acting on
it. In the absence of distractions such as other virtual agents,
elaborate textures on the wall, shop fronts, or landmarks,
decision-making error was negligible (0.02% or 20 out of
720 decisions for 9 trials).

Fig. 10 Visualizations of the relationship between lookahead dis-
tance and the similarity between participants’ and agents’ trajectories.
a Visualization of an agent’s trajectory data (in black) with dif-
ferent values for lookahead distance ranging from 2 (right-most
curve) to 32 (left-most curve) in increments of two for one example

trial. The red trajectory is the mean of 30 participants’ trajectories.
b A graph depicting the relationship between lookahead step size and
DTW distance between participants’ mean trajectories for trial 1 and
the corresponding trajectory from an agent
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Fig. 11 Histogram of the decision-making entropy values computed
from participants’ observed trajectories

Parameter Computation

To improve the proposed agent-signage interaction model,
we parametrically computed the value of LD and T E.

Lookahead Distance Variation in an agent’s trajectories
with different values for LD (ranging from 2 to 32) for one
example trial is shown in Fig. 10a. In order to compare the
differences between participants’ and agents’ trajectories,
we used dynamic time warping (DTW) [69]. DTW is
an algorithm for calculating the similarity between two
trajectory sequences that may vary in time or speed. For
example, similarities in walking patterns could be detected
using DTW. Figure 10b shows the plot of DTW distances
between the mean of 30 participants’ data with the mean
of 30 simulated agents’ data for the same trial. With
the increase in LD, the mean agent trajectory begins to
straighten up and becomes closer to the mean participant
trajectory (see Fig. 10a). This is captured in the reduction

Fig. 12 a–i Mean trajectories for 10 participants (black) and 10 simulated agents (blue) over 9 trials with different combination of sign pairs after
informing the agent-signage interaction model with the refined parameters
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of DTW distance between the two mean trajectories. This
indicates more similarity between the two mean paths.
At an LD of 28 and above, an agent’s trajectory stops
straightening and changing, and the trajectory remains
the same for higher LD. In addition, the DTW distance
becomes constant after an LD of 28 (see Fig. 10b).

These results suggest that participants conducted a
lookahead search of 28 m along an unobstructed path
towards a sign and approached the sign in a straight line
to minimize walking distance. Notably, a zig-zag pattern
would have led to a location with higher sign visibility.

Threshold Entropy - This is a critical parameter in the
agent-signage interaction model because the grid cells with
this value (or lower) cause agents to execute the sign’s
instructions. From participants’ trajectories, we noticed that
this occurs on the grid cells that have the sign visibility
range of 80 to 100%. A histogram of T E (extracted from
30 participants’ data) is plotted in Fig. 11. The majority
of participants’ decision-making entropy falls in two bins
(associated with 90–95% and 95–100% sign visibility
range). Instead of computing the mean of all the decision-
making entropy values and considering the mean as one
default value, the agent’s decision entropy was sampled
from the distribution provided by the histogram for each
agent-signage interaction during the wayfinding process.

Simulation Results and Validation

We updated the agent-signage interaction model with the
newly computed LD value of 28 and T E values to
be sampled from the distribution visualized in Fig. 11.
This refined agent-signage interaction model was used to
generate 10 new trajectories. The untouched test dataset
from 10 participants was used for the comparison and
validation. The mean trajectory data for 10 participants

Table 1 DTW distance between the mean trajectories for 9 trials
before and after parameter refinement in meters

Trials Before After

Trial 1 587.04 349.41

Trial 2 362.39 156.48

Trial 3 432.99 420.34

Trial 4 243.63 194.66

Trial 5 214.8 127.86

Trial 6 604.18 157.22

Trial 7 131.81 67.01

Trial 8 374.91 246.68

Trial 9 408.57 338.09

and 10 simulated agents after refinement of the interaction
model for nine trials are shown in Fig. 12. We visually
observed that the trajectory generated by the refined
agent model has variations similar to participants’ data,
concerning both the trajectories and decision points.
The decision points from agents’ trajectories mimic the
variability in and closeness to the decision points extracted
from the participants’ trajectories. Moreover, we observed a
reduction of 38.76% in DTW distance between the means of
both trajectories before and after refinement over nine trials
(see Table 1). According to a (nonparametric) Wilcoxon
signed ranks test, the difference between DTW distances
before and after refinement was significant, Z = 2.67, p =
.008.

Conclusion and FutureWork

In the present paper, we have proposed an information-
theoretic approach to modeling agent-signage interaction,
conducted two crowd-sourcing experiments that informed
the computation of a sign’s visibility and an agent’s
decision-making confidence, and conducted a VR experi-
ment in order to refine and validate our proposed model.
Our biologically inspired agent-signage interaction model
allows for greater flexibility by adding different types
of noise with respect to the environment (e.g., layout
complexity, crowds, and other distractions), signage (e.g.,
multiple information clusters, visual salience), and agents
(e.g., attention, reasoning, memory) because of the model’s
foundation in information theory. In general, this model
capitalizes on the advantages of information theory for rep-
resenting uncertainty in biological, cognitive systems. Our
model was motivated by the concept of VCA from Xie,
Fillipidis, and colleagues [41–43, 45] but elaborates on
the relationship between a sign’s visibility and the relative
angle and distance of the agent from the sign. Specifically,
we empirically computed two distributions that highlight
the continuous relationship between distance/angle and the
sign’s visibility.

These empirical distributions were generated using
two online crowd-sourcing experiments in which par-
ticipants judged the visibility of a sign from different
distances/angles (Experiment 1) and decided whether to
move forward, left, or right given signs at different dis-
tances/angles (Experiment 2). Together, these experiments
revealed that decision-making confidence was linearly
related to the visibility of a sign but that a visible sign
did not always lead to a correct decision. Using these data,
conditional entropy (i.e., decision-making confidence con-
ditioned on the sign’s visibility) was then used to inform
an initial configuration for the agent-signage interaction
model, which was later refined using an experiment in VR.
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The primary purpose of the VR experiment was to
inform two critical parameters (i.e., LD and T E) that
improved the realism of the agents’ wayfinding behavior.
Specifically, these parameters determined the extent to
which agents directly approached a visible sign and the
amount of information required for the agent to make a
decision. Refining these parameters led to more realistic
agent-signage interactions.

Information theoretic approaches to problems involving
one or two variables are well understood and widely
used [70], but the investigation of any complex system
would be insufficient if we restricted ourselves to only
one or two variables. Quantifying the information between
more than two variables remains largely unsolved. Several
multivariate information measures have been introduced to
analyze the relationships and interactions between two or
more variables [71]. However, the generated results using
multivariate information measures often differ significantly.
Future work should extend our framework to incorporate
three or more random variables.

This work in relatively simple virtual environments may
also be extended to complex and/or real environments by
investigating the influence of other quantitative variables
(e.g., spatial layout, crowd dynamics, spatial memory
retrieval) on agents’ decision-making confidence. These
other variables should first be studied in isolation and
then combined to understand their synergy and redundancy.
These information-theoretic concepts can then be used to
create an uncertain data fusion prediction model [72] for
agent wayfinding.
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of Zürich, Zürich, Switzerland
4 Digital Society Initiative, University of Zürich, Zürich,
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