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Abstract

Disorder in the contact between an amorphous slider and a crystalline substrate
leads to a cancellation of lateral forces. Atomically flat, rigid surfaces exhibit struc-
tural superlubricity, with the frictional stress in circular contacts of radius a vanishing
as 1/a. The inclusion of elasticity allows relative motion of domains on the surface in
response to the random interfacial forces. The competition between disorder and elas-
tic deformation is predicted to limit structural suberlubricity and produce a constant
frictional stress for a larger than a characteristic domain size A that depends on the
ratio of the shear modulus G to the magnitude of interfacial shear stresses 75. Extensive
simulations of a flat, amorphous punch sliding on a crystalline substrate with differ-
ent system sizes and G/7y are used to test scaling predictions and determine unknown
prefactors that are needed for quantitative analysis. For bulk systems, we find an expo-
nential decrease of the large a frictional stress and 1/A with increasing G/79. For thin

free-standing films, the stress and 1/\ are inversely proportional to G/7y. These results



may help explain the size-dependent friction of nanoparticles and plate-like materials

used as solid lubricants.
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Amontons’ macroscopic laws of friction state that the friction force is proportional to the load
pushing surfaces together and independent of the total area where they overlap.! However,
these laws are commonly explained by noting that surfaces only interact over a much smaller
area of direct molecular contact A. If A is proportional to load and there is a constant shear
stress T in contacting regions, one recovers Amontons’ laws.! To lower friction, one can use
stiffer solids to lower A or find interfaces that minimize 7.

Nanoscale studies reveal an exciting phenomenon called structural superlubricity where
7 actually vanishes as the radius a of contacting regions increases.?!? Indeed, theoretical
arguments?® predict that the shear stress at the interface between rigid, atomically flat
surfaces should usually vanish at least as rapidly as 1/a. Except in the rare case where the
surfaces share a common period, the lateral forces that give rise to friction systematically or
stochastically cancel. Even identical crystal surfaces slide without friction if they are rotated
out of alignment. This surprising behavior has been observed in a range of experiments
and simulations of individual contacts using both crystalline and amorphous surfaces.? !4
However, these studies have considered contact radii below 100 nm and there is evidence
that the key assumption of rigidity breaks down at large scales.
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Scaling theories and studies of single contacts between crystals?>?7 show that sub-

strate elasticity introduces an elastic coherence length A\ that is analogous to the Larkin



8 or flux lattices in type-II superconductors?® or

length in charge density wave conduction?
raindrops on window panes.?® Elasticity is irrelevant for lateral distances less than ), but
above this scale the system can deform in response to the interfacial potential. If a is larger
than A, the lateral forces between surfaces no longer cancel and 7 saturates at a constant
value for large a. Even for smaller a, analogous arguments predict pinning of macroscopic
surfaces by deformation at scales larger than the asperity spacing.!5:16:3!

For crystal surfaces, A is related to the core size b.,.. of a dislocation that accommo-
dates the mismatch between the periods of the surfaces, allowing them to lock in local

25,26 showed 7 saturated for a > b.ore. More-

registry. > 2¢ Simulations for a range of systems
over, dislocations lowered the shear stress between identical aligned crystals, because parts
of the interface could advance independently. As a result the constant 7 at large scales was
surprisingly insensitive to alignment and could be related to the Peierls stress for dislocation
motion.

To our knowledge, experiments have not seen 7 saturate for large crystalline surfaces,
but recent experiments®? of flat, amorphous antimony nanoparticles on a crystalline MoS,
substrate found that 7 saturated when the radius of the nanoparticles exceeded ~ 70 nm.
Indeed, the nanoparticles underwent plastic deformation prior to sliding, implying that 7
exceeded the yield stress of the nanoparticles. No saturation was observed for the same
particles on graphite substrates.

In this paper we use simulations to study amorphous nanoparticles or asperities sliding
over a crystalline substrate and determine how 7 scales with a, the shear modulus G, and
the magnitude of local shear stresses on individual atoms 7y. For small radii, stiff substrates,
and small 75, 7 < 1/a as expected for structural superlubricity. The stress saturates when
a exceeds a scale A that rises exponentially with G/75. Although this length comes from
different arguments than the crystal-on-crystal case, the numerical values of 7/7y have the

same exponential scaling and similar values for amorphous and crystalline surfaces.

There has been great interest in friction of thin solid layers of graphene or MoS, as



realizations of nearly two dimensional (2D) behavior and as practical replacements for liquid
lubricants. H13313337 We show that the scaling of A and 7/7¢ is different for amorphous
asperities on such thin systems and that friction decreases with increasing film thickness
h. Experiments have observed a similar trend for free-standing films of different A and we

discuss how our results relate to past explanations.3335

RESULTS AND DISCUSSION

Scaling of interfacial and substrate energies

Figure 1: A flat, amorphous slider with radius a ~ 17.8d in contact with a thin (quasi-2D)
crystalline substrate with lattice constant d. The thickness of the substrate is h.

We consider an amorphous slider with a flat tip of radius @ moving over the (001) surface
of an fcc crystal with nearest-neighbor spacing d. A subsection of such a system is shown in
Fig. 1.38 As the slider moves, the disordered interfacial potential gives rise to a lateral force
f on each substrate atom that varies with time and samples all directions. The root mean
squared (rms) force on atoms in the sliding direction & at any instant can be used to define
a characteristic local frictional shear stress on the surface 7y = \/W /d?. The simulation
configuration we use differs from the prototypical sphere-on-flat geometry found in atomic
force microscope (AFM) studies, but using a tip with a flat profile simplifies the system
because the contact area is independent of pressure. In addition, the local shear stress under
a flat tip does not systematically vary with the distance from the center of the contact, as it
26

does for sphere-on-flat systems.

For a rigid substrate, the forces from different regions add incoherently. The friction force
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grows as Tpd? times the square root of the number of contacting atoms N ~ mwa?/d?. The
static friction stress 7. is defined as the maximum force per area that must be overcome
to allow sliding.! In the rigid limit this scales as 7., = To/\/N = 19d/+/ma. The force
changes when the surface moves laterally by ~ d. Thus static friction can be associated
with the system being trapped in an energy minimum per unit contact area that scales as
Uint ~ dTyig ~ Tod?[\/Ta.

Different regions of the contact area will minimize their energy at different relative po-
sitions between tip and substrate. If the materials are elastic, it may become favorable to
deform the surface on scales of order A so that different regions can optimize their registry.
As noted above, the displacements need only be of order d and the energy gain per unit
area is of order wu;,; ~ Tod?/\. To calculate the elastic cost we use the fact that contact
between two elastic solids can be mapped to contact between a rigid surface and an elastic
substrate with an effective shear modulus G obtained by adding the compliances of the two
solids in parallel (Methods).?® Saint-Venant’s principle says that a surface displacement of
wavelength A only penetrates into the substrate by ~ A. Then, an elastic strain of order
d/\ penetrating to a depth A gives an elastic cost per unit area of ugy ~ AG(d/\)* ~ Gd?/ ).
For quasi-2D films whose thickness h is smaller than A, the deformation only penetrates to
h and ug ~ hG(d/N\)2.

Following Imry and Ma“® the Larkin length is given by the length where interfacial
and elastic energies per unit area are comparable. From the above results for 2D systems,
elasticity allows deformations above a Larkin length A ~ hG /7 and the typical shear strength
at large scales is Tfp. ~ Tod/\/TA ~ d7§/hG. A 2D interface between bulk elastic solids
is considered the marginal dimensionality,'® because interfacial and elastic terms scale in
the same way with A and always have ratio u;,/ue = G/7. For G/1y of order unity
and smaller, disorder wins, and the system deforms. More careful analysis of higher order
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effects shows that disorder wins even for stiffer systems beyond a Larkin length A that

grows exponentially with G/75. The corresponding friction stress decreases exponentially



with G /7. While several papers have discussed this exponential scaling, it has been difficult
to test directly in simulations or to determine the prefactors needed to apply results to
real systems. > 1820 The next two sections provide quantitative results for both 3D and 2D

systems.

3D ELASTIC SUBSTRATE

a/d

Figure 2: Static friction stress versus contact radius for 3D substrates and values of G /7y
shown in the legend. A dashed line indicates the analytic prediction for the rigid limit
Trig/To = d/+/ma. For a < A contacts exhibit structural superlubricity and follow the rigid
prediction. For small G /7y, the stress then saturates at 775, for a > A. This regime is not
accessible for large G/7y. Statistical errors are no larger than the symbol size.

Figure 2 shows the scaling of 74,/ with a/d for 3D systems of different stiffness. These
results were obtained for a specific strength of the disordered potential, but results for other
7o show the same behavior. The stiffest systems exhibit structural superlubricity, Tf.ic & Trig,
over the accessible range of a. As GG/7y decreases, deviations from 7,;, set in at smaller a/d
and Ty,;./To saturates at larger values. Direct examination of the local atomic displacements
confirms that atoms move coherently when 74, ~ 7.4, In contrast, independent motion

becomes significant in larger contacts where 7. ~ 777, as expected for a > A. For contacts



with a > A, the instantaneous friction stress during sliding is reduced when portions of the
interface slip relative to the motion of the tip; see Supporting Information (SI) for movies
that illustrate this behavior for large contacts.

Slip events may preferentially nucleate at the contact edge for punch-like geometries as
a result of the stress concentration there.?® However, elastic energy necessary for the slip
process also accumulates near the strongest pinning sites, which may be located at any
position in the contact region. This differs from the situation expected for a spherical tip,
where the local shear strength depends on both the local shear stress ~ 75 and the local
pressure. Consequently, pinning of a disordered, spherical tip is most probable to occur near
the center of the contact, where the pressure is highest.

In the very smallest (a/d ~ 5) and least stiff contacts, 74, is noticeably higher than 7.
Examining local forces showed that the total force was dominated by a few sites, making it

easier to find favorable pinning sites and causing a deviation from v/ N scaling.
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Figure 3: Static friction stress for the largest contact radius simulated at each value of G /7y
(Fig. 2). Statistical errors are comparable to the symbol size, but points represent an upper
bound for 777, because a is finite. A solid line indicates the prediction 777, ~ T;;ic from Eq.
2 with ¢3 = 0.66 and ¢y = 0.82. The dashed line is the rescaled Peierls stress of a single edge
dislocation reported by Sharp et. al.:?® c3 = 0.40, ¢y = 1.17.



The Larkin length and limiting friction stress in large contacts are expected to scale

ag: 15:17,18,20,21

Ad = ¢ expleeG/To) (1)

T}’fic/Tg = czc1d/\ = czexp|—cG/To| (2)

where the ¢; are unknown constants. There may be corrections to this scaling for small G/,
where \ approaches the lattice size and local shear forces may be large enough to produce a

nonlinear response.
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Figure 4: Static friction stress normalized by rigid limit as a function of a/\ for co =
0.82, ¢; = 1/cs = 1.5, and values of G/7y indicated in the legend. In the large contact
limit, 7fpic/Trig grows linearly with contact radius. The dashed line shows data fit a simple
interpolation between small and large a limits, 1 + y/ma/\. Error bars are indicated when
they are larger than the symbol size. Results for a/d ~ 5 are not included because lattice
effects cause them to lie to the left of other points by about twice the symbol width.

Figure 3 shows the stiffness dependence of TJTM.C, the shear stress in the largest contacts
studied at each G /7y (Fig. 2). For small G/7y we reached the limiting large a behavior. For
larger G//79, Tfric Was still decreasing at the largest a and these points represent an upper

bound for 7¢;.. To obtain information for larger G /7y we performed a scaling collapse. The



data in Fig. 2 are replotted in Fig. 4 with 74, rescaled by 7,,, and a by A from Eq. 1. The
best collapse of data in the crossover between rigid and elastic limits was obtained using
co = 0.82 +0.05. Changing c; just shifts all curves without affecting the collapse. We chose
c1 = 1/c3 so that Eq. 2 simplifies to 735,./70 = d/A.

To determine c3 and thereby c;, we assumed that Tjjm»c ~ Tie for G/ < 6.3. Using
¢y = 0.82 from the scaling collapse in Fig. 4, we fit Eq. 2 to the data in this range of G/
in Fig. 3 (solid line), giving ¢3 = 0.66, and fixing the value of ¢; = 1.5. With this choice
of ¢y, the friction exceeds the rigid limit by more than a factor of two at a = X in Fig. 4,
and for large contacts Tspic/Triy = v/ma/A. Figure 4 shows that the entire curve is fit by the
simple interpolation between rigid and elastic limits 7¢.ic/7ig = 1 + v/ma/A (dashed line).

The systematic uncertainties in these constants is hard to measure because of the limited
range of G/7y and the possibility of changes in scaling at small G/7y. Nonetheless, these re-
sults confirm the predicted scaling behavior while providing quantitative values for unknown
prefactors. Note that because the strength of the interaction potential 7y only enters Eqs.
1-2 in the dimensionless ratio G /7y, our results are expected to hold for other potentials as
well, provided that the range of G is adjusted accordingly.

The 3D estimates for 77, are strikingly similar in magnitude and scaling to those for
crystalline surfaces.?” For both commensurate and incommensurate crystals, Tvie dropped
exponentially with stiffness and was the same order of magnitude as the Peierls stress for
moving an edge dislocation Tpejers. The dashed line in Fig. 3 replots Tpejers from Fig. 3 of
Ref. 25 using the rms lateral stress instead of the maximum (75 = Tm(w/\/ﬁ). The results
overlap at intermediate /7y and the prefactor ¢y for the exponential decay is about 40%
larger than for the amorphous case studied here. Ref. 25 considered dislocations separating
regions that were locked into perfect registry. For large G/ 79, local regions of incommensurate
surfaces may lock into a higher order commensurate state. The dislocations between these
regions will have a finite but much lower 7pg;,;s as observed for some rotation angles in Ref.

25 and in Ref. 41. This may lead to larger values of co and much weaker pinning. The



degree of commensurability may also be a function of film thickness, with single layers being
stretched or compressed into epitaxy, while thicker clusters retain the bulk lattice constant
and exhibit superlubricity. *?

The similarity in the stiffness-dependence of 77, for amorphous and crystalline systems
is in sharp contrast to the different scaling of A and b.,,.. in 3D. The latter rises only linearly
with G/7 instead of exponentially. For many tribopairs the effective shear modulus is 10 GPa
or larger, while interfacial interactions typically give rise to 79 < 1 GPa. Materials-specific
values of 7y are not captured by the generic interfacial potential we used in our simulations
and thus we are unable to provide precise values of 75, Nevertheless, the simplicity of Eq.
1 allows us to compute realistic values of A. Assuming G/ = 10 and d = 0.3 nm, Eq. 1
gives A = 2 um, compared to b, =~ 2.1 nm. Thus it may be easier to achieve frictional

pinning at the nanoscale with crystal-on-crystal contacts for bulk elastic solids.

2D ELASTIC SUBSTRATE
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Figure 5: Static friction stress versus contact radius for fcc substrates with 3 layers and the
indicated G//7y. Small, stiff systems follow the same superlubric scaling as 3D systems with
Ttrie & Trig = Tod/+/Ta (dashed line). As G decreases, results deviate from 7,;, at smaller a
and 7. increases.
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This section presents results for a rigid amorphous disk sliding over a free-standing film
of thickness h containing n; = \/§h/ d atomic layers. Given the mapping described above,?”
this can be mapped to experiments with an elastic amorphous disk of height h on a thick
elastic substrate.3?

Figure 5 shows the scaling of 7¢,;./7 with a/d for different G/7y and n; = 3 atomic layers
(Fig. 1). As for 3D, there is a transition from rigid scaling 74, & 7y = 70d/v/7a at small a
to a plateau at large a. The rigid regime is identical for 2D and 3D systems because it only
reflects interfacial interactions. Because 2D systems are easier to deform, the transition to a

constant 7y, occurs at much smaller radii in 2D systems than in 3D systems.

10— T T T

103 - N
10! 107
G/tO

Figure 6: Static friction stress for the largest contact radius simulated at each value of G /7y
and h/d = 3/\/5 Results for large G/ have not converged and represent an upper bound
for 755;.. A solid line indicates the prediction 78;./70 ~ T;iC/TO = ¢5dT1y/hG with c5 = 0.28.
Statistical errorbars are shown when they are larger than the symbol size.

Scaling arguments discussed above predict:

)\/d = C4hG/dTg y (3)

T;:Z-C/To = c¢5drg/hG (4)
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(a) Scaling plot of 7./7rig against a/A for the indicated G/75. Results for

different stiffness collapse with A\/d = ¢,hG/dry and ¢4 = 1/c5 = 3.6. In the large contact
limit, Tf.e/Trig grows linearly with contact radius (dashed line). (b) Similar collapse for films
of 3 (diamonds), 5 (squares) and 9 (circles) layers and a/d = 28.5 (filled symbols) or 85.5
(open symbols). The inset shows that the stiffness characterizing elastic energy costs rises
linearly with film thickness at small h/a and saturates at the bulk 3D value for h/a > 1.
Results are for a/d = 8.9 (crosses), 28.5 (red circles) and 85.5 (open circles).
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with unknown constants ¢, and c5. Figure 6 shows the stress in the largest contacts studied
as a function of G /7. Again approximating Tiric bY Tftic, converged results follow the inverse
relation of Eq. 4 with ¢5 = 0.28. For G/7y 2 30 the stress was still significantly decreasing
at the largest a studied.

Figure 7(a) shows the results from Fig. 5 with 7y, rescaled by 7,;, and a rescaled by
the Larkin length from Eq. 3. As in 3D, the collapse is independent of ¢, and we choose
cy = 1/cs = 3.6 to give Tye/T0 = d/A. The rescaled results follow rigid scaling for small
a/A and rise as y/ma/\ in large contacts. The crossover is slightly sharper than the simple
interpolation formula used in 3D.

Implicit in our discussion is the assumption that a substrate with finite thickness may be
treated as effectively 2D (quasi-2D). For a 3D substrate, rigidly displacing a circle of radius a
produces a restoring force and elastic energy characterized by a stiffness® ky,. = 8Ga/(1+v),
where v is Poisson’s ratio. The scaling arguments above assume that this stiffness is reduced
by a factor of h/a when h < a. To confirm this we calculated the lateral stiffness k of films
for different a and h. The inset to Fig. 7(b) shows that the ratio k/kp, is a universal
function of h/a even for films of as few as 3 discrete layers. At small h the ratio obeys
quasi-2D scaling and rises linearly with h/a. It saturates at unity for h > a.

These results for k indicate that Eq. 3 can be used to calculate A for h/a < 0.5. Figure
7(b) confirms that results for 3, 5, and 9 layers at two values of a and a range of G /7y
collapse. The collapsed curve is consistent with that in panel (a) but the data are plotted
separately for clarity. Note that the results in both panels seem to fall slightly below the
rigid result for a/\ =~ 0.1 before rising. The source of this potential nonmonotonic behavior
is unclear.

For G/my =~ 1, the 3D and 2D expressions Eqgs. 1 and 3 give similar numerical values of
A that are only a few times larger than d. Nonlinear effects may be important in this limit
and estimates based on the yield stress suggest G /7y will usually be larger. As an example,

an estimate of \ for a 2D substrate with three lattice planes can be obtained by once again
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assuming G/1p = 10 and d = 0.3 nm. Using Eq. 3 with these values gives A ~ 23 nm,
a value ~ 100 times smaller than we obtained earlier with the same parameters for a bulk
elastic substrate.

Experimental studies®? of amorphous Sb nanoparticles found a constant shear stress for
a 2 70 nm on an MoS, substrate but superlubricity on a graphite substrate. The mapping
of these experiments to our simulations is not exact because both substrates are highly
anisotropic elastic materials and neither has atoms lying on a square lattice. However,
equating the area per sulphur atom to d? gives d = 0.29 nm, A\/d ~ 240 and G/7y = 6.2
for 3D systems. In addition, the scaling with the number N of S atoms in the rigid limit?3?
gives 79 ~ 450 MPa, which is comparable to the stress (290 MPa) from density functional
calculations.3? Together these results would imply G ~ 3 GPa. The shear stress for Sb on
graphite was about 4 times lower. Using the same G and d one finds A ~ 0.3 m for Sb on
graphite, and the corresponding 7¢7;. would be immeasurably small.

The above estimate of G for Sb is relatively small. Adding the modulii of crystalline Sb (20
GPa*) and MoS, (~ 32 GPa*) in series?® gives G ~ 12 GPa. However, amorphous solids
can be an order of magnitude more compliant, depending on deposition conditions.*>*6 A
low modulus would correlate with a low yield stress, explaining the observation of permanent
plastic deformation in some nanoparticles.3? Tt would be interesting to measure the shear
modulus of Sb nanoparticles or attempt to increase G by annealing.*® Another factor may
be the thickness of the antimony particles 20 — 50 nm, which was comparable to A. This
may reduce the stiffness from the 3D case and enhance friction.

Thin films of MoS, and graphite are frequently used as solid lubricants. Recent AFM
experiments have revealed a steady decrease in friction as the number of layers in the film
increases. 33 AFM contacts are generally small enough (a/d < 10) that they would be in
the rigid limit if they were flat. However thin films can bend and pucker ahead of the tip.

This increases the area of contact and adds new dissipation mechanisms that depend on the

displacement.?*3* Recent work shows that the experimental trends can be reproduced by
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enriching the simple Prandtl-Tomlinson model with an extra degree of freedom that encodes
deformation in the film.37

The results presented here extend contact and substrate sizes well beyond past sim-
ulations and AFM tip radii to scales that may be relevant for asperities on macroscopic
surfaces.1''® The potential for bending and puckering was explicitly removed so that only
in-plane displacements at the surface could produce friction.?*?* Even in this limit there is
a strong dependence of friction on thickness with 727, ~ 1/h.

Solid lubricants are known to form transfer layers on rough surfaces.b!'347 Sliding then
occurs between transfer layers on opposing surfaces which may have lower friction because of
structural superlubricity between plates.® Stable transfer layers must have a larger friction
with the substrate than the opposing surface. Our results suggest that elastic deformations
may produce a high friction between thin plates and amorphous surfaces. Once locked in
place, these plates would become part of a 3D elastic solid and friction with the opposing
surface would be suppressed. This locking and the influence of multiscale roughness will be

interesting topics for future investigation.

CONCLUSIONS

The results presented above verify scaling predictions for the stiffness-dependence of the
Larkin length and the asymptotic frictional shear stress in contacts of amorphous solids
with bulk elastic solids and thin free-standing films. For both substrate classes, structural
superlubricity holds up to a ~ A, and the frictional shear stress approaches a constant 77,
in larger contacts. The values of 1/A and 737, drop exponentially with G//7o in 3D and
linearly for thin films. Estimates of A using realistic values of G/7y and d showed that
frictional pinning by disorder occurs more readily on 2D substrates than on 3D substrates
at the nanoscale.

Our simulations showed that a crossover between 2D and 3D frictional behavior is ex-
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pected when the thin film thickness approaches the contact radius. Variation of the film
thickness for h < a showed that h and G/7y play analogous roles in determining the Larkin
length in 2D. Our results demonstrate that the film thickness impacts the frictional shear
stress even when only in-plane displacements are permitted. Therefore, film thickness can
be used as independent control on the frictional response for fixed material parameters and

contact size.

METHODS

A general relation allows contact between two elastic solids to be mapped to a rigid solid
on an elastic substrate.? The elastic substrate was the (001) surface of an fce crystal with
nearest neighbor spacing d. A rigid amorphous disk of radius a was cut from a Lennard-Jones
glass of density p = 1.2d~2 prepared by rapidly quenching a liquid. The disk and substrate
atoms interacted with a truncated Lennard-Jones potential with ¢ = d/+v/2. The potential
and forces were smoothed to zero from 1.20 to 1.50.%® The disk was thicker than the range
of interactions.

Friction was measured by moving the slider across the substrate in discrete steps, mini-
mizing the energy at each step. This is comparable to low sliding rate experiments where the
probe speed is many orders of magnitude smaller than the sound speed in the solid. Error
bars represent uncertainty in the average static friction stress value obtained by performing
sliding for many realizations of amorphous disks with a given radius a.

Atomic displacements in the 3D substrate were treated using a Green’s function method 9!
that computes the exact linear response and is implemented in LAMMPS.*® An isotropic
Green’s function with Poisson’s ratio v = 0.5 was chosen to decouple normal and lateral
forces from the disk. The friction only depends on lateral forces to leading order in this
case and we set normal forces to zero so substrate atoms remained at a fixed height with

a minimum separation of o between crystal and amorphous atoms. This approach ensures
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atoms feel the random lateral force assumed in scaling theories. Normal forces can only
influence friction at small G/75 where nonlinear effects become important.

2D simulations used the same random surface interactions. The substrate contained n;
crystal layers with harmonic springs k; between nearest neigbors, yielding an effective shear
modulus® G = 0.468k,/d. In general, G will depend upon sliding direction for crystalline
substrates. Free-standing films had a square geometry of length L with the periphery fixed

in place to prevent translation. The friction was insensitive to L for L > 8a.
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