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Abstract
In this paper, we consider the problem of image-to-video translation, where one or a set of input images are translated into
an output video which contains motions of a single object. Especially, we focus on predicting motions conditioned by high-
level structures, such as facial expression and human pose. Recent approaches are either driven by structural conditions or
temporal-based. Condition-driven approaches typically train transformation networks to generate future frames conditioned
on the predicted structural sequence. Temporal-based approaches, on the other hand, have shown that short high-quality
motions can be generated using 3D convolutional networks with temporal knowledge learned from massive training data.
In this work, we combine the benefits of both approaches and propose a two-stage generative framework where videos
are forecast from the structural sequence and then refined by temporal signals. To model motions more efficiently in the
forecasting stage, we train networks with dense connections to learn residual motions between the current and future frames,
which avoids learning motion-irrelevant details. To ensure temporal consistency in the refining stage, we adopt the ranking
loss for adversarial training. We conduct extensive experiments on two image-to-video translation tasks: facial expression
retargeting and human pose forecasting. Superior results over the state of the art on both tasks demonstrate the effectiveness
of our approach.

Keywords Image-to-video translation · Video generation · Multi-stage GANs · Motion prediction · Residual learning

1 Introduction

Generative modeling of images and videos is a fundamental
but challenging problem in computer vision. Previous meth-
ods, such as Variational Auto-Encoders (VAEs) (Kingma
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et al. 2014; Rezende et al. 2014), adopt probabilistic graphi-
cal models to maximize the lower bound of data likelihood.
Othermethods, such as PixelRNN (van denOord et al. 2016),
aim to model the conditional distribution of the pixel space
for image generation. Recent progress made in this field with
Generative Adversarial Networks (GANs) (Goodfellow et al.
2014) has attracted a lot of research interests. During the
training of GANs, a generator and a discriminator play a
zero-sum game: the generator targets at producing samples
towards the true data distribution to fool the discriminator,
while the discriminator is optimized to distinguish between
real and generated samples. GANs have shown promising
performance for generative problems, and they can be uti-
lized to synthesize sharp and realistic-looking images for
various vision applications (Lu et al. 2017; Ma et al. 2017;
Villegas et al. 2017b; Zhang et al. 2017a, 2018a, b).

Compared with synthesizing images, video generation is
more challenging since neural networks need to learn the
appearance of objects as well as their motions at the same
time.We target at a form of classic problems in video genera-
tion that can be framed as image-to-video translation. In this
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task, a system receives one or a set of images as the input and
translates them into a video containing realistic motions of
a single object with a fixed camera viewpoint, which means
that the background is always static in the entire output video.
Examples include facial expression retargeting (Laine et al.
2017; Olszewski et al. 2017; Thies et al. 2016), future pre-
diction (Tulyakov et al. 2018; Villegas et al. 2017a; Vondrick
et al. 2016), and human body pose forecasting (Chao et al.
2017; Fragkiadaki et al. 2015; Villegas et al. 2017b).

There are two major approaches in the field of video
generation using GANs. One approach for long-term future
prediction (Villegas et al. 2017b; Shi et al. 2015) is to train
a transformation network that translates the input image
into each future frame separately conditioned by a sequence
of structures. It suggests that it is beneficial to incorporate
high-level structures during the generative process. However,
temporal information is only encoded in structural condi-
tions and there are no additional constraints applied during
the training of these methods. As a result, motion artifacts
often exist in the final output. In parallel, recent studies (Ji
et al. 2013; Simonyan and Zisserman 2014; Tran et al. 2015;
Tulyakov et al. 2018; Vondrick et al. 2016) show that tem-
poral visual features are important for modeling actions in
the video. Such an approach produces temporally coherent
motions with the help of spatiotemporal generative net-
works (implemented using 3D convolutions) but is poor at
long-term conditional motion generation, since no high-level
guidance is provided during training.

In this paper, we combine the benefits of these two meth-
ods. Our framework includes two motion transformation
networks where the entire video is synthesized in a forecast-
ing and then refining manner. In the forecasting stage, the
Motion Forecasting Networks observe a single frame from
the input and generate all future frames individually, which
are conditioned by the structural sequence predicted by a
Motion Condition Generator. This stage aims to generate a
coarse video where the spatial structures of the motions are
preserved. In the refining stage, the Motion Refining Net-
works based on 3D convolutions are used for refining the
output from the previous stage. It performs the generation
guided by temporal signals, which targets producing tempo-
rally coherent motions.

In the first stage, for more effective motion modeling, the
transformation networks are trained in the residual space.
Rather than learning the mapping from the structural con-
ditions to motions directly, we force the networks to learn
the differences between motions occurring in the current and
future frames. The intuition is that learning only the residual
motion avoids the redundant motion-irrelevant information,
such as static backgrounds, which remains unchanged during
the transformation. Moreover, we introduce a novel net-
work architecture using dense connections for decoders. It
encourages reusing spatially different features and thus yields

realistic-looking results. In the second stage, the main chal-
lenge is to produce future frames with vivid motion while
perverse the appearance of the object at the same time. To
this end, we introduce 3D convolutional networks for realis-
tic motion generation in the residual space. Furthermore, we
present a combination of the adversarial loss and ranking loss
to prevent the refining networks from reaching sub-optimal
solutions.

We experiment with the proposed approach on two tasks:
facial expression retargeting and human pose forecasting as
shown in Fig. 1. Success in either task requires reasoning
realistic spatial structures as well as temporal semantics of
the motions. Note that predicting human poses is more chal-
lenging due to the highly non-linear transformations when
motion changes are large. Strong performances on both tasks
demonstrate the effectiveness of our approach.

The preliminary version of this paper is published in
ECCV’18 (Zhao et al. 2018) and we have improved it in
four important aspects: giving a more comprehensive imple-
mentation of the motion condition generators (Sect. 4),
presenting more complete solution for train the refining net-
works (Sect. 6.2), giving the detailed network architectures
of the proposed motion forecasting networks (Sect. 5.1)
and refining networks (Sect. 6.1), and conducting thorough
studies on the Human3.6M dataset (Ionescu et al. 2014) to
evaluate the proposed approach for human pose forecasting
(Sect. 7.3). In summary, we show the following contributions
in this paper.

– We devise a novel two-stage generation framework for
image-to-video translation, where the future frames are
generated according to the spatial structural sequence and
then refined with temporal signals;

– We investigate learning residual motion for video gener-
ation, which focuses on the motion-specific knowledge
and avoids learning redundant or irrelevant details from
the inputs;

– Dense connections between layers of decoders are intro-
duced to encourage spatially different feature reuse dur-
ing the generation process, which yields more realistic-
looking results;

– We conduct extensive experimental validation on stan-
dard datasets to quantitatively and subjectively compare
our method with the state of the art to demonstrate the
effectiveness of the proposed algorithm.

2 RelatedWork

Videogeneration has been an important but challengingprob-
lem of computer vision in the literature. In this section, we
briefly discuss previous works on video generation that are
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Fig. 1 Two typical problems of
image-to-video translation that
our approach is able to address:
a facial expression retargeting
and b human body pose
forecasting

(a)

(b)

related to our approach, as well as advances in deep learning,
such as the development of generative adversarial networks,
which has significantly boosted the performance of genera-
tive models.

2.1 Generative Adversarial Networks (GANs)

Deep learning techniques have improved the accuracy of
various vision systems (Peng et al. 2016, 2015; Tang et al.
2018a, b; Zhao et al. 2019a). Especially, a lot of generative
problems (Gulrajani et al. 2017; Peng et al. 2018; Perarnau
et al. 2016; Tian et al. 2018) have been tackled by Genera-
tive Adversarial Networks (GANs). GANs are first proposed
by Goodfellow et al. (2014) to estimate target distribution
with a generator and a discriminator. Arjovsky et al. (2017)
presented WGAN, a more stable approach to enforce Lip-
schitz constraint for GANs. Gulrajani et al. (2017) further
improved WGAN with gradient penalty. Moreover, Mirza
and Osindero (2014) extended traditional GANs by leverag-
ing labeled data other than noise distributions as the input
to the generator. Such conditional models are called condi-
tional GANs, which allow flexible control over the output
of the model conditioned by various forms of data, including
images (Tulyakov et al. 2018; Villegas et al. 2017b; Vondrick
et al. 2016), categorical labels (Odena et al. 2017; Tian et al.
2018) and textual descriptions (Reed et al. 2016; Zhang et al.
2017b, c). Our method belongs to the category of conditional
video generation with GANs and is built upon the guidance
of these previous works.

2.2 Video Generation

Recent methods extend conventional GAN frameworks by
leveraging 3D convolutions or recurrent neural networks
to model temporal information for video generation. For
instance, VGAN (Vondrick et al. 2016) demonstrated that 3D
convolutional networks could model scene dynamics from
massive data. Saito et al. (2017) proposed TGAN, a GAN
architecture which generates multiple frames at the same
time. Tulyakov et al. (2018) proposed MoCoGAN combin-
ing a recurrent neural network with an adversarial learning
scheme to decompose motion and content for video genera-
tion. However, due to the unconditional setting, the results of
these methods are often with low resolution or short length.

Conditional video generation is closely related to the prob-
lemof future frame prediction addressed in Finn et al. (2016),
Liang et al. (2017), Liu et al. (2017), Mathieu et al. (2016),
Srivastava et al. (2015), Villegas et al. (2017a). These meth-
ods aim to synthesize a sequence of images representing a
coherent continuation of the given video. Wang et al. (2018)
proposed video-to-video synthesis whose goal is to learn
a mapping function from an input source video, such as
a sequence of semantic segmentation masks, to an output
photo-realistic video that precisely depicts the content of
the source video. Pan et al. (2019) introduced a task which
extends video-to-video synthesis by letting the output video
be conditioned on a single semantic label map. Although
these methods can handle any datasets with general motions,
the main drawback of these approaches is that they can only
predict short video clips with the fixed length. Another direc-
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tion of conditional video generation is to make long-term
predictions for videos of specific types such as human poses
and faces (Villegas et al. 2017b; Yang et al. 2018; Zhao et al.
2018). These methods rely on a sequence of conditions as the
guidance to generate plausible videos. Our study is related
to the latter.

Image-to-video translation aims to predict future frames
from input images, which is the extreme case of conditional
video generation. Recent methods (Denton and Birodkar
2017; Lotter et al. 2017; Mathieu et al. 2016; Villegas et al.
2017a, b; Shi et al. 2015) train transformation networks that
translate the input image into each future frame separately,
together with an optional generator predicting the structure
sequence which conditions the future frames. However, due
to the absence of pixel-level temporal knowledge during the
training process, motion artifacts can be observed from the
results of these methods. Other approaches explore learning
temporal visual features from video with 3D convolutional
networks. Ji et al. (2013) showed how 3D convolutions could
be applied to human action recognition. Tran et al. (2015)
employed 3D convolutions to model features encoded in
videos. Vondrick et al. (2016) built a conditional model
to generate scene dynamics with 3D generative adversarial
networks. Our method differs from the two-stream model
of Vondrick et al. (2016) in two aspects. First, our residual
motion map disentangles motion from the input: the gener-
ated frame is conditioned on the current and future motion
structures. Second, we can control object motions in future
frames efficiently by using structure conditions. Thus our
method can be applied to motion manipulation problems.

2.3 Multi-stage GANs

Conventional GANs usually fail to handle complicated gen-
erative problems, e.g., to generate fine-grained images or
videos with largemotion changes. Recent approaches proved
that coarse-to-fine strategy can handle these cases. Our
approach is closely related to these GAN-based methods
in which the generator produces images or videos in multi-
ple stages. Denton et al. (2015) proposed LAPGAN where a
series of GANs are built within a Laplacian pyramid. At each
level of the pyramid, the generator produces a coarse image
and updates it by using a difference of an initial image. Pro-
gressiveGAN (Karras et al. 2018) generated high-resolution
images by incrementally adding more layers to both the gen-
erator and the discriminator. Zhang et al. (2017c) introduced
StackGAN which generated images from text descriptions
through a sketch-refinement process. StackGAN++ (Zhang
et al. 2017b) further improved this two-stage framework by
synthesizing multi-scale images via multiple generators and
discriminators. Li et al. (2018) formulated the multi-frame
prediction task as amulti-flowprediction phase followed by a

flow-to-frame synthesis phase, which is modeled by spatial-
temporal relationships learned through 3D convolutions.

Our model also adopts a multi-stage strategy for video
generation. The closest work to our approach is presented by
Xiong et al. (2018). Although it generates video within two
stages, there are important differences between their work
and ours. First, Xiong et al. (2018) is proposed for time-
lapse videos while we can generate general videos. Second,
we use structure conditions to guide the generation in the
first stage but Xiong et al. (2018) performs generation in the
same stage with 3D convolutional networks. Third, we can
make long-term predictions while Xiong et al. (2018) only
generates videos with fixed length.

3 Approach Overview

Our framework consists of three components: a motion
condition generator GC , an image-to-image transformation
network GM for forecasting motion conditioned by GC to
each future frame individually, and a video-to-video trans-
formation network GR which aims to refine the video clips
concatenated from the output of GM . The pipeline of our
approach is illustrated in Fig. 2.

The rest of the paper explains each component in detail
which is organized as follows. In Sect. 4, we introduce GC , a
task-specific generator that produces a sequence of structures
to condition the motion of each future frame. We present
two example implementations of GC for illustration, where
domain knowledge is involved to guide the prediction. In
Sects. 5 and 6, the detailed architectures and implementations
of GM and GR are discussed respectively. Note that two
discriminators are utilized for adversarial learning with GM

and GR , where DI differentiates real frames from generated
ones and DV is employed for video clips. These networks
are trained based onWGAN (Arjovsky et al. 2017; Gulrajani
et al. 2017).

4 Motion Condition Generators

In this section, we illustrate how the motion condition gener-
atorsGC are implemented for two image-to-video translation
tasks: facial expression retargeting and human pose fore-
casting. One superiority of the proposed GC is that the
domain-specific knowledge, such as 3D morphable model
or 2D landmarks, can be leveraged to help the prediction of
motion structures.

3DMM for Facial Structure Generator. As shown in Fig. 3,
we utilize the 3D Morphable Model (3DMM) (Blanz and
Vetter 2003) to model the sequence of expression motions.
For the target image and each frame in the reference video,
the 3DMM describes the 3D face with PCA as:
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Fig. 2 Overview of our framework. A condition generator predicts a sequence of structural conditions from the input images. Then the video is
generated from these conditions with motion forecasting networks and refined by motion refining networks

Fig. 3 Illustration of the facial
structure generator. 3DMM is
leveraged to estimate the facial
parameters of the reference
video and target image. The
retargeted facial structures are
generated by transferring
expression parameters from the
reference frames to the target

S = S̄ + Aidα + Aexpβ, (1)

where S is the 3D face mesh, S̄ is the mean mesh, Aid

and Aexp are the principle axes trained on the 3D face
scans for the facial identity and expression respectively,
and their corresponding parameters are represented by α

and β. We follow Zhu et al. (2016, 2019) to calculate Aid

from BFM (Paysan et al. 2009) and Aexp from FaceWare-
house (Cao et al. 2014) respectively. We can then project the
3D face mesh into the image plane by:

F = P · R · S + t, (2)

where P is the orthographic projection matrix, R represents
the rotation matrix, and t is the 2D translation vector of the
mesh respectively.

Given a video containing expression changes of an actor
x , it can be parameterized with αx and (βt , βt+1, . . . , βt+k)

using the 3DMM fitting method as presented by Zhu et al.
(2016, 2019), where αx represents the facial identity and
βt is the expression coefficients in the frame t . In order to
retarget the sequence of expressions to another actor x̂ , we
compute the facial identity vector αx̂ and combine it with
(βt , βt+1, . . . , βt+k) to reconstruct a new sequence of 3D
face models with corresponding facial expressions. The con-
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Fig. 4 Illustration of the pose
structure predictor. LSTM
observes t consecutive human
pose inputs and predicts the
poses for the next K timesteps.
Note that the heatmaps here are
used for illustration, but our
network observes and outputs
2D coordinates

ditional motion maps are the normal maps calculated from
the 3D face models by Eq. (2) respectively.

Human Pose Predictor with LSTM. We follow Villegas et al.
(2017b) to implement an LSTM architecture (Fragkiadaki
et al. 2015) as the human pose predictor. The human pose of
each frame is represented by the 2D coordinate positions of
joints. The LSTM observes consecutive pose inputs to iden-
tify the type of motion, and then predicts the poses for the
next period of time. An example is shown in Fig. 4. Specifi-
cally, the LSTM first encodes the observed motion structures
by:

[ht , ct ] = LSTM(xt ,ht−1, ct−1), (3)

where ht is the hidden state which encodes the observed
dynamics up to time t , ct represents the memory cell of the
LSTM, and xt is the human pose at time t . The LSTM needs
to observe a few human poses as the input to identify the type
of motion so that it can make a reasonable prediction of the
future pose by:

yt = f (w�ht ), (4)

wherew is a learnable matrix which projects the hidden state
into the 2D coordinate positions of joints, f is an activation
function, and yt is the predicted pose.

A sequence-to-sequence approach (Villegas et al. 2017b)
is leveraged to predict the future structures of human poses.
In particular, we unroll the LSTM for K timesteps to allow it
to observe K poses beforemaking the predictions. Therefore,
the LSTM is trained to minimize the following loss function:

�pose = 1

K L

K∑

k=1

L∑

l=1

‖ylt+k − xlt+k‖22, (5)

where ylt+k and x
l
t+k denote the l-th pose landmark of the pre-

diction and ground truth respectively. We note that the final
motion map is calculated by mapping the output 2D coor-
dinates from the LSTM to heatmaps and then concatenating
them on depth.

5 Motion Forecasting Networks

Starting from the frame It at time t , our network synthe-
sizes the future frame It+k by predicting the residual motion
between them. Previous work (Ma et al. 2017; Shen and Liu
2017) implemented this idea by letting the network estimate
a difference map between the input and output, which can be
denoted as:

It+k = It + GM (It |Mt , Mt+k), (6)

where Mt is the motion map which conditions It . However,
this straightforward formulation easily fails when employed
to handle videos including large motions. This is due to
the fact that learning to generate a combination of residual
changes from both dynamic and static contents in a single
map is quite difficult. Therefore, we introduce an enhanced
formulation where the transformation is disentangled into a
residual motion map mt+k and a residual content map ct+k

with the following definition:

It+k = mt+k � ct+k︸ ︷︷ ︸
residual motion

+ (1 − mt+k) � It︸ ︷︷ ︸
static content

, (7)

where both mt+k and ct+k are predicted by GM , and � is
element-wise multiplication. Intuitively, mt+k ∈ [0, 1] can
be viewed as a spatial mask that highlights where the motion
occurs. ct+k is the content of the residual motions. By sum-
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(a)

(b)

Fig. 5 Illustration of our residual formulation. We disentangle the
motion differences between the input and future frames into a residual
motion map mt+k (Middle) and a residual content map ct+k (Bottom).

We show examples of a facial expression retargeting and b human body
pose forecasting. Compared with the difference map directly computed
from them, our formulation makes the learning task much easier

ming the residual motion with the static content, we can
obtain the final result. Note that as visualized in Fig. 5, mt+k

forces GM to reuse the static part from the input and concen-
trate on inferring dynamic motions.

Connection to Attention Mechanism. We note that our
residual formulation in Eq. (7) is closely related to the atten-
tion module (Vaswani et al. 2017) recently presented for
generating facial animation (Pumarola et al. 2018). This can
be seen from the fact that at time t + k, mt+k defined in
Eq. (7) defines a per pixel intensity specifying to those pixels
of the frame It which will contribute in the future frame It+k .
It shares the same concept of the facial attention mask pro-
posed in Pumarola et al. (2018). As such, our work provides
insight by relating the recent attentionmechanism to the clas-
sic residual formulation in computer vision, and extends the
facial animation network in Pumarola et al. (2018) to a more
generic motion prediction network for image/video genera-
tion problems in computer vision.

Despite the strong relation to Pumarola et al. (2018), we
show that the attentional behavior is not limited to producing
facial animationswhich contain local deformations, but it can
also model videos with large motions such as human body
poses. This is illustrated in Fig. 5.

5.1 The Architecture

Figure 6 shows the architecture of GM , which is inspired
by the visual-structure analogy learning (Reed et al. 2015).
Table 1 presents the network specification. The future frame
It+k can be generated by transferring the structural differ-
ences between Mt and Mt+k to the input frame It . We use
a motion encoder fM , an image encoder f I and a residual
content decoder fD to model this concept. And the residual
motion is learned by:

Δ(It+k, It ) = fD( fM (Mt+k) − fM (Mt ) + f I (It )). (8)

Intuitively, fM aims to identify key motion features from
the motion map containing high-level structural informa-
tion; f I learns to map the appearance model of the input
into an embedding space, where the motion feature trans-
formations can be easily imposed to generate the residual
motion; fD learns to decode the embedding. Note that we
add skip connections (Ronneberger et al. 2015) between f I
and fD , which makes it easier for fD to reuse features of
static objects learned from f I .

Dense Connections for Decoders. Recent studies Huang
et al. (2018, 2017) introduced dense connections for image
classification, which enhance feature propagation and reuse
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Fig. 6 Architecture of our motion forecasting network GM . The net-
work observes the input frame It with its corresponding motion map
Mt , and the motion map of the future frame Mt+k . Through analogy

learning, the network estimates the residual motion between the current
frame It and future frame It+k . Note that the dashed layers upsample
the inputs and connect them to the subsequent dense blocks

in the network. They have proven that dense connections for
encoders strengthen feature propagation and also encourage
feature reuse. We argue that this is an appealing property for
motion transformation networks as well, since in most cases
the output frame shares similar high-level structure with the
input frame. Especially, dense connections make it easy for
the network to reuse features of different spatial positions
when large motions are involved in the image.

In thiswork,we introduce dense connections for decoders.
The decoder of our network thus consists of multiple dense
connections, each of which connects different dense blocks.
A dense block contains two 3 × 3 convolutional layers. The
output of a dense block is connected to the first convolutional
layers located in all subsequent blocks in the network. As
dense blocks have different feature resolutions, we upsample
feature maps with lower resolutions when we use them as
inputs into higher resolution layers.

Compared with multi-scale feature fusion in Liu et al.
(2017) where feature maps are only concatenated to the last
layer of the network, our dense connections upsample and
concatenate feature maps with different scales to all inter-
mediate layers. As a result, our approach is more efficient
at feature reuse when utilized for generation, which yields
sharper and more realistic-looking results.

5.2 Network Training

Given a video clip, we train our network to perform random
jumps in time to learn forecastingmotion changes. To be spe-
cific, for every iteration at training time, we sample a frame
It and its corresponding motion map Mt given byGC at time
t , and then force it to generate frame It+k given motion map
Mt+k . Note that in order to let our network perform learning
in the entire residualmotion space, k is also randomly defined
for each iteration. On the other hand, learning with jumps in

time can prevent the network from falling into suboptimal
parameters as well (Villegas et al. 2017b). Our network is
trained to minimize the following objective function:

�GM =�rec(It+k, Ĩt+k)+�r (mt+k)+�gen . (9)

�rec is the reconstruction loss defined in the image space
which measures the pixel-wise differences between the pre-
dicted and target frames:

�rec(It+k, Ĩt+k) = ‖It+k − Ĩt+k‖1, (10)

where Ĩt+k denotes the frame predicted by GM . The recon-
struction loss intuitively offers guidance for our network in
making a rough prediction that preserves most content infor-
mation of the target image. More importantly, it leads the
result to share similar structure information with the input
image. �r is an L-1 norm regularization term defined as:

�r (mt+k) = ‖mt+k‖1, (11)

where mt+k is the residual motion map predicted by GM .
It forces the predicted motion changes to be sparse, since
dynamic motions always occur in local positions of each
framewhile the static parts (e.g., background objects) should
be unchanged. Furthermore, �gen is the adversarial loss that
enables our model to generate realistic frames and reduce
blurs, and it is defined as:

�gen = −DI ([ Ĩt+k, Mt+k]), (12)

where DI is the discriminator for images in adversarial learn-
ing.We concatenate the output ofGM and motion map Mt+k

as the input of DI and make the discriminator conditioned
on the motion (Mirza and Osindero 2014).
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Note that we follow WGAN (Arjovsky et al. 2017; Gul-
rajani et al. 2017) to train DI to measure the Wasserstein
distance between distributions of the real images and results
generated from GM . During the optimization of DI , the fol-
lowing loss function is minimized:

�DI = DI ([ Ĩt+k , Mt+k ]) − DI ([It+k , Mt+k ]) + λ · �gp, (13)

�gp = (‖∇[ Ît+k ,Mt+k ]DI ([ Ît+k , Mt+k ])‖2 − 1)2, (14)

where λ is experimentally set to 10. Note that �gp is the
gradient penalty term proposed by Gulrajani et al. (2017)
where Ît+k is sampled from the interpolation of It+k and
Ĩt+k , and we extend it to be conditioned on the motion Mt+k

as well. The adversarial loss in combination with the rest of
loss terms allowsour network to generate high-quality frames
given the conditions which encode motion structures.

6 Motion Refining Networks

Let Ṽt = [ Ĩt+1, Ĩt+2, . . . , Ĩt+K ] be the video clip with length
K temporally concatenated from the outputs ofGM . The goal
of the motion refining network GR is to refine Ṽt to be more
temporally coherent, which is achieved by performing pixel-
level refinement with the help of spatiotemporal generative
networks. We extend Eq. (7) by adding one additional tem-
poral dimension to let GR estimate the residual between the
real video clip Vt and Ṽt , which is defined as:

Vt = mt � ct + (1 − mt ) � Ṽt , (15)

where mt is a spatiotemporal mask which selects either to
be refined for each pixel location and timestep, while ct pro-
duces a spatiotemporal cuboid which stands for the refined
motion content masked by mt .

6.1 The Architecture

Our motion refining network roughly follows the guideline
of Vondrick et al. (2016). As shown in Fig. 7, we do not use
pooling layers, instead strided and fractionally strided 3D
convolutions are utilized for in-network downsampling and
upsampling. Note that we concatenate the frames with their
corresponding conditionalmotionmaps as the inputs to guide
the refinement. We also add skip connections to encourage
feature reuse. However, when training the network, we find
that adding skip connections everywhere in the network will
easily lead to suboptimal results. It suggests that skip con-
nections mainly contribute to generate structural content but
are not helpful for temporal motion generation. This obser-
vation is also consistent with (Xiong et al. 2018). Therefore,
we remove the skip connections from the first two layers of
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Fig. 7 Architecture of our motion refining network GR . The network
receives temporally concatenated frames generated by GM together
with their corresponding conditional motion maps as the input and aims

to refine the video clip to bemore temporally coherent. It performs learn-
ing in the residual motion space as well. Note that skip connections are
only employed in deeper layers

the network while keep the rest in deeper layers as shown in
Fig. 7. Table 2 presents the network specification.

6.2 Network Training

The key requirement for GR is that the refined video should
be temporal coherent in motion while preserving the anno-
tation information from the input. To this end, we propose
to train the network by minimizing a combination of three
losses which is similar to Eq. (9):

�GR = �rec(Vt , V̄t ) + �r (mt ) + �̄gen + γ · �rank(Vt , Ṽt , V̄t ),

(16)

where V̄t is the output of GR . �rec and �r share the same
definition with Eqs. (10) and (11) respectively. �rec is the
reconstruction loss that aims at refining the synthesized video
towards the ground truth with minimal error. Compared with
the self-regularization loss proposed by Shrivastava et al.
(2017), we argue that the sparse regularization term �r is
also efficient to preserve the annotation information (e.g.,
the facial identity and the type of pose) during the refine-
ment, since it forces the network to only modify the essential
pixels.

�̄gen is the adversarial loss which is defined as:

�̄gen = −DV ([V̄t ,Mt ]) − 1

K

K∑

i=1

DI ([ Īt+i , Mt+i ]), (17)

where Mt = [Mt+1, Mt+2, . . . , Mt+K ] is the temporally
concatenated condition motion maps, and Īt+i is the i-th
frame of V̄t . In the adversarial learning term �̄gen , both DI

and DV play the role to judge whether the input is a real
video clip or not, providing criticisms to GR . The image
discriminator DI criticizes GR based on individual frames,
which is trained to determine if each frame is sampled from
a real video clip. At the same time, the video discrimina-
tor DV provides criticisms to GR based on the whole video

clip, which takes a fixed length video clip as the input and
judges if a video clip is sampled from a real video as well as
evaluates the motions contained. As suggested by Tulyakov
et al. (2018), although DV alone should be sufficient, DI

significantly improves the convergence and the final results
of GR .

One major challenge of training the motion refining net-
work GR in this stage is that the vanilla adversarial loss
usually leads GR to suboptimal solutions. Since Ṽt (i.e., the
input of GR) encodes the similar motion structure with Vt ,
GR trends to learn an identity mapping between Ṽt and V̄t if
no additional constraints are employed to guide the network
training. Our main idea is to optimize over distance com-
parisons between refined video clips V̄t with those from the
input Ṽt and target Vt . We consider that the motion feature
representation of refined result V̄t should be closer to those
of real data Vt than that of the input Ṽt . In this sense, we
adopt the contrasting lose proposed in Liang et al. (2018) to
compute the distance of motion features between video clips.
Therefore, the ranking loss �rank is defined as:

�rank(Vt , Ṽt , V̄t )

= − log
e−‖ fDV (V̄t )− fDV (Vt )‖1

e−‖ fDV (V̄t )− fDV (Vt )‖1 + e−‖ fDV (V̄t )− fDV (Ṽt )‖1
,

(18)

where fDV is a differentiable function which computes the
motion feature via DV . Following the guidance ofXiong et al.
(2018), we implement fDV as the Gram matrix (Gatys et al.
2015) computed from the feature maps in different layers of
fDV . During the training process, GR minimizes the ranking
loss �rank so that the feature distance between the refined
V̄t and the real Vt is encouraged to be smaller, while the
distance between V̄t and Ṽt should be larger. By optimizing
the network in such a manner, GR is able to improve the
quality of Ṽt .
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We follow the same strategy as introduced in Eq. (13) to
optimize DI . Note that in each iteration, one pair of real and
generated frames is randomly sampled from Vt and V̄t to
train DI . On the other hand, training DV is also based on
the WGAN framework, where we extend it to spatiotempo-
ral inputs. Therefore, DV is optimized by minimizing the
following loss function:

�DV = DV ([V̄t ,Mt ]) − DV ([Vt ,Mt ]) + λ · �gp − γ · �rank,

(19)

�gp = (‖∇[V̂t ,Mt ]DV ([V̂t ,Mt ])‖2 − 1)2, (20)

where V̂t is sampled from the interpolation of Vt and V̄t . DV

also maximizes the ranking loss �rank . The intuition is that if
DV is updated by expecting that the distance between V̄t and
Vt is not small enough, then GR is encouraged to generate
the result that is closer to the real data and further away from
the input in the next iteration. Note that GR , DI and DV are
trained alternatively. To be specific, we update DI and DV

in one step while fixing GR ; in the alternating step, we fix
DI and DV while updating GR .

7 Experiments

We perform experiments on two image-to-video translation
tasks: facial expression retargeting and human pose fore-
casting. For facial expression retargeting, we demonstrate
that our method is able to combine domain-specific knowl-
edge, such as 3DMM, to generate realistic-looking results.
For human pose forecasting, experimental results show that
ourmethodyields high-quality videoswhen applied for video
generation tasks containing complex motion changes.

7.1 Settings and Datasets

To train our networks, we use Adam (Kingma and Ba 2014)
for optimization with a learning rate of 0.0001 and momen-
tums of 0.0 and 0.9. We first train the forecasting networks,
and then train the refining networks using the generated
coarse frames. The batch size is set to 32 for all networks.
We empirically set λ to 10 and γ to 1. We list configurations
and setups of each dataset employed in the experiments in
Table 3.

We use the MUG Facial Expression Database (Aifanti
et al. 2010) to evaluate our approach on facial expression
retargeting. It is composed of 86 subjects (35 women and 51
men). We crop the face regions with regards to the ground
truth landmarks and scale them to 128×128. To train our net-
works, we use only the sequences representing one of the six
facial expressions: anger, fear, disgust, happiness, sadness,
and surprise. We evenly split the database into three groups
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Table 3 The video datasets used for training and evaluation in the experiments

MUG (Kingma
and Ba 2014)

BU-4DFE (Zhang
et al. 2013b)

Penn Action (Zhang
et al. 2013a)

Human3.6M (Ionescu
et al. 2014)

Data content Facial expression Facial expression Human pose Human pose

Video number 876 606 2326 21,840

Subject number 86 101 – 7

Motion category number 6 6 8 15

Used in training � � � �
Used in evaluation � – � �

Note that no subject is classified for each video in Penn Action. Thus we assume that each video has a different subject. BU-4DFE is employed
only for training

according to the subjects. Two groups are used for training
GM andGR respectively, and the results are evaluated on the
last one. To boost the performance of our networks, we also
employ the BU-4DFEDataset (Zhang et al. 2013b) for train-
ing. This dataset contains 606 facial expression sequences
captured from 101 subjects of various ethnic backgrounds. It
includes six universal expressions, i.e., angry, disgust, fear,
happiness, sadness, and surprise. We evenly split the dataset
into two parts for training GM and GR respectively. The 3D
Basel Face Model (Paysan et al. 2009) serves as the 3D mor-
phable model to fit the facial identities and expressions for
the condition generator GC . We use (Zhu et al. 2016, 2019)
to compute the 3DMM parameters for each frame. Note that
we train GR to refine the video clips every 32 frames.

We evaluate our method on human pose forecasting with
the following two dataset. TheHuman3.6MDataset (Ionescu
et al. 2014) consists of 3.6 million 3D human poses with 32
joints and corresponding images taken from 11 professional
actors in 15 actions. The provided 2D pose projections are
used for evaluation. We follow the same evaluation protocol
inVillegas et al. (2017b). For training,we use subjects S1, S5,
S6, S7 and S8, and test on subjects S9 and S11.We crop video
frames based on temporal tubes to remove as much back-
ground as possible while we ensure that the human actions
are in all frames, and then we scale each cropped frame to
128 × 128. We evenly split the training set into two parts
according to the subjects. GM and GR are trained with them
respectively. We employ the same strategy as Villegas et al.
(2017b) to train the LSTM pose generator. It is trained to
observe 10 inputs and predict 64 steps, and tested on predict-
ing 128 steps.

The Penn Action Dataset (Zhang et al. 2013a) consists of
2326 video sequences of 15 different human actions. For each
action sequence in the dataset, 13 human joint annotations
are provided as the ground truth. To remove very noisy joint
ground-truth in the dataset, we follow the setting of Villegas
et al. (2017b) to sub-sample the actions. Therefore, 8 actions
including baseball pitch, baseball swing, clean and jerk, golf
swing, jumping jacks, jump rope, tennis forehand, and tennis

serve are used for training our networks. We evenly split the
standard dataset into three sets.GM andGR are trained in the
first two sets respectively, while we evaluate our models in
the last set. The LSTM pose generator is trained to observe
10 inputs and predict 32 steps. Note that for both datasets
containing human body poses, GR is trained to refine the
video clips with the length of 16.

7.2 Evaluation on Facial Expression Retargeting

We compare our method to MCNet (Villegas et al. 2017a),
MoCoGAN (Tulyakov et al. 2018) andVillegas et al. (2017b)
on the MUG Database. For each facial expression, we ran-
domly select one video as the reference, and retarget it to all
the subjects in the testing set with different methods. Each
method only observes the input frame of the target subject,
and performs the generation based on it. Our method and
Villegas et al. (2017b) share the same 3DMM-based condi-
tion generator as introduced in Sect. 4.

Quantitative Comparison. The quality of a generated video
are measured by the Average Content Distance (ACD) as
introduced in Tulyakov et al. (2018). For each generated
video, we make use of OpenFace (Amos et al. 2016), which
outperforms human performance in the face recognition task,
to measure the video quality. OpenFace produces a feature
vector for each frame, and then the ACD is calculated by
measuring the L-2 distance of these vectors. We introduce
two variants of the ACD in this experiment. The ACD-I is
the average distance between each generated frame and the
original input frame. It aims to judge if the facial identity
is well-preserved in the generated video. The ACD-C is the
average pairwise distance of the per-frame feature vectors in
the generated video. It measures the content consistency of
the generated video.

Table 4 summarizes the comparison results. From the
table, we find that our method achieves ACD scores both
lower than 0.2, which is substantially better than the base-
lines. One interesting observation is that Villegas et al.
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Table 4 Video generation quality comparison on the MUG
Dataset (Aifanti et al. 2010)

Methods ACD-I ACD-C

MCNet (Villegas et al. 2017a) 0.545 0.322

Villegas et al. (2017b) 0.683 0.130

MoCoGAN (Tulyakov et al. 2018) 0.291 0.205

Ours 0.184 0.107

Reference 0.109 0.098

Bold values indicate the best performance
We also compute the ACD scores for the training set, which is the
reference

Table 5 Average user preference score (the average number of
times, a user prefers our result to the competing one) on the MUG
Dataset (Aifanti et al. 2010)

Methods Preference (%)

Ours/MCNet (Villegas et al. 2017a) 84.2/15.8

Ours/Villegas et al. (2017b) 74.6/25.4

Ours/MoCoGAN (Tulyakov et al. 2018) 62.5/37.5

Bold values indicate the best performance
Our results own higher preference scores compared with the others

(2017b) has the worst ACD-I but its ACD-C is the second
best. We argue that this is due to the high-level informa-
tion offered by our 3DMM-based condition generator, which
plays a vital role for producing content consistency results.
Our method outperforms other state-of-the-art approaches,
since we utilize both domain knowledge (i.e., 3DMM) and
temporal signals for video generation. We show that it is
greatly beneficial to incorporate both factors into the gener-
ative process.

We also conduct a user study to quantitatively compare
these methods. For each method, we randomly select 10
videos for each expression.We then randomly pair the videos
generated by ours with the videos from one of the compet-
ing methods to form 54 questions. For each question, 3 users
are asked to select the video which is more realistic. To be
fair, the videos from different methods are shown in ran-
dom orders. We report the average user preference scores
(the average number of times, a user prefers our result to the
competing one) in Table 5. We find that the users consider
the videos generated by ours more realistic most of the time.
This is consistent with the ACD results in Table 4, in which
our method substantially outperforms the baselines.

Visual Results. In Fig. 8, we show the visual results (the
expressions of happiness, surprise and disgust) generated
by our method. We observe that our model is able to
generate realistic motions while the facial identities are well-
preserved. We hypothesize that the domain knowledge (i.e.,

3DMM) employed serves as a good prior which improves
the generation.

7.3 Evaluation on Human Pose Forecasting

Following the settings of Villegas et al. (2017b), we engage
the feature similarity loss term � f eat for our motion forecast-
ing networkGM to capture the appearance (C1) and structure
(C2) of the human action. This loss term is added to Eq. (9),
which is defined as follows:

� f eat =
N∑

i=1

‖Ci (It+k) − Ci ( Ĩt+k)‖22, (21)

where we use the last convolutional layer of the VGG16 Net-
work (Simonyan and Zisserman 2015) as C1, and the last
layer of the Hourglass Network (Newell et al. 2016) as C2.
Note that we compute the bounding box according to the
ground truth to crop the human of interest for each frame,
and then scale it to 224 × 224 as the input of the VGG16
Network.

Results on Human3.6M Dataset. On Human3.6M Dataset,
we aim to compare our method to the state of the art in
terms of short-term and long-term future prediction. We use
Peak Signal-to-Noise Ratio (PSNR) for motion-based pixel-
level quantitative evaluation. To evaluate the performance
of short-term prediction, we measure the next-frame predic-
tion performance with PSNR (PSNR-Next) after inputting
the driven frames for each approach. On the other hand,
the average PSNR of 120 generated frames (PSNR-120)
is computed for measuring the performance of long-term
video generation. We compare our model with four LSTM-
based approaches (Denton and Birodkar 2017; Lotter et al.
2017; Villegas et al. 2017b; Shi et al. 2015), one multi-scale
method (Mathieu et al. 2016) and one using 3D convolu-
tions (Li et al. 2018). Here we implement a modified network
architecture of Li et al. (2018) which predicts the future
in next 32 timesteps given the starting frame. To get long-
term future predictions, we train their model and iteratively
treat the last predicted frame as the input to get the next 32-
timestep prediction based on the previous output. Given the
input frames, all other methods are trained to predict future
frames recursively, one by one, according to their default
settings.

Results are shown in Table 6. First, we can find that our
approach matches the state-of-the-art performance in terms
of shot-term future prediction. Specifically, 3D convolution-
based models (i.e., Li et al. 2018 and ours) achieve the
top performance, as 3D convolutions are able to produce
more temporally coherent motions than other LSTM-based
approaches. On the aspect of long-term prediction, the pro-
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(a
)

(b
)

(c
)

Fig. 8 Examples of facial expression retargeting using our algorithm
on the MUG Database (Aifanti et al. 2010). We show three expressions
as an illustration: a happiness, b surprise, and c disgust. The reference
video and the input target images are highlighted in blue and green,

respectively, while the generated frames are highlighted in red. The
results are sampled every 8 frames. Best viewed in color and zoom in
for details (Color figure online)

Table 6 Comparison of
state-of-the-art methods on the
Human3.6M Dataset (Ionescu
et al. 2014). A larger PSNR
score means better performance

Methods # of Input Frames PSNR-Next PSNR-120

Conv LSTM (Shi et al. 2015) 10 28.5 18.4

Mathieu et al. (2016) 4 26.7 16.6

PredNet (Lotter et al. 2017) 1 38.9 17.8

Villegas et al. (2017b) 10 40.1 19.2

DRNet (Denton and Birodkar 2017) 10 41.1 18.1

Li et al. (2018) 1 42.8 16.4

Ours 10 42.8 22.6

Bold values indicate the best performance

posed model substantially outperforms other state-of-the-art
methods. We can see that LSTM-based methods which
encode structure conditions, includingConvLSTM(Shi et al.
2015; Villegas et al. 2017b), DRNet (Denton and Birodkar
2017) and ours, obtain better results. Note that Li et al. (2018)
succeeded in shot-term prediction but can not achieve com-
petitive results when applied to long-termmotion generation.

This is due to the absence of structural information dur-
ing the their generative process. In contrast, our approach
combines the benefits of structural prediction and 3D con-
volutions within a two-stage framework and thus obtains the
best performance in both tasks.

To further evaluate the performance of long-term video
generation, we compare our method against convolutional
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Fig. 9 Comparison of state-of-the-art algorithms using Peak Signal-to-Noise Ratio (PSNR) on different motion deciles from Human3.6M
Dataset (Ionescu et al. 2014). Note that the results of ours and (Villegas et al. 2017b) use the condition motion maps computed from LSTM

LSTM(ConvLSTM) (Shi et al. 2015),Villegas et al. (2017b),
and one additional baseline based on optical flow (Farnebäck
2003). Following the same setting of Villegas et al. (2017b),
we use PSNR for quantitative evaluation as well. Moreover,
we evaluate the predictions by deciles of motion similar
to Villegas et al. (2017a). To be specific, the test videos
are separated into deciles based on the computed average
L-2 norms, and then we measure the image quality on each
decile. The 1st decile contains videos with the least over-
all of motion (i.e., frames that show the smallest motion
changes over time), and the 10th decile contains videos with
the most overall motion (i.e., frames that show the largest
motion changes over time). All the results of these baseline
methods are collected from Villegas et al. (2017b). Note that
for both Villegas et al. (2017b) and our approach, we report
the predictions made from the pre-trained LSTM pose gen-
erator implemented according to Villegas et al. (2017b).

Results are reported in Fig. 9. We find that our structure-
aware approach obtains the best PSNR performance among
all the methods in the average motion deciles. In specific,
our method and Villegas et al. (2017b) tend to achieve PSNR
performance that is better than optical flow and Conv LSTM
in the motion deciles with larger changes (e.g., from the 10th

decile to the 7th decile). This is due to the fact that both our
method and Villegas et al. (2017b) make predictions based
on structure conditions. However, optical flow and Conv
LSTM outperform Villegas et al. (2017b) in those deciles
with smaller changes (e.g., the 2nd decile and the 1st decile).
But ourmethod is still comparable to them, since our residual
formulation is more robust to deal with unchanged back-
grounds. Note that there is higher uncertainty of the actions
being performed in the Human3.6M Dataset compared to
Penn Action Dataset. As a result, when training the LSTM
which is leveraged to generate motion conditions, even plau-
sible future predictions can still deviate significantly from
the ground-truth future trajectory, which can penalize PSNRs
during evaluation.

Results on Penn Action Dataset. On Penn Action Dataset,
we compare our work with VGAN (Vondrick et al. 2016),
Mathieu et al. (2016) and Villegas et al. (2017b).We produce
the results of their models according to their papers or ref-
erence codes. For fair comparison, we generate videos with
32 generated frames using each method, and evaluate them
starting from the first frame. Note that we train an individual
VGAN for different action categories with randomly picked
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Fig. 10 Comparison of state-of-the-art methods using Peak Signal-to-Noise Ratio (PSNR) on different action categories from the Penn Action
Dataset (Zhang et al. 2013a). We show the results of ours and Villegas et al. (2017b) using the condition motion maps computed from the ground
truth (GT) or LSTM

Table 7 Comparison of state-of-the-art algorithms on the Penn Action
Database (Zhang et al. 2013a)

Methods MSE MSE (GT)

VGAN (Vondrick et al. 2016) 0.047 –

Mathieu et al. (2016) 0.041 –

Villegas et al. (2017b) 0.030 0.025

Ours 0.023 0.011

A smaller MSE score means better performance

video clips from the dataset, while one network among all
categories are trained for every other method. Both Villegas
et al. (2017b) and ours perform the generation based on the
pre-trained LSTM provided by Villegas et al. (2017b), and
we train Villegas et al. (2017b) through the same way of our
motion forecasting network GM .

We evaluate the predictions using Peak Signal-to-Noise
Ratio (PSNR) and Mean Square Error (MSE). Both metrics
perform pixel-level analysis between the ground truth frames
and the generated videos. We also report the results of our
method andVillegas et al. (2017b) using the conditionmotion
maps computed from the ground truth joints (GT). The results
are shown in Fig. 10 and Table 7 respectively. From these two
scores, we discover that the proposed method achieves better
quantitative results which demonstrates the effectiveness of
our algorithm.

Visual comparison of our method with Villegas et al.
(2017b) are shown in Fig. 11. We can find that the predicted
future of our method is closer to the ground-truth future. To
be specific, our model yields more consistent motions and
keeps human appearances as well. By contrast, artifacts can

be observed from the results of Villegas et al. (2017b) espe-
cially when there are large motion changes.

7.4 Ablation Study

Evaluation of Main Modules. Our method consists of three
main modules: residual learning, dense connections for the
decoder and the two-stage generation schema.Without resid-
ual learning, our network decays to Villegas et al. (2017b).
As we can see in Sects. 7.2 and 7.3, our framework out-
performs Villegas et al. (2017b) which demonstrates the
effectiveness of residual learning. To verify the rest mod-
ules, we train one partial variant of GM , where the dense
connections are not employed in the decoder fD . Then we
evaluate three different settings of our method on both tasks:
GM without dense connections, using only GM for genera-
tion and our full model. Note that in order to get rid of the
influence from the LSTM, we report the results using the
conditional motion maps calculated from the ground truth
on the Penn Action Dataset. Results are shown in Table 8.
Our approach with more modules performs better than those
with less components, which suggests the effectiveness of
each part of our algorithm.

Evaluation of Motion Refining Networks. Notice that the
design of our motion refining networks GR is general and
does not rely on the implementation of the motion fore-
casting networks GM . This implies that the proposed GR

can be easily extended to refine the output of other meth-
ods. Therefore, we turn to conduct experiments to show how
GR can be applied to improve the performance of differ-
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Fig. 11 Visual comparison of our method with Villegas et al. (2017b) on the Penn Action Dataset (Zhang et al. 2013a). From top to bottom,
examples are from the actions of baseball, golf, jumping and tennis, respectively. The results are taken every 5 frames. Best viewed in color and
zoom in for details

ent state-of-the-art approaches. On the MUG Database, we
chooseMCNet (Villegas et al. 2017a), Villegas et al. (2017b)
and MoCoGAN (Tulyakov et al. 2018) as the baseline meth-
ods and compute the performance improvements measured
by ACD-C. On the Human3.6M Dataset, the performance
improvements measured by PSNR-120 of three baselines,
PredNet (Lotter et al. 2017), Villegas et al. (2017b) and
DRNet (Denton and Birodkar 2017), are reported. We train

an individual GR for each method using the same data splits
as described in Sect. 7.1. The output frames of each method
are concatenated with the corresponding motion maps pro-
duced by the motion condition generators and then fed into
GR . The results in Fig. 12 show that all baseline methods on
both image-to-video translation tasks are improved by the
proposed GR with a large margin, which demonstrates that
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Table 8 Quantitative results of ablation study

Methods ACD-I ACD-C MSE

GM 0.459 0.155 0.027

GM (Dense) 0.252 0.140 0.014

GM (Dense), GR 0.184 0.107 0.011

Bold values indicate the best performance
We report the ACD scores on the MUG Database (Aifanti et al. 2010)
and MSE scores on the Penn Action Dataset (Zhang et al. 2013a)

Fig. 12 Performance improvements of different state-of-the-art meth-
ods on the MUG Dataset (Left) and Human3.6M Dataset (Right) after
their results are refined by the proposed motion refining networks GR

our motion refining networks can be effectively generalized
to different generative models.

8 Limitations

There are some notable limitations to our work. First of all,
the success of our approach relies on incorporating high-level
structure information, such as 3D face morphable models or
human body landmarks, into the generative process. How-
ever, themajor limitation of this structure-driven formulation
is that it cannot be directly applied to general natural videos
that do not contain human faces or body poses, especially,
when object structures involved in the video are difficult to
be predicted. This problem can be tackled by estimating a
more general form of structural representations [e.g., optical
flows (Li et al. 2018), motion vectors (Zhang et al. 2016) and
semantic label maps (Pan et al. 2019)] using neural networks
to encode the motion of foreground. Another promising
direction is to capture high-level structures of objects in a
latent space with unsupervised learning. However, this is
more challenging than learning a explicit representation as
described in Sect. 4, and we leave it as future work.

Another limitation of this work is that we assume a static
background contained in the input, and hence our model can-
not handle object motions occurring in the background. An
example is illustrated in the first case of Fig. 11, where the
baseball player in the background is blurred and even “dis-
appeared” during the generation. However, we note that this
is a highly challenging problem since background objects
sometimes come in and out of sight. As a result, predicting

background motion requires a generative model that is able
to infer unseen objects or background movements from the
input. One promising solution will be training an auxiliary
generative model to predict the evolution of the background
movements, and then combining it with the motions of the
foreground object.

Finally, our model is limited by generating only a single
future trajectory. As discussed in Villegas et al. (2017b), for
an agent to make a better estimation of possible futures, we
expect a generativemodel which is able to producemore than
one generated future. To address this limitation, future work
in this direction can leverage more powerful models as the
motion condition generators, such as probabilistic sequence
models or graph models (Tian et al. 2019; Yan et al. 2019;
Zhao et al. 2019b).

9 Conclusions

In this paper, we combine the benefits of high-level struc-
ture conditions and spatiotemporal generative networks for
image-to-video translation by synthesizing videos in a gen-
eration and then refinement manner. We have applied this
method to facial expression retargeting where we show that
our method is able to engage domain knowledge for realistic
video generation, and to human pose forecasting where we
demonstrate that our method achieves higher performance
than state of the art when generating videos involving large
motion changes. We also incorporate residual learning and
dense connections to produce high-quality results. In the
future, we plan to further explore the use of our framework
for other image or video generation tasks.
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