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a b s t r a c t 

To improve the efficiency and effectiveness of designing signage systems in buildings, we present 

AUTOSIGN – a design tool that supports user-in-the-loop and multi-criteria optimization of signage lay- 

outs in complex buildings. We formulate signage placement as a multi-objective optimization problem 

with competing objectives (i.e., total distance travelled, total number of turns, the centrality of decision 

points, path overlap, and number of decision taken) and constraints (i.e., user-specified sign location and 

orientation threshold), which we solve using a two-step approach. Firstly, an evolutionary method is 

used to optimize all combination of navigation paths based on cognitively inspired objective functions 

weighted by the designers. Secondly, a particle swarm optimization is used to optimize individual sign 

placement to maximize the exposure of wayfinding information (i.e., signage coverage area) from the op- 

timized navigation graph generated. To evaluate the effectiveness of the tool, we apply it to the design 

of signage systems across two virtual 3D buildings. We generate signage layouts for both buildings and 

optimize each of them for user-defined criteria. Both optimized and non-optimized layouts are evaluated 

using an agent-based simulation. The simulation results demonstrate that even with fewer signs, the sig- 

nage coverage area for the optimized layout increased by 18% on average. Finally, an expert-based VR 

walk-through and a System Usability Study is performed to further evaluate AUTOSIGN . 
© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Signage systems play an essential role in facilitating occupants’

ayfinding in complex buildings. A well-designed signage sys-

em reduces perceived spatial complexity of a built environment,

hereby improving occupants’ ability to find their way from an

rigin to a destination [1] . More importantly, during emergencies,

ignage provides essential information to help occupants evacuate

hrough emergency exits and reach safe areas. 

In the design of signage systems intended to support efficient

nd safe wayfinding, a central challenge is the positioning of signs

n ’optimal’ locations. In large and complex buildings with multiple

ntrances and exits, leading to multiple combinations of passage-

ays and junctions, manual positioning of signs is a challenging,
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umbersome and time-consuming design task. It is practically un-

easible to manually account for the myriad of possible wayfind-

ng scenarios while considering various (often conflicting) design

bjectives; direct occupants along the shortest route (e.g. in the

ase of emergency), avoid redundancy of signs, maximize the vi-

ual catchment area (i.e., is the region in which an occupant can

hysically perceive wayfinding information from a sign [2] ) of a

ign with respect to the location of decision points, etc. Tradition-

lly, signage evaluation and design are based on general guidelines,

xpertise, and paper mock-ups, all of which rely heavily on design-

rs’ intuition and experience. 

More recently, Virtual Reality (VR) walk-throughs and spatial

nalysis methods have also been employed to inform manual sig-

age design, and in particular signage placement. Despite their ad-

antages, both methods are highly laborious and time-consuming,

nd yet, neither one is able to explicitly inform signage placement

o improve the overall range of wayfinding scenarios, or visibil-

ty constraints due to the building configurations and human per-

eption. Poor design of signage systems that conflicts with either

he building design or human perception may cause stress, reduce

https://doi.org/10.1016/j.cag.2020.02.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cag
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2020.02.007&domain=pdf
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wayfinding efficiency and pose a threat to the evacuees [3] . The

effort required to manually design signage systems to account for

all factors is considerable and can rapidly scale up in a complex

building. 

To improve the efficiency and effectiveness of designing signage

systems in buildings, a computational approach that can automate

the process of signage positioning and evaluation is necessary.

This paper presents AUTOSIGN – a computer-aided signage design

tool that supports a user-in- the-loop, multi-criteria-optimization

of signage layouts in complex buildings. AUTOSIGN employs a

multi-objective genetic algorithm for path optimization based on

various cost functions followed by particle swarm optimization to

determine the optimal sign placement based on visual coverage

area. 

The architectural design process of buildings consists of vari-

ous stages, from preliminary design to construction. Throughout

this process, the level of detailed information encoded in build-

ings’ representation (i.e., floorplans, 3D BIM model) varies from

highly abstract to highly detailed. To support informed signage de-

sign throughout the various stages of a building’s design process,

AUTOSIGN is intentionally designed with minimal input require-

ments. To that end, AUTOSIGN allows the users to control the

level of detail at which the building geometry is exported (i.e.,

depending on the design stage). Once the building model is ex-

ported AUTOSIGN automatically generates an optimized signage

layout onto the 3D model. The signage layout includes both the

physical locations of signs in space and the directional informa-

tion (arrows) corresponding to each sign. The tool provides the de-

signer/user with the flexibility to manually translate and rotate the

sign position and orientation. 

The main deliverable of this paper is AUTOSIGN : an interactive

user-in-the-loop design and optimization system for signage place-

ment in complex mixed-use environments (e.g., transportation

facilities, shopping malls). AUTOSIGN is powered by two main

contributions: (1) an automated approach to extract wayfinding

decision points from raw 3D building geometry to serve as the

basis for estimating the wayfinding complexity of an environment.

(2) Formulation of signage design as a two-step optimization

process. First, we perform multi-objective optimization to select

the most effective combination of route choice criteria to form

a weight vector that produces routes between each pair of O-D.

Second, we present a particle swarm optimization-based approach

to determine an optimal sign positioning that maximizes signage

coverage area. 

To validate the effectiveness of the tool, we apply it to the de-

sign of signage layouts for two virtual 3D mixed-use buildings. Sig-

nage layouts for both buildings are first generated and then op-

timized for user-defined criteria by AUTOSIGN . Both optimized

and non-optimized layouts are evaluated for occupants’ wayfind-

ing performance using agent-based-simulation and expert-based

VR walk-through. We also evaluate the signage-design variations

by systematically adjusting the relative influence of the proposed

cost functions. Finally, the performance results from a System Us-

ability Study with experts is presented. 

2. Related work 

The evaluation of signage systems in buildings is a complex

task. Traditionally, signage evaluation and design are based on ex-

pert intuition, expertise, paper mock-ups or post-occupancy as-

sessments [4] . More advanced methods include the use of spatial

analysis tools to measure various visibility and inter-visibility re-

lated aspects (e.g. isovist, Visibility Graph Analysis (VGA) or Vis-

ible Catchment Area (VCA)) of a building layout or a proposed

signage system [2] . Another approach uses immersive virtual en-

vironments, whereby experts ’walk-through’ a virtual 3D model
f a building to evaluate either the potential location of signs or

he appropriateness of proposed signage layouts [5] . The work in

6] proposed a wayfinding simulation to evaluate the design of di-

ectional signage systems in 2D for evacuation purposes. The main

hortcoming of this work lies in its simplified formulation of hu-

an vision, which fails to account for sign legibility and detection.

hese evaluation methods (i.e. spatial analysis, expert-based vir-

ual walk-through, agent-based simulation) support the assessment

f distinct aspects related to wayfinding employing sign-following.

 VR walk-through performed by experts who simulates wayfind-

ng from the perspective of potential occupants could be use-

ul to provide a qualitative assessment of wayfinding performance

e.g. hesitation points). By having an expert conducting the walk-

hrough, it may be possible to overcome the phenomena known

s ’momentary suspension of disbelief’ observed in lay participants

ho navigate in virtual environments with low-level of detail

nd realism [7] . In contrast, an agent-based simulation approach

ould provide a quantitative assessment of wayfinding perfor-

ance given different signage layouts and varied user groups (e.g.

alking distance) while considering many origin and destination

airs. These methods could be regarded as complementary to one

nother. 

Lin et al. [8] proposed a method to optimize directional signs to

acilitate occupants’ wayfinding in a complex transportation termi-

al (i.e., airport terminal) using a mathematical model. The place-

ent of signs was guided by a cellular automation model that

ccounts for environmental conditions, such as crowd conflicts

nd congestion conditions. Tam et al. [9] proposed a binary lin-

ar program for better allocation/placement of directional signs for

ayfinding. In their study, they used a quantitative measure called

isibility index (i.e.,the ratio of the number of sight lines that

re available and the total number of sight lines that should ex-

st within the terminal) for evaluating the ease of wayfinding. Re-

ently, Zhang et al. [10] developed a system in which a minimum

umber of evacuation signs and their locations in a hall are deter-

ined automatically by using a cellular automata-based evacuee-

ignage interaction model. Similarly, Motamedi et al. [4] proposed

n agent-driven signage optimization in a BIM-based 3D environ-

ent. Their proposed tool had predefined scenarios to compute

ignage coverage area and overall visibility of the buildings signage

ystem. However, both approaches fail to account for (a) signage

oticeability (b) spatial complexity of building layouts [10] and (c)

nter-dependency between signage information received and co-

ependent directional signs. [4] proposed an interaction between

he Digital Human Model (DHM) and directional signage based on

isual perception, driven by sign lo- cation, visibility, noticeability

nd legibility. Though they provide validation by conducting ex-

eriments, the small sample size (six), cannot be considered as a

horough and conclusive validation. 

One common limitation among these methods is the separa-

ion of signage design generation and signage evaluation. To ad-

ress this gap, AUTOSIGN provides a holistic approach that allows

esigners to iterate between signage design and evaluation. This

pproach is by no means a new one and is built upon a previously

aid foundation of Computer Aided Architectural Design (CAAD),

n which high-level goals and constraints are defined. Using the

ower of computation, a broad design space is automatically gen-

rated and evaluated in an iterative manner [11–14] . 

Recently, much attention is given to human-centred design

ethodology for proposing an easily walkable built-environment.

uthors in [15] propose an integrated approach by bridging human

actors with environmental factors. Factors such as visual, acous-

ic, and pedestrian thermal comfort are essential to be considered

hile designing a public space for easy and stress-free navigation.

uthors in [16] proposed a crowdsourced indoor navigation sys-

em named SoleWay. In their work, they involved end-users of a
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Fig. 1. AUTOSIGN Framework Overview. AUTOSIGN begins by taking a 3D building model, navigation tasks and user-assigned optimization parameters (Step 1), followed 

by an automatic pre-processing of a 3D input model, extraction of decision points, and generation of initial signage placement (Step 2). Then, multi-objective signage 

optimization phase produces optimized signage design based on various wayfinding cost functions to maximize the signage coverage area (Step 3). Lastly, an agent-based 

simulation and a VR walk-through are used to evaluate signage design from the perspective of occupants’ wayfinding (Step 4). 
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ystem in the early stages of indoor navigation guidance develop-

ent to improve the usability of the system. Authors in [17] pro-

oses a biologically inspired computational model of human-

ignage interaction based on information theory. They conduct a

rowdsourced experiment and virtual reality-based experiment to

dentify the role of information gain inside the visual catchment

rea of a sign for wayfinding decision making. 

In general practice, signage placement is carefully carried out

y complying building regulation and standards. For example, rec-

mmendations made in British Standard BS 5266 Part 4 provide

uidelines about the format of the graphical symbol on the escape

oute sign, size depending upon maximum viewing distance, and

hotometric performance of traditional internally illuminated signs

18] . NFPA Life Safety Code Handbook [19] , suggests that reflective

igns with lettering height of 152 mm are legible up to a distance

f 30 m. Such regulations and standards are extremely effective in

esigning the signage system. However, the decision as to where

he signage system is placed in large complex structures is usu-

lly made when the structure is empty [20] . After the furnishing

nd other fittings, the signage system may become less effective

r even invisible due to furnishing obstructions. 

Finally, to the best of our knowledge, existing work done on

utomatic signage design systems in indoor built environment are

imited in (a) its ability to account for the spatial complexity of sig-

age placement (b) its ability to account for wayfinding literature

o inform the optimization process. 

Comparison to State-of-the-Art- Greenroyd et al. in [21] pre-

ented a tool that aid signage placement by using wayfinding met-

ics found in the literature. One limitation of their approach is the

se of single wayfinding metric at a time, instead of multiple met-

ics, to generate a signage design. Thus, to incorporate more than

ne wayfinding metrics, a designer has to run the analysis multi-

le times. Many researchers including [22] have used visual atten-

ion patterns to aid the placement of various visual elements such

s advertisement location on a website [23] , and count the num-

er of passersby to measure the exposure of advertisement pan-

ls in [24] . Though these researches motivate us to investigate the

enefit of eye tracking based gaze prediction in the proposed sign
ocation optimization step ( Section 5 ), we leave it as an extension

n future works. 

Recently, Huang et al. [25] made an attempt to leverage

ptimization-based methods to resolve the complexity of signage

esign problems. In their work, they proposed automatic wayfind-

ng optimization to generate optimized navigation paths for a large

cale outdoor environment. Their method requires a designer to

pecify various navigation scenarios for the system to automat-

cally generate an optimized signage design based on optimized

aths. The approach uses a graph to represent the input layout,

nd the user/designer has to manually place nodes at intersections,

ntrances, and points of interests. Despite being able to overcome

ome of the aforementioned limitations, their method requires a

esigner to manually place nodes (signs) at each intersection. The

gent’s interaction with the sign is basic, random errors are intro-

uced to simulate realistic wayfinding. Also, their work considered

nly a single path for each Origin-Destination (hereinafter referred

o as O- D) pair which is not sufficient to account for the vari-

us path combinations arising from a single O-D pair. Our work

ims to leverage on the motivating work in [25] and improves it by

a) automating the manual identification of decision points for sign

lacement (b) using a realistic agent-signage interaction model to

un wayfinding simulations, and (c) optimizing signage location to

mprove its visibility and overall coverage area. 

. AUTOSIGN – a computer-Aided signage optimization 

ramework 

In this section, we present an overview of AUTOSIGN and

riefly explain each component of the framework ( Fig. 1 ). 

.1. Initial building design 

To generate signage layout and to optimize it, AUTOSIGN re-

uires three inputs: (1) building Geometry: the building input for

UTOSIGN can vary in the level of detail, ranging from a simpli-

ed 3D CAD model to a more detailed BIM model. At this point

f the frameworks’ development and to enable users to apply the
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Fig. 2. Step by step visualization of the decision point extraction method. (a) Top down orthographic view of an intersection. The navigable surface is divided into grid cells 

of 0.5 ∗0.5m. The center of each grid cell is a candidate for the decision point. One probable decision point at the center is highlighted with a red circle. Sphere-cast with 

0.5 m radius is performed from the center and iteratively increased till it hits a static object(s) (i.e., point 1 and 2). (b) The hit surface(s) is(are) temporarily removed from 

the environment, and iterative sphere-cast continues until it hits another static object(s) (i.e., point 3 and 4). (c) All successful decision points (i.e., each having three or 

more sphere-cast hits) are shown. (d) The decision points close to each other are combined to represent one decision point. 
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proposed tool at different design stages, BIM-based semantic in-

formation linked with building geometry is not processed to in-

form signage generation or optimization. Instead, a geometrical

approach to process a 3D building model is applied to extract

the buildings’ navigation graph. (2) O-D pairs: navigation tasks

should be defined in the form of O-D pairs situated with respect to

the building layout. (3) Optimization Parameters: designers assign

weights to wayfinding cost functions based on the function of the

building and design objectives, which in turn drive the signage op-

timization module. Given the varying level of detail in the process

of signage design, AUTOSIGN is intentionally designed to operate

with varying levels of information on building geometry and nav-

igation tasks, and hence could aid designers through the different

phases of signage design, from preliminary to advanced. Moreover,

given that signage optimization parameters might change in the

course of the design process, the user-in-the-loop function allows

designers to add, eliminate or change signage optimization crite-

ria, adapting the optimized signage design layouts generated itera-

tively. 

4. Computer aided signage design work-flow 

In this section, a detailed account of the computer-aided sig-

nage design work-flow (step 2 of Fig. 1 ) is provided. Firstly, the

imported 3D map of the environment (i.e., automatically tagging

wall, floor, and other static features) is pre-processed to separate

the navigable areas from the non-navigable areas. This is achieved

by performing a ray-cast operation from a fixed height (computed

by extracting the bounds of the 3D environment) followed by a

sphere-cast operation (i.e., successful contact point from a small-

est sphere-cast along the ray-cast point on the floor). The naviga-

ble area is uniformly divided into grid cells of 1 m 
2 . The center of

each grid cell location is registered as an input for the next stage

of decision point identification. 

4.1. Decision point extraction 

Decision points play a crucial role in the design of a signage

system. Decision points are the locations at which occupants need

to perform a navigational decision concerning paths and directions

to select. This highlights the importance of correct decision points

extraction. Aiding these decision points with directional signs are

essential to implementing an efficient signage design. Carpman

et al. [26] suggested that decision points should exist at more

places other than intersections of paths/corridors. Decision points

may include a change in the direction of a primary path, changes

in environmental cues, merging of two paths, entrances and exits. 
Fig. 2 illustrates the proposed decision point extraction algo-

ithm. An increasing overlap sphere is cast from each navigation

oint until at least one obstacle is hit. The hit obstacle is temporar-

ly removed from the obstacles list, and the radius of the sphere-

ast is increased slightly (line 1–12 in Algorithm S1 in the support-

ng document) until it hits a new obstacle. Obstacle nodes that are

lose to one another are considered to be in the same group. If

n obstacle exists between two obstacle nodes within a square en-

ompassing the circle (checked with a raycast), the two nodes are

lso considered to be in the same group. A decision point is formed

f three or more obstacle groups are hit. Finally, decision points

hat are near one another are merged to optimize the number of

ecision points (procedure “CleanUpDecisionPoints” in Algorithm

1 in the supporting document). To showcase the broad applica-

ility of the proposed DP extraction approach, we test it on eight

eal-world indoor environments with different floorplan layouts

nd typologies (e.g. shopping malls, hospitals, and transit hubs).

he results are presented in Fig. S2 of the supporting document.

he results showcases that the proposed approach creates near-to-

erfect decision points in both corridor style and non-corridor ge-

metry. Finally, a user-in-the-loop interface is provided to enable

esigners to make final changes in the extracted DP by performing

he move, create, and delete operations before proceeding to the

ext step. 

.2. Navigation graph: multiple path generation 

Once the decision points are extracted, a Navigation Graph (NG)

 〈 V , E 〉 is generated to represent the input floor layout, where V is

he set of extracted decision points, and E is the set of straight and

nobstructed navigation paths between pairs of decision points.

fter the designer generates points of interest (e.g., entry and exit

f a building, toilets, reception desks), he or she can generate all

istinct paths between each O-D pairs with a click of a button. 

For each O-D pair, all decision points are used as way-points

o find the least costly path ( Section 5.1 ) from the specified ori-

in to the specified destination via that way-point. The decision

oints are first sorted based on their combined distance between

he origin and the destination. These paths are sorted by cost (i.e.,

ith equal weight for all cost functions), and the least costly path

s added as the first finalized path. Then, each decision point in

his path is marked as used, and the algorithm will iterate through

he list of decision points to find the next decision point with the

hortest combined cost that is not yet used. A path is created us-

ng this next decision point as a way-point, and paths similar to

ny existing finalized path will be ignored. New paths are added to

he list of finalized paths and the decision points used to generate
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hese paths are also marked as used. This process continues un-

il N number of distinct paths, as determined by AUTOSIGN users,

s reached, or until the list of decision points has been completely

xhausted. This process reduces the search space for the path op-

imization phase ( Section 5 ). 

.3. Initial signage placement 

Once the navigation graph is constructed, an initial signage de-

ign is generated. Firstly, signs without any directional texts are

reated at the termination point (i.e., start/end) of each edge of

ach path, with the duplicates removed. Every signboard is as-

igned to its parent decision point (i.e., from which it is gener-

ted). Then, the signboard assigned to each decision point is ac-

ompanied with directional information pointing towards the next

ecision point in the path towards the terminal. The pseudo code

s provided to explain the algorithm in detail (Algorithm S2 in the

upporting document). 

. Multi-criteria optimization formulation 

In AUTOSIGN , optimization of a signage design system is a

wo-step process. Firstly, route choices between each O-D pair

s optimized based on user-defined multi-criteria cost functions

 Section 5.1 ) and secondly, the positions of the signboards are op-

imized in relation to their parent decision points for maximum

ocal sign coverage within the bounds determined by a designer

 Section 5.2 ). 

.1. Route choice based optimization 

The decision points/junctions of an architectural space can be

epresented by an undirected navigational graph G N = 〈 N, E〉 . For
ach O-D pair, multiple paths can exist between them. Combin-

ng all possible combinations of paths for all the pairs can make a

ignage design process computationally expensive and unnecessary

umbersome. To tackle this problem, AUTOSIGN relies on cogni-

ively inspired wayfinding cost functions (described below) to re-

uce the possible paths between each O-D pair. 

.1.1. Computation of wayfinding cost function 

Human navigation (in both indoor and outdoor environments)

as been widely studied in behavioural and cognitive science [27] .

any researchers in this field have highlighted the challenges in

uman wayfinding in an indoor environment. The challenges arise

ue to the complex 3D space (i.e., disorientation after vertical

ravel and poor cognitive map creation) [28] . Researchers have

roven that during wayfinding, humans pay attention to the to-

al path length [29,30] , route complexity (i.e., number of turns)

31] , and the curvature of the path [30] . Motivated by the literature

32–36] and also as proposed in [25] , five crucial wayfinding cost

unctions are considered for the proposed optimization algorithm. 

Total path length – Typically, occupants select the shortest

ath during navigation. Hence, for each path between origin and

estination pair a cost, C pl , is applied based on the length of the

ath. The path length is calculated based on adding the metric dis-

ance of all navigational edges between an O-D pair in the overall

avigational graph (all navigational edges). 

 pl = 

1 

| P | L T E L (p) (1) 

here | P | L TE is the normalization factor with | P | being the total

umber of O-D pairs and L TE is the total length of all the edges

n the navigation graph. L ( p ) is the length of the path in consider-

tion. 
Total number of decision points – Decision points are the lo-

ation where occupants need to make a wayfinding decision about

hich direction to take. Paths with many decision points should be

voided as it can induce stress to the occupants and lead to error.

ence, for each path between an O-D pair, a cost function C dp is

sed to penalize the number of decision points used in each path:

 dp = 

1 

| P | T DP N dp (p) (2) 

here | P | TDP is the normalization factor with | P | being the total

umber of O-D pairs and TDP is the total number of decision point.

 dp ( p ) is the number of decision point in the path in consideration.

Total path angle – According to spatial cognition [37] , naviga-

ion paths with varying orientation disorients and confuses occu-

ants during wayfinding. It can cause discomfort, and stress [38] .

n the proposed framework, straight paths are preferred and a cost

unction C pa is applied to penalize the path with a larger change

n the angle. 

 pa = 

1 

| P | ∗ T DP ∗ λ
A pa (p) (3) 

here | P | ∗TDP ∗λ is the normalization factor with | P | being the total

umber of O-D pairs and TDP is the total number of decision point

nd λ is the maximum turning angle between two adjacent edges.

 pa ( p ) is the sum of the absolute turning angle between the edges

n the considered path. 

Global decision point degree centrality – Paths with fre-

uently visited decision points are encouraged by the proposed

ystem. It is crucial in some scenarios such as shopping mall and

ther public gathering places to direct occupants to a common area

uch as ticket counter, atrium or lobby for better crowd manage-

ent. The degree centrality of a decision point is calculated, and a

ost function is proposed to penalize the path with less frequented

ecision point. 

 dc = 

1 

T C dp 
(T C dp −Cent ralit y dp (p)) (4)

here TC dp is the total centrality of the overall decision points and

entrality dp ( p ) is the sum of the centrality of all decision point in

he considered path. 

Global edge overlap – Similarly, to force navigational path be-

ween different O-D pairs to overlap with each other, edges which

re frequented most commonly are selected in the design of pre-

erred path between an O-D pair. A cost function C eo is provided

hich penalizes the paths with less frequented edges. 

 eo = 

1 

T oe 
(T oe − T e (p)) (5) 

here T oe is the total count of each edge frequented and T e ( p ) is

he sum of the edges frequency in the considered path. 

.1.2. Multi-Objective – Random Weight Genetic Algorithm 

MO-RWGA) 

In this section, we briefly describe Genetic Algorithm (GA) and

ur reasoning behind choosing MO-RWGA as the optimization ap-

roach. A multi-objective minimization problem with K objectives

s defined as: x = x 1 , x 2 , . . . , x n where x is a n-dimensional decision

ariable vector in the solution space X . We have to find a vector

 
* that minimizes a given set of K objective functions given as: 

(x ∗) = z 1 ( x 
* )) , . . . , z K ( x 

* ) . 

The common approach to solve a multi-objective optimization

roblem is by assigning weights to each objective functions and re-

ucing the model to a single objective problem with a scalar com-

osite objective function as: 

 = w 1 o 
′ 
1 ( x ) + . . . + w k o 

′ 
( x ) (6)
k 
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Algorithm 1 Sign Coverage Area Cost Algorithm. 

Input: S (Sign) 

Input: P (New Position) 

Input: DP (Parent Decision Point) 

Input: A (Threshold Angle) 

Input: G all (All Grid) 

Input: D max (Max Sign Visibility Distance) 

1: function Cost cov Area ( S , P , A ) 

2: T ranslate (S) ← random(P) 

3: if distance (DP, S) ≥ 0 and � DP threshold then 

4: for all g i to G all do 

5: d ist = d istance (g i , S) 

6: if dist � D max then 

7: area + + 

8: return area 
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where o 
′ 
i 
( x ) is the normalized objective function o i ( x ) and 

∑ 

w i =
1 . Solving Eq. (6) with a pre-determined weight vector w =
w 1 , . . . , w n generates a single solution. To explore alternative solu-

tions, a designer must manually vary the weight combination in

a process of trial and error. This approach is tedious and time-

consuming, even when the designer is highly familiar with the

problem domain. 

To automate the process of generating an optimal weight vec-

tor, we propose MO-RWGA, in which random weights are gener-

ated for each solution space x i during the evaluation of a weighted

sum of multiple objective functions at each generation. The benefit

of this approach is to force multiple search directions in a single it-

eration without any additional parameters [39] . Wayfinding fitness

function WayfindingFitness (line 6 in Algorithm S4 in the support-

ing document) used in MO-RWGA is a linear combination of five

cost functions as shown in - 

F = 

5 ∑ 

k =1 

W k C k (7)

where C k corresponds to C pl , C dp , C pa , C dc , C eo and weights W k (ad-

justed by the designer according to the environment-specific sig-

nage design needs) are positive value satisfying 

5 ∑ 

k =1 

W k = 1 (8)

Finally, we can define the proposed multi-objective optimiza-

tion problem which minimizes the wayfinding fitness cost function

computed above as: 

O 

∗ = argmin 

oεU 
(F ( O )) (9)

where, O 
∗ is the design vector, solution o belongs to the solution

space U and F ( O ) is computed using Eq. (7) . 

5.2. Signage coverage area based optimization 

Once the optimized routes between O-D pairs (i.e., optimiza-

tion step 1) are generated, AUTOSIGN optimizes the parameters

of a sign (i.e., location and orientation) at each decision point to

maximise the sign’s local coverage area with a designer-specified

bound. In AUTOSIGN , a Particle Swarm Optimization (PSO) algo-

rithm is employed to adjust sign parameters. The strengths of the

PSO algorithm are its simple implementation and rapid conver-

gence to solve various optimization problems, which puts it on par

with many global optimization algorithms such as GA and simu-

lated annealing (SA). 

5.2.1. Single objective function: Sign coverage area 

The objective function for fine-tuning the optimal signage lo-

cation is based on its visibility catchment area (VCA). One known

way of computing the sign coverage area is its VCA [2,20] . The VCA

of a sign is the region where an occupant can physically receive

wayfinding information from a sign. The VCA of a sign is calculated

using the location of the sign, the height of the occupant, view-

ing angle, and the maximum distance from which the sign can be

seen, which is based on the font size. Later on, in [2,40] , authors

simplified the VCA to an approximate circle with its radius equal

to half of the viewing distance. In AUTOSIGN , designers have the

flexibility to assign the value of the parameters mentioned above.

Simulations are generated based on the default values of occupant

height of 1.72 m, viewing angle of 120 ◦ and maximum viewing dis-

tance of 30 m. The single objective function with a set of parame-

ters, p , and their bounds (constraints), P , is expressed as a maxi-
ization problem to fit the parameters as follows: 

 

∗ = argmax 
pεP 

( f ( P )) (10)

here f ( P ) is computed using Algorithm 1 . 

here S ca is the sign coverage area calculated using the method

escribed in [40] , P is the sign position and R is the sign rotation. 

The initial sign placement (before optimization step 2) in

UTOSIGN by default is at a distance of one meter from its parent

ecision point, and the sign is oriented with its normal perpen-

icular to the previous decision point in the navigation path. The

ampling of search space for a sign is bounded by a threshold dis-

ance from its parent decision point, and a threshold angle range

rom its original orientation. These two constraints are formulated

s follows: 

istance (S, DP ) ≥ 0 and � D threshold (11)

here D threshold is kept as one meter to restrict the sign placement

eing further from its parent decision point (given the fact that the

ecision point is mostly extracted at the center of multiple path

ntersection). The user of AUTOSIGN has a flexibility to tune this

alue to suit the signage design needs. 

A threshold � Angle (Sign new , Sign old ) � + A threshold (12)

here, A threshold is kept low (10–20 ◦) to restrict a substantial de-
iation in the new sign’s relative angle from its previous decision

oint (i.e., the direction of occupants’ approach). This is important

o prevent the sign from getting oriented towards another hallway

r open space for which it was not designed for. In Algorithm S3

supporting document), we provide a pseudo-code of the PSO algo-

ithm for finding the optimized signage location. The cost function

ost cov Area to calculate the sign coverage area (line 7) in Algorithm

3 is described in Algorithm 1 . 

. Optimization and experimental results 

To highlight the practical use of AUTOSIGN , we begin

y demonstrating the performance and time complexity in

ection 6.1 . We highlight the improvement in the signage coverage

rea by visualizing it in the form of heatmaps over two different

D layouts (a virtual shopping mall and a virtual railway station) in

ection 6.2 . We then generate simulations to demonstrate the ef-

ectiveness of signage design variations before and after optimiza-

ion in Section 6.3 . Static images are not sufficient for an effective

emonstration of a user-in-the-loop aspect of AUTOSIGN ; thus we

efer the reader to the accompanying video. 
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Fig. 3. Best Fitness values over 250 generations for multi-objective - random 

weight genetic algorithm. 
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Fig. 4. Fitness result for one sign location optimization using particle swarm opti- 

mization. 

Fig. 5. Representation of an increase in signage coverage area after PSO based sign 

location optimization for one example sign. Note: the subtle change in the position 

and orientation of the sign after optimization in (b). 
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.1. Performance analysis 

In AUTOSIGN , the navigational area of a 3D environment is di-

ided into rectangular grid cells. It is a virtual grid map of a 2D

oor plan which is used as a reference point for an agent’s loca-

ion. The size of a grid cell is set to 0.5 ∗0.5 m, representing the

verage step length based on the average size of an adult. Aver-

ge CPU time taken for generating the optimized path for all O-D

airs in the signage system using the proposed MO-RWGA along

ith the PSO optimization of individual sign location for two ex-

mple layouts is presented in Table 3 . Note that the optimization

rocess in AUTOSIGN is a two-step process with MO-RWGA ex-

cuted first, followed by the PSO optimization. Average CPU time

aken for generating the optimized path for all O-D pairs in the

ignage system using the proposed MO-RWGA along with the PSO

ptimization of individual sign location is reported for two exam-

le layouts in Table 3 . 

.1.1. MO-RWGA optimization 

Fig. 3 shows that MO-RWGA reaches the optimal point after 250

terations. De Jong et al. [41] recommended a crossover rate be-

ween 0.65 and 1, and mutation rate between 0.001 and 0.01 in

A applications. In AUTOSIGN , the crossover probability level is

et as 0.8, and the mutation level is 0.05, where 0.05 is equal to

/n, and population size n is set to 20. We achieve the best perfor-

ance with the above parameters over 250 iterations for both lay-

uts. Total time of 63.5 and 161.84 s was observed for the shopping

all and railway station respectively. Higher computation time in

he case of the railway station was due to the higher number of

-D pairs. 

.1.2. Particle swarm optimization 

Fig. 4 shows that PSO reaches the optimal point after 300 iter-

tions. We achieve the best performance with 20 particles in the

warm and 300 iterations. The average time of 3.96 s and 3.73 s

er sign was observed in the virtual shopping mall and the virtual

ailway station respectively, as shown in Table 3 . The efficency of

SO can be further improved by precomputing sign visibility value

er grid. 

.2. Signage coverage area 

Table 3 highlights the gain in signage coverage area after per-

orming PSO-based sign location optimization for all signs. We ob-

erve an increase of 16.22% and 19.06% in the sign coverage area

or the virtual shopping mall and the virtual railway station, re-

pectively. In Fig. 5 , we demonstrate a micro view of sign cover-

ge area gain for one example sign. We observe that the initial
lacement of the sign was behind a wall and was not visible for

n occupant from the narrow corridor in between two walls. The

ign’s visibility was restricted to close proximity. After optimizing

ts location, we notice an improvement in visibility and its cover-

ge area as shown in Fig. 5 (b). This increase in signage coverage

rea can help in reducing the wayfinding error during navigation.

n Fig. 6 , we showcase the overall gain in signage coverage for the

ignage system in two different scenarios post-optimization. The

-D pairs in both layouts are represented with an orange star. 

.3. Agent-based simulation to assess wayfinding performance across 

ignage layouts 

Here, we present the result of generating wayfinding designs

nder different signage design options for two very different lay-

uts – a virtual shopping mall and a virtual railway station. In

ig. 7 , we show the signage design generated before optimization

maximal: best three possible paths from O to D), and after op-

imization (minimal: Best path based on cost functions). To high-

ight the changes in the occupants’ navigation behaviour for dif-

erent signage designs, we employ an agent-based simulation as

escribed below. We perform a wayfinding task for one randomly

elected O-D pair. We simulate 100 agents in each of the two con-

itions and produce various wayfinding measures. We report our

ndings in Table 1 . 

We employ a simple version of the agent-signage interaction

ased wayfinding system that is inspired by vision-based wayfind-

ng simulation using a cognitive agent-signage interaction model

s described in [17] . In the proposed context, a signage sys-

em consists of a set of signs S . Individual sign comprises of its
i 
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Fig. 6. A heatmap visualisation of an increase in signage coverage area after performing particle swarm optimization. We notice an increase in signage coverage certain areas 

highlighted using dashed ellipses in (b) and (d). The areas shown in red are influenced by more number of signs and the areas shown in blue means they are influenced by 

less number of signs. The area shown in black has no signage coverage. The orange star symbol represents the origin and destination. (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 7. (left) Navigational paths between origin and destination before and after path navigation optimization for virtual shopping mall. (right) Visualization of the simulated 

agent trajectories before and after signage layout optimization for the same. 

Fig. 8. Effect of varying the weights of edge overlap cost function on the edge con- 

nectivity of a navigation graph. By varying the weights of edge overlap cost function 

in the visualized navigation graph (a), an edge is removed (highlighted in orange el- 

lipse as shown in (b)) and the connectivity is re-routed through a more centralized 

edge as highlighted in green ellipse. (For interpretation of the references to colour 

in this figure legend, the reader is referred to the web version of this article.) 

Table 1 

Various performance measures before and after signage design optimization for two 

3D virtual layouts. 

Environments Conditions Average 

Distance 

Average 

Time 

#Signs Success 

Rate 

Shopping 

Mall 

Before Optimization 185.4 219 23 100% 

After Optimization 144.1 213 6 100% 

Railway 

Station 

Before Optimization 311.8 122 12 100% 

After Optimization 295.2 108 5 100% 

 

 

 

 

 

 

 

 

a  

a  

v  

s  

d  

d  

w  

d  

a  

s

 

s  

t  

l  

w  

c  

r  

t  

w  

t  

i  

i  

m

6

 

t  

c  

p  

a  

s  

o  

s  

a  

t  

t  
legibility attributes along with the list of goal locations ( A i , G i ).

Two physiological aspects of an occupant are embedded in the

agent framework: occupants’ eyesight and height. In AUTOSIGN ,

occupants’ eyesight is considered as near perfect with no defect

Average eye height of 1.72m is considered for running the simula-

tion. The user in AUTOSIGN can refine these parameters based on

the population distribution of a building. 

An agent’s interaction with a sign can be broken down into

a series of phases such as searching for a sign, detecting a sign,
pproaching a sign, perceiving the information written on a sign,

nd finally acting on the decision made. In AUTOSIGN , a sign is

isible when an agent is inside the sign’s VCA and can see the

ign without occlusion. A dynamic visibility check is performed to

etermine the latter. When an agent reaches an intersection (i.e.,

ecision point), it begins looking for a sign. If a sign is detected

ith the destination information, the agent proceeds towards the

irection provided. In the absence of a sign or a failure to detect

 sign, the agent randomly decides on the direction of one of the

ub-nodes of that specific decision point with equal probability. 

For each O-D pair, N number of user-specified agents are

pawned and assigned a task of walking from origin to destina-

ion. An AUTOSIGN user can assign different values of N to simu-

ate the signage design under different crowd densities. An agent’s

alking trajectory, distance walked, number of signs used, and suc-

ess/failure in reaching a goal are recorded. An agent successfully

eaches a sign when the distance travelled to the destination is less

han 1.5 times [25] the baseline distance (shortest optimal path

ithout any mistake). In all other cases, a failure is recorded for

hat wayfinding trial. Simulation results were generated by assign-

ng agent’s walking speed to 1.5 m/s. We simulate N = 100 agents

n each of the two conditions and produce various wayfinding

easures. We report our findings in Table 1 . 

.3.1. Virtual shopping mall 

We use the layout of a real-world shopping mall as an input

o design a simple 3D virtual shopping mall. The O-D pairs were

arefully chosen as a reflection of actual crowd flow. For the pur-

ose of simulation, one O-D pair was randomly selected out of five

nd marked with a red circle as shown in Fig. 7 (a). Fig. 7 (a) and (b)

how the possible navigation paths from O to D before and after

ptimization respectively. The respective agent trajectories are vi-

ualized in Fig. 7 (c) and (d). The average distance travelled and the

verage time taken by an agent to go from O to D before optimiza-

ion is relatively higher as shown in Table 1 . More importantly,

he number of signs required after optimization was significantly
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Table 2 

Quantitative analysis of signage design variation by changing the weights of cost 

function on the average distance and time taken by 100 agents for a virtual shop- 

ping mall ( Fig. 8 ). PL (Total Path Distance), DP (Total Number of Decision Point), PA 

(Total Path Angle), DC (Degree Centrality), EO (Edge Overlap). Lower weights sig- 

nifies higher preference as the optimization function minimizing the total fitness 

cost. 

Cost Function Weights Avg. Distance (m) Avg. Time (s) 

PL DP PA DC EO 

0.111 0.222 0.222 0.222 0.222 151.2 208 

0.222 0.111 0.222 0.222 0.222 162.4 211 

0.222 0.222 0.111 0.222 0.222 153.8 208 

0.222 0.222 0.222 0.111 0.111 185.8 219 

0.222 0.222 0.222 0.222 0.111 173.2 214 
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Fig. 9. Heatmap analysis of experts stay-duration along path points in VR. 
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ower. This reduction in the number of signs reduces the clutter

f information and minimizes the cost of signage design. The

uccess rate of reaching the destination was 100% in both pre- and

ost-optimization. Similarly, we performed signage design vari-

tion for a virtual railway station (Section 1 in the supporting

ocument). 

.3.2. Variation in signage design 

In this section, we quantitatively and qualitatively evaluate the

ignage-design variations by systematically adjusting the relative

nfluence of the proposed cost functions. In Table 2 we perform

 quantitative analysis by systematically changing the weights of

arious cost functions and its impacts on the average distance tra-

ersed and time taken by simulating 100 agents as described ear-

ier in Section 6.3 . We notice that the average distance travelled

nd time taken is lowest when higher preference is assigned to

he weights of Total Path Length , and Total Path Angle cost func-

ions. This is because both cost functions focus on minimizing the

istance and prefer straight path involves fewer turns. In Fig. 8 , we

isualize the change in navigation graph by giving higher prefer-

nce to Total Edge Overlap (i.e., the weight is halved as shown in

he last row of the Table 2 ) Specifically, we notice that the nav-

gation edge between two decision points is missing in the area

arked with a semi-transparent orange ellipse ( Fig. 8 (b)) which

as earlier present ( Fig. 8 (a)). The path has been re-routed using

he edges marked with a green semi-transparent ellipse. This may

e important if the designer of the building wants people to navi-

ate via a particular area of commercial/safety interests. 

. User evaluation 

AUTOSIGN was evaluated for two criteria: (1) system usabil-

ty from the perspective of a typical designer user. (2) Wayfind-

ng performance across optimized and non-optimized signage lay-

uts from the perspective of a novice occupant. To evaluate the

esign and usability of AUTOSIGN (i.e. criterion 1), we conducted

 System Usability Test. To evaluate occupants’ expected wayfind-

ng performance (i.e. criterion 2) an expert-based VR walk-through

as carried out. 

.1. System usability test 

To evaluate the design and usability of AUTOSIGN , we con-

ucted a System Usability Test (SUS) [42] . Four experts (two female

nd two male, age 34.25 ± 2.96 years) were recruited to partici-

ate in the usability study. None of them had previous exposure

o AUTOSIGN . They received a general introduction to AUTOSIGN
nd a brief explanation of the user interface. Experts were asked

o use the system and design a signage system for a virtual 3D

hopping mall and a 3D railway station for N terminals (source

nd destination). In addition, they were told to design the signage
ystem with respect to the shortest path between each terminal

airs. After completing the signage design, experts were asked to

valuate AUTOSIGN ’s user interface by completing an online SUS

urvey. The average SUS score obtained was 63.75 ± 4.84, indi-

ating a slightly below average (i.e., average SUS score is 68) SUS

evel of usability and product acceptance. The values for adjec-

ive rating from the experts were “good”, “good”, “excellent” and

good” which when converted to SUS score results in 74.925 (i.e., 

rade B + and Good) according to Bangor et al. [42] . This prelimi-

ary study conducted with a small number of experts indicates the

alue of this tool in its ability to aid designers in the signage de-

ign process. This is evident in the reasonable usability scores and

he qualitative feedback given by the subjects as described below.

he SUS is slightly below the average. This can be attributed to the

ow number of users and proof-of-concept nature of the user inter-

ace. For future work, we will polish and refine the interface and

onduct a large scale study for a more definitive evaluation of the

ool. The comments received from the experts were encouraging,

nd we list them below: 

• Participant 1: ‘The tool is very useful and the layout generated

is not trivial. I would like to use it for additional design pur-

poses.’ 
• Participant 2:‘The process is simple and results are powerful.

Still, I would prefer to use the tool inside a modeling software.’
• Participant 3: ‘A great tool!.’ 
• Participant 4: ‘Would be great to access the 3D model after the

signage generation and adapt the model.’ 

.2. Expert-based VR walk-through to assess wayfinding across 

ignage layouts 

Once participants completed the first step of signage design

hey were asked to perform a walk-through from the perspective

f a novice occupant. They repeated the walk-through again after

ptimizing the signage layout. The ’first-person’ walk-through fea-

ure that was built-in to the AUTOSIGN interface was used to sup-

ort this evaluation step. This type of expert evaluation aims to

everage experts’ experience and cognition and provide an imme-

iate evaluation of the generated signage with regards to wayfind-

ng. Such feedback could prove especially useful in the context of

he architectural design process where complex experimental pro-

edures are challenging to apply. A sample trajectory of one of the

xperts chosen is showcased in Fig. 9 . This expert was an archi-

ect with a high degree of familiarity with the layout of the rail-

ay station. Fig. 9 shows the same navigation task (i.e. same O-

 pair) performed by the same expert across both optimized and

on-optimized layout. The following wayfinding performance mea-

ures were recorded; (1) distance covered (2) time to reach the

estination (3) stay-duration at decision points and (4) trajectory.

esults showcase analysis of a single expert who performed the

ame task. The task was performed across both non-optimized and

ptimized signage layouts for the case of the railway station. With
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Table 3 

These results were computed on a standard computer Intel(R) Core(TM) i7-6700K with 4.00 GHz processor and 16 GB RAM for two different environments. 

Note that while the system is not real-time, it is sufficiently fast to support the use of a user-in-the-loop. 

Environments #O-D pairs #Signs Area Before Optimization ( m 
2 ) Area After Optimization ( m 

2 ) Total GA Time (s) PSO Avg. Time (s) 

Shopping Mall 10 67 38,740 45,025 63.5 3.96 

Railway Station 14 70 55,206 65,730 161.84 3.73 

Table 4 

Expert walk-through performance before and after signage design optimization for 

the virtual railway station. 

Signage Environment Task O-D Distance (m) Time (s) 

Non- Optimized Zurich Train Station A-B 546 364 

Optimized Zurich Train Station A-B 349 233 
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regards to the distance covered, the length of paths differs substan-

tially between the two layouts. As can be seen in Table 4 , in the

optimized layout, the length of experts path was 349 m whereas,

in the pre-optimized layout, it was 546 m. This difference could

be related to the shortest-path optimization step used to position

signs in a way that directed occupants along the shortest path for

the selected O-D pair. Similarly, the time taken to reach the des-

tination was longer in the pre-optimized layout than in the op-

timized one. A more in-depth understanding of the time dimen-

sion is visualized in Fig. 9 showcasing a heatmap analysis of stay-

duration along with path points. Experts’ stay duration along path

points in the pre-optimized layout is longer than in the optimized

layout. This variance in stay-duration could indicate difficulty to

make a wayfinding decision on the basis of signage information

along with specific path points (i.e., decision points and intersec-

tions). This explanation, however, is inconclusive. Alternative meth-

ods to gain qualitative feedback (e.g. think-aloud protocols) could

have been applied to provide a richer explanation of observed be-

havior. Yet, this approach would have hindered the possibility of

comparing agents’ performance to that of experts. Recorded trajec-

tories from the expert walk-through under both layouts are very

similar to agents’ trajectories for the respective layouts after opti-

mization, as shown in Figure S1 (d) in the supporting document

and Fig. 9 . 

8. Conclusion and future works 

We have presented a multi-objective two-step optimization ap-

proach to a complex signage design problem. As demonstrated, the

use of AUTOSIGN has proven useful to aid wayfinding in a man-

ner that aligns with designers’ optimization criteria (i.e., reducing

overall walking distance, optimizing the number of signs, thus re-

ducing cost of installing signs and overall walking duration). 

The proposed optimization-based signage design tool provides

designers with the computational power to quickly visualize the

interplay of different O-D pairs. The automatic placement of di-

rectional texture on the signs and the VR walk-through supports

the user-in-the-loop aspect of AUTOSIGN and allows for informed

design iterations. AUTOSIGN can be applied during various de-

sign stages of building design (from preliminary design stages to

retrofit) to reevaluate the efficiency of an existing signage sys-

tem which may get occluded due to refurbishment (e.g., an ad-

vertisement for retails in an airport terminal or due to special of-

fers boards in a supermarket). In addition to its current applica-

tion of signage positioning, the tool functionalities can be further

used to optimize the positioning of additional building elements

to support wayfinding (e.g., beacons and maps) based on various

criteria. Compared to traditional, often manual and intuition-based

approaches the proposed AUTOSIGN framework provides a com-

plementary computational approach that supports quick and cus-
omized signage layout generation informed by a built-in usability

valuation of each generated layout. 

Future work. We plan to integrate a cognitive agent-based sim-

lation for wayfinding to validate and optimize the design of sig-

age systems from the perspective of varied occupant groups. By

ntegrating a cognitive agent simulation to evaluate each automat-

cally generated signage design, we aim to leverage the use of sim-

lation to support human-centric optimisation of building systems.

e are also motivated to adapt AUTOSIGN to support signage gen-

ration and optimization in more complex building environments,

amely multi-level buildings. To enhance the generative process of

ignage layouts with semantic information, advanced IFC process-

ng of BIM to inform signage optimization will also be considered.

inally, we aim to extend the proposed navigation graph represen-

ation of the complex environment to hierarchical navigation graph

epresentation to incorporate different hierarchies in the design of

he signage system. 

eclaration of Competing Interest 

The authors declare that they have no known competing finan-

ial interests or personal relationships that could have appeared to

nfluence the work reported in this paper. 

RediT authorship contribution statement 

Rohit K. Dubey: Conceptualization, Methodology, Software,

riting - original draft, Visualization. Wei Ping Khoo: Software.

ichal Gath Morad: Visualization, Writing - review & editing.

hristoph Hölscher: Supervision. Mubbasir Kapadia: Supervision,

riting - review & editing. 

cknowledgement 

The research was conducted at the Future Cities Laboratory at

he Singapore-ETH Centre, which was established collaboratively

etween ETH Zurich and Singapore’s National Research Foundation

FI 370074016) under its Campus for Research Excellence and Tech-

ological Enterprise programme. 

upplementary material 

Supplementary material associated with this article can be

ound, in the online version, at doi: 10.1016/j.cag.2020.02.007 

eferences 

[1] Norman D . The design of everyday things: revised and expanded edition. Basic

Books (AZ); 2013 . 
[2] Xie H, Filippidis L, Gwynne S, Galea ER, Blackshields D, Lawrence PJ. Sig-

nage legibility distances as a function of observation angle. J Fire Prot Eng
2007;17(1):41–64. doi: 10.1177/1042391507064025 . 

[3] Yenumula K , Kolmer C , Pan J , Su X . Bim-controlled signage system for building
evacuation. Proc Eng 2015;118:284–9 . 

[4] Motamedi A , Wang Z , Yabuki N , Fukuda T , Michikawa T . Signage visibility anal-
ysis and optimization system using BIM-enabled virtual reality (VR) environ-

ments. Adv Eng Inf 2017;32:248–62 . 

[5] Watson C , Thomson K . Bringing post-occupancy evaluation to schools in scot-
land. Eval Qual Educ Facil 2005;3:189–220 . 

[6] Hajibabai L , Delavar M , Malek M , Frank A . Agent-based simulation of spatial
cognition and wayfinding in building fire emergency evacuation. In: Geomatics

solutions for disaster management. Springer; 2007. p. 255–70 . 

https://doi.org/10.1016/j.cag.2020.02.007
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0001
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0001
https://doi.org/10.1177/1042391507064025
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0003
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0003
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0003
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0003
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0003
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0004
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0004
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0004
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0004
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0004
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0004
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0005
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0005
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0005
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0006
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0006
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0006
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0006
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0006


R.K. Dubey, W.P. Khoo and M.G. Morad et al. / Computers & Graphics 88 (2020) 13–23 23 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

 

 

 

[  

 

[  

[
[  

 

[  

[  

 

[  

 

[  

 

 

 

[  

[
[  

[  

 

[  

 

 

[  

[  

[  

 

 

 

[  
[7] Kalay YE . Architecture’S new media: principles, theories, and methods of com-
puter-aided design. MIT press; 2004 . 

[8] Lin J , Song R , Dai J , Jiao P . Pedestrian guiding signs optimization for airport
terminal. Discret Dyn Nat Soc 2014;2014 . 

[9] Tam ML . An optimization model for wayfinding problems in terminal building.
J Air Transp Manag 2011;17(2):74–9 . 

[10] Zhang Z , Jia L , Qin Y . Optimal number and location planning of evacuation
signage in public space. Saf Sci 2017;91:132–47 . 

[11] Berseth G, Kapadia M, Haworth MB, Faloutsos P. Steerfit: Automated param-

eter fitting for steering algorithms. In: Proceedings of the Eurographics/ACM
SIGGRAPH Symposium on Computer Animation, SCA 2014, Copenhagen, Den-

mark, 2014.; 2014. p. 113–22. doi: 10.2312/sca.20141129 . 
[12] Berseth et al.(2018)Berseth, Khayatkhoei, Haworth, Usman, Kapadia and Falout-

sos Berseth G., Khayatkhoei M., Haworth B., Usman M., Kapadia M., Falout-
sos P.. Interactive diversity optimization of environments. arXiv preprint

arXiv: 1801.08607 , 2018. 

[13] Haworth MB, Usman M, Berseth G, Khayatkhoei M, Kapadia M, Falout-
sos P. CODE: crowd-optimized design of environments. J Vis Comput Anim

2017;28(6). doi: 10.1002/cav.1749 . 
[14] Cassol VJ , Testa ES , Jung CR , Usman M , Faloutsos P , Berseth G , et al. Evaluating

and optimizing evacuation plans for crowd egress. IEEE Comput Graph Appl
2017(4):60–71 . 

[15] Attaianese E . Increasing sustainability by improving full use of public space:

human centred design for easy-to-walk built environment. In: Advances in er-
gonomics in design. Springer; 2016. p. 473–83 . 

[16] Ooms K , Duytschaever A , Stroeken K , Verdoolaege A , Viaene P , Van de
Weghe N . Fine-tuning the usability of a crowdsourced indoor navigation sys-

tem. Cartogr Geogr Inf Sci 2019;46(5):456–73 . 
[17] Dubey RK , Thrash T , Kapadia M , Hoelscher C , Schinazi VR . Information theo-

retic model to simulate agent-signage interaction for wayfinding. Cognit Com-

put 2019:1–18 . 
[18] Wright M , Cook G , Webber G . Visibility of four exit signs and two exit

door markings in smoke as gauged by twenty people. In: Proceedings of the
second international symposium on human behaviour in fire, March 26–28,

2001, Massachusetts Institute of Technology, Cambridge, MA; 2001. p. 147–
157 . 

[19] Association NFP . Life safety code handbook. National Fire Protection Associa-

tion; 1991 . 
20] Filippidis L , Galea ER , Gwynne S , Lawrence PJ . Representing the influence of

signage on evacuation behavior within an evacuation model. J Fire Prot Eng
2006;16(1):37–73 . 

[21] Greenroyd FL , Hayward R , Price A , Demian P , Sharma S . A tool for signage
placement recommendation in hospitals based on wayfinding metrics. Indoor

Built Environ 2018;27(7):925–37 . 

22] Alghofaili R , Solah M , Huang H , Sawahata Y , Pomplun M , Yu L-F . Optimizing vi-
sual element placement via visual attention analysis. IEEE Virtual Reality; 2019 .
23] Sutcliffe A, Namoun A. Predicting user attention in complex web pages. Behav
Inf Technol 2012;31(7):679–95. doi: 10.1080/0144929X.2012.692101 . 

24] van Hamersveld M , de Bont C . Market research handbook. Wiley; 2007 . 
25] Huang H , Lin N-C , Barrett L , Springer D , Wang H-C , Pomplun M , et al. Au-

tomatic optimization of wayfinding design. IEEE Trans Vis Comput Graph
2018;24(9):2516–30 . 

26] Carpman J . Wayfinding in hospitals: solving the maze. Environ Behav
1984;25(3):743–60 . 

[27] Montello DR . Navigation.. Cambridge University Press; 2005 . 

28] Buchner S , Holscher C , Konieczny L , Wiener J . How the geometry of space con-
trols visual attention during spatial decision making. In: Proceedings of the

annual meeting of the cognitive science society, 31; 2009 . 
29] Duckham M , Kulik L . simplest paths: automated route selection for navigation.

In: Proceedings of the international conference on spatial information theory.
Springer; 2003. p. 169–85 . 

30] Hölscher C , Tenbrink T , Wiener JM . Would you follow your own route

description? cognitive strategies in urban route planning. Cognition
2011;121(2):228–47 . 

[31] Hölscher C , Brösamle M , Vrachliotis G . Challenges in multilevel wayfinding:
a case study with the space syntax technique. Environ. Plann. B: Plann. Des.

2012;39(1):63–82 . 
32] Calori C , Vanden-Eynden D . Signage and wayfinding design: a complete guide

to creating environmental graphic design systems. John Wiley & Sons; 2015 . 

33] Arthur P , Passini R . Wayfinding: people, signs, and architecture; 1992 . 
34] Uebele A . Signage systems & information graphics: a professional sourcebook.

Thames & Hudson; 2007 . 
35] Darken RP , Sibert JL . Wayfinding strategies and behaviors in large virtual

worlds. In: Proceedings of the SIGCHI conference on Human factors in com-
puting systems. ACM; 1996. p. 142–9 . 

36] Foltz MA . Designing navigable information spaces. Massachusetts Institute of

Technology, Dept. of Electrical Engineering and Computer Science; 1998. Mas-
ter’s thesis . 

[37] Golledge RG . Wayfinding behavior: cognitive mapping and other spatial pro-
cesses. JHU press; 1999 . 

38] Darken R.P., Peterson B. Spatial orientation, wayfinding, and representa-
tion.2014. 

39] Murata T , Ishibuchi H , Tanaka H . Multi-objective genetic algorithm and its ap-

plications to flowshop scheduling. Comput. Ind. Eng. 1996;30(4):957–68 . 
40] Dubey RK , Kapadia M , Thrash T , Schinazi VR , Hoelscher C . Towards an infor-

mation-theoretic framework for quantifying wayfinding information in virtual
environments. Cognition and artificial intelligence for human-centered design

workshop; 2017 . 
[41] De Jong K.A. Analysis of the behavior of a class of genetic adaptive sys-

tems1975;. 

42] Bangor A , Kortum P , Miller J . Determining what individual sus scores mean:
adding an adjective rating scale. J Usabil Stud 2009;4(3):114–23 . 

http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0007
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0007
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0008
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0008
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0008
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0008
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0008
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0009
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0009
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0010
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0010
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0010
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0010
https://doi.org/10.2312/sca.20141129
arxiv:1801.08607
https://doi.org/10.1002/cav.1749
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0013
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0013
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0013
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0013
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0013
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0013
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0013
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0013
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0014
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0014
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0015
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0015
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0015
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0015
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0015
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0015
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0015
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0016
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0016
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0016
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0016
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0016
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0016
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0017
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0017
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0017
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0017
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0018
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0018
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0019
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0019
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0019
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0019
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0019
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0020
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0020
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0020
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0020
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0020
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0020
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0021
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0021
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0021
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0021
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0021
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0021
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0021
https://doi.org/10.1080/0144929X.2012.692101
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0023
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0023
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0023
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0024
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0024
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0024
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0024
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0024
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0024
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0024
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0024
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0025
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0025
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0026
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0026
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0027
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0027
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0027
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0027
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0027
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0028
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0028
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0028
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0029
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0029
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0029
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0029
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0030
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0030
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0030
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0030
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0031
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0031
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0031
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0032
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0032
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0032
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0033
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0033
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0034
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0034
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0034
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0035
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0035
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0036
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0036
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0037
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0037
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0037
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0037
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0038
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0038
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0038
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0038
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0038
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0038
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0039
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0039
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0039
http://refhub.elsevier.com/S0097-8493(20)30024-8/sbref0039

	AUTOSIGN: A multi-criteria optimization approach to computer aided design of signage layouts in complex buildings
	1 Introduction
	2 Related work
	3 AUTOSIGN - a computer-Aided signage optimization framework
	3.1 Initial building design

	4 Computer aided signage design work-flow
	4.1 Decision point extraction
	4.2 Navigation graph: multiple path generation
	4.3 Initial signage placement

	5 Multi-criteria optimization formulation
	5.1 Route choice based optimization
	5.1.1 Computation of wayfinding cost function
	5.1.2 Multi-Objective - Random Weight Genetic Algorithm (MO-RWGA)

	5.2 Signage coverage area based optimization
	5.2.1 Single objective function: Sign coverage area


	6 Optimization and experimental results
	6.1 Performance analysis
	6.1.1 MO-RWGA optimization
	6.1.2 Particle swarm optimization

	6.2 Signage coverage area
	6.3 Agent-based simulation to assess wayfinding performance across signage layouts
	6.3.1 Virtual shopping mall
	6.3.2 Variation in signage design


	7 User evaluation
	7.1 System usability test
	7.2 Expert-based VR walk-through to assess wayfinding across signage layouts

	8 Conclusion and future works
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgement
	Supplementary material
	References


