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Abstract

- Brandon Haworth? - Mubbasir Kapadia> - Petros Faloutsos'#

Multi-agent simulations can provide useful insights into the movement of pedestrians in arbitrary environments for predictive
planning and analysis. The fidelity of such agents is important for the validity of the associated analyses. Current methods tend
to employ agent models that are largely homogeneous in both physical abilities and behaviours. However, actual pedestrians
exhibit a wide range of locomotion abilities and behaviours. In this work, we take a first step towards identifying and modelling
distracted behaviours, such as walking and texting on a cell phone. Our models relate reported changes to the locomotion
patterns and sensory abilities of distracted pedestrians to the corresponding parameters of a commonly used crowd simulation
steering approach. We demonstrate experimentally that accounting for even a few of these behaviours significantly alters the
flow patterns of the simulated agents. This impact affects overall crowd behaviour and is reflected in several crowd statistics

including flow rate, effort, and kinetic energy.

Keywords Crowd simulation - Behavioural modelling - Distracted behaviours

1 Introduction

Simulating virtual pedestrians provides an effective way to
estimate and analyze the movement and flow patterns of peo-
ple within existing or to be constructed environments, for
urban planning, architecture, emergency response and simi-
lar domains. Most current work in this area focuses on largely
homogeneous agents with similar sensory and locomotion
abilities. Although the size and desired velocity of the agents
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can be parametrized, sensing and locomotion are both nor-
mative. Recent work has shown that including non-normative
gaits in pedestrian simulations results in significant differ-
ences in various measures derived from the movement of the
simulated crowds [13]. Others have shown that implementing
heterogeneous crowds in terms of emotion and personality,
physiological characteristics, psychology, cultural diversity,
and many other variables [2,5,10,32,41,46] has huge impact
on the overall flow of simulated crowds. This points to the
need to carefully and intentionally include various forms of
heterogeneity in multi-agent crowds simulations.

State-of-the-art research in behavioural modelling for
simulated agents focuses primarily on deliberate, domain-
specific behaviours and narrative creation [19,45]. In this
paper, we take a first steps towards understanding and mod-
elling distracted behaviours, particularly those involving
engagement with personal devices such as smartphones.
Such behaviours have become commonplace in today’s
world. It is therefore timely that they are included in the
relevant dynamic analysis and visualization tools.

Distracted behaviours are surprisingly diverse. They can
be classified based on the cognitive load they require, the sen-
sory deprivation they affect, and the resulting changes in gait
patterns they produce. We devoted significant effort in dis-
tilling the relevant studies and observations into parameters
that can be used in a crowd steering simulator.
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The contributions of this work can be summarized as fol-
lows:

— We summarize a large body of research on the effects
of distractions on the locomotion patterns and sensory
abilities of pedestrians and use it to construct an initial
taxonomy grounded in literature of distracted behaviours
for multi-agent simulation.

— We implement this taxonomy in a state of the art crowd
simulation technique.

— We demonstrate experimentally the impact of these
behaviours both quantitatively by computing common
analytical measures of crowd movement, such as flow,
effort and kinetic energy, on a large set of simulated
scenarios, as well as qualitatively by simulating specific
scenarios that are often used for such demonstrations in
this domain.

The main purpose of this work is to show that simulat-
ing distracted agents has both visual and measurable effects,
using short and controlled experiments. The proposed mod-
els are not complete as they do not include visual attention
models and refocusing behaviours. However, the effect of
distraction on an agent’s locomotion and sensory abilities
reflects the ground truth that has been reported in the related
literature.

2 Related works

The related work in this area largely covers two areas of the
literature. The modelling of crowds and various behaviours
as well as the study of the impacts of distraction on human
movement, perception, and navigation. This section focuses
on the former, while the latter is delegated to Sect. 3 where the
models are described with respect to findings in the literature.

2.1 Crowd simulation

A variety of methods and approaches related to crowd simu-
lation and agent interaction have been proposed. The earliest
method, Boids, used simple rules for velocities resulting in
a net velocity which combined agent navigation and colli-
sion avoidance while maintaining flock cohesion behaviour
[38]. Physical force-based methods use attractive and repul-
sive forces to maintain comfortable distances between agents
and obstacles while steering towards a goal [14]. Predictive
force-based models compute future trajectories free from col-
lisions for some time window based on current trajectories
and were used in this paper [21]. An example of this is Predic-
tive Avoidance Model (PAM), which uses forces like those in
the Helbing’s Social Forces model to maintain comfortable
distances between agents as well as a piecewise predictive

@ Springer

force that anticipates future collisions and makes small avoid-
ance manoeuvres well in advance for minimal effort obstacle
avoidance. Similarly, velocity space geometric methods com-
pute a collision-free space for an agent in a future time
window and have been used to demonstrate emergent crowd
behaviours such as congestion avoidance [9]. An overview
of these and many other methods can be found in [20].

2.2 Behaviour modelling

Various behaviour models have been proposed and inte-
grated into crowd simulations to produce higher fidelity
simulations concerned with more than steering and collision
avoidance. Cognitive modelling approaches allow agents to
plan for high-level tasks which are then carried out through
lower level controllers [7]. Decision networks for simu-
lating and animating interactions between multiple agents
with different personalities also provide fidelity in this area
[44]. Important work has been done in modelling person-
ality factors and their impact on behaviour [6]. Data-driven
approaches have also been used to learn and recreate realistic
crowd behaviours [18,26].

2.3 Gaze and attention modelling

Modelling gaze behaviour is also an important problem in
building realistic and robust simulations with an important
component of distraction behaviour. Some navigation algo-
rithms simulate vision to some extent without gaze behaviour
[24,33]. Rule-based perception models allow characters to
focus attention based on stimuli from the environment
[15,22].

Environment-centric saliency maps, where gaze is drawn
to the most noticeable (salient) objects, invert this problem
[16]. More direct approaches isolate gaze in personal face-
to-face situations [3]. Some approaches implement models
that simulate agent gaze in crowds as in [8], but does not alter
gait or investigate the effects of altered gaits due to distrac-
tion. Other methods model this interaction with real users
in interactive environments [23,29]. However, to the best
of the authors’ knowledge, crowd simulators do not include
cell phones, distraction specific modelling, or investigate the
impacts of this phenomenon on crowd outcomes.

2.4 Distraction gait analysis

Previous studies have examined the effect of dual-task cost
and difficulty on gait. One study showed that the type of dis-
tracting activity is directly related to the task cost [40]. The
type of activity can be visual, motor, or cognitive, and the
study suggests that cognitive tasks are usually the most dis-
tracting, followed by motor and then visual. Another study
[37] suggested that cognitive and visual demand during cell-
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phone use affects gait, while gross motor does not, although it
did not draw any conclusions about the effects of fine motor
tasks such as tapping and texting movements. Other stud-
ies have examined whether the difficulty of the secondary
task affects performance. In a study on talking on the phone
while driving [31], results showed a more complex conversa-
tion was more distracting and increased reaction time more
than a simple one. Another study [36] showed that the gaits
of older adults in particular are more affected by more diffi-
cult secondary tasks, especially while navigating obstacles.
More research may be needed to examine the full effect of
task difficulty on gait.

3 Methodology

In this section, we describe a subset of possible distraction
behaviours, which we focus on throughout the paper, and how
we model them in the context of a popular crowd simulator.

3.1 Distraction types

We consider three types of distracting activities that agents
may perform while walking: texting on a smartphone, talking
on the phone, and reading an article or browsing the internet
on a smartphone. We classified these behaviours according
to their task type into visual, motor, and cognitive tasks with
their related task costs. Examples of how activities, including
these, may be classified in this taxonomy can be seenin Fig. 1.
For example, walking and talking on the phone has no fine
motor component. Any gross motor component it may have
has been shown to have no significant impact on gait [37],
so we have therefore classified it as a cognitive-only activity.
These are only examples of how tasks may be classified, and
some of these may be classified differently depending on the
circumstance and the exact nature of the activity. Our models
have a foundation in the literature on real-world distracted
walking studies. Data from these studies suggest various gait
and perception characteristics change when walking while
distracted on a smartphone. This is due to the division of
attention between walking activity and smartphone activity.

Based on the literature outlined in Sect. 2.4 and our taxon-
omy, we would suggest that texting while walking has high
motor and visual demands and medium to high cognitive
demands depending on the topic of conversation. Talking on
the phone has low to no motor or visual demand but often high
cognitive demand. Reading an article or browsing would have
low to no motor demand, high visual demand, and medium
to high cognitive demand.

3.2 Distraction modelling

Each distraction model is implemented as a separate layer
above the steering layer. Once a behaviour is activated by the
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Fig. 1 An example taxonomy of behaviours, categorized into visual,
motor, and cognitive tasks to understand their relative task costs.
Behaviours may have various types of loads predicated on their under-
lying task. Cognitive tasks are the most distracting, followed by motor
and then visual. This figure contains several examples from every day
life (including those modelled here) to exemplify how one might think
about task costs. In reality, the boundaries and placement of these tasks
can be fuzzy or vary based on context. For example, dancing can include
a wide range of precision and contexts. In this paper, the context of dis-
tracted behaviours is crowds during everyday casual navigation tasks

behaviour trigger, it sends a message to the distraction model
to make the agent distracted dependent on the interaction and
state. Each distracted behaviour has a corresponding method
in the distraction module that is called when the behaviour
trigger activates. This method, in turn, sets the locomotion
parameters in the steering model accordingly. An overview
of this model can be seen in Fig. 2. Our experiments use PAM
for agent steering and navigation. In general, the distracted
behaviour can be set to trigger either randomly or when some
external event occurs.

The literature on distracted walkers suggests that because
people are looking down at their device instead of towards
their goal, they have to rely on their spatial memory, pro-
prioception, and peripheral vision to guide them towards the
goal and may not have a completely accurate idea of where
it is. This can cause lateral deviation from a straight path
[17,25,39]. Sufficiently distracted pedestrians may even for-
get to turn where they are meant to. Therefore, in addition to
setting the locomotion parameters, the distraction layer also
implements anovel “fuzzy” goal for distracted walkers. Upon
becoming distracted, instead of heading straight towards the
actual waypoint, a random point within some radius of the
actual waypoint is chosen and used as the waypoint instead.
We then use a simple raycast to ensure the agent can still
reach this point, and it is not on the other side of a wall
or in an unreachable area. The radius is determined by the
current distance of the agent to the actual waypoint and the
distraction type (related to the cognitive task load). If an agent
reaches a fuzzy goal while distracted, in most cases they do
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Fig.2 An overview of the distraction module architecture

not go towards the actual waypoint to prevent backtracking
if it is behind them. Instead the actual waypoint is updated as
usual to the next waypoint if it is within sight. Again a sim-
ple raycast is used to determine if the agent can see the next
waypoint. If they can’t see it, the path is recomputed. Once
the next actual waypoint is determined, the waypoint can be
made fuzzy again if the agent is still distracted. If there is no
next waypoint because the agent is almost at the goal, then
the actual waypoint is set to the goal even if there is a little
backtracking, which we believe is a realistic behaviour. This
fuzzy waypoint approach probabilistically models some lat-
eral deviations and forget-to-turn behaviours dependent on
if the fuzzy waypoint is set further than the actual waypoint
or laterally to the waypoint.

3.3 Parameter setting

Once a distracted behaviour is triggered, our distraction mod-
ule adjusts the following parameters and passes them to the
steering module: preferred speed, field of view, and neigh-
bour distance. It also adjusts the waypoint “fuzziness” and
passes it as the current waypoint to the steering layer. In the
PAM algorithm, field of view is a settable float parameter rep-
resenting the degrees of the agent’s horizontal field of view
as a cone aligned with the forward direction of the agent. Any
obstacle outside of this cone is considered outside the field
of view for that agent and is not considered for avoidance
manoeuvres. Similarly, no obstacle further than the specified
neighbour distance is considered when calculating avoidance
maneuvers.

It has been observed in the literature that the walking
speed of pedestrians tends to decrease by some fraction
while distracted on a smartphone. We set the preferred speed
during each distracted behaviour to the average of per-
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visual field, from top

centage reduction in speed reported in distracted walking
studies which result in an average speed reduction of 20%
[1,4,11,27,34,35,37,39,43]. Since non-distracted normative
agents have an average preferred speed of 1.3 m/s, during
walking and texting behaviours, agents were set to 80% of
this value or 1.04 m/s. We repeated this process for the talk-
ing (phone call) as well as reading (or browsing) behaviours,
setting their preferred speed values to 1.066 m/s (82%) [37]
and 1.144 m/s (88%) [30,39] respectively.

The field of view is an important factor in the locomotion
of distracted walkers. A depiction of various aspects of the
normal human field of view is seen in Fig. 3. Literature sug-
gests that not only is the horizontal field of view reduced as
a result of the angle of the head being tilted forward in the
sagittal plane, but also the amount of information processed
within that field is reduced. A study measuring the field of
view of someone talking on a cell phone showed that periph-
eral vision is reduced by 7-10% for large to small targets
[28]. Since we assume that other pedestrians are a large tar-
get, we have therefore reduced the field of view for the talking
on the phone distraction by 7%, resulting in a decrease from
the default value of 200°-186°. Another study showed that
walkers that were distracted on a cell phone had a lateral
range of eye movement of about 18° [42]. Studies of exactly
how much peripheral vision is lost during cell phone use are
lacking, but we assume from the normative model, Fig. 3, that
there is at least 30 degrees lateral field of focus in every gaze
direction, so we have set a total tentative value of 48° for the
field of view during head-down distracted behaviours which
in the current study includes texting and reading behaviours.

Real-world studies regarding neighbour detection dis-
tance while walking are limited, but we assume for the talking
behaviour that this is not changed from the default since the
field of view is still relatively wide vertically and horizon-
tally. For the other distracted behaviours, where the gaze is
directed down at the device, we have set an assumed value
of 1m for the neighbour distance.
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Fig.4 The paths taken in the simple wall scenario by a two normative agents, b two distracted agents reading, ¢ two distracted agents talking on

phone, and d two distracted agents texting

The fuzzy goal radius for texting and reading behaviours
has been set to 10% of the current distance between the agent
and the actual waypoint, based on reported lateral deviation
data [25,39]. In the current study, we set a relatively large
maximum of 3 m as a cut-off for this distance to ensure
the goal is not unrealistically “fuzzy” in simple paths. No
fuzzy goal is used for the walk and talk behaviour as it is
assumed there is no significant deviation when the goal is in
sight. More research in this area may be required to find data-
driven values as prior studies are concerned with walking in
a straight line (without environment or people interactions).

There are several approaches that one can use to describe
behaviours in a computationally convenient manner. In a
complete model description, we may model agent—agent,
agent—environment, and agent—focus interactions through a
behaviour tree. However, to remove confounding factors in
the following experiments, the distracted behaviour triggers
at the start of each session and remains active for the duration
for experimentation purposes. The experiments are also short
and well-constrained subsections of larger environments and
scenarios, which further limits unnecessary complexity.

4 Experiments

In the following experiments, we examine the importance
of distraction modelling from the perspective of common
multi-agent scenarios. In particular, we examine simple inter-
actions, crowd egress, crossing groups scenarios. First, we
qualitatively examine simple interactions in comparative
crowd analysis to understand the impacts of distracted mod-
elling at a micro scale, as impacts in micro-movement often
produce emergent macro-behaviours in crowd simulation.
We then examine crowd egress and crossing groups scenar-
ios from both quantitative and qualitative perspectives with
respect to past literature in comparative crowds analysis,
multi-agent modelling, and dynamic environment analysis
of safety critical scenarios.

4.1 Qualitative experiments

In this section, we conduct a number of experiments to qual-
itatively examine the impact of distraction modelling on

Fig. 5 The paths taken in the oncoming obstacle scenario from top
to bottom: two normative agents, two distracted agents reading, two
distracted agents talking on the phone, and two distracted agents texting

common scenarios from comparative crowd analysis litera-
ture. For qualitative analysis, we chose a handful of common
scenarios often used to test the robustness of steering algo-
rithms: the simple wall, oncoming obstacle, surprise and
diametric goals scenarios.

We use exemplary screen captures and trajectory ren-
dering to compare the paths of distracted agents with
non-distracted (normative) agents. Trajectories for the simple
wall environment can be seen in Fig. 4. Trajectories for the
oncoming obstacle environment can be seen in Fig. 5. Tra-
jectories for the surprise environment can be seen in Fig. 6.
Trajectories for the diametric goals environment can be seen
in Fig. 7.

There are clear differences between the distraction types
for each scenario. In the simple wall scenario, the normative
agents take the path of the least effort and head for the goal
as efficiently as possible. The reading and texting behaviours
both have wider, less efficient turns. They also may end up
deviated from the goal and have to make a small adjustment
at the end to get to their goal. The talking behaviour is close
to the normative behaviour in this scenario because they do
not exhibit lateral deviation and the path taken is unaffected
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Fig.6 The paths taken in the
surprise scenario by a two
normative agents, b two
distracted agents reading, ¢ two
distracted agents talking on
phone, and d two distracted
agents texting

Fig.7 The paths taken in the
diametric goals scenario by a 20
normative agents, b 10
normative and 10 distracted
agents reading, ¢ 10 normative
and 10 distracted agents talking
on phone, and d 10 normative
and 10 distracted agents texting

by their slower speed and slightly reduced field of view when
no other agents are near them.

In the oncoming obstacle scenario, the normative agents
avoided each other flawlessly. In comparison, the texting and
reading behaviour paths both show where the agents failed
to avoid each other and bumped when navigating around the
obstacle. Again the talking behaviour paths look similar to
normative agents.

In the surprise scenario, both the reading and texting
behaviours had a collision between the agents at the corner,
and the collision was more forceful for the texting behaviour.
The no distraction and talking cases appear to be similar once
again in this scenario, largely because the scenario is a visual
challenge.

In the diametric goals scenario, there are some devia-
tions for the reading behaviour. It can be difficult to interpret
the entangled paths, but in general the talking paths seem
smoother in the middle area. The texting paths are smooth
as well, and the difference between this and the reading is
mainly from the random fuzzy waypoints chosen and the
differences in speed of these types of distracted agents, as
normative agents would have reached the centre ahead of
distracted agents and already leaving the centre when dis-
tracted types reached it.

4.2 Quantitative measures

For our quantitative experiments, we use common measures
related to the movement of the agents. These are the flow
rate F, (the number of agents divided by the total simulation
time), effort £(S) (estimated total metabolic energy expen-
diture over the path integral of all agents), and kinetic energy
K (S) (total kinetic energy over the path integral of all agents).
The measures are described in more detail below.
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Flow rate is defined as the rate at which all agents A com-
plete their goals in the scenario S.

1A
FS) =" (1

N
where Ty is the total simulation time. Then the average total
effort E(S) is defined as the average of all agent effort path

integrals (integral over the total path of an agenta € A) over
all A in the S.

2
E(S) — Z m f(eS TATU)UL )dt (2)
A

where e; = 2.23 and e¢,, = 1.26 are the continuous energy
expenditure rate and moving energy expenditure rate of the
average human, respectively, v; is the agent’s instantaneous
velocity, and m is the mass of an agent, usually set to 1 kg (to
ignore mass). Total average kinetic energy K (S) is defined as
the average of kinetic energy over all agents’ path integrals.

[ 0.5mv;%dt

K=Y 0 3)
; Al

In this way, all quantitative measures capture crowd wide
impact of distraction in that particular scenario.

4.3 Egress

In Sect. 4.1, we highlighted how distraction modelling
impacts the movement of individual agents in the simplest of
environments. In particular, in scenarios where agent—agent
and agent—environment interactions are involved and where
agents gather and disperse. If these interactions are affected
by distracted behaviours, what is the impact of distracted
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Agent Spawn Region " "

Fig. 8 Blue print of the egress scenario. Agents spawn in a hallway
and share a goal region outside of a single egress point. This scenario
represents a common subsection of building designs during a group
egress situation, e.g. an evacuation

behaviours on group bottleneck egress points in building
environments?

We use a common benchmark from the comparative
crowd analysis and environment safety literature—the uni-
directional bottleneck egress [12]. The exact layout of this
scenario can be seen in Fig. 8. This scenario is simulated
with an increasing proportion of each of the distracted model
types—texting, reading, on call-keeping the remaining agents
homogeneous. The distracted agents are using the parame-
ters from their descriptions in Sect. 3. The remaining agents
use the default parameters for PAM and a desired speed of
1.3 m/s, the average speed of human walking. Each pro-
portion scenario is simulated 20 times with random initial
conditions for the 50 agents. All distracted agents exhibit the
same distraction type for each trial, so that we may com-
pare across behaviours (we do not examine mixed behaviour
crowds).

We examine the impact of distracted behaviours on the
common crowd-centric measures described above over the
duration of each simulation.

We conducted an analysis as follows. The mean and stan-
dard deviation of all of our metrics are captured across the
distracted agent models and their proportions in the crowd.
A Kruskal-Wallis sign rank sum test and post-hoc Conover’s
test with false discovery rate (FDR) and Holm corrections in
the case of ties are used to isolate the significant dominances
between the models across proportions in the crowd.

The metrics over all models and their proportions in the
egress scenario crowd can be seen in Fig. 9. The statistical
test results are summarized in Table 1.

This study reveals interesting artifacts in uni-directional
bottlenecks with respect to distraction modalities. Texting
does not particularly impact flow rate or the effort expended
by the agents, but it does impact kinetic energy significantly
when around 20% of the agents are texting. On the other
hand, talking, which had little impact on simple scenarios
with few agents, has a significant impact on both flow rate
and kinetic energy when around 20% of the agents are on
a call. In general, it seems that the distractions we consider
in this paper have more impact on the measures around the
20% mark.

4.4 Group interactions

In Sect. 4.1, we highlighted how distraction modelling
impacts the movement of individual agents in the simplest of
environments. In particular, in scenarios where agent—agent
and agent—environment interactions are involved and where
agents pass and make collision avoidance decisions. If these
interactions are affected by distraction behaviours, what is
the impact of distraction behaviours on group crossing in
building environments?

In this experiment, we examine the hypothesis that dis-
traction behaviours, such as walking while texting, reading,
or on a call, adversely affect crossing specific crowd mea-
sures like flow rate, effort, and kinetic energy. We follow
this quantitative examination with a qualitative one, to see if
distraction behaviours, such as walking while texting, read-
ing, or on a call, adversely affect group specific qualitative
artefacts of simulation such as lane forming in laminar flow.

Again, we use a common benchmark from the compar-
ative crowd analysis and environment safety literature—the
crossing groups hallway [12]. The exact layout of this sce-
nario can be seen in Fig. 11. This scenario is simulated
with an increasing proportion of each of the distracted
model types—texting, reading, on call-keeping the remain-
ing agent homogeneous. The distracted model agents are use
the parameters from their descriptions in Sect. 3. The remain-
ing agents use the default parameters for PAM and a desired
speed of 1.3 m/s, the average speed of human walking. Each
proportion scenario is simulated 20 times with random ini-
tial conditions for the 50 agents. All distracted agents exhibit
the same distraction type for each trial, so that we may com-
pare across behaviours (we do not examine mixed behaviour
crowds).

We examine the impact of distracted behaviours on multi-
ple common crowd-centric outcome measures captured over
the duration of each simulation. These are once again the
flow rate, effort, and kinetic energy.

The same procedure is employed for the analysis of the
crossing groups scenario as was described for the egress
environment. We also capture a series of screen captures at
exemplar moments to examine the qualitative impact of the
models in this scenario.

The metrics over all models and their proportions in the
crossing groups scenario crowd can be seen in Fig. 12. The
statistical test results are summarized in Table 2. Qualitative
examples with agent paths are shown in Fig. 13. An example
of a high quality rendering with avatars using cellphones is
shown in Fig. 14.

The results in the crossing groups scenario are deeply
surprising. While the general hypothesis is that distraction
disrupts laminar flow (something most city dwellers can
attest to in their day-to-day lives), the level at which this
occurs is extreme, an example of which is shown in Fig. 10.
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Fig. 9 The quantitative analysis of the egress scenario across all distracted models and their proportions of agents for a flow rate, b effort, and ¢

kinetic energy

Table 1 Statistical test results indicating differences in crowd simulation measures for pairs of distracted activities and the number of distracted
agents in the scene out of a total of 50 agents for the egress scenario. Checkmarks indicate a significant difference in dominance (p < 0.05)

Flow rate Effort Kinetic energy

1 2 5 10 20 30 40 50 1 2 5 10 20 30 40 50 1 2 5 10 20 30 40 50
No distraction/read x X x X x x Vv Vv x X x X x x Vv Vv x X X X x X X X
No distraction/talk x x x v Vv Vv Vv Vv X x x x x x Vv Vv x x x v v v v Vv
No distraction/text X X X X X X X X X X X X X X X X x x x v v v v Y
Read/talk X x x v v v v vV x x x x x x v VvV x x x v v v v V
Read/text X X X X X x v vV x x x x x x v Vv x x x x v v v Y
Talk/text X x x v v v v vV x x x x x x v VvV x x x v v v v V

(b)

Fig. 10 The paths taken in the crossing groups scenario by a 50 normative agents, b 40 normative agents and 10 distracted agents texting. In both
cases, the initial positions and conditions were the same. This comparison shows how the presence of distracted agents breaks the laminar flow

(G2) 7M™ Agent Spawn Region 1 Agent Spawn Region 2 (a1

Fig. 11 Blue print of the crossing groups scenario. Agents spawn in a
hallway in two regions with opposing goals. This scenario represents a
common subsection of building designs during a group crossing situa-
tions

As little as one agent, in a crowd of 50, talking on their phone
or texting can significantly alter the flow rate of two crossing
groups. This includes reading at 2 agents, and includes all
modes of distraction in the paper after as little as 5 agents. In
addition, the mode soft distraction significantly differ from
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each other after around 2 out of 50 agents. This is reflected
in Fig. 13 where we can see paths are much smoother when
no distracted agents are present. In particular, that agents
who are distracted disrupt the formation of high value lanes
(laminar flow) as the group meet, merge, and pass. Taken
together, these results are evidence that simulating various
modes of distraction is necessary, particularly in our modern
world where personal devices are ubiquitous.

4.5 Discussion

One of the most interesting results of our study was that
while the talking behaviour is considered the least distracting
task, it produced interesting emergent artifacts related to the
scenario. It has been previously observed that in bottleneck
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Fig. 12 The quantitative analysis of the crossing groups scenario across all distracted models and their proportions of agents for a flow rate, b
effort, and ¢ kinetic energy

Table 2 Statistical test results indicating differences in crowd simulation measures for pairs of distracted activities and the number of distracted
agents in the scene out of a total of 50 agents for the crossing groups scenario

Kinetic energy
1 2 5 10 20 30 40 50

Flow rate Effort
1 2 5 10 20 30 40 50 1 2

|
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(e}
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No distraction/read x v v v Vv Vv Vv Vv x x Vv Vv Vv Vv v Vv x v v v v v v V
No distraction/talk v v v Vv Vv Vv Vv Vv x x x Vv Vv v Vv VvV x x v v v Vv Vv V
No distraction/text v v v v Vv Vv Vv Vv x x Vv Vv Vv Vv v Vv x v v v v v v V
Read/talk x v x v v v v v x v v v v v Vv VvV x Vv Vv v v v v V
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Checkmarks indicate a significant difference in dominance (p < 0.05)

(a) (b) (c) (d)

Fig. 13 The paths taken in the crossing groups scenario by a 50 normative agents, b 40 normative and 10 distracted agents reading, ¢ 40 normative
and 10 distracted agents talking on the phone, and d 40 normative and 10 distracted agents texting

talking behaviour resembles normative agents, it produces
laminar flow behaviours, which reduces effort and increases
flow rate in crossing groups. Reading and texting in these sce-
narios disrupts laminar flow, increasing effort and reducing
flow rate.

5 Conclusion

Fig. 14 Qualitative rendering of a crowd with avatars using cellphones

We have presented a first attempt towards modelling dis-
tracted behaviours for the purposes of pedestrian simulation.
The parameters of the proposed model are based on a thor-
ough survey of actual studies of distracted behaviours and

egress scenarios, obstacles and slow moving agents can actu-
ally improve flow rate and effort. Thus, reading and texting

may actually improve flow in some scenarios. However, the
opposite is true in bidirectional flow scenarios. Because the

thus reflect our best understanding to date of ground truth.
The main goal of this paper was not to provide a com-
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plete model of distracted pedestrians, but rather to show that
accounting for even simple distracted behaviours does make
difference in the resulting simulations both in terms of a qual-
itative and a quantitative point of view.

Going forward, we plan to investigate a richer taxon-
omy of distracted and deliberate behaviours, and at the same
time model virtual pedestrians with diverse sensory and
locomotion abilities. In the short term, we aim to model
non-normative gaits, such as those related to cerebral palsy,
and knee and hip ailments. We believe that developing more
inclusive and diverse pedestrian simulators will significantly
improve their fidelity and practical value in a number of
important domains, such as urban simulation and computer
games.
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