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To improve the efficiency and effectiveness of designing signage systems in buildings, we present
AUTOSIGN - a design tool that supports user-in-the-loop and multi-criteria optimization of signage lay-
outs in complex buildings. We formulate signage placement as a multi-objective optimization problem
with competing objectives (i.e., total distance travelled, total number of turns, the centrality of decision
points, path overlap, and number of decision taken) and constraints (i.e., user-specified sign location and
orientation threshold), which we solve using a two-step approach. Firstly, an evolutionary method is
used to optimize all combination of navigation paths based on cognitively inspired objective functions
weighted by the designers. Secondly, a particle swarm optimization is used to optimize individual sign
placement to maximize the exposure of wayfinding information (i.e., signage coverage area) from the op-
timized navigation graph generated. To evaluate the effectiveness of the tool, we apply it to the design
of signage systems across two virtual 3D buildings. We generate signage layouts for both buildings and
optimize each of them for user-defined criteria. Both optimized and non-optimized layouts are evaluated
using an agent-based simulation. The simulation results demonstrate that even with fewer signs, the sig-
nage coverage area for the optimized layout increased by 18% on average. Finally, an expert-based VR

walk-through and a System Usability Study is performed to further evaluate AUTOSIGN.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Signage systems play an essential role in facilitating occupants’
wayfinding in complex buildings. A well-designed signage sys-
tem reduces perceived spatial complexity of a built environment,
thereby improving occupants’ ability to find their way from an
origin to a destination [1]. More importantly, during emergencies,
signage provides essential information to help occupants evacuate
through emergency exits and reach safe areas.

In the design of signage systems intended to support efficient
and safe wayfinding, a central challenge is the positioning of signs
in ’optimal’ locations. In large and complex buildings with multiple
entrances and exits, leading to multiple combinations of passage-
ways and junctions, manual positioning of signs is a challenging,
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cumbersome and time-consuming design task. It is practically un-
feasible to manually account for the myriad of possible wayfind-
ing scenarios while considering various (often conflicting) design
objectives; direct occupants along the shortest route (e.g. in the
case of emergency), avoid redundancy of signs, maximize the vi-
sual catchment area (i.e., is the region in which an occupant can
physically perceive wayfinding information from a sign [2]) of a
sign with respect to the location of decision points, etc. Tradition-
ally, signage evaluation and design are based on general guidelines,
expertise, and paper mock-ups, all of which rely heavily on design-
ers’ intuition and experience.

More recently, Virtual Reality (VR) walk-throughs and spatial
analysis methods have also been employed to inform manual sig-
nage design, and in particular signage placement. Despite their ad-
vantages, both methods are highly laborious and time-consuming,
and yet, neither one is able to explicitly inform signage placement
to improve the overall range of wayfinding scenarios, or visibil-
ity constraints due to the building configurations and human per-
ception. Poor design of signage systems that conflicts with either
the building design or human perception may cause stress, reduce


https://doi.org/10.1016/j.cag.2020.02.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cag
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2020.02.007&domain=pdf
mailto:rodubey@ethz.ch
mailto:e0032014@u.nus.edu
mailto:michal.gath@gess.ethz.ch
mailto:choelsch@ethz.ch
mailto:mubbasir.kapadia@rutgers.edu
https://doi.org/10.1016/j.cag.2020.02.007

14 RK. Dubey, W.P. Khoo and M.G. Morad et al./Computers & Graphics 88 (2020) 13-23

wayfinding efficiency and pose a threat to the evacuees [3]. The
effort required to manually design signage systems to account for
all factors is considerable and can rapidly scale up in a complex
building.

To improve the efficiency and effectiveness of designing signage
systems in buildings, a computational approach that can automate
the process of signage positioning and evaluation is necessary.
This paper presents AUTOSIGN - a computer-aided signage design
tool that supports a user-in- the-loop, multi-criteria-optimization
of signage layouts in complex buildings. AUTOSIGN employs a
multi-objective genetic algorithm for path optimization based on
various cost functions followed by particle swarm optimization to
determine the optimal sign placement based on visual coverage
area.

The architectural design process of buildings consists of vari-
ous stages, from preliminary design to construction. Throughout
this process, the level of detailed information encoded in build-
ings’ representation (i.e., floorplans, 3D BIM model) varies from
highly abstract to highly detailed. To support informed signage de-
sign throughout the various stages of a building’s design process,
AUTOSIGN is intentionally designed with minimal input require-
ments. To that end, AUTOSIGN allows the users to control the
level of detail at which the building geometry is exported (i.e.,
depending on the design stage). Once the building model is ex-
ported AUTOSIGN automatically generates an optimized signage
layout onto the 3D model. The signage layout includes both the
physical locations of signs in space and the directional informa-
tion (arrows) corresponding to each sign. The tool provides the de-
signer/user with the flexibility to manually translate and rotate the
sign position and orientation.

The main deliverable of this paper is AUTOSIGN: an interactive
user-in-the-loop design and optimization system for signage place-
ment in complex mixed-use environments (e.g., transportation
facilities, shopping malls). AUTOSIGN is powered by two main
contributions: (1) an automated approach to extract wayfinding
decision points from raw 3D building geometry to serve as the
basis for estimating the wayfinding complexity of an environment.
(2) Formulation of signage design as a two-step optimization
process. First, we perform multi-objective optimization to select
the most effective combination of route choice criteria to form
a weight vector that produces routes between each pair of O-D.
Second, we present a particle swarm optimization-based approach
to determine an optimal sign positioning that maximizes signage
coverage area.

To validate the effectiveness of the tool, we apply it to the de-
sign of signage layouts for two virtual 3D mixed-use buildings. Sig-
nage layouts for both buildings are first generated and then op-
timized for user-defined criteria by AUTOSIGN. Both optimized
and non-optimized layouts are evaluated for occupants’ wayfind-
ing performance using agent-based-simulation and expert-based
VR walk-through. We also evaluate the signage-design variations
by systematically adjusting the relative influence of the proposed
cost functions. Finally, the performance results from a System Us-
ability Study with experts is presented.

2. Related work

The evaluation of signage systems in buildings is a complex
task. Traditionally, signage evaluation and design are based on ex-
pert intuition, expertise, paper mock-ups or post-occupancy as-
sessments [4]. More advanced methods include the use of spatial
analysis tools to measure various visibility and inter-visibility re-
lated aspects (e.g. isovist, Visibility Graph Analysis (VGA) or Vis-
ible Catchment Area (VCA)) of a building layout or a proposed
signage system [2]. Another approach uses immersive virtual en-
vironments, whereby experts 'walk-through’ a virtual 3D model

of a building to evaluate either the potential location of signs or
the appropriateness of proposed signage layouts [5]. The work in
|6] proposed a wayfinding simulation to evaluate the design of di-
rectional signage systems in 2D for evacuation purposes. The main
shortcoming of this work lies in its simplified formulation of hu-
man vision, which fails to account for sign legibility and detection.
These evaluation methods (i.e. spatial analysis, expert-based vir-
tual walk-through, agent-based simulation) support the assessment
of distinct aspects related to wayfinding employing sign-following.
A VR walk-through performed by experts who simulates wayfind-
ing from the perspective of potential occupants could be use-
ful to provide a qualitative assessment of wayfinding performance
(e.g. hesitation points). By having an expert conducting the walk-
through, it may be possible to overcome the phenomena known
as 'momentary suspension of disbelief observed in lay participants
who navigate in virtual environments with low-level of detail
and realism [7]. In contrast, an agent-based simulation approach
could provide a quantitative assessment of wayfinding perfor-
mance given different signage layouts and varied user groups (e.g.
walking distance) while considering many origin and destination
pairs. These methods could be regarded as complementary to one
another.

Lin et al. [8] proposed a method to optimize directional signs to
facilitate occupants’ wayfinding in a complex transportation termi-
nal (i.e., airport terminal) using a mathematical model. The place-
ment of signs was guided by a cellular automation model that
accounts for environmental conditions, such as crowd conflicts
and congestion conditions. Tam et al. [9] proposed a binary lin-
ear program for better allocation/placement of directional signs for
wayfinding. In their study, they used a quantitative measure called
visibility index (i.e.the ratio of the number of sight lines that
are available and the total number of sight lines that should ex-
ist within the terminal) for evaluating the ease of wayfinding. Re-
cently, Zhang et al. [10] developed a system in which a minimum
number of evacuation signs and their locations in a hall are deter-
mined automatically by using a cellular automata-based evacuee-
signage interaction model. Similarly, Motamedi et al. [4] proposed
an agent-driven signage optimization in a BIM-based 3D environ-
ment. Their proposed tool had predefined scenarios to compute
signage coverage area and overall visibility of the buildings signage
system. However, both approaches fail to account for (a) signage
noticeability (b) spatial complexity of building layouts [10] and (c)
inter-dependency between signage information received and co-
dependent directional signs. [4] proposed an interaction between
the Digital Human Model (DHM) and directional signage based on
visual perception, driven by sign lo- cation, visibility, noticeability
and legibility. Though they provide validation by conducting ex-
periments, the small sample size (six), cannot be considered as a
thorough and conclusive validation.

One common limitation among these methods is the separa-
tion of signage design generation and signage evaluation. To ad-
dress this gap, AUTOSIGN provides a holistic approach that allows
designers to iterate between signage design and evaluation. This
approach is by no means a new one and is built upon a previously
laid foundation of Computer Aided Architectural Design (CAAD),
in which high-level goals and constraints are defined. Using the
power of computation, a broad design space is automatically gen-
erated and evaluated in an iterative manner [11-14].

Recently, much attention is given to human-centred design
methodology for proposing an easily walkable built-environment.
Authors in [15] propose an integrated approach by bridging human
factors with environmental factors. Factors such as visual, acous-
tic, and pedestrian thermal comfort are essential to be considered
while designing a public space for easy and stress-free navigation.
Authors in [16] proposed a crowdsourced indoor navigation sys-
tem named SoleWay. In their work, they involved end-users of a
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2. Computer-Aided Signage Design Workflow
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Fig. 1. AUTOSIGN Framework Overview. AUTOSIGN begins by taking a 3D building model, navigation tasks and user-assigned optimization parameters (Step 1), followed
by an automatic pre-processing of a 3D input model, extraction of decision points, and generation of initial signage placement (Step 2). Then, multi-objective signage
optimization phase produces optimized signage design based on various wayfinding cost functions to maximize the signage coverage area (Step 3). Lastly, an agent-based
simulation and a VR walk-through are used to evaluate signage design from the perspective of occupants’ wayfinding (Step 4).

system in the early stages of indoor navigation guidance develop-
ment to improve the usability of the system. Authors in [17] pro-
poses a biologically inspired computational model of human-
signage interaction based on information theory. They conduct a
crowdsourced experiment and virtual reality-based experiment to
identify the role of information gain inside the visual catchment
area of a sign for wayfinding decision making.

In general practice, signage placement is carefully carried out
by complying building regulation and standards. For example, rec-
ommendations made in British Standard BS 5266 Part 4 provide
guidelines about the format of the graphical symbol on the escape
route sign, size depending upon maximum viewing distance, and
photometric performance of traditional internally illuminated signs
[18]. NFPA Life Safety Code Handbook [19], suggests that reflective
signs with lettering height of 152 mm are legible up to a distance
of 30 m. Such regulations and standards are extremely effective in
designing the signage system. However, the decision as to where
the signage system is placed in large complex structures is usu-
ally made when the structure is empty [20]. After the furnishing
and other fittings, the signage system may become less effective
or even invisible due to furnishing obstructions.

Finally, to the best of our knowledge, existing work done on
automatic signage design systems in indoor built environment are
limited in (a) its ability to account for the spatial complexity of sig-
nage placement (b) its ability to account for wayfinding literature
to inform the optimization process.

Comparison to State-of-the-Art- Greenroyd et al. in [21] pre-
sented a tool that aid signage placement by using wayfinding met-
rics found in the literature. One limitation of their approach is the
use of single wayfinding metric at a time, instead of multiple met-
rics, to generate a signage design. Thus, to incorporate more than
one wayfinding metrics, a designer has to run the analysis multi-
ple times. Many researchers including [22] have used visual atten-
tion patterns to aid the placement of various visual elements such
as advertisement location on a website [23], and count the num-
ber of passersby to measure the exposure of advertisement pan-
els in [24]. Though these researches motivate us to investigate the
benefit of eye tracking based gaze prediction in the proposed sign

location optimization step (Section 5), we leave it as an extension
in future works.

Recently, Huang et al. [25] made an attempt to leverage
optimization-based methods to resolve the complexity of signage
design problems. In their work, they proposed automatic wayfind-
ing optimization to generate optimized navigation paths for a large
scale outdoor environment. Their method requires a designer to
specify various navigation scenarios for the system to automat-
ically generate an optimized signage design based on optimized
paths. The approach uses a graph to represent the input layout,
and the user/designer has to manually place nodes at intersections,
entrances, and points of interests. Despite being able to overcome
some of the aforementioned limitations, their method requires a
designer to manually place nodes (signs) at each intersection. The
agent’s interaction with the sign is basic, random errors are intro-
duced to simulate realistic wayfinding. Also, their work considered
only a single path for each Origin-Destination (hereinafter referred
to as O- D) pair which is not sufficient to account for the vari-
ous path combinations arising from a single O-D pair. Our work
aims to leverage on the motivating work in [25] and improves it by
(a) automating the manual identification of decision points for sign
placement (b) using a realistic agent-signage interaction model to
run wayfinding simulations, and (c) optimizing signage location to
improve its visibility and overall coverage area.

3. AUTOSIGN - a computer-Aided signage optimization
framework

In this section, we present an overview of AUTOSIGN and
briefly explain each component of the framework (Fig. 1).

3.1. Initial building design

To generate signage layout and to optimize it, AUTOSIGN re-
quires three inputs: (1) building Geometry: the building input for
AUTOSIGN can vary in the level of detail, ranging from a simpli-
fied 3D CAD model to a more detailed BIM model. At this point
of the frameworks’ development and to enable users to apply the
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Fig. 2. Step by step visualization of the decision point extraction method. (a) Top down orthographic view of an intersection. The navigable surface is divided into grid cells
of 0.50.5m. The center of each grid cell is a candidate for the decision point. One probable decision point at the center is highlighted with a red circle. Sphere-cast with
0.5m radius is performed from the center and iteratively increased till it hits a static object(s) (i.e., point 1 and 2). (b) The hit surface(s) is(are) temporarily removed from
the environment, and iterative sphere-cast continues until it hits another static object(s) (i.e., point 3 and 4). (c) All successful decision points (i.e., each having three or
more sphere-cast hits) are shown. (d) The decision points close to each other are combined to represent one decision point.

proposed tool at different design stages, BIM-based semantic in-
formation linked with building geometry is not processed to in-
form signage generation or optimization. Instead, a geometrical
approach to process a 3D building model is applied to extract
the buildings’ navigation graph. (2) O-D pairs: navigation tasks
should be defined in the form of O-D pairs situated with respect to
the building layout. (3) Optimization Parameters: designers assign
weights to wayfinding cost functions based on the function of the
building and design objectives, which in turn drive the signage op-
timization module. Given the varying level of detail in the process
of signage design, AUTOSIGN is intentionally designed to operate
with varying levels of information on building geometry and nav-
igation tasks, and hence could aid designers through the different
phases of signage design, from preliminary to advanced. Moreover,
given that signage optimization parameters might change in the
course of the design process, the user-in-the-loop function allows
designers to add, eliminate or change signage optimization crite-
ria, adapting the optimized signage design layouts generated itera-
tively.

4. Computer aided signage design work-flow

In this section, a detailed account of the computer-aided sig-
nage design work-flow (step 2 of Fig. 1) is provided. Firstly, the
imported 3D map of the environment (i.e.,, automatically tagging
wall, floor, and other static features) is pre-processed to separate
the navigable areas from the non-navigable areas. This is achieved
by performing a ray-cast operation from a fixed height (computed
by extracting the bounds of the 3D environment) followed by a
sphere-cast operation (i.e., successful contact point from a small-
est sphere-cast along the ray-cast point on the floor). The naviga-
ble area is uniformly divided into grid cells of 1 m2. The center of
each grid cell location is registered as an input for the next stage
of decision point identification.

4.1. Decision point extraction

Decision points play a crucial role in the design of a signage
system. Decision points are the locations at which occupants need
to perform a navigational decision concerning paths and directions
to select. This highlights the importance of correct decision points
extraction. Aiding these decision points with directional signs are
essential to implementing an efficient signage design. Carpman
et al. [26] suggested that decision points should exist at more
places other than intersections of paths/corridors. Decision points
may include a change in the direction of a primary path, changes
in environmental cues, merging of two paths, entrances and exits.

Fig. 2 illustrates the proposed decision point extraction algo-
rithm. An increasing overlap sphere is cast from each navigation
point until at least one obstacle is hit. The hit obstacle is temporar-
ily removed from the obstacles list, and the radius of the sphere-
cast is increased slightly (line 1-12 in Algorithm S1 in the support-
ing document) until it hits a new obstacle. Obstacle nodes that are
close to one another are considered to be in the same group. If
an obstacle exists between two obstacle nodes within a square en-
compassing the circle (checked with a raycast), the two nodes are
also considered to be in the same group. A decision point is formed
if three or more obstacle groups are hit. Finally, decision points
that are near one another are merged to optimize the number of
decision points (procedure “CleanUpDecisionPoints” in Algorithm
S1 in the supporting document). To showcase the broad applica-
bility of the proposed DP extraction approach, we test it on eight
real-world indoor environments with different floorplan layouts
and typologies (e.g. shopping malls, hospitals, and transit hubs).
The results are presented in Fig. S2 of the supporting document.
The results showcases that the proposed approach creates near-to-
perfect decision points in both corridor style and non-corridor ge-
ometry. Finally, a user-in-the-loop interface is provided to enable
designers to make final changes in the extracted DP by performing
the move, create, and delete operations before proceeding to the
next step.

4.2. Navigation graph: multiple path generation

Once the decision points are extracted, a Navigation Graph (NG)
= (V, E) is generated to represent the input floor layout, where V is
the set of extracted decision points, and E is the set of straight and
unobstructed navigation paths between pairs of decision points.
After the designer generates points of interest (e.g., entry and exit
of a building, toilets, reception desks), he or she can generate all
distinct paths between each O-D pairs with a click of a button.

For each O-D pair, all decision points are used as way-points
to find the least costly path (Section 5.1) from the specified ori-
gin to the specified destination via that way-point. The decision
points are first sorted based on their combined distance between
the origin and the destination. These paths are sorted by cost (i.e.,
with equal weight for all cost functions), and the least costly path
is added as the first finalized path. Then, each decision point in
this path is marked as used, and the algorithm will iterate through
the list of decision points to find the next decision point with the
shortest combined cost that is not yet used. A path is created us-
ing this next decision point as a way-point, and paths similar to
any existing finalized path will be ignored. New paths are added to
the list of finalized paths and the decision points used to generate
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these paths are also marked as used. This process continues un-
til N number of distinct paths, as determined by AUTOSIGN users,
is reached, or until the list of decision points has been completely
exhausted. This process reduces the search space for the path op-
timization phase (Section 5).

4.3. Initial signage placement

Once the navigation graph is constructed, an initial signage de-
sign is generated. Firstly, signs without any directional texts are
created at the termination point (i.e., start/end) of each edge of
each path, with the duplicates removed. Every signboard is as-
signed to its parent decision point (i.e., from which it is gener-
ated). Then, the signboard assigned to each decision point is ac-
companied with directional information pointing towards the next
decision point in the path towards the terminal. The pseudo code
is provided to explain the algorithm in detail (Algorithm S2 in the
supporting document).

5. Multi-criteria optimization formulation

In AUTOSIGN, optimization of a signage design system is a
two-step process. Firstly, route choices between each O-D pair
is optimized based on user-defined multi-criteria cost functions
(Section 5.1) and secondly, the positions of the signboards are op-
timized in relation to their parent decision points for maximum
local sign coverage within the bounds determined by a designer
(Section 5.2).

5.1. Route choice based optimization

The decision points/junctions of an architectural space can be
represented by an undirected navigational graph Gy = (N, E). For
each O-D pair, multiple paths can exist between them. Combin-
ing all possible combinations of paths for all the pairs can make a
signage design process computationally expensive and unnecessary
cumbersome. To tackle this problem, AUTOSIGN relies on cogni-
tively inspired wayfinding cost functions (described below) to re-
duce the possible paths between each O-D pair.

5.1.1. Computation of wayfinding cost function

Human navigation (in both indoor and outdoor environments)
has been widely studied in behavioural and cognitive science [27].
Many researchers in this field have highlighted the challenges in
human wayfinding in an indoor environment. The challenges arise
due to the complex 3D space (i.e., disorientation after vertical
travel and poor cognitive map creation) [28]. Researchers have
proven that during wayfinding, humans pay attention to the to-
tal path length [29,30], route complexity (i.e., number of turns)
[31], and the curvature of the path [30]. Motivated by the literature
[32-36] and also as proposed in [25], five crucial wayfinding cost
functions are considered for the proposed optimization algorithm.

Total path length - Typically, occupants select the shortest
path during navigation. Hence, for each path between origin and
destination pair a cost, C,, is applied based on the length of the
path. The path length is calculated based on adding the metric dis-
tance of all navigational edges between an O-D pair in the overall
navigational graph (all navigational edges).

1

Cu = |P|Lrg
where |P|Lr is the normalization factor with |P| being the total
number of O-D pairs and Ly is the total length of all the edges
in the navigation graph. L(p) is the length of the path in consider-
ation.

L(p) (1)

Total number of decision points — Decision points are the lo-
cation where occupants need to make a wayfinding decision about
which direction to take. Paths with many decision points should be
avoided as it can induce stress to the occupants and lead to error.
Hence, for each path between an O-D pair, a cost function Cy, is
used to penalize the number of decision points used in each path:

1
Cap = WNdp(p) (2)
where |P|TDP is the normalization factor with |P| being the total
number of O-D pairs and TDP is the total number of decision point.
Ngp(p) is the number of decision point in the path in consideration.

Total path angle - According to spatial cognition [37], naviga-
tion paths with varying orientation disorients and confuses occu-
pants during wayfinding. It can cause discomfort, and stress [38].
In the proposed framework, straight paths are preferred and a cost
function Gy, is applied to penalize the path with a larger change
in the angle.

1
|P|  TDP x A

where |P|*TDP*A is the normalization factor with |P| being the total
number of O-D pairs and TDP is the total number of decision point
and A is the maximum turning angle between two adjacent edges.
Apa(p) is the sum of the absolute turning angle between the edges
in the considered path.

Global decision point degree centrality - Paths with fre-
quently visited decision points are encouraged by the proposed
system. It is crucial in some scenarios such as shopping mall and
other public gathering places to direct occupants to a common area
such as ticket counter, atrium or lobby for better crowd manage-
ment. The degree centrality of a decision point is calculated, and a
cost function is proposed to penalize the path with less frequented
decision point.

Cpa = Apa(p) (3)

Cpe = L(Tcdp — Centralityq,(p)) (4)
TCqp

where TCyy, is the total centrality of the overall decision points and
Centralityg,(p) is the sum of the centrality of all decision point in
the considered path.

Global edge overlap - Similarly, to force navigational path be-
tween different O-D pairs to overlap with each other, edges which
are frequented most commonly are selected in the design of pre-
ferred path between an O-D pair. A cost function C,, is provided
which penalizes the paths with less frequented edges.

1
Ceo = E(Toe —Te(p)) (5)

where Ty is the total count of each edge frequented and Te(p) is
the sum of the edges frequency in the considered path.

5.1.2. Multi-Objective — Random Weight Genetic Algorithm
(MO-RWGA)

In this section, we briefly describe Genetic Algorithm (GA) and
our reasoning behind choosing MO-RWGA as the optimization ap-
proach. A multi-objective minimization problem with K objectives
is defined as: X = x1, X5, ..., X, where X is a n-dimensional decision
variable vector in the solution space X. We have to find a vector
X' that minimizes a given set of K objective functions given as:
2(x*) =z1(X)). ..., zg (X).

The common approach to solve a multi-objective optimization
problem is by assigning weights to each objective functions and re-
ducing the model to a single objective problem with a scalar com-
posite objective function as:

F = wi0)(X) + ... + W0, (X) (6)
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where o; (x) is the normalized objective function o0;(x) and > w; =
1. Solving Eq. (6) with a pre-determined weight vector w =
Wi, ..., wy, generates a single solution. To explore alternative solu-
tions, a designer must manually vary the weight combination in
a process of trial and error. This approach is tedious and time-
consuming, even when the designer is highly familiar with the
problem domain.

To automate the process of generating an optimal weight vec-
tor, we propose MO-RWGA, in which random weights are gener-
ated for each solution space x; during the evaluation of a weighted
sum of multiple objective functions at each generation. The benefit
of this approach is to force multiple search directions in a single it-
eration without any additional parameters [39]. Wayfinding fitness
function WayfindingFitness (line 6 in Algorithm S4 in the support-
ing document) used in MO-RWGA is a linear combination of five
cost functions as shown in -

5

F=Y WG o)

k=1

where C;, corresponds to Cpy, Cyp, Cpa, Cyer Ceo and weights Wy, (ad-
justed by the designer according to the environment-specific sig-
nage design needs) are positive value satisfying

5
> We=1 (8)
k=1

Finally, we can define the proposed multi-objective optimiza-
tion problem which minimizes the wayfinding fitness cost function
computed above as:

0" = argmin(F (0)) (9)
0€U

where, 0" is the design vector, solution o belongs to the solution

space U and F(O) is computed using Eq. (7).

5.2. Signage coverage area based optimization

Once the optimized routes between O-D pairs (i.e., optimiza-
tion step 1) are generated, AUTOSIGN optimizes the parameters
of a sign (i.e., location and orientation) at each decision point to
maximise the sign’s local coverage area with a designer-specified
bound. In AUTOSIGN, a Particle Swarm Optimization (PSO) algo-
rithm is employed to adjust sign parameters. The strengths of the
PSO algorithm are its simple implementation and rapid conver-
gence to solve various optimization problems, which puts it on par
with many global optimization algorithms such as GA and simu-
lated annealing (SA).

5.2.1. Single objective function: Sign coverage area

The objective function for fine-tuning the optimal signage lo-
cation is based on its visibility catchment area (VCA). One known
way of computing the sign coverage area is its VCA [2,20]. The VCA
of a sign is the region where an occupant can physically receive
wayfinding information from a sign. The VCA of a sign is calculated
using the location of the sign, the height of the occupant, view-
ing angle, and the maximum distance from which the sign can be
seen, which is based on the font size. Later on, in [2,40], authors
simplified the VCA to an approximate circle with its radius equal
to half of the viewing distance. In AUTOSIGN, designers have the
flexibility to assign the value of the parameters mentioned above.
Simulations are generated based on the default values of occupant
height of 1.72 m, viewing angle of 120° and maximum viewing dis-
tance of 30 m. The single objective function with a set of parame-
ters, p, and their bounds (constraints), P, is expressed as a maxi-

Algorithm 1 Sign Coverage Area Cost Algorithm.
Input: S (Sign)
Input: P (New Position)
Input: DP (Parent Decision Point)
Input: A (Threshold Angle)
Input: Gy (All Grid)
Input: Dpqx (Max Sign Visibility Distance)

1: function Cost gyareq(S, P, A)

2 Translate(S) <random(P)

3 if distance(DP,S) > 0 and < DP,peshoq then
4: for all g; to G,; do

5 dist = distance(g;, S)

6 if dist < Dmax then

7: area + +

8: return area

mization problem to fit the parameters as follows:

P* = argmax(f(P)) (10)

peP

where f(P) is computed using Algorithm 1.
where S¢; is the sign coverage area calculated using the method
described in [40], P is the sign position and R is the sign rotation.
The initial sign placement (before optimization step 2) in
AUTOSIGN by default is at a distance of one meter from its parent
decision point, and the sign is oriented with its normal perpen-
dicular to the previous decision point in the navigation path. The
sampling of search space for a sign is bounded by a threshold dis-
tance from its parent decision point, and a threshold angle range
from its original orientation. These two constraints are formulated
as follows:

distance(S, DP) > 0 and < Dipreshold (11)

where Dypesnoid 1 kept as one meter to restrict the sign placement
being further from its parent decision point (given the fact that the
decision point is mostly extracted at the center of multiple path
intersection). The user of AUTOSIGN has a flexibility to tune this
value to suit the signage design needs.

—Athreshold < Angle(Sighpew, SigNgiq) < +Athreshold (12)

where, Agpreshoid 1S kept low (10-20°) to restrict a substantial de-
viation in the new sign’s relative angle from its previous decision
point (i.e., the direction of occupants’ approach). This is important
to prevent the sign from getting oriented towards another hallway
or open space for which it was not designed for. In Algorithm S3
(supporting document), we provide a pseudo-code of the PSO algo-
rithm for finding the optimized signage location. The cost function
Costcopareq to calculate the sign coverage area (line 7) in Algorithm
S3 is described in Algorithm 1.

6. Optimization and experimental results

To highlight the practical use of AUTOSIGN, we begin
by demonstrating the performance and time complexity in
Section 6.1. We highlight the improvement in the signage coverage
area by visualizing it in the form of heatmaps over two different
3D layouts (a virtual shopping mall and a virtual railway station) in
Section 6.2. We then generate simulations to demonstrate the ef-
fectiveness of signage design variations before and after optimiza-
tion in Section 6.3. Static images are not sufficient for an effective
demonstration of a user-in-the-loop aspect of AUTOSIGN; thus we
refer the reader to the accompanying video.
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Fig. 3. Best Fitness values over 250 generations for multi-objective - random
weight genetic algorithm.

6.1. Performance analysis

In AUTOSIGN, the navigational area of a 3D environment is di-
vided into rectangular grid cells. It is a virtual grid map of a 2D
floor plan which is used as a reference point for an agent’s loca-
tion. The size of a grid cell is set to 0.5*0.5m, representing the
average step length based on the average size of an adult. Aver-
age CPU time taken for generating the optimized path for all O-D
pairs in the signage system using the proposed MO-RWGA along
with the PSO optimization of individual sign location for two ex-
ample layouts is presented in Table 3. Note that the optimization
process in AUTOSIGN is a two-step process with MO-RWGA ex-
ecuted first, followed by the PSO optimization. Average CPU time
taken for generating the optimized path for all O-D pairs in the
signage system using the proposed MO-RWGA along with the PSO
optimization of individual sign location is reported for two exam-
ple layouts in Table 3.

6.1.1. MO-RWGA optimization

Fig. 3 shows that MO-RWGA reaches the optimal point after 250
iterations. De Jong et al. [41] recommended a crossover rate be-
tween 0.65 and 1, and mutation rate between 0.001 and 0.01 in
GA applications. In AUTOSIGN, the crossover probability level is
set as 0.8, and the mutation level is 0.05, where 0.05 is equal to
1/n, and population size n is set to 20. We achieve the best perfor-
mance with the above parameters over 250 iterations for both lay-
outs. Total time of 63.5 and 161.84 s was observed for the shopping
mall and railway station respectively. Higher computation time in
the case of the railway station was due to the higher number of
0-D pairs.

6.1.2. Particle swarm optimization

Fig. 4 shows that PSO reaches the optimal point after 300 iter-
ations. We achieve the best performance with 20 particles in the
swarm and 300 iterations. The average time of 3.96 s and 3.73 s
per sign was observed in the virtual shopping mall and the virtual
railway station respectively, as shown in Table 3. The efficency of
PSO can be further improved by precomputing sign visibility value
per grid.

6.2. Signage coverage area

Table 3 highlights the gain in signage coverage area after per-
forming PSO-based sign location optimization for all signs. We ob-
serve an increase of 16.22% and 19.06% in the sign coverage area
for the virtual shopping mall and the virtual railway station, re-
spectively. In Fig. 5, we demonstrate a micro view of sign cover-
age area gain for one example sign. We observe that the initial

Fitness
1650 1700 1750 1800 1850 1900 1950
1

T T T T T T T

0 50 100 150 200 250 300
Number Of Iterations

Fig. 4. Fitness result for one sign location optimization using particle swarm opti-
mization.

(b) After Optimization

(a) Before Optimization

Fig. 5. Representation of an increase in signage coverage area after PSO based sign
location optimization for one example sign. Note: the subtle change in the position
and orientation of the sign after optimization in (b).

placement of the sign was behind a wall and was not visible for
an occupant from the narrow corridor in between two walls. The
sign’s visibility was restricted to close proximity. After optimizing
its location, we notice an improvement in visibility and its cover-
age area as shown in Fig. 5(b). This increase in signage coverage
area can help in reducing the wayfinding error during navigation.
In Fig. 6, we showcase the overall gain in signage coverage for the
signage system in two different scenarios post-optimization. The
0-D pairs in both layouts are represented with an orange star.

6.3. Agent-based simulation to assess wayfinding performance across
signage layouts

Here, we present the result of generating wayfinding designs
under different signage design options for two very different lay-
outs - a virtual shopping mall and a virtual railway station. In
Fig. 7, we show the signage design generated before optimization
(maximal: best three possible paths from O to D), and after op-
timization (minimal: Best path based on cost functions). To high-
light the changes in the occupants’ navigation behaviour for dif-
ferent signage designs, we employ an agent-based simulation as
described below. We perform a wayfinding task for one randomly
selected O-D pair. We simulate 100 agents in each of the two con-
ditions and produce various wayfinding measures. We report our
findings in Table 1.

We employ a simple version of the agent-signage interaction
based wayfinding system that is inspired by vision-based wayfind-
ing simulation using a cognitive agent-signage interaction model
as described in [17]. In the proposed context, a signage sys-
tem consists of a set of signs S;. Individual sign comprises of its
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(a) Shopping Mall: Before

(b) Shopping Mall: After

(c) Railway Station: Optimization (d) Railway Station: Optimization

Fig. 6. A heatmap visualisation of an increase in signage coverage area after performing particle swarm optimization. We notice an increase in signage coverage certain areas
highlighted using dashed ellipses in (b) and (d). The areas shown in red are influenced by more number of signs and the areas shown in blue means they are influenced by
less number of signs. The area shown in black has no signage coverage. The orange star symbol represents the origin and destination. (For interpretation of the references

to colour in this figure legend, the reader is referred to the web version of this article.)

W N

(b) Most optimized shorted path after op-

(a) Multiple path route before optimiza-
tion timization

(c) Agent trajectories before optimization

(d) Agent trajectories after optimization

Fig. 7. (left) Navigational paths between origin and destination before and after path navigation optimization for virtual shopping mall. (right) Visualization of the simulated

agent trajectories before and after signage layout optimization for the same.

Fig. 8. Effect of varying the weights of edge overlap cost function on the edge con-
nectivity of a navigation graph. By varying the weights of edge overlap cost function
in the visualized navigation graph (a), an edge is removed (highlighted in orange el-
lipse as shown in (b)) and the connectivity is re-routed through a more centralized
edge as highlighted in green ellipse. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

Table 1
Various performance measures before and after signage design optimization for two
3D virtual layouts.

Environments Conditions Average  Average  #Signs Success
Distance Time Rate
Shopping Before Optimization 185.4 219 23 100%
Mall After Optimization  144.1 213 6 100%
Railway Before Optimization 311.8 122 12 100%
Station After Optimization  295.2 108 5 100%

legibility attributes along with the list of goal locations (4;, G;).
Two physiological aspects of an occupant are embedded in the
agent framework: occupants’ eyesight and height. In AUTOSIGN,
occupants’ eyesight is considered as near perfect with no defect
Average eye height of 1.72m is considered for running the simula-
tion. The user in AUTOSIGN can refine these parameters based on
the population distribution of a building.

An agent’s interaction with a sign can be broken down into
a series of phases such as searching for a sign, detecting a sign,

approaching a sign, perceiving the information written on a sign,
and finally acting on the decision made. In AUTOSIGN, a sign is
visible when an agent is inside the sign’s VCA and can see the
sign without occlusion. A dynamic visibility check is performed to
determine the latter. When an agent reaches an intersection (i.e.,
decision point), it begins looking for a sign. If a sign is detected
with the destination information, the agent proceeds towards the
direction provided. In the absence of a sign or a failure to detect
a sign, the agent randomly decides on the direction of one of the
sub-nodes of that specific decision point with equal probability.

For each O-D pair, N number of user-specified agents are
spawned and assigned a task of walking from origin to destina-
tion. An AUTOSIGN user can assign different values of N to simu-
late the signage design under different crowd densities. An agent’s
walking trajectory, distance walked, number of signs used, and suc-
cess/failure in reaching a goal are recorded. An agent successfully
reaches a sign when the distance travelled to the destination is less
than 1.5 times [25] the baseline distance (shortest optimal path
without any mistake). In all other cases, a failure is recorded for
that wayfinding trial. Simulation results were generated by assign-
ing agent’s walking speed to 1.5m/s. We simulate N = 100 agents
in each of the two conditions and produce various wayfinding
measures. We report our findings in Table 1.

6.3.1. Virtual shopping mall

We use the layout of a real-world shopping mall as an input
to design a simple 3D virtual shopping mall. The O-D pairs were
carefully chosen as a reflection of actual crowd flow. For the pur-
pose of simulation, one O-D pair was randomly selected out of five
and marked with a red circle as shown in Fig. 7(a). Fig. 7(a) and (b)
show the possible navigation paths from O to D before and after
optimization respectively. The respective agent trajectories are vi-
sualized in Fig. 7(c) and (d). The average distance travelled and the
average time taken by an agent to go from O to D before optimiza-
tion is relatively higher as shown in Table 1. More importantly,
the number of signs required after optimization was significantly
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Table 2

Quantitative analysis of signage design variation by changing the weights of cost
function on the average distance and time taken by 100 agents for a virtual shop-
ping mall (Fig. 8). PL (Total Path Distance), DP (Total Number of Decision Point), PA
(Total Path Angle), DC (Degree Centrality), EO (Edge Overlap). Lower weights sig-
nifies higher preference as the optimization function minimizing the total fitness
cost.

Cost Function Weights Avg. Distance (m)  Avg. Time (s)
PL DP PA DC EO

0.111 0222 0222 0222 0222 1512 208

0.222 0.111 0.222 0.222 0.222 162.4 211

0.222 0222 0111 0222 0.222 153.8 208

0222 0222 0222 0111 0.111 185.8 219

0.222 0.222 0.222 0.222 0.111 173.2 214

lower. This reduction in the number of signs reduces the clutter
of information and minimizes the cost of signage design. The
success rate of reaching the destination was 100% in both pre- and
post-optimization. Similarly, we performed signage design vari-
ation for a virtual railway station (Section 1 in the supporting
document).

6.3.2. Variation in signage design

In this section, we quantitatively and qualitatively evaluate the
signage-design variations by systematically adjusting the relative
influence of the proposed cost functions. In Table 2 we perform
a quantitative analysis by systematically changing the weights of
various cost functions and its impacts on the average distance tra-
versed and time taken by simulating 100 agents as described ear-
lier in Section 6.3. We notice that the average distance travelled
and time taken is lowest when higher preference is assigned to
the weights of Total Path Length, and Total Path Angle cost func-
tions. This is because both cost functions focus on minimizing the
distance and prefer straight path involves fewer turns. In Fig. 8, we
visualize the change in navigation graph by giving higher prefer-
ence to Total Edge Overlap (i.e., the weight is halved as shown in
the last row of the Table 2) Specifically, we notice that the nav-
igation edge between two decision points is missing in the area
marked with a semi-transparent orange ellipse (Fig. 8(b)) which
was earlier present (Fig. 8(a)). The path has been re-routed using
the edges marked with a green semi-transparent ellipse. This may
be important if the designer of the building wants people to navi-
gate via a particular area of commercial/safety interests.

7. User evaluation

AUTOSIGN was evaluated for two criteria: (1) system usabil-
ity from the perspective of a typical designer user. (2) Wayfind-
ing performance across optimized and non-optimized signage lay-
outs from the perspective of a novice occupant. To evaluate the
design and usability of AUTOSIGN (i.e. criterion 1), we conducted
a System Usability Test. To evaluate occupants’ expected wayfind-
ing performance (i.e. criterion 2) an expert-based VR walk-through
was carried out.

7.1. System usability test

To evaluate the design and usability of AUTOSIGN, we con-
ducted a System Usability Test (SUS) [42]. Four experts (two female
and two male, age 34.25 + 2.96 years) were recruited to partici-
pate in the usability study. None of them had previous exposure
to AUTOSIGN. They received a general introduction to AUTOSIGN
and a brief explanation of the user interface. Experts were asked
to use the system and design a signage system for a virtual 3D
shopping mall and a 3D railway station for N terminals (source
and destination). In addition, they were told to design the signage

(a) Pre-optimized signage layout (b) Post-optimized signage layout

Fig. 9. Heatmap analysis of experts stay-duration along path points in VR.

system with respect to the shortest path between each terminal
pairs. After completing the signage design, experts were asked to
evaluate AUTOSIGN’s user interface by completing an online SUS
survey. The average SUS score obtained was 63.75 + 4.84, indi-
cating a slightly below average (i.e., average SUS score is 68) SUS
level of usability and product acceptance. The values for adjec-
tive rating from the experts were “good”, “good”, “excellent” and
“good” which when converted to SUS score results in 74.925 (i.e.,
Grade B+ and Good) according to Bangor et al. [42]. This prelimi-
nary study conducted with a small number of experts indicates the
value of this tool in its ability to aid designers in the signage de-
sign process. This is evident in the reasonable usability scores and
the qualitative feedback given by the subjects as described below.
The SUS is slightly below the average. This can be attributed to the
low number of users and proof-of-concept nature of the user inter-
face. For future work, we will polish and refine the interface and
conduct a large scale study for a more definitive evaluation of the
tool. The comments received from the experts were encouraging,
and we list them below:

e Participant 1: ‘The tool is very useful and the layout generated
is not trivial. I would like to use it for additional design pur-
poses.’

Participant 2:‘The process is simple and results are powerful.
Still, I would prefer to use the tool inside a modeling software.’
Participant 3: ‘A great tool!.

Participant 4: ‘Would be great to access the 3D model after the
signage generation and adapt the model.’

7.2. Expert-based VR walk-through to assess wayfinding across
signage layouts

Once participants completed the first step of signage design
they were asked to perform a walk-through from the perspective
of a novice occupant. They repeated the walk-through again after
optimizing the signage layout. The ’first-person’ walk-through fea-
ture that was built-in to the AUTOSIGN interface was used to sup-
port this evaluation step. This type of expert evaluation aims to
leverage experts’ experience and cognition and provide an imme-
diate evaluation of the generated signage with regards to wayfind-
ing. Such feedback could prove especially useful in the context of
the architectural design process where complex experimental pro-
cedures are challenging to apply. A sample trajectory of one of the
experts chosen is showcased in Fig. 9. This expert was an archi-
tect with a high degree of familiarity with the layout of the rail-
way station. Fig. 9 shows the same navigation task (i.e. same O-
D pair) performed by the same expert across both optimized and
non-optimized layout. The following wayfinding performance mea-
sures were recorded; (1) distance covered (2) time to reach the
destination (3) stay-duration at decision points and (4) trajectory.
Results showcase analysis of a single expert who performed the
same task. The task was performed across both non-optimized and
optimized signage layouts for the case of the railway station. With
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Table 3

These results were computed on a standard computer Intel(R) Core(TM) i7-6700K with 4.00 GHz processor and 16 GB RAM for two different environments.
Note that while the system is not real-time, it is sufficiently fast to support the use of a user-in-the-loop.

Environments #0-D pairs  #Signs  Area Before Optimization (m2)  Area After Optimization (m2?)  Total GA Time (s)  PSO Avg. Time (s)
Shopping Mall 10 67 38,740 45,025 63.5 3.96
Railway Station 14 70 55,206 65,730 161.84 3.73

Table 4
Expert walk-through performance before and after signage design optimization for
the virtual railway station.

Signage Environment Task O-D  Distance (m) Time (s)
Non- Optimized  Zurich Train Station A-B 546 364
Optimized Zurich Train Station  A-B 349 233

regards to the distance covered, the length of paths differs substan-
tially between the two layouts. As can be seen in Table 4, in the
optimized layout, the length of experts path was 349 m whereas,
in the pre-optimized layout, it was 546 m. This difference could
be related to the shortest-path optimization step used to position
signs in a way that directed occupants along the shortest path for
the selected O-D pair. Similarly, the time taken to reach the des-
tination was longer in the pre-optimized layout than in the op-
timized one. A more in-depth understanding of the time dimen-
sion is visualized in Fig. 9 showcasing a heatmap analysis of stay-
duration along with path points. Experts’ stay duration along path
points in the pre-optimized layout is longer than in the optimized
layout. This variance in stay-duration could indicate difficulty to
make a wayfinding decision on the basis of signage information
along with specific path points (i.e., decision points and intersec-
tions). This explanation, however, is inconclusive. Alternative meth-
ods to gain qualitative feedback (e.g. think-aloud protocols) could
have been applied to provide a richer explanation of observed be-
havior. Yet, this approach would have hindered the possibility of
comparing agents’ performance to that of experts. Recorded trajec-
tories from the expert walk-through under both layouts are very
similar to agents’ trajectories for the respective layouts after opti-
mization, as shown in Figure S1 (d) in the supporting document
and Fig. 9.

8. Conclusion and future works

We have presented a multi-objective two-step optimization ap-
proach to a complex signage design problem. As demonstrated, the
use of AUTOSIGN has proven useful to aid wayfinding in a man-
ner that aligns with designers’ optimization criteria (i.e., reducing
overall walking distance, optimizing the number of signs, thus re-
ducing cost of installing signs and overall walking duration).

The proposed optimization-based signage design tool provides
designers with the computational power to quickly visualize the
interplay of different O-D pairs. The automatic placement of di-
rectional texture on the signs and the VR walk-through supports
the user-in-the-loop aspect of AUTOSIGN and allows for informed
design iterations. AUTOSIGN can be applied during various de-
sign stages of building design (from preliminary design stages to
retrofit) to reevaluate the efficiency of an existing signage sys-
tem which may get occluded due to refurbishment (e.g., an ad-
vertisement for retails in an airport terminal or due to special of-
fers boards in a supermarket). In addition to its current applica-
tion of signage positioning, the tool functionalities can be further
used to optimize the positioning of additional building elements
to support wayfinding (e.g., beacons and maps) based on various
criteria. Compared to traditional, often manual and intuition-based
approaches the proposed AUTOSIGN framework provides a com-
plementary computational approach that supports quick and cus-

tomized signage layout generation informed by a built-in usability
evaluation of each generated layout.

Future work. We plan to integrate a cognitive agent-based sim-
ulation for wayfinding to validate and optimize the design of sig-
nage systems from the perspective of varied occupant groups. By
integrating a cognitive agent simulation to evaluate each automat-
ically generated signage design, we aim to leverage the use of sim-
ulation to support human-centric optimisation of building systems.
We are also motivated to adapt AUTOSIGN to support signage gen-
eration and optimization in more complex building environments,
namely multi-level buildings. To enhance the generative process of
signage layouts with semantic information, advanced IFC process-
ing of BIM to inform signage optimization will also be considered.
Finally, we aim to extend the proposed navigation graph represen-
tation of the complex environment to hierarchical navigation graph
representation to incorporate different hierarchies in the design of
the signage system.
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