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ABSTRACT
The use of mobile devices is one of the most commonly observed
family of distracted behaviours exhibited by pedestrians in urban
environments. We develop an event-driven behaviour tree model
for distracted pedestrians that includes initiating mobile device
use as well as terminating or pausing mobile device use based on
internal or external cues to refocus attention. We present a simple,
probabilistic attention model for such pedestrians. The proposed
model is not meant to be complete. It primarily focuses on comput-
ing the probability that a distracted agent looks up, based on the
agent’s individual characteristics and the elements in their environ-
ment. We condition the potentially attention grabbing elements in
the environment on distraction-specific egocentric fields for visual
attention. We also propose an oriented ellipse model for capturing
the affects of cognitively fuzzy goals during distracted navigation.
Our model is simple and intuitively parameterized, and thus can be
easily edited and extended.

CCS CONCEPTS
• Computing methodologies→Agent / discrete models; Pro-
cedural animation.
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1 INTRODUCTION
The use of mobile devices, such as cell phones, while walking is a
commonly observed behaviour among pedestrians in urban settings.
Whether texting, talking or using other mobile apps the interaction
between a pedestrian and a mobile device is often considered a
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distraction, in the sense that the ability of the pedestrian to perceive
and react to the environment is reduced. It is known that using
a mobile device affects the distracted pedestrian’s movement as
well as focus, and can lead to serious accidents, such as tripping
or walking into the path of a vehicle. At the same time it affects
the nearby pedestrians who may be forced to slow down, or alter
their trajectory. It is therefore timely and important for computer
games and urban simulations, to model and account for distracted
pedestrians.

This paper builds on previous work [Kremer et al. 2020] and
presents a way of thinking about the problem of distraction mod-
elling in synthetic crowds and a corresponding framework to build
distracted agents. There are three key issues that one must address
to incorporate distractions in a simulated environment: (a) when
pedestrians decide to use their mobile devices, (b) how they be-
have when they are distracted, and (c) when they refocus their
attention to their environment. Each one of these issues can be
quite complex and is dependent on many variables, as they relate
to cognition, vision, and attention. For instance, whether a pedes-
trian will answer or ignore a ringing cell phone, depends on the
pedestrian’s personality, age, location, whether they have company,
and so many other circumstances. We propose a simple, editable,
and extensible framework that one can use to author distracted
pedestrians, and which offers common sense starting points, and
intuitive parameters. Most of the important elements of this frame-
work are modelled with conditional probabilities which can be set
by the user based on intuition, experimentation, or derived from
data and observations. In this paper, we exemplify the proposed
framework by focusing on a few common distracted behaviours
related to the use of mobile devices while walking: (a) taking a
phone call, (b) reading, and (c) texting.

At the heart of our model is an agent-centric representation and
abstraction of an agent’s surrounding area, using egocentric fields
that encode or condition probabilities that an agent’s attention may
be attracted by a specific area in his or her environment. Egocentric
fields are a very effective and versatile way of encoding multiple
layers of dynamic or static information centered on the agents or
elements of the environment. A wide range of intuitive and power-
ful operations on these fields, such as filtering and convolution, can
be used to combine and process them to support specific decision
processes. An interesting example of the effectiveness of egocentric
fields in crowd simulation is [Kapadia et al. 2009].

Our contributions can be summarized as follows:
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• We blend the use of parametric and event-driven interac-
tive behaviour trees to model state interactions between
pedestrians and their devices.

• We ground the steering model parameters which are affected
by different forms of distractions to the literature on human
behaviour during distraction.

• We model navigation error (lateral deviation) identified in
distraction studies by representing an agent’s goal as a pa-
rameterized elliptical region.

• We model visual attention using Gaussian models in polar
coordinates, and used them for both the steering and the
attention refocusing models.

• We model the conditions for refocusing attention based on
intrinsic parameters and extrinsic parameters conditioned
on the visual attention model.

It is important to clarify that we do not propose a new steering
method, but rather an egocentric behavioral layer that affects the
steering abilities and parameters of an agent, and which can be
combined with most of the standard steering approaches. In sim-
ple terms, this layer decides when and for how long a pedestrian
temporarily acts more as a moving obstacle rather than a steering
agent. The effect of the distracting behaviors on the sensory and
locomotion abilities of the pedestrian is informed by the related
literature which is based on actual observations, and thus reflects
ground truth. The proposed intuitive parameterization can be easily
adjusted as more studies become available in the future, or to fit a
specific context.

2 RELATEDWORKS
In this section we first present a short overview of crowd simulation
techniques, and then we review the relevant literature in attention
modelling and distracted pedestrians studies.

2.1 Crowd Simulation
A wide array of techniques have been used in crowd simulation.
Many of these are outlined in [Thalmann and Musse 2012]. The
Boids model proposed by Reynolds [Reynolds 1987] calculated ve-
locities based on simple rules to perform agent navigation and
obstacle avoidance, and was capable of demonstrating flock cohe-
sion behaviour. More recently, anticipatory and synthetic vision
based models have been proposed [Best et al. 2016; Ondřej et al.
2010; Paris et al. 2007; VanDen Berg et al. 2011]. Hybridmodels have
also been developed [Snape et al. 2011]. Predictive force-based mod-
els use current trajectories to compute future collision-free paths
for some time window. One such model is Predictive Avoidance
Model (PAM), which uses a piecewise predictive force to calcu-
late future collisions well in advance so that the effort needed to
make avoidance maneuvers can be minimized [Karamouzas et al.
2009]. Another method used a probabilistic model to improve the
flexibility of predictions and the number of factors taken into ac-
count [Wolinski et al. 2016]. There is a lot of work on behavioural
modeling for crowds, that focus on deliberate and complex behav-
iors such as those seen in a train station, for example [Shao and
Terzopoulos 2005]. Most of this work is out of the scope of this
paper, since we focus on the low level effects of egocentric and
individual distractions.

In general, most of the prior work in crowd simulation focuses
on normative agents with perfect visual abilities, and does not
considered the effects of egocentric distractions, such as mobile
devices, on the individual agent.

2.2 Gaze and Attention Modelling
A wide variety of approaches and techniques have been proposed
for modelling vision and gaze in simulations, as examined in [Bruce
et al. 2015]. This is indicative of how complicated the human vision
system is and the difficulty of modelling it. VR-based studies have
recently been proven to provide valuable insights into how people
use gaze to navigate their environment [Berton et al. 2020, 2019;
Huang and Terzopoulos 2020; Lynch et al. 2018]. One study showed
that gaze is typically directed primarily towards neighbours that
have the highest collision risk, based on the distance to closest ap-
proach and the time to closest approach [Meerhoff et al. 2018]. A
similar study tracked users’ eye gaze without a VR setup but using
a monitor and a joystick [Berton et al. 2018].

Visual attention but without explicit gaze behaviour has been
modelled to some degree within crowd simulations [Kuffner and
Latombe 1999; Peters and O’Sullivan 2002]. Methods have been
proposed that use environmental stimuli to trigger gaze redirection
for characters based on a set of rules [Hill 1999; Khullar and Badler
2001].

Conversely, environment centric saliency maps have been uti-
lized to draw agent gaze to the most noticeable objects [Itti et al.
1998]. In other works, gaze has been modelled in face-to-face sce-
narios for more personal situations [Bailly et al. 2010]. Gaze has also
been modelled in interactive environments with real users [Kokki-
nara et al. 2011; Narang et al. 2016]. One approach [Grillon and
Thalmann 2009] attempted to simulate gaze in crowds for aesthet-
ics, although it didn’t alter the trajectories of agents or investigate
the effects of distraction on crowds. We are not aware of prior work
in this area that models visual attention for distracted behaviours
within our context.

2.3 Distracted Pedestrian Analysis
Previous studies on distraction in the real-world has shown var-
ious interesting effects of walking while distracted. For example,
secondary activities can be visual, motor, or cognitive distractions
or a combination of these. The type of distracting activity widely
determines its task cost, with cognitive activities being the most
distracting, followed by motor and then visual [Tian et al. 2018].
Another study suggests that gait is affected by cognitive and visual
demand but not gross motor demand, although it did not examine
or draw conclusions about the effects of fine motor demand such
as swiping and tapping finger movements [Prupetkaew et al. 2019].
A study on driving while talking on the phone showed that partici-
pants talking on the phone recalled as little as half as much visual
information they reported when not tallking on the phone, and
that hands-free phone calls were just as distracting as holding a
cellphone while talking [Strayer et al. 2011].

3 METHODOLOGY
In this section, we discuss the details of our mobile device-centric
distraction model. This includes models for initiating mobile device
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use, the impact of distraction on steering, and reacting to inter-
nal and external cues to refocus. At the heart of our model are
event-driven interactive behaviour trees which drive both agent
distractions and mobile device events [Kapadia et al. 2015a,b]. That
is, in this model, the objects of distraction (mobile devices) are
separate autonomous agents which produce events that can be
consumed at any time during simulation by pedestrians in pos-
session of these devices. In addition to this behavioural level of
modelling, we propose a ground-projected visual attention model.
This model ties distraction types to changes in perception at the
level of steering, such as changes in the Field of View (FOV) or
neighbour distance. This model also serves as the basis for the
proposed refocus approach, in which agents can become attentive
again because of their local surroundings.

3.1 Distractions
We implement three types of distraction related to mobile devices,
which are prevalent in everyday modern lives, particularly in urban
settings. These include taking a phone call, reading, and texting on
a mobile device while navigating.

At a high level, these behaviours are managed and triggered
through two types of behaviour trees. A mobile device agent has
a parametric behaviour tree which drives the use of the device.
This behaviour tree triggers events based on distraction specific
probabilities set by the animator. These are pc , pr , and pt for phone
call, reading, and texting respectively, such that pc +pr +pt +pn = 1.
Here pn = 1−(pc +pr +pt ) is simply the probability that no mobile
device interaction will begin during a time-step. At each simulation
time-step t ∈ T , a trial in a multinomial distribution is performed,
such that the number of trials is n = T fs , where fs is the frequency
of simulation updates. In this way, an animator may choose values
for pc , pr , and pt such that a pedestrians agent will likely become
distracted over some period. Once a particular distraction trial
succeeds, a distraction specific event is triggered.

The distraction event is consumed by the pedestrian agent’s
event driven interactive behaviour tree. This causes a number of
distraction specific changes in the pedestrian agent’s animation,
steering, and visual attention model. In our proposed approach, ani-
mation is driven by a typical Inverse Kinematics (IK) approach with
procedural end-effector targets that include noise and variation
among the pedestrian agents to improve naturalness and hetero-
geneity of large scenarios. The impact on steering and attention
are explained in the following sections.

3.2 Steering
The proposed approach includes several distraction specific changes
to steering that are based on the literature on human navigation
during distractions. The primary parameters related to steering are
preferred speed, waypoint undershoot/overshoot, waypoint lateral
deviation, field of view ( FOV), and neighbour distance. The FOV
and neighbour distance parameters are detailed in Section 3.3 as
they relate to the visual attention model. In our implementation
we use PAM [Karamouzas et al. 2009] as the underlying steering
model. However, any steering model may be used as long as it uses
the aforementioned parameters and a local goal waypoint as its
current target.

Agent

Environment

gf

gw el

eo

Figure 1: A birds-eye view illustration of the proposed fuzzy
goal model in a simple environment. We encode the possi-
bility of lateral deviation and overshoot/undershoot as the
lengths of the semi-minor el and semi-major eo axes respec-
tively. This forms an oriented ellipse around the current
waypoint goal дw within which the new fuzzy goal дf is ran-
domly chosen.

The preferred speed sp for a normative, not distracted, pedes-
trian agent can vary depending on the context of the scenario. For
illustration purposes we use a default value of 1.3m/s, which re-
flects the average human walking speed. The preferred walking
speed during distraction may be a fraction of the agent’s norma-
tive walking speed depending on the specifics of the distraction
model. For the implementation of mobile device-based distractions
in the proposed approach, we derive values from a review of the
literature on distractions. For a pedestrian agent on a phone call,
the preferred speed is set to 1.066 m/s or 82% of the normative
walking speed [Prupetkaew et al. 2019]. For a pedestrian agent
reading, the preferred speed is set to 1.144 m/s (88%) [Niederer
et al. 2018; Schabrun et al. 2014]. For a distracted agent texting, the
preferred speed is set to 1.04 m/s or (80%) [Agostini et al. 2015; Cha
et al. 2015; Haga et al. 2015; Licence et al. 2015; Pizzamiglio et al.
2017; Plummer et al. 2015; Prupetkaew et al. 2019; Schabrun et al.
2014; Yu et al. 2015]. Further research may be needed to determine
distributions for values for these parameters as they relate to age,
sex, culture, etc.

During reading or texting behaviours, where vision is primar-
ily focused downward and the visual horizon is short, navigating
pedestrians must rely on a mental model of their local waypoint.
To model this fuzzy mental model of local waypoints we propose a
parametric ellipse model of the local waypoint. This model encap-
sulates both lateral deviation and overshoot/undershoot caused by
a less than accurate cognition of local waypoints. Lateral deviation
means that someone who is distracted begins to deviate left or right
from a straight path to their local waypoint, and it has been exten-
sively studied in the related literature [Jeon et al. 2016; Lamberg and
Muratori 2012; Schabrun et al. 2014]. Overshoot/undershoot is an
observed real-world behaviour of pedestrians who are so distracted
that they forget to turn where they should or proceed past their
destination. Both of these behaviours are modelled by sampling
the proposed oriented parametric ellipse, as seen in Figure 1. The
semi-major, eO , and semi-minor, el axes govern the degree of un-
dershoot/overshoot and lateral deviation respectively. In practice,
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the semi-major and semi-minor axes of the ellipse are determined
by the distance of the agent to their actual waypoint, дw , when the
fuzzy waypoint дf is chosen. However, an animator may specify
a maximum length of the semi-major and semi-minor axes of the
ellipse per agent, and at runtime the model will attempt to keep this
ratio intact. To achieve this, the semi-minor axis is set to 10% of the
distance between the agent and their current waypoint, up to the
specified maximum. The semi-major axis length is set to 10% of this
distance multiplied by the major-minor axis ratio derived from the
user specified maximums of the ellipsoid axes. We use the 10% value
in our experiments because it corresponds to the average largest
lateral deviation amount reported in the literature [Jeon et al. 2016;
Lamberg and Muratori 2012; Schabrun et al. 2014]. This adaptive
approach also ensures that the generated fuzzy waypoint is never
behind the agent. The ellipse representation is then sampled for
a random point within its bounds, which we refer to as the fuzzy
waypoint, дf . Once a potential fuzzy waypoint is chosen, it is tested
and adapted for reachability against the underlying environment
model (Navigation Mesh, Grid, Obstacles, etc). If an agent refocuses,
i.e. is no longer distracted, their local waypoint returns to their
original waypoint. If an agent reaches a fuzzy waypoint while dis-
tracted, the true waypoint is updated as normal. If the agent is still
distracted, a new fuzzy waypoint is then computed for them, and
so on.

3.3 Visual Attention
We propose a vision model for normative and distracted pedestri-
ans that is designed to interface with both the underlying steering
model and the proposed model for refocusing attention. Visual
attention is a complex process which incorporates intrinsic and
extrinsic factors into visual perception [Tsotsos 2001]. To overcome
this complexity, and for the sake of usability and performance, we
make use of the fact that human visual perception clarity is con-
centrated in the centre of the visual field and becomes less focused
towards the edges of the visual field. Additionally, people tend to
focus more attention on visual cues central to their visual field and
more nearby to themselves [Ikeda and Takeuchi 1975; Leibowitz
and Appelle 1969]. In our model, we collapse the three-dimensional
field of view formed by binocular vision into a flat model and con-
sider horizontal vision, similar to how steering models perceive
environment. The proposed model represents the visual field in
polar coordinates over a 200◦ sweep. Within this visual field we
represent the distribution of attention as two Gaussians, one half
Gaussian in the r dimension and one full Gaussian in the θ dimen-
sion of the polar field. These represent the fall off of attention with
respect to distance and the attenuation of attention with respect
to angle (i.e. peripheral vision) respectively. The attenuation with
respect to distance is defined as N(0,σr ), where r = 0 is the centre
of the head. The attenuation of the attention with respect to angle
is defined as N(0,σθ ), where θ = 0 is aligned with the forward
vector of the agent’s head. In this way, each visual attention model
for each distraction has two parameters (σr ,σθ ). These functions
are convolved together to produce a single distribution of attention
over the polar visual field. The relative values of the resultant field
can then be transformed and stored in a single channel of a texture
for fast lookup. In this paper, we normalize individual values in

the field textures and sample singular points of the field, using the
nearest point on object’s (agent or obstacle) underlying collision
representation. In this way, each sample of each individual pixel in
the texture can be modelled by a Bernoulli distribution conditioned
on its location in the field p(x |r ,θ )). However, this method affords
many approaches, such as integration over a probability density
function (by normalizing pixel values by the sum of pixels in the
field, then summing the pixels within the region of overlap with the
field and the object). As well, a practitioner may choose different
parameters or functions to convolve over (r ,θ ). The construction
of each visual attention model presented in this paper is explained
in the following paragraphs and can be seen in Figure 2.

A pedestrian with normative vision during walking is often mod-
elled with a neighbour distance [Karamouzas et al. 2009], planning
horizon [Singh et al. 2011], or query radius [Helbing and Molnar
1995] between 5 − 15m. This range of choices are backed up by lit-
erature on human-human collision interactions with a bias toward
lower values [Cinelli and Patla 2008; Fajen andWarren 2003]. In this
work, to support arbitrary models, our visual field is constrained
to 10m or the average query value for neighbouring objects used
in steering models. The two parameters for normative vision of
a pedestrian agent are then σr = 5m and σθ = 30◦, to utilize the
entirety of the field where the majority of attention is within 5m
and within a 60◦ sweep, which corresponds to the reported central
visual field horizontal range [Bhise 2011].

We assume that an agent talking on the phone is able to see as
far as an undistracted agent, so σr = 5m. However, studies have
shown that while talking on the phone, visual information is often
missed and peripheral vision shrinks about 7−10% for large or small
targets due to the cognitive load [Maples et al. 2008]. Considering
other agents as large targets, we shrink σθ by about 7% and set
σθ = 28◦. This means that the majority of the visual field is still
used but attention is focused within 5m and a 56◦ sweep.

A reading agent is a more complicated case because the head
is tilted downwards so vision is significantly affected. A study on
peripheral vision showed that when people focus on visual infor-
mation, their ability to notice and process information in their
peripheral vision diminishes [Ikeda and Takeuchi 1975]. Further,
the study shows that the peripheral information loss is correlated
with the foveal load. However, they also found that the effect is
reduced if the subjects have participated in the study before and are
thus trained to notice things in their peripheral vision. Trained sub-
jects had an average periperal information uptake of about 76.5%
for high foveal load when compared to normative participants with
no visual load. For our experiments, we assume that cellphone users
frequently use their cellphones while walking and are therefore
trained to use their peripheral vision while walking, and we also
assume that cellphone use is a high foveal load. Therefore we set σθ
to 76.5% of normative, so σθ = 22.95◦ for reading agents. Another
study [Schabrun et al. 2014] reports that people reading on a cell
phone have an average head pitch angle of 29.22◦ downward. Re-
ported values for the average height for adults age 18 years in 1996
was 1.71m for men and 1.59m for women worldwide so we used
an average of these two values, 1.65m, to calculate a focus distance
of σr = 2.95m on the ground in front of them [Collaboration et al.
2016]. Therefore, attention is focused within 2.95m in front of them
and within a 46◦ sweep.



Watch Out! Modelling Pedestrians with Egocentric Distractions MIG ’20, October 16–18, 2020, Virtual Event, SC, USA

*

*

*

* =

=

=

=

→

→

→

→

R

G

B

A

Alpha channel removed for rendering clarity

N
o
rm

a
ti
v
e

C
a
ll

R
e
a
d

T
e
x
t

σθ σr Visual Attention (u,v)

(u,v)*

Figure 2: The four visual attention models, combined into an RGBA texture.

Similar to a reading agent, a texting agent also has reduced field
of view due to looking down. However, texting also has an addi-
tional motor load and is perhaps more cognitively demanding than
reading. We therefore estimate an additional 10% loss in peripheral
vision information processing and set σθ to 66.5% of normative, so
σθ = 19.95◦ for texting agents. However, [Schabrun et al. 2014]
reports that texting pedestrians pitch their head downwards by a
larger amount than reading pedestrians, about 31.80◦ which we
can again use with an average height of 1.65m to set σr = 2.66m.
Attention is then focused within 2.66m and a 40◦ sweep.

A visual representation of each model and how its respective
texture is created is shown in Figure 2. In the first three columns,
bright yellow areas represent the space where most attention is
paid, while no attention is paid to dark blue areas.

3.4 Refocusing
We propose a refocusing model which produces one of two ac-
tions refocus, continue. For a pedestrian agent which is currently
distracted, a reaction module executes three possible Bernoulli tri-
als at a frequency fr . We use the value fr = 3Hz, an approximation
of the inverse of average human reaction time. However, this may
be set to a lower or higher value per agent, producing less or more
attentive pedestrians respectively.

The first trial represents the intrinsic properties of a pedestrian
and tests whether the agent is going to refocus because of his
or her circumstance and personality. This trial is conducted at
every refocus update. The value of Pr (refocus) = pi may represent
whether a pedestrian agent is a person who takes important calls
(e.g. a business person, on-call worker, etc.), or other elements of
the agent’s personality. This value may be set by the practitioner to
suit scenario needs. As this value remains fixed, at every reaction
update the Bernoulli trial is a part of a Bernoulli process which can
be modelled as a Binomial distribution B(Nr ,pi ) where Nr is the
total number of reaction updates Nr = Td fr and Td is the duration
of the distraction up to the timestep t ∈ T .

The second and third trials represent the extrinsic properties of
local objects (obstacles, agents) relative to the pedestrian agent. Both
of these trials are conditioned on the visual attention model and
each is performed for each object in the FOV at every refocus update.
The first of these is related to the static visual appeal of the object
and tests whether the agent will notice the object and refocus his or
her attention. The value of Pr (refocus) = pe may represent shape,
colour, contrast, importance, and so on of an object. The probability
an agent will see the object because of its properties is conditioned
on the visual attention field such that P(refocus |pe , r ,θ ). The third
trial accounts for an object’s relative speed which is known to have
particular importance for predicting collisions [Karamouzas et al.
2014], and thus we consider it separately in our context. The value

Pr (re f ocus) = pv =
|vr el |

2|vmax |
(1)

represents whether an agent will refocus because of the movement
of an object, where vmax is the maximum velocity of all the objects
in the scene. The probability that an agent will see the object be-
cause of its movement is also conditioned on the visual attention
field such that P(refocus |pv , r ,θ ).

When a distracted activity is chosen, a random task time is
selected. The maximum task time is parameterizable and can be
specified by the practitioner. If an agent is interrupted while dis-
tracted and looks up, after another random wait time the agent will
resume the task, provided that there is at least 1 second of task time
remaining, to avoid oscillations.

When one of the trials succeeds then the associated agent switches
to a normative visual attention model. In the reading and texting
cases the agent also interrupts temporarily the distracting activity
and looks ups and lowers the device, while in the talking case the
agent who is already looking up continues to hold the device to a
talking position.
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Figure 3: The frame time in milliseconds as the number of
agents increases.

3.5 Crowd Authoring
In order to test our method with virtual crowds quickly and easily,
we have implemented a simple and intuitive crowd authoring in-
terface in Unity3D. For every test scene we set one or more goals
around the scene, and crowd spawning areas. Crowd spawning
areas are simple planes placed in the scene that represent the di-
mensions or areas within which agents should be spawned. The
user drags the desired crowd spawning area and goal from the scene
hierarchy into the floor and goal fields of the window respectively.
A variety of options are then available to the user, including how
many agents of each type to generate. Normative agents do not
have cellphones and will not become distracted, while distracted
agents may occasionally become distracted or undistracted accord-
ing to their properties and the corresponding visual attentionmodel.
Opening up the distraction parameters foldout allows the user to
quickly set desired probabilities and other parameters for distracted
agents all in one place. Clicking the Create Agents button will
spawn the desired number of agents with the desired parameters
into the scene view and hierarchy, where their positions and other
attributes can be further tweaked. The user is free to spawnmultiple
groups of agents with different parameters in the same or differ-
ent spaces and with the same or different goals. A similar runtime
tool has also been implemented that determines agent positions
randomly at every runtime.

When agents are generated, a free location is found by sam-
pling the navmesh randomly within the spawn region. When a free
location is found with appropriate distance to other agents, the
agent is spawned. Obstacles can also be spawned with or without
agents, and the navmesh is updated accordingly. An equally simple
interface is used to set the parameters of the objects, such as the
extrinsic probability, pe , that controls an object’s visual appeal.

4 RESULTS
4.1 Computational Performance
In this section we study the computational performance of our
framework using a variant of the statistical approach proposed
in [Kapadia et al. 2011]. At each trial, an environment is populated
with 100 obstacles randomly placed in a grid like fashion, and then
agents and their goals are randomly generated.

0.0 0.2 0.4 0.6 0.8 1.0
Pi

50

60

70

80

90

100

110

120

Lo
ok

up
 E

ve
nt

s

Talking
Reading
Texting

Figure 4: The number of lookups across distraction types
for increasing pi values.

We use this approach with an increasing number of distracted
agents and measure the frame time in milliseconds. The result is
illustrated in Figure 3. The system is capable of handling more
than 200 distracted agents without a significant increase in frame
time. However, the frame time starts to increase as the number of
agents increases towards 500. It is worth noting though that our
implementation has not been optimized yet.

4.2 Refocus Model Parameters
In order to demonstrate the effect of the intrinsic look up probabil-
ity pi , we use the scenario space environment with a fixed number
of 20 agents. The pi value is homogeneous among all agents, but
we slowly increase this value from 0 to 1 and count the number
of refocus events. The result is shown in Figure 4. As expected,
higher values of pi yields a higher number of refocus events. Inter-
estingly, the talking distraction exhibits more look up behaviours
than the other distracted activities. This makes sense, because the
visual field of these agents is much larger so it is more likely that
objects in the environment represented in this process by the ex-
trinsic probabilities pe and pv will be noticed and trigger a look up
behaviour.

The same procedure is used to demonstrate the effect of the
extrinsic look up probabilitype . For a group of homogeneous agents,
we use the same pe factor for all obstacles and slowly increase it
from 0 to 1, and count the number of refocus events. The result is
shown in Figure 5. Higher values of pe correlate to higher numbers
of refocus events, as one would expect.

The impact on look up count plateaus after pi and pe values
have reached certain points. Since the probability checks run very
frequently at three times per second, even small increases for pi
and pe cause a look up behaviour to trigger, up to a point where
further increasing the value has only a small impact.

Finally, we evaluate the effect of the pv by comparing unidirec-
tional and bidirectional flows. In a unidirectional flow scenario,
relative velocity between agents will be small since all agents are
moving in the same direction. In a bidirectional flow, agents ap-
proaching from the opposite direction will have high relative ve-
locities. The number of refocus events is shown in Figure 6.

As expected, talking pedestrians exhibit a higher number of look
up behaviours. Surprisingly, however, texting agents had slightly
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Figure 5: The number of lookups across distraction types
for increasing pe values.

more look up behaviours than reading agents. A possible explana-
tion for this is that texting agents move on average slower than
reading agents (see Section 3.2), so external objects and agents may
be in their field of view for longer, resulting in a higher chance of
catching their attention and triggering a look up behaviour. Also,
because texting agents move slower they remain in the scene longer,
which allows them more opportunity for look up triggers.

4.3 Visual Attention Model Parameters
To illustrate and compare results from the different vision models
for each of the distraction types, we again use 20 agents in the sce-
nario space environment. All parameters are homogeneous across
agents, however in each trial we restrict the attentionmodels so that
only one model can be active, either normative, reading on a device,
talking, or texting. We then record the refocus events, collisions,
and average path length. Collisions are detected through Unity3D’s
built-in collision detection where each agent is represented by a
capsule collider. Thus we can compare how these measurements
differ between the visual attention models for each activity type.
The results are summarized in Figure 7.

As expected, normative and talkingmodalities had similar results
for collisions, while texting and reading distractions resulted in
more collisions. Unexpectedly, reading had the most collisions.
Even though the visual field is slightly more reduced for texters
than readers, this result could be explained by the fact that readers
also move quicker than texters resulting in more collisions. For
look up events, talking had the highest amount while texting and
reading were roughly the same. This is expected, as for talkers
looking up does not interrupt the distraction, so they tend to be
distracted for longer and so would trigger more look up events.
Path length was highest for readers and texters, with readers’ paths
being longer than texters. This may be explained by the increased
collision rate for readers, which causes them to be pushed away
from the optimal path.

4.4 Fuzzy Goal Model Parameters
To evaluate the parameters used in the fuzzy goal model, we use the
scenario space environment with a single agent. For this agent, ran-
dom values for the maximum semi-major and semi-minor lengths
of the fuzzy goal ellipse are generated along with a randomized

goal. Here we randomize the maximum semi-major and semi-minor
axis between [0, 1], but higher values are also possible. Then we
measure lateral deviation and overshoot/undershoot with respect
to the actual waypoint. We also measure the pathlength. The results
are shown in Figure 8.

From this we can see that in general path length is higher when
the maximum semi-minor axis length is high. This is expected, since
semi-minor axis length represents the amount of lateral deviation,
which deviates from optimal paths. Generally higher values of semi-
major axis length also increase path length, but to a lesser extent
and with more noise. Overshooting or undershooting may not
result in significant deviations from the optimal path. In particular,
undershooting is not likely to affect path length as much because
upon the agents reaching their fuzzy goal they will start heading
to the next waypoint which is often in the same direction.

4.5 Qualitative Evaluation
We evaluate qualitatively the proposed framework using the fol-
lowing common and indicative scenarios: (a) two oncoming agents
with obstacles, and (b) two groups of agents crossing a corridor
from opposite sides.

In the oncoming obstacle scenario, two agents start at opposite
sides and move along potentially crossings paths at the presence of
obstacles. Figure 9 shows the resulting trajectories for the three dif-
ferent distractions with both agents performing the same distracted
activity. Normative and talking models exhibit similar trajectories,
while the reading agents show deviations from the optimal path.
The trajectory of the texting agent that started on the left side,
clearly shows that the agent bumped on the first obstacle that the
agent encountered.

In the crossing groups scenario, two groups of a total of 50
agents walk through a narrow corridor from opposite directions.
The results for this scenario are depicted in Figure 10. For the
texting and reading case, distraction tends to occur less in themiddle
where the two groups meet, because the pv factor is triggering look
up behaviours, while the talking on the phone distraction is not
interrupted. Figure 11 shows the traces for the same scenario with
twenty agents distracted in all three different ways.

In Figure 12, we show the visual field of a single distracted agent
from this scenario before and after a look up behaviour triggers
due to the presence of another agent, for reference.

In Figure 13 we show a snapshot from an urban scene where
pedestrians, including distracted ones, cross at an intersection. We
refer the reader to the accompanying video for animated versions
of these experiments which show the resulting behaviours more
clearly.

5 DISCUSSION
The proposed framework for authoring distracted pedestrians and
the associated visual attention model are specifically demonstrated
on egocentric distractions related to the use of mobile devices. A
number of intuitive parameters are available to the user to author
specific situations, personalities, and variations. For example, very
cautious agents may not become distracted as often or may look up
more often. Outgoing or less cautious agents may send and receive
more texts and calls and so on. In particular, the attention model,
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Figure 6: The number of look ups across distraction models in (a) uni-directional and (b) bi-directional flows.
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Figure 7: Quantitative comparison across distractions based for (a) look up events, (b) collisions, and (c) path length.

Figure 8: The average agent path length as a function of the
semi major and semi minor fuzzy goal ellipse parameters.

which is based on egocentric fields and related operations, can be
customized or extended to support agents with different sensory
abilities, such as limited peripheral vision and other vision impair-
ments. Furthermore, it could be combined with more sophisticated
models of agent vision that have been reported in the computer
graphics and computer vision literature.

Our work focuses on individual (egocentric) rather than emerg-
ing group behaviours. Nevertheless, comparing the resulting traces

with real-world crowd data may offer additional insights. We plan
to address this issue in the future with a carefully designed study.

In the future, we aim to address non-egocentric distractions,
and deliberate behaviours that may impede an agent’s navigation
abilities, such as window shopping, reading an advertisement on a
board, looking at an interesting object or an accident, talking to a
friend, et al. It would be interesting to investigate whether project-
ing variants of the proposed attention models along the direction of
gaze would be sufficient to accommodate such behaviours, rather
than resorting to a 3D representation of the field of view.

Exploring the range of the distracted agents’ parameters, as
well as determining and providing default values from real data
are important future tasks. We also plan to investigate how other
individual characteristics of an agent, such as age, gender, mobility
and sensory abilities, may affect the agent’s behaviour towards
egocentric distractions.

6 CONCLUSION
We have presented an approach and a framework for modeling
egocentric distractions related to the use of mobile devices for
crowds in everyday casual navigation tasks. Our approach provides
an intuitive set of parameters that can be used to customize these
behaviors for each agent. The parameters of the model and their
default values are grounded in studies of distracted pedestrians,
and thus reflect ground truth.

The proposed attention model can be easily extended to model
pedestrians with varying sensory and physical abilities. We believe
that the inclusion of a wide variety of non-normative pedestrian
behaviours and attributes will push realism and fidelity in crown an-
imations to a higher level that more accurately reflects the diversity
we see in our daily lives.
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(a) (b) (c) (d)

Figure 9: The paths taken in the oncoming obstacles scenario by (a) two normative agents, (b) two distracted agents talking on
the phone, (c) two distracted agents reading, and (d) two distracted agents texting. Green, blue, and red highlighted trajectories
indicate where along their path an agent was distracted.

(a) (b) (c) (d)

Figure 10: The paths taken in the crossing groups scenario by (a) 50 normative agents, (b) 30 normative and 20 distracted
agents talking on the phone, (c) 30 normative and 20 distracted agents reading, and (d) 30 normative and 20 distracted agents
texting. Green, blue, and red highlighted trajectories indicate where along their path an agent was distracted.

Figure 11: The paths taken in the crossing group scenario
with 30 normative and 20 distracted agents with all three
different types of distraction.
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