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ABSTRACT
The importance of social distancing for public health is well estab-
lished. However, the policies and regulations regarding occupancy
rates have not been designed with this in mind. While there are
analytical tools and related measures that are used in practice to
evaluate how the design of a built environment serves the needs
of its intended occupants, these metrics cannot directly apply to
the problem of preventing the spread of infectious diseases such
as COVID-19. By using a crowd-based simulator using three lev-
els of behavior and agent control in a given environment, a novel
evaluation metric for a space layout can be calculated to reflect the
proclivity of maintaining a safe distance throughout the shopping
experience. We refer to this metric as the Social Distancing Index
(SDI), accounting for the occupancy throughput and number of
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distance-based violations found. Through a case study of a realistic
retail store, we demonstrate the proposed platforms performance
and output on multiple scenarios by changing agent-behavior, oc-
cupancy rate, and navigational guidelines.
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1 INTRODUCTION
The drastic impact of a pandemic on society has not been as clearly
seen within the last one hundreds years as it has with COVID-19.
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However, there have been multiple instances in recent times that
have caused drastic harm and concern (H1N1 [18], MERS [16]),
suggesting that the need for future consideration is well deserved.
While the events and protocols required in society bring to ques-
tion the way environments are designed and laid out for the fu-
ture, a much harder and immediate requirement is to modify the
behavior of people. Social norms dictate which side to walk on,
while compact and ill-defined scenarios such as shopping in a store
present significant challenges in small-crowd management and
proximity mitigation. When considering the limited ability to ex-
pand buildings immediately, and likely only temporarily, the ability
to quickly intervene in the normative social behavior practices
in non-destructive ways is essential. Rather than purely rely on
self-modifications of behavior; we propose a simulation and evalua-
tion framework for defining directionality in walkable areas of the
built-environment with a user-defined social distancing parameter
driving crowd behavior, to mitigate the likelihood of dangerous hu-
man proximity. Eight different scenarios are simulated to evaluate
the impact of social-distancing and environment-policies, both in
isolation and collectively, for two different levels of environment
occupancies.
Contributions. We introduce a parameterizable human behavior
simulator to flexibly study policies imposed on the environment in
different ways. Our system allows a user to synthesize plausible
behaviors in semantically meaningful environments using BIM-
based models. Through this framework, the paper contributes a
new evaluative tool for quantifying environments referred to as
the Social Distancing Index (SDI).

More specifically, this paper contributes: (1) a platform for simu-
lating the impacts of navigational policies and environment layouts
on social distancing violations, and (2) a new evaluation metric for
the design of the built environment. We demonstrate the effective-
ness of our platform on a preliminary case study conducted in a
retail store and a complex shopping mall environment. .

2 RELATED WORK
2.1 Human-Behavior Simulations
Human-behavior simulations (or “crowd simulations”) is a well
studied topic which uses autonomous virtual agents to provide the
temporal dynamics of human-like behavior in the environment [12,
23, 29]. Early work on the simulation of behaviors showed the
dynamics of a flock of birds [26], establishing the groundwork for
how simple rules defining attraction/repulsion between individuals
create a natural recreation of real-world behaviors.

Other developments have been to a velocity obstacle, which
is a set of velocity values representing the bounds at which ob-
jects would collide. This has been generalized to reciprocal move-
ment (reciprocity between modelled agents in their collision avoid-
ance) [33] and to optimal reciprocal movement among an arbitrary
number of agents [32]. Some approaches have used physical forces
(e.g., attraction and repulsion) to push and pull the agents toward
their goals and away from collisions. A notable approach using phys-
ical forces is the Social Forces model [10], later extended to simulate
humans under distress [9, 14]. Kapadia et. al, uses an egocentric
approach calculate space-time planning for individual agents [13].
More recently, machine learning techniques (e.g., reinforcement

learning and deep learning) have been used to simulate the com-
plexities of human-behaviors for more realistic results [24, 34].

2.2 Human-Aware Building Design
Spatial analysis and evaluation is an integral part of building de-
sign. Quantitative metrics leveraging computing power have long
been desired to aide in environmental planning tasks. Body Mo-
tion Envelopes are some of the earliest work in this area, in which
video recordings of peoples motions are used to generate a proba-
bility index of space needed by an occupant to perform a task [15].
The Indoor Walkability Index provides a metric for circulation
routes afforded by the environments design [27]. Using a grid-
based graph, [20] designated weighted areas of interest to score
an environment by the common nodes used when path-finding,
calculating the higher trafficked areas and referred to as the Buzz
Metric.

While graph-focused works [20, 27] rely on the intrinsic values
the graph-representation of the environment encompasses, an alter-
native evaluation method is to leverage the simulations described
in Section 2.1. One common application of this is the prediction of
occupant movement in emergency situations (e.g., egress) where
the simulations provide a method for optimizing the routes [2]. The
attributes of crowd dynamics during high-stress evacuations has
been studied in past experiments using virtual environments [19],
helping to improve how agents should move. Simulations are also
used for informing the placement of environment elements (e.g.,
pillars and other obstacles) based on the movement flow in hall-
ways [1, 6, 7]. The work presented in [31] presented a compre-
hensive comparison of sequential and joint environment–crowd
parameter exploration processes to generate efficient environments.
In one of recent works [8], a gamification approach is adopted to
showcase the potential of community-driven design of environ-
ment layouts with respect to crowd simulations using games and
networking.

2.3 Socio–Behavioral Policies in Crowds
Socio–Behavioral characteristics are the changes in human behav-
iors which have a direct impact on their movements. There has
been a growing focus to study and measure the impact of different
socio–behavioral policies in limiting, for instance, spread of the dis-
ease [35]. It is becoming essential to account for socio–behavioral
characteristics of potential users in pedestrian dynamics [28]. Usu-
ally these characteristics are the changes in human behaviors –
directly impacting their movements.

The use of human behavior for emergency and disease spread
studies in agents has appeared in past literature for various cases.
With respect to the built environment, [22] uses a multi-agent
system to simulate competitive queuing and herding behaviors in
crowds during emergency egress. In [5], a targeted social distancing
design is presented to mitigate the pandemic influenza for local
community social contact networks. Others have considered the
spread of disease relating to social distancing through differential-
games [25] and multi-agent simulations in urban environments
accounting for social structures in crowds [3].

With an ongoing pandemic [21] around the world, several ques-
tions about our current social and environment setups have been
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raised. For example: “What is a maximum afforded social distance?”,
“Does the current environment layouts facilitate to maintain a desired
social distance?”, “Is current level of social distancing enough to con-
tain the spread [4]?”. By using behavioral crowd simulations, many
of these questions can be computationally explored.

2.4 Our Approach
We present a parameterized workflow to measure the affordances
of environment layouts for facilitating a desired human proximity.
The affordance of an environment is measured using a new envi-
ronment performance metric called the Social Distancing Index
(SDI). Our approach allows modelling of navigational guidelines for
the environment, define socio–behavioral policies for crowds, and
simulate their respective impact on social distancing violations for
individual occupants. While we use the crowd steering mechanism
from ADAPT [11], the evaluation method of the environment is
applicable to any past, or future, steering algorithms as well.

3 FRAMEWORK
The presented framework encompasses the following steps: (a) im-
porting a semantically rich 3D virtual environment (e.g., a Building
Information Modeling (BIM) model); (b) setting crowd occupancy
specifications including occupancy distribution within the envi-
ronment, behavioral characteristics (e.g., walking speed), and ac-
tivities the crowd will engage in (e.g., egress, gather in a meeting
room, shopping in a mall, doing groceries, etc.); (c) defining socio–
behavioral policies for crowds (e.g., maintaining a social distance of
2𝑚 with other occupants while moving or standing in a queue); (d)
defining navigational guidelines in the environment (e.g., one-way
aisles and corridors, no–go areas, etc.) to assist socio–behavioral
polices; and (e) information parsing, simulation, and animation in
real-time using a 3D simulation and gaming engine (Figure 1).

3.1 Navigational Guidelines and Environment
Graph

Two components are necessary for driving the crowd simulation
in our framework; 1) a navigable space in the 3D environment and
2) a graph representation of the environment. The navigable space
is defined by a NavMesh which enables the ADAPT framework
to perform localized steering behaviors and account for social dis-
tancing parameters (see Section 3.2 for details). At a larger scale,
the environment graph enables a user of our framework to deter-
mine navigational guidelines which are then represented by the
directions of edges in the graph.

We represent the environment graph using a Visibility Graph
Analysis (VGA) [30]. The visibility graph is constructed by decom-
posing the environment space and sampling it with a fixed grid. All
the locations in the environment are the nodes or vertices in the
visibility graph. We then compute the line-of-sight between these
nodes. Two nodes are connected to each other in the visibility graph
(e.g., have an edge between them) if they have an unobstructed line
of view between them. In other words, if the line of view between
the two nodes is obstructed by an object (e.g., a wall), then these
two nodes will not have an edge between them in the visibility
graph.

En
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Navigational Guidelines

Shopping Items
Checkout CountersTraversable Path
Shelves

Shopping Items
Checkout Counters
Shelves

Exit

Figure 2: A sample pathway of a virtual agent to shop two
items from the facility. Navigational guidelines are in effect
in the environment. Shortest path to items is used with di-
rected graph while local steering avoids agents.

The abovementioned graph representation is used to implement
the navigational guidelines in the environment. The environment
graph (𝐺𝑒𝑛𝑣 = ⟨𝑁, 𝐸⟩) where nodes (𝑁 ) are defined by key navi-
gational waypoints such as exits, checkout counters, and ends of
hallways. Edges are defined by ordered pairs of nodes such that
(𝑛𝑖 , 𝑛 𝑗 ) ∈ 𝐸, and for each (𝑛𝑖 , 𝑛 𝑗 ), there is a line of sight connecting
the two nodes. Additional edges can be defined by adding nodes
at points of interest (e.g., shopping items on shelves) and connect-
ing them with the initial graph 𝐺𝑒𝑛𝑣 , following the navigational
guidelines. A sample navigation policy can be seen in Figure 2
(represented as yellow arrows).

3.2 Human Behavior Simulator
The behavior simulator 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑜𝑟 = 𝑓 (𝐺𝑒𝑛𝑣, 𝐵) accounts for an
environment graph (𝐺𝑒𝑛𝑣 ) and parameterizable virtual occupants
(𝐵) by connecting three layers: 1) Behavior Layer 2) Behavior Tree
Layer 3) Local Steering Layer.

Behavior Layer.Manages the allowable actions agents can per-
form during the simulation (e.g., walking, queuing, social distancing,
etc.) and defines simulation-level behaviors (e.g., generating shop-
ping lists, assigning shopping items to the agents, etc.). Table 1
shows a complete list of behaviors implemented in this layer.

Behavior Tree Layer. Represents a sequence of actions that
define a behavior of an agent across the course of a simulation.
It takes the defined behaviors as input from the behavior layer,
schedules the order in which the behaviors will be carried out,
defines which and how many agents will be participating, and
controls the execution of these behaviors. In this layer, parameters
for crowd occucpancy (i.e., max. number of occupants allowed in the
environment) are set for 𝐵. More complex behavior trees including
selector branches, repeating loops and additional logical operator
can also be modeled in our framework, although a simple example
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Figure 3: A snapshot of agent’s social space and social-space
violation.

is given below. Listing 1 shows a sample behavior execution order
for shopping.

Listing 1: Behavior tree for shopping
Gene r a t e _Shopp ing_L i s t ( )
Loop : ( Has More I t ems )

Walk_To ( i tem )
I t em_P ickup ( )

To_Checkout ( )

Local Steering Layer. Controls the navigation of the agents in
the environment. It communicates with the behavior tree layer to
identify schedules of the behaviors and the participating agents.
It then queries the environment graph 𝐺𝑒𝑛𝑣 to determine the ap-
propriate sequence of nodes to be traversed by the participating
agents in order to carry out a particular behavior. In this layer,
the parameterized values of 𝐵 for walking speed (i.e., how fast
the agents can walk) and social distancing (e.g., if parameterized,
agents will be encouraged to maintain a set social distance with
other agents while walking) are set. Social distancing is parameter-
ized by defining a proxy velocity obstacle around each agent during
the simulation [17]. The exact movement of an agent is determined
by the agents movement from one node to the next, using Recipro-
cal Velocity Obstacles for steering and Unity’s Navmesh for path
planning.

The Simulator. Once these layers are defined, the Simulator
then runs the simulation for the environment and population pa-
rameters and generates crowd trajectories, where each trajectory is
a set of spatial points in the environment space walked by the agent
during the course of the simulation. This trajectory is defined as
𝑇𝑟𝑎 𝑗𝑒𝑐𝑡𝑜𝑟𝑦𝐴𝑖

= (𝑠𝑡𝑒𝑝𝑡 , 𝑠𝑡𝑒𝑝𝑡+1, 𝑠𝑡𝑒𝑝𝑡+2, ..., 𝑠𝑡𝑒𝑝𝑡+𝑛), where 𝑠𝑡𝑒𝑝𝑡 is
the position of an agent in the environment in world coordinates at
the simulation timestep 𝑡 (corresponding the simulated real time-
scale value), represented as: 𝑠𝑡𝑒𝑝𝑡 =𝑊𝑜𝑟𝑙𝑑𝑃𝑜𝑠 (𝐴𝑔𝑒𝑛𝑡𝑖 ). In Sec. 4,
we use 𝑇𝑟𝑎 𝑗𝑒𝑐𝑡𝑜𝑟𝑦 to synthesize a meaningful outcome between
the environment graph, policies, and occupancy rate.

4 SOCIAL DISTANCING INDEX
The Social Distancing Index (SDI) is an environment performance
measure which represents the proclivity of an environment design
to afford the desired human proximities of the occupants. To com-
pute this metric we discretize the environment to a fixed-size grid

of cells with a given spacing 𝜆 for recording location-specific data.
The set of cells are a spatially significant structure for storing data
collected during simulation. We represent these cells in an array 𝐶 .

Using the framework in Section 3, data on the rate and location
of social distancing violations (𝑀) are recorded and mapped to a
given cell. This is done by analyzing crowd trajectories in space
every 1 second of real-world time in the simulation. If trajectories
of two or more agents come in proximity such that their distance
is less than a desired social distancing threshold (e.g., 2 meters or 6
feet, as shown in Fig. 3), these agents are found in violation of each
other’s social space, with the location mapping to a cell (𝑥,𝑦) ↦→ 𝑖 .
The violation count of that cell is then incremented, 𝑐𝑖 = 𝑐𝑖 + 1.
Once a violation between agents is recorded in a given cell 𝑐𝑖 , it
is excluded from future increments of violations until at least one
agent moves to a position located above a different cell (e.g., 𝑐𝑖+1).
If a violation is not between the same agents, we increment 𝑐𝑖 (the
social violation count of the underneath grid cell for that location).

This maintains a record of sensitive and critical areas in the
environment which are more vulnerable to human proximity viola-
tions. Once the social violations are recorded for the course of the
simulation, we then extract four values from𝑀 :

(1) Total Violations𝑀𝑡 =
∑
𝑠∈𝐶 𝑠

(2) Cell Violations𝑀𝑚 = max(𝐶) (Max violations of any single
cell)

(3) Unique violations𝑀𝑢 = |𝑀𝑢𝑣 | where𝑀𝑢𝑣 = {𝑐𝑖 ∀𝐶 | 𝑐𝑖 > 0}
(4) Average Cell Violations𝑀𝑎𝑣𝑔 =

𝑀𝑡

𝑀𝑢

Finally, we compute SDI by dividing the number of unique social
distance violations (𝑀𝑢 ) in space by the average number of agents
served in the facility (𝐴𝑠 ) (i.e., facility throughput). 𝑆𝐷𝐼 =

𝑀𝑢

𝐴𝑠
,

where the number of people served are the agents who have left
the facility already (i.e., they have completed their shopping).

5 CASE STUDY
We conduct a series of experiments using the presented framework
to demonstrate the outcomes and reflected SDI values on different
occupant and environmental policies. The combination of these
policies demonstrates the efficacy of our platform to provide mean-
ingful insights into the impact policies have on social distancing
violations for a given environment layout and design.

A real-scale 3D store environment (BIMmodel) is designed using
a mainstream architecture design tool (Autodesk Revit) and brought
into Unity in the FBX format. We simulate eight different scenarios
to evaluate the impact of environmental and crowd behavioral
policies, both in isolation and collectively, for two different levels
of agent occupancies. For the violation data collection, we set 𝜆
to 0.5m. Note that the presented experiments in the case study
are the proof-of-concept to showcase the preliminary efficacy of
the proposed framework. More complex scenarios with additional
socio–behavioral parameters will be considered in future studies.

Independent Variables.We allowed a maximum of 150 agents
in the facility in one time during the course of simulation. Each simu-
lation is run for about 8 hours. Two different behavioral policies are
considered for agents’ walking: (1) normal-walking – agents may
enter each other’s social space; and (2) social-distancing – the proxy
velocity obstacle is set to 2𝑚. Similarly, two different environment
policies are considered: (1) normal-navigation — agents may move
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Behavior Description

Initiate_Crowds Initiate group of occupants at the entrance of the environment facility at random times.

Shopping_List Generate a list of randomly selected shopping items for the agents.

Walk_To Move to a given point of interest in space.

Item_Pickup Turn towards the desired item and pick it up.

To_Queue Line up and wait for the turn.

To_Shop Collect the given list of items from their placements in the facility.

To_Checkout Look around to identify least crowded active counter, perform the queuing behavior, pay the bill for the
shopped items, and exit the facility.

Social_Distancing Maintain a social distance (e.g., 2𝑚) with other occupants while walking or waiting in a queue.

Navigation_Guides Follow the navigational guidelines enforced in the environment facility (e.g., walking in directed pathway).

Table 1: A list of agent-level and simulation-level behaviors defined in the simulator.

Normal-Navigation Directed-Navigation Directed-Navigation Graph

Figure 4: Left & Middle: Environment navigation guidelines used as independent variable in the case study. Right: a sample
navigation graph constructed using our environment–graph representation, to model directed-navigation guidelines where
the edges in the graph are directed from Green to Red.

Occupancy Behavior P. Environment P. Mav Mu As SDI

100% Normal Normal 68.5 2936 90 32.62

100% Normal Directed Navigation 55.68 2717 50 54.34

100% Social Distancing Normal 60.22 2223 75 29.64

100% Social Distancing Directed Navigation 56.28 2781 71 39.17

50% Normal Normal 14.85 2159 57 37.88

50% Normal Directed Navigation 13.64 1996 41 48.68

50% Social Distancing Normal 17.33 1657 49 33.81

50% Social Distancing Directed Navigation 12.77 2038 42 48.52

Table 2: Summary statistics from the experiments. Light-Gray (baseline: normal scenario), Gray (highest SDI: less favorable
policies) and Dark-Gray (lowest SDI: more favorable policies).
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Occupancy Level = 100%

Occupancy Level = 50%

Normal Directed-Navigation Social-Distancing
Social-Distancing &
Directed-Navigation

Figure 5: Qualitative results from the experiments. The top row shows the results for 100% agent occupancy, whereas the
bottom row shows for 50% occupancy. Heatmaps show the aggregated social distance violations which are occurred during the
course of simulation in the environment space. Areas where higher social violations occurred are shown in Red compared to
Blue ones with fewer to none violations. Results are normalized among all images.

in any direction in the environment; and (2) directed-navigation
– agents are required to follow given environment navigational
guidelines.

Dependent Variables. A number of variables are dependent
on the simulations including 𝑀𝑎𝑣𝑔 (average cell violations), 𝑀𝑢

(unique violations),𝐴𝑠 (agents served in the facility), and SDI (social
distancing index).

Design. The study has a 2 x 2 x 2 factorial design with agent
occupancies (2) x behavioral policies (2) x environment policies (2).

Simulation Setup. At the start of the simulation, agents are
given a shopping list of randomly selected items (1 ≤ 𝑛 ≥ 30).
Agents are tasked to shop the given list of items, perform the check-
out, and exit the facility. The walking speed of agents is set to an
average adult walking speed of 1.3 m/s. Agents are scheduled to
enter the facility every 4𝑡ℎ second in a group of 1 to 5 (randomly
picked) until the set maximum environment capacity is hit (e.g, 150
agents). Afterwards, a new agent will only enter the facility when
an existing agent leaves.

Results. Table 2 shows a summary of the findings from the
experiments. Rows (1) and (5) are baselines (normal scenarios) as
no environment or behavioural policies are enforced. Rows (3) and
(7) produced best, whereas rows (2) and (6) produced worst social
distancing index for occupancy levels 100% and 50% respectively.

Behavioral policy to maintain a social distance of 2𝑚 yielded
closest facility throughput to baseline for both agent occupancies.
This, however, is not valid for the scenarios where behavioral pol-
icy was enforced in combination with environment policy. The
average social distance violations are minimum when environment
policies (e.g., directed-navigation) are enforced. This case, how-
ever, has a tradeoff with lower facility throughput as agents had to

travel longer distances, and therefore, took more time to complete
the shopping list. Enforcing both social-distancing and directed-
navigation produced somewhat reasonable facility throughput but
with a tradeoff of higher unique social violations. Imposing social-
distancing alone produced a moderate balance of higher throughput
and fewer unique social violations. Therefore, yielding the best SDI
values. Qualitative results of the experiments are shown in Figure 5.
A lot many violations happen around the checkout counters with
100% capacity during normal policies. This region has significantly
less violations when applying social-distancing behaviors, however,
a large portion of the SDI is shifted to the upper boundary wall of
the environment. Through this visualization we can understand
how the environments design (and in this case, restricted space),
impacts the likelihood and amount of social distancing violations.

Note that, it can be a possibility where we do not get similar
trends for some other environment as it might have different archi-
tectural and physical components in it or they may be oriented or
placed in different way. The same is applicable to crowd behavior
simulator. Our approach is not bound to only use ADAPT [11] and
other steering algorithms can also be adopted. However, doing so,
might result in a different set of findings depending on behavioral
characteristics of the agents in that steering approach.

Additional Results. To demonstrate the scalability and flexi-
bility of the presented framework, we also tested it for a complex
real environment called Nexus Shopping Mall, located in Mumbai,
India. We designed two different simulation scenario and ran it
with our framework: (1) normal walking behavior with normal nav-
igation (baseline); and (2) social distancing behavior with normal
navigation. Like for the retail facility, all the agents were assigned
a shopping list with randomly selected items. We simulated 1000
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Normal Walking

Social Distancing

Figure 6: Qualitative results for a complex real environment located in Mumbai, India: Nexus Shopping Mall. The color-coded
heat maps show the aggregated social distance violations occurred at different locations in space during the course of simu-
lation. Areas with higher social distance violations are highlighted in Red, compared to Blue ones, with fewer to none social
distance violations. Top: a normal walking behavior with normal navigation (e.g., no environment guidelines are enforced).
Bottom: a social-distancing behavior, also with normal navigation.

agents for about 4 hours. Figure 6 shows the heat maps for ag-
gregated social distance violations from the simulations. Results
reveal significantly higher social distance violations in the hallways
especially towards the top-side when agents were not maintaining
any social distances while walking. However, with a 2𝑚 social dis-
tancing behavior, we see lot less hotspots in the heat map (Figure 6:
Bottom).

Observations. In the retail facility, the reason we see many
violations in the presence of social distancing is that agent behaviors
are set in a way that they are encouraged to maintain a 2m social
distance from other agents as a soft constraint. This is to avoid
any deadlocks among the agents during the simulation. With social
distancing, we still see some violations (red areas). It is because
there is a boundary wall right next to the top horizontal hallway.
Agents did try to maintain a 2m social distance. However, since
they did not have enough room at the top side to avoid other agents
and walk by around them, therefore, they end up violating the

social space of others while continuing their journey towards their
respective targets. The same behavior, however, is not highlighted
in the complex shopping mall environment. Our platform showed
that, with social distancing in the shopping mall, violations are
reduced by order of magnitude.

6 CONCLUSION
The importance of social distancing for public health is well estab-
lished. However, the policies and regulations regarding occupancy
rates have not been designed with this in mind. To introduce a
metric capable of accounting for a space layouts proclivity for
maintaining a safe distance for occupants, we use a crowd-based
simulator consisting of three levels for behavior and agent control
in a given environment. We refer to this metric as the Social Dis-
tancing Index (SDI), accounting for the occupancy throughput and
number of distance-based violations found. Through a case study
of a realistic retail store, we demonstrate the proposed platforms
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performance and output on multiple scenarios by changing agent-
behavior, occupancy rate, and navigational guidelines. It is also
essential to note that the presented scenarios are only the prelimi-
nary demonstration of the effectiveness of the proposed framework.
More complex scenarios (e.g., to study the causality of different
design factors in the environment) will be evaluated in future work.

The SDI is a function of both environment and crowd parameters,
both of which are easily modified in our flexible framework. It is
also pertinent to take the case study in context of demonstrating
our framework and the SDI, while not providing direct guidance on
policies for retail stores as variations in the environment and agent
steering may change outcomes. Future work that integrates verified
agent behaviors within a social distancing-enforced environment
can easily be integrated into our framework. Furthermore, addi-
tional research regarding the probability of infection by distance
can be implemented as a function of agents proximity for the SDI.
Future studies will also incorporate more realistic agent walkings
to eliminate any deadlock situations when agent behaviors (e.g.,
social distancing) are set as hard constraints.

REFERENCES
[1] Glen Berseth, Muhammad Usman, Brandon Haworth, Mubbasir Kapadia, and

Petros Faloutsos. 2015. Environment optimization for crowd evacuation. CAVW
26, 3-4 (2015), 377–386.

[2] Vincius J Cassol, Estêvão Smania Testa, Cláudio Rosito Jung, Muhammad Us-
man, Petros Faloutsos, Glen Berseth, Mubbasir Kapadia, Norman I Badler, and
Soraia Raupp Musse. 2017. Evaluating and optimizing evacuation plans for crowd
egress. CGA 37, 4 (2017), 60–71.

[3] Benoît Claude, Dimitri Perrin, and Heather J Ruskin. 2009. Considerations for a
social and geographical framework for agent-based epidemics. In Computational
Aspects of Social Networks. IEEE, 149–154.

[4] Geoffrey A. Fowler. [n.d.]. Smartphone data reveal which Americans are so-
cial distancing. https://www.washingtonpost.com/technology/2020/03/24/social-
distancing-maps-cellphone-location/.

[5] Robert J Glass, Laura M Glass, Walter E Beyeler, and H Jason Min. 2006. Targeted
social distancing designs for pandemic influenza. Emerging infectious diseases 12,
11 (2006), 1671.

[6] Brandon Haworth, Muhammad Usman, Glen Berseth, Mubbasir Kapadia, and
Petros Faloutsos. 2015. Evaluating and optimizing level of service for crowd
evacuations. In MIG. ACM, 91–96.

[7] Brandon Haworth, Muhammad Usman, Glen Berseth, Mahyar Khayatkhoei,
Mubbasir Kapadia, and Petros Faloutsos. 2017. CODE: Crowd-optimized design
of environments. CAVW 28, 6 (2017), e1749.

[8] Michael Brandon Haworth, Muhammad Usman, Davide Schaumann, Nilay
Chakraborty, Glen Berseth, Petros Faloutsos, and Mubbasir Kapadia. 2020. Gami-
fication of Crowd-Driven Environment Design. CGA (2020).

[9] Dirk Helbing, Illés Farkas, and Tamas Vicsek. 2000. Simulating dynamical features
of escape panic. Nature 407, 6803 (2000), 487–490.

[10] Dirk Helbing and Peter Molnar. 1995. Social force model for pedestrian dynamics.
Physical review E 51, 5 (1995), 4282.

[11] Mubbasir Kapadia, Nathan Marshak, and Norman I Badler. 2014. ADAPT: The
agent development and prototyping testbed. TVCG 1 (2014), 1.

[12] Mubbasir Kapadia, Nuria Pelechano, Jan Allbeck, and Norm Badler. 2015. Virtual
crowds: Steps toward behavioral realism. Synthesis lectures on visual computing
7, 4 (2015), 1–270.

[13] Mubbasir Kapadia, Shawn Singh, William Hewlett, and Petros Faloutsos. 2009.
Egocentric affordance fields in pedestrian steering. In I3D. ACM, 215–223.

[14] Ioannis Karamouzas, Peter Heil, Pascal Van Beek, and Mark H Overmars. 2009. A
predictive collision avoidance model for pedestrian simulation. In MIG. Springer,
41–52.

[15] David B Lantrip. 1993. Predicting satisfaction with the office environment by
measuring constraints to worker activities. In Human Factors and Ergonomics
Society Annual Meeting, Vol. 37. SAGE, 489–493.

[16] Sang Min Lee, Won Sub Kang, Ah-Rang Cho, Tae Kim, and Jin Kyung Park.
2018. Psychological impact of the 2015 MERS outbreak on hospital workers and
quarantined hemodialysis patients. Comprehensive Psychiatry 87 (2018), 123 –
127. https://doi.org/10.1016/j.comppsych.2018.10.003

[17] Ming C Lin, Avneesh Sud, Jur Van den Berg, Russell Gayle, Sean Curtis, Hengchin
Yeh, Stephen Guy, Eric Andersen, Sachin Patil, Jason Sewall, et al. 2008. Real-time
path planning and navigation for multi-agent and crowd simulations. In MIG.

Springer, 23–32.
[18] Marc Lipsitch, Lyn Finelli, Richard T Heffernan, Gabriel M Leung, and Stephen C

Redd; for the 2009 H1N1 Surveillance Group. 2011. Improving the evidence base
for decision making during a pandemic: the example of 2009 influenza A/H1N1.
Biosecurity and bioterrorism: biodefense strategy, practice, and science 9, 2 (2011),
89–115.

[19] Mehdi Moussaïd, Mubbasir Kapadia, Tyler Thrash, Robert W Sumner, Markus
Gross, Dirk Helbing, and Christoph Hölscher. 2016. Crowd behaviour during
high-stress evacuations in an immersive virtual environment. The Royal Society
Interface 13, 122 (2016), 20160414.

[20] Danil Nagy, Lorenzo Villaggi, James Stoddart, and David Benjamin. 2017. The
Buzz Metric: A Graph-based Method for Quantifying Productive Congestion in
Generative Space Planning for Architecture. Technology| Architecture+ Design 1,
2 (2017), 186–195.

[21] World Health Organization. [n.d.]. Coronavirus disease (COVID-2019) situation
reports. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/
situation-reports.

[22] Xiaoshan Pan, Charles S Han, Ken Dauber, and Kincho H Law. 2007. A multi-
agent based framework for the simulation of human and social behaviors during
emergency evacuations. AI & Society 22, 2 (2007), 113–132.

[23] Nuria Pelechano, Jan M Allbeck, Mubbasir Kapadia, and Norman I Badler. 2016.
Simulating heterogeneous crowds with interactive behaviors. CRC Press.

[24] Xue Bin Peng, Glen Berseth, KangKang Yin, and Michiel Van De Panne. 2017.
Deeploco: Dynamic locomotion skills using hierarchical deep reinforcement
learning. TOG 36, 4 (2017), 41.

[25] Timothy C Reluga. 2010. Game theory of social distancing in response to an
epidemic. PLoS Comput Biol 6, 5 (2010), e1000793.

[26] Craig W Reynolds. 1987. Flocks, herds and schools: A distributed behavioral model.
Vol. 21. ACM.

[27] Jaeyoung Shin and Jin-Kook Lee. 2019. Indoor Walkability Index: BIM-enabled
approach to Quantifying building circulation. Automation in Construction 106
(2019), 102845. https://doi.org/10.1016/j.autcon.2019.102845

[28] Anna Sieben, Jette Schumann, and Armin Seyfried. 2017. Collective phenomena
in crowds—Where pedestrian dynamics need social psychology. PLoS one 12, 6
(2017), e0177328.

[29] Daniel Thalmann and Soraia Raupp Musse. 2013. Crowd Simulation. Springer.
[30] Alasdair Turner, Maria Doxa, David O’sullivan, and Alan Penn. 2001. From

isovists to visibility graphs: a methodology for the analysis of architectural space.
Environment and Planning B: Planning and design 28, 1 (2001), 103–121.

[31] Muhammad Usman, Davide Schaumann, Brandon Haworth, Mubbasir Kapadia,
and Petros Faloutsos. 2019. Joint Exploration and Analysis of High-Dimensional
Design–Occupancy Templates. In Motion, Interaction and Games. 1–5.

[32] Jur VanDen Berg, Stephen J Guy,Ming Lin, andDineshManocha. 2011. Reciprocal
n-body collision avoidance. In Robotics research. Springer, 3–19.

[33] Jur Van den Berg, Ming Lin, and Dinesh Manocha. 2008. Reciprocal velocity
obstacles for real-time multi-agent navigation. In Robotics and Automation. IEEE,
1928–1935.

[34] Dong Xu, Xiao Huang, Zhenlong Li, and Xiang Li. 2020. Local motion simulation
using deep reinforcement learning. Transactions in GIS (2020).

[35] Yuzhen Zhang, Bin Jiang, Jiamin Yuan, and Yanyun Tao. 2020. The impact of
social distancing and epicenter lockdown on the COVID-19 epidemic in mainland
China: A data-driven SEIQR model study. medRxiv (2020).

https://www.washingtonpost.com/technology/2020/03/24/social-distancing-maps-cellphone-location/
https://www.washingtonpost.com/technology/2020/03/24/social-distancing-maps-cellphone-location/
https://doi.org/10.1016/j.comppsych.2018.10.003
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports
https://doi.org/10.1016/j.autcon.2019.102845

	Abstract
	1 Introduction
	2 Related Work
	2.1 Human-Behavior Simulations
	2.2 Human-Aware Building Design
	2.3 Socio–Behavioral Policies in Crowds
	2.4 Our Approach

	3 Framework
	3.1 Navigational Guidelines and Environment Graph
	3.2 Human Behavior Simulator

	4 Social Distancing Index
	5 Case Study
	6 Conclusion
	References

