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Abstract

Nuclear and plastid (chloroplast) genomes experience different mutation rates, levels of
selection, and transmission modes, yet key cellular functions depend on coordinated interactions
between proteins encoded in both genomes. Functionally related proteins often show correlated
changes in rates of sequence evolution across a phylogeny (evolutionary rate covariation or
ERC), offering a means to detect previously unidentified suites of coevolving and cofunctional
genes. We performed phylogenomic analyses across angiosperm diversity, scanning the nuclear
genome for genes that exhibit ERC with plastid genes. As expected, the strongest hits are highly
enriched for plastid-targeted proteins, providing evidence that cytonuclear interactions affect
rates of molecular evolution at genome-wide scales. Many identified nuclear genes function in
post-transcriptional regulation and the maintenance of protein homeostasis (proteostasis),
including protein translation (in both the plastid and cytosol), import, quality control and
turnover. We also identified nuclear genes that exhibit strong signatures of coevolution with the
plastid genome but lack organellar-targeting annotations, making them candidates for having
previously undescribed roles in plastids. In sum, our genome-wide analyses reveal that plastid-
nuclear coevolution extends beyond the intimate molecular interactions within chloroplast
enzyme complexes and may be driven by frequent rewiring of the machinery responsible for

maintenance of plastid proteostasis in angiosperms.
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Introduction

Only a small fraction of the proteins required for plastid function are encoded by the plastid
genome (plastome) itself (Timmis et al., 2004; van Wijk & Baginsky, 2011). The remaining
plastid-localized proteins are encoded in the nuclear genome, translated in the cytosol, and
imported into plastids (hereafter referred to as nuclear-encoded plastid-targeted [N-pt] proteins),
where they often interact with the plastome and its gene products (Gould et al., 2008). These
plastid-nuclear interactions are critical for overall fitness, as evidenced by the frequent role of
plastid-nuclear incompatibilities in reproductive isolation (Schmitz-Linneweber et al., 2005;

Greiner et al., 2011; Bogdanova et al., 2015; Barnard-Kubow et al., 2016; Zupoka et al., 2020).

One signature of proteins that are functionally related and/or coevolving is that they tend to
exhibit correlated changes in rates of sequence evolution across a phylogeny, which is known as
evolutionary rate covariation (ERC) and can be quantified by comparing genetic distances or
branch lengths of gene trees from two potentially interacting genes (Goh et al., 2000; Ramani &
Marcotte, 2003; Sato et al., 2005; Clark & Aquadro, 2010; Clark et al., 2012; De Juan et al.,
2013). The known physical interactions within “chimeric” plastid-nuclear complexes (i.e., those
containing both plastome-encoded and N-pt proteins) have provided a valuable system to test
and illustrate the principle that coevolution and functional interactions can result in ERC (Sloan
et al., 2014; Zhang et al., 2015, 2016; Rockenbach et al., 2016; Weng et al., 2016; Williams et
al., 2019).

In addition to probing known interactions, ERC has served as a powerful tool to scan entire
genomes/proteomes to detect previously unrecognized functional relationships (Findlay et al.,
2014; Raza et al., 2019), which do not always entail direct physical interactions (Clark et al.,
2012). For example, application of a genome-wide ERC scan in diverse insects with
heterogeneous rates of mitochondrial genome evolution recovered novel mitonuclear interactions
(Yan et al., 2019). However, despite strong evidence of correlated rates among known members
of plastid-nuclear complexes, ERC analysis has not been applied on a genome-wide scale across
diverse plant lineages, meaning we may have only scratched the surface with respect to the full
breadth of plastid-nuclear interactions. A key barrier is that the frequent occurrence of gene and

whole-genome duplication in plants (Panchy et al., 2016; Wendel et al., 2018) makes it
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inherently difficult to perform phylogenomic scans for ERC. Typical implementations of ERC
analysis require one-to-one orthology in gene trees (Clark et al., 2012; Findlay et al., 2014;
Wolfe & Clark, 2015; Yan et al., 2019), but gene duplication yields large gene families
composed of sequences that share both orthology and paralogy (Bansal & Eulenstein, 2008;
Stolzer et al., 2012). Outside of the context of ERC, numerous studies have overcome challenges
associated with phylogenomics in plants by carefully filtering gene families and/or extracting
subtrees that represent mostly orthologs (Sanderson & McMahon, 2007; Duarte et al., 2010; De
Smet et al., 2013; Sangiovanni et al., 2013; Forsythe et al., 2020). Nevertheless, these approaches
cannot completely eliminate the pervasive effects of gene duplication and differential loss, so
performing ERC analyses across diverse plant lineages requires a novel approach that can

accommodate this recurring history.

ERC analyses have the potential to be especially powerful for probing plastid-nuclear
interactions because the rate of plastome evolution can differ greatly across angiosperm species,
with several lineages exhibiting extreme accelerations. Not surprisingly, angiosperms that lose
photosynthetic function and transition to parasitic/heterotrophic lifestyles exhibit massive
plastome decay and rapid protein sequence evolution (Wicke et al., 2016), in extreme cases
resulting in outright loss of the entire plastome (Molina et al., 2014). However, even among
angiosperms that remain fully photosynthetic, there have been repeated accelerations in rates of
plastid gene evolution (Jansen et al., 2007; Guisinger et al., 2008; Knox, 2014; Sloan et al., 2014;
Dugas et al., 2015; Nevill et al., 2019; Shrestha et al., 2019). These accelerations in angiosperms
that retain a photosynthetic lifestyle can be highly gene-specific (Magee et al., 2010) and are
often most pronounced in non-photosynthetic genes, such as those that encode ribosomal
proteins, RNA polymerase subunits, the plastid caseinolytic protease (Clp) subunit ClpP1, the
acetyl-CoA carboxylase (ACCase) subunit AccD, and the essential chloroplast factors Ycfl and
Ycf2 (Guisinger et al., 2008; Sloan et al., 2014; Park et al., 2017; Shrestha et al., 2019).
Accelerated protein sequence evolution has frequently been accompanied by other forms of
plastome instability, including structural rearrangements and gene duplication (Guisinger et al.,
2011; Knox, 2014; Sloan et al., 2014; Shrestha et al., 2019), as well as accelerated mitochondrial
genome evolution in some cases (Cho et al., 2004; Parkinson et al., 2005; Jansen et al., 2007;

Mower et al., 2007; Sloan et al., 2009; Park et al., 2017). Several explanations have been
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proposed for the cause of these cases of rapid plastome evolution, but they largely remain a
mystery (Guisinger et al., 2008; Park et al., 2017; Williams et al., 2019). Discovering the full
suite of nuclear genes that repeatedly co-accelerate with plastid genes may advance our

understanding of this angiosperm evolutionary puzzle.

Here, we develop an approach to apply genome-wide ERC analyses across diverse angiosperms
to identify hundreds of nuclear genes that exhibit signatures of ERC with the plastome. This set
of genes is highly enriched for known N-pt genes with functions in several pathways that appear
to be centered around maintenance of plastid protein homeostasis (proteostasis). We also observe
strong signatures of plastid-nuclear ERC for more than 30 non-plastid-targeted proteins,
representing candidates for novel plastid-nuclear interactions. Together, our findings impact our

understanding of the genome-wide landscape of plastid-nuclear interactions.

Results

Genome-wide ERC analyses detect correlated evolution between the plastome and N-pt genes.

We sampled 20 angiosperm species to perform a genome-wide scan for plastid-nuclear ERC.
Given that the signature of ERC relies on phylogenetic rate heterogeneity, we sampled species
that are known to exhibit differences in evolutionary rate for at least some plastid genes,
including seven representatives of accelerated lineages (Jansen et al., 2007; Guisinger et al.,
2008; Knox, 2014; Sloan et al., 2014; Dugas et al., 2015; Nevill et al., 2019; Shrestha et al.,
2019) and 13 species that exhibit the slow background rate of plastome evolution typical for
most angiosperms (Fig.1; Table S1). We did not include parasitic species with accelerated
plastome evolution, as these represent special cases of plastid evolution associated with loss of
photosynthetic function (Wicke et al., 2016). Because our ERC analysis employs a root-to-tip
strategy for measuring branch lengths (described below), we avoided sampling pairs of species
that are closely related to each other in order to minimize pseudoreplication caused by shared
internal branches (Felsenstein, 1985; Yan et al., 2019). We included Amborella trichopoda and

Liriodendron chinense as outgroups. We chose to include two outgroups so gene families would
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contain an outgroup sequence even if gene loss occurred in one of the two species, allowing us to
analyze a larger proportion of gene families. It should be noted that phylogenetic placement of
magnoliids (including Liriodendron) with regard to the ingroup (eudicots and monocots) has
been a topic of debate (Soltis et al., 1999; Zanis et al., 2002; Hilu et al., 2003; Qiu et al., 2005,
2006). However, large-scale analysis of the plastid genome resolved Liriodendron as an
outgroup to a eudicot/monocot clade (Jansen et al., 2007). We partitioned the plastid-encoded
proteins into seven functional categories: AccD, ClpP1, MatK, photosynthesis, ribosomal

proteins, RNA polymerase, and Ycf1/Ycf2 (Fig. 1; Table S2).

We applied a custom phylogenomic analysis pipeline to nuclear genomes and transcriptomes
(Fig. 2). Our pipeline included steps designed to extract gene families sharing orthology in the
presence of gene duplication and loss. It yielded a filtered set of 7929 gene trees with an average
of 25.1 sequences per tree and 16.4 species per tree (Fig. S1). Our genome-wide scan for plastid-
nuclear ERC was executed by testing all possible 55,503 pairwise correlations between trees (7
plastome trees x 7929 nuclear trees) based on normalized branch lengths to account for lineage-
specific features that may affect rates across entire genomes (e.g., generation time) (Clark &
Aquadro, 2010). To directly compare trees that can differ in topology, gene duplication, and
species representation, we measured branch lengths for each species on each tree using a ‘root-
to-tip” approach (Yan et al., 2019), in which we averaged the cumulative branch length of the
path leading from the common ancestor of all monocots and eudicots to each tip (gene copy) for

each species (see Methods).

To illustrate the ERC principle, we highlight a case study from the plastid Clp complex, which is
composed of the plastid-encoded ClpP1 subunit and multiple N-pt subunits (Nishimura & van
Wijk, 2015). This complex represents an effective positive control in the context of a genome-
wide scan because it was previously shown to exhibit strong ERC signals among subunits
(Rockenbach et al., 2016; Williams et al., 2019). The Clp complex core is composed of two
heptameric rings, the ‘R-ring’ and ‘P-ring’. ClpP1 is part of the R-ring and interacts more closely
with the other subunits in this ring (ClpR subunits) than with the subunits of the P-ring (ClpP
subunits) (Nishimura & van Wijk, 2015). These core rings are also accompanied by a variety of

accessory proteins (ClpC, ClpD, ClpF, ClpS, and ClpT subunits), allowing us to compare ERC
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results for N-pt genes with varying degrees of physical interaction. A mirrored tree diagram of
ClpP1 and ClpR1 illustrates that branch lengths from corresponding species on the two trees
exhibit strong ERC (R?= 0.94; Fig. 3A-B). Extending this analysis to all nuclear genes, a
genome-wide distribution of ERC results for ClpP1 reveals that 11 of the 13 known Clp proteins
(85%) exhibit an uncorrected p-value of < 0.05. Further, all ClpR and CIpP subunits are present
among the strongest ERC hits (top 2% of all genes analyzed), and all but one maintain genome-
wide significance after correcting for multiple tests (Fig. 3C). We also find a general pattern of
clustering of ERC values between ClpP1 and other Clp subunits that corresponds to the intimacy
of their known interactions; ClpR subunits display the strongest ERC, followed by ClpP

subunits, with the accessory Clp subunits showing the weakest signal.

ClpP1 exhibits some of the most dramatic rate accelerations among plastome partitions (Fig. 1).
Therefore, to assess how the magnitude of rate variation affected the statistical power of ERC,
we also performed case studies (Fig. S2) for the plastid ribosome, which exhibits intermediate
levels of acceleration (Fig. 1F), and the photosynthesis partition, which exhibits less dramatic
accelerations (Fig. 1E). As observed in the Clp case study, these analyses detected significant
ERC for much larger proportions of known interacting genes than would be expected by chance,
but the degree of this enrichment for ERC signals was weaker and appeared to reflect the
magnitude of rate variation in the corresponding plastome partition. For the plastid ribosome, 21
of the 34 nuclear genes (62%) had an uncorrected p-value < 0.05 for ERC with the plastome
ribosome partition, while 15 of 45 nuclear photosynthesis genes (33%) met this threshold for
ERC with the plastome photosynthesis partition (Fig. S2). Overall, ERC appears to be
sufficiently sensitive to detect functional plastid-nuclear interactions even with the background

of a genome-wide scan.

We performed ERC analyses in parallel for each of the seven plastome partition trees against
normalized branch lengths from the nuclear trees (Table S3). We found that N-pt genes are
highly significantly overrepresented in ERC hits for all plastome partitions, displaying roughly
two-fold enrichment (Fig. 4). We identified the subset of these genes that are known to directly
physically interact with plastid-encoded proteins based on the CyMIRA classification (Forsythe
et al., 2019) and observed an even higher degree of enrichment (approximately 4-fold to 8-fold
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depending on the plastome partition). We also found correlations between plastome partitions
and nuclear genes with mitochondrial function. Overall, mitochondrial-targeted (N-mt) proteins
are significantly enriched among ERC hits for all plastome partitions except for RNA
polymerase and photosynthesis, although the effect size (approximately 1.5-fold) was smaller
than for N-pt genes. N-mt proteins involved in direct physical interactions with mitochondrial-
encoded proteins showed an increased degree of enrichment compared to all N-mt proteins
(approximately two-fold), which was significant for all partitions. Proteins with dual localization
to both plastids and mitochondria displayed wider variance of enrichment with inconsistent
significance, both of which may be related to the small sample size of this gene category.
Finally, we found that genes annotated as localized to any parts of the cell other than the plastids
or mitochondria are significantly depleted among ERC hits for all partitions (Fig. 4). These
results indicate that correlated plastid-nuclear evolution is pervasive across the nuclear genomes

and this signature is detectable by ERC.

Functions associated with plastid proteostasis are highly enriched in ERC hits

Gene Ontology (GO) analyses of the ERC hits showed that several categories associated with
plastid and mitochondrial function were significantly enriched, while GO terms associated with
other cellular compartments (e.g., ‘Nuclear’ and ‘Endomembrane’) were significantly depleted
(Fig. 5). Combined with the targeting data presented above (Fig. 4), these results reinforce the
power of ERC in detecting cytonuclear interactions. Further, many of the enriched GO terms are
more specifically connected to regulation of plastid proteostasis (Fig. 5). For example, terms
related to proteolytic activity (e.g. ‘protein quality control’, ‘chloroplastic Clp complex’, and
‘peptidase activity’) display some of the highest degree of enrichment (more than 8-fold in some
cases). This signature is further supported by detection of multiple subunits related to FtsH
metalloproteases (Table 1). Translational machinery is also prominent; we found enrichment for
several related GO categories (e.g. ‘translation’, ‘ribosome biogenesis’, ‘chloroplast rRNA
processing’), and many individual genes that encode plastid ribosomal proteins or are involved in
translation initiation/elongation (Table 1). The GO terms ‘protein transmembrane transport’ and
‘protein localization to chloroplast’ are also enriched, indicating genes involved in chloroplast

protein import (Table 1). The above functions constitute key regulators of plastid proteostasis
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(Kim et al., 2013; Dogra et al., 2019), pointing to a possible driver of plastid-nuclear

coevolution.

Interestingly, the only significantly enriched GO category that is not directly related to plastid or
mitochondrial-localized function was ‘cytosolic ribosome’, which also has a clear role in
translation. We found that each of the identified cytosolic ribosome gene families contained
multiple Arabidopsis paralogs, and we confirmed that these were bona fide cytosolic ribosomal
subunits rather than misannotations of plastid ribosomal subunits in the GO classification scheme
(Fig. S4). This result suggests that factors that impact the rate of evolution of plastid genes (and
N-pt interaction partners) may also impact cytosolic ribosomes, pointing to potential regulation

of plastid proteostasis via maintenance of cytonuclear stoichiometry (see Discussion).

ERC analyses identify candidates for novel plastid functions

As previously mentioned, the individual hits with the strongest signatures of ERC are dominated
by known N-pt or N-mt genes (76%; Table 1). These hits include eleven genes that have been
annotated as organelle-localized but designated as ‘proteins of unknown function’. ERC for these
genes provides evidence that could help resolve their roles in plastids. In addition, we observed
31 genes (24%) that are not annotated as plastid or mitochondrial-localized by CyMIRA
(Forsythe et al., 2019) (Table 2). These are candidates for novel N-pt genes and may contribute
to some of the functions described in the previous section. We discuss some of the most
intriguing examples below, including potential novel plastid proteostasis regulators. In sum, our
results indicate the specific pathways that exhibit plastid-nuclear ERC and reveal novel N-pt
candidates, leading to new hypotheses to advance our understanding of the full scope of plastid-

nuclear interactions and their impact on plant evolution.

Discussion

Genomic signatures of plastid-nuclear interactions can be detected with ERC in plants
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ERC has revealed novel interactions in animals and fungi but, until now, has not been applied at
broad phylogenetic scales in plants due to the prevalence of gene/genome duplication. We
adapted existing techniques, initially developed with the stringent requirement of one-to-one
orthology, to make them more tolerant of duplications, thus allowing us to analyze a substantial
portion of plant nuclear genomes. Our pipeline (Fig. 2) included several features tailored to
analyze plant genomes. For example, our orthologous subtree extraction procedure identified
subtrees with reduced paralogy compared to input trees, shifting the distribution of trees closer to
one-to-one orthologous relationships without substantial loss of data (Fig. S1). In addition, our
iterative gene tree/species tree (GT/ST) reconciliation approach resolved topological
disagreements when they lacked phylogenetic support, allowing us to minimize phylogenetic
noise while retaining well-supported phylogenetic signature. The typical implementations of
ERC assume every gene tree has the exact same sampling and topology (Clark & Aquadro, 2010;
Clark et al., 2012; Findlay et al., 2014; Wolfe & Clark, 2015). However, this is rarely the case in
plant datasets, which are prone to topological variation introduced by internal duplications,
incomplete lineage sorting, and differential gene loss (Degnan & Rosenberg 2009; Leebens-
Mack, Barker, Carpenter et al., 2019), making it infeasible to compare individual branches in a
one-to-one fashion between gene trees and to apply model-based evaluation of correlation from
joint likelihoods (Clark & Aquadro, 2010). This challenge prompted us to apply a root-to-tip
approach to calculating branch lengths. A drawback of this approach is that it introduces
pseudoreplication via sampling shared internal branches multiple times (Felsenstein, 1985; Yan
et al., 2019). We minimized this effect with our taxon-sampling by avoiding closely related
species and, thus, approximating a ‘star-phylogeny’ as closely as possible. Finally, when
multiple paralogs were present in a gene tree, we averaged the branch lengths between all
paralogs for a given species. This approach allowed us to accommodate localized duplication
events within trees. Our results offer proof-of-principle that ERC can be successfully extended to
plant genomes at phylogenetic scales spanning angiosperm diversity and likely further. While we
focused on plastid-nuclear interactions, our results open the door to applying this method broadly

to probe the entire plant interactome.

We used the plastid Clp, plastid ribosome, and photosynthetic enzyme complexes as case studies

to assess the performance of ERC (Fig. 3 and Fig. S2). In all three cases, known interactors are
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enriched among the ERC hits, demonstrating the power of ERC to detect functional interactions.
Each plastome partition also returned a number of ERC hits for genes that are not known
interactors. Given that ERC has been demonstrated between non-physically interacting but
cofunctional genes (Clark et al., 2012), these genes may represent putative novel interactors.
Indeed, the predominance of known N-pt proteins among these ERC hits indicates that ERC
selectively returns genes with plastid functions (Fig. 4 and Fig. 5), pointing to cofunctionality as
a driver of ERC. However, it is also possible that a subset of the putative novel interactors are the
result of noise rather than functional interaction. As such, there will be an obvious need for

experimental validation of any newly identified interactions of interest.

Despite some uncertainty regarding interpretation of false positives, known interactions in our
case studies do allow at least a rough assessment of the features that impact the power of ERC.
The plastome partition trees used for each of these case studies exhibit a range of rate
acceleration (Fig. 1), and this appears to roughly correlate with the predictive power of ERC, as
ClpP1, ribosomes, and photosynthesis returned significant ERC hits for 85%, 61%, and 33% of
known interactors, respectively. Further, unlike the Clp analysis, the strongest ERC hits for the
plastid ribosome and photosynthetic enzymes were not known interactors. Therefore, the
strength of signal may decline for plastome partitions that are more conserved in sequence and

exhibit less rate variation across taxa.

Another factor that may limit the power of ERC is the extent to which functional rate covariation
is concentrated on individual residues or individual proteins. This factor comes in to play at two
levels in our analysis. Our nuclear gene trees are inferred from alignments of full protein
sequences (trimmed to remove poorly aligned regions), meaning that branch length estimates are
averaged across the full length of proteins. If rate covariation in concentrated on a small number
of residues (Madaoui & Guerois, 2008; Ovchinnikov et al., 2014), this averaging process could
result in dilution of the true signal. Further, our strategy of concatenating multiple plastid genes
for some plastome partitions (Table S2), holds similar risks of diluting or mixing signals. On the
other hand, an advantage of averaging across full-protein and concatenated alignments is that
including more sequence data in an alignment could amplify signatures of functional covariation

that are widespread but subtle. Further, combining individual sites into full-protein alignments
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and groups of known cofunctional plastid proteins into a concatenated alignment dramatically
reduces the dimensionality of our pair-wise ERC comparisons, which is critical to scaling
analyses to the whole genome. We reasoned that the advantages of using full-protein alignments
and concatenating genes together outweigh the risks of signal dilution, especially given that there
is evidence that ERC signature is often distributed along primary protein sequence, rather than
being concentrated on individual residues (Clark et al., 2012). However, future analyses aimed at
pinpointing the specific genes and residues that drive the broad signatures of ERC that we detect

could provide further insight into the mechanisms of plastid-nuclear coevolution.

Taken together, our results illustrate the impacts of plastid-nuclear interactions on evolutionary
rates at a genome-wide scale. However, it is important to consider the correlative nature of ERC
and the fact that detected effects do not always imply direct functional interactions. For example,
we observe significant enrichment of N-mt proteins among our ERC hits (albeit a much weaker
signal than for N-pt genes; Fig. 4 and Table 1). Given that our ERC searches were seeded with
plastome partitions, it is tempting to interpret these signals as evidence for cofunctionality or
crosstalk between mitochondria and plastids. Although such factors may contribute to the
observed N-mt signal, the rates of evolution of the plastome and mitochondrial genome are
known to be partially correlated with each other. Lineages such as Plantago, Silene, and
Geraniaceae that exhibit rapid rates of plastome evolution in our sample (Fig. 1) also have
unusually rapidly evolving mitochondrial genomes (Cho et al., 2004; Parkinson et al., 2005;
Jansen et al., 2007; Mower et al., 2007; Sloan et al., 2009; Seongjun Park et al., 2017). As such,
we would expect overlap between ERC hits from the two genomes even in the absence of co-
functionality between the mitochondria and plastids. Similarly, our plastome partitions do not
evolve entirely independently of each other. Although the magnitudes of rate acceleration can
vary greatly among genes (Fig. 1; (Guisinger et al., 2008; Sloan et al., 2014; Seongjun Park et
al., 2017; Shrestha et al., 2019)), we observe significant ERC between all pairs of our plastome
partition trees (Table S4), limiting our ability to distinguish specific signatures of ERC for
individual partitions. Consistent with this, we found overlap between the hits identified for each
partition (Fig. S3A-B). Multiple regression analyses provided some assistance in identifying the
partitions making the strongest contributions to plastid-nuclear ERC (Fig. S3C-D, Tables 1 and

2), but further investigation will be needed to tease apart the effects of correlated rates of
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evolution within and between cytoplasmic genomes in order to pinpoint the loci responsible for

ERC with nuclear genes.

Networks of cofunctional proteins are connected via their involvement in plastid proteostasis

ERC analyses point to plastid proteases, ribosomal proteins (subunits and binding/maturation
factors), translation initiation/elongation factors, and proteins involved in protein import into the
plastids (Fig. 4, Table 1), all of which contribute to maintenance of protein quality control,
proteostasis, and the unfolded protein response (Kim et al., 2013; Dogra et al., 2019; Heinemann
et al., 2020) (Fig. S5). Proteases exhibit some of the most striking signatures of ERC. In addition
to Clp subunits, we observed strong ERC for FtsH7, FtsH9 and FtsH11. These proteins are
thought to form two separate protease complexes, both of which localize to the plastid envelope
(Ferro et al., 2003, 2010; Wagner et al., 2012). Interaction partners and substrates have been
identified for FtsH11 (Adam et al., 2019), but very little is known about the function of the
FtsH7/9 complex. These FtsH protease subunits do not appear to form a complex with any
plastid-encoded protein, making them an example of correlated plastid-nuclear evolution in the
absence of direct physical interaction. It is somewhat surprising that we did not observe
significant ERC for other members of the gene family that comprise the thylakoid FtsH protease
(FtsH1/2/5/8) considering that Clp mutants are suppressors of variegation phenotypes in
thylakoid FtsH mutants (Park & Rodermel, 2004; Yu et al., 2008). However, our results may be
consistent with the prior observation that expression of thylakoid FtsH subunits are unaffected by
Clp mutants, suggesting a lack of reciprocity in the interactions between Clp and the thylakoid
FtsH protease (Kim et al., 2013). On the other hand, we do observe strong ERC for additional
members of the FtsH family, FtsH12 and FtsHi5, which form part of a complex that facilitates
protein import across the inner membrane of the plastid, acting as an ATPase motor rather than a
protease (Kikuchi et al., 2018). Plastid-nuclear ERC for this complex may result from the fact
that it also contains plastid-encoded Ycf2 (another FtsH paralog) (Kikuchi et al., 2018). These
and other genes involved in protein import (most notably, TIC110) (Table 1) point to the strong
signature of plastid-nuclear evolution exhibited by import machinery, again highlighting the

prominence of proteostasis pathways in our ERC hits.
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We observed ERC for several plastid ribosomal subunits and other genes involved in plastid
translation (Table 1). For example, SVR7 is a pentatricopeptide repeat (PPR) protein that is
involved in plastid rRNA processing, which (like Clp subunits) can act as a suppressor of
thylakoid FtsH mutant variegation (Liu et al., 2010), again pointing to functional connections
between plastid translation and other proteostasis pathways. However, perhaps our most
surprising piece of evidence for the role of translation in plastid-nuclear ERC is the association
between ClpP1 and protein subunits of the cytosolic ribosome (Fig. 4 and Fig. S4). While ERC
has been previously detected among cytonuclear subunits in plastid and mitochondrial ribosomes
(Sloan et al., 2014; Weng et al., 2016), the cytosolic ribosomes themselves have never been
demonstrated to exhibit ERC with the mitogenome or plastome. Most of the plastid proteome is
synthesized in the cytosol, meaning the levels of N-pt and plastid-encoded proteins must be
regulated to achieve stoichiometric balance for cytonuclear complexes (Colombo et al., 2016). In
mitochondria, this balance is achieved through coordination of cytosolic and mitochondrial
translation (Houtkooper et al., 2013; Couvillion et al., 2016). Recent evidence suggests that
changes in cytosolic translation may have strong genetic interactions with plastid proteostasis
machinery. Specifically, mutation of a cytosolic ribosome subunit was shown to enhance
variegation phenotypes in thylakoid FtsH mutants (Wang et al., 2018). Given that disruption of
plastid translation can suppress these same phenotypes (Yu et al., 2008; Liu et al., 2010; Zheng
et al., 2016), it appears that ribosomes in both compartments play a key role in maintenance of
plastid-nuclear stoichiometric balance. Additionally, we observe strong ERC for a putative
tRNA pseudouridine synthase (AT1G09800) that shows no evidence of plastid or mitochondrial
targeting (Table 2), meaning it likely modifies cytosolic tRNAs, again consistent with cytosolic
translation being subject to plastid-nuclear selection. These results suggest that the effects of
perturbation in plastid proteostasis may extend to cytosolic ribosomes, supporting a level of

cofunction-mediated ERC that spans cellular compartments.

Genes involved in various aspects of proteostasis appear to have been subject to accelerated
protein evolution in independent angiosperm lineages. We propose that proteostasis systems
have been perturbed in these lineages, causing shifts in selection that simultaneously affected
numerous functionally related genes. Although the evolutionary events that may have led to

these changes are unclear, one possible explanation could be related to the constant
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stoichiometric pressure plants experience in the face of nuclear gene/genome duplication
(Birchler & Veitia, 2012; Sharbrough et al., 2017). Similarly, the susceptibility of plastomes to
instability and rearrangements in certain angiosperm lineages (Jansen et al., 2007) could provide
an initial trigger that elicits a series of coevolutionary responses. It has also been hypothesized
that antagonistic interactions between the nucleus and selfish genetic elements in the plastids
could drive accelerated rates of evolution (Rockenbach et al., 2016; Sobanski et al., 2019).
Finally, perturbations could be prompted by changes in abiotic or biotic stress, as many of the
pathways that contribute to proteostasis are stress-responsive (e.g., the unfolded protein response
to photooxidative stress) (Dogra et al., 2019; Heinemann et al., 2020). The cause of these
perturbations may differ by lineage and disentangling them could reveal a critical driver of plant
genome evolution. Regardless of the mechanisms, it is striking that the ripple effects are apparent
across disparate pathways and cellular compartments and can be detected against the background

of the entire genome in a large swath of plant diversity.

ERC points to novel plastid-nuclear interactions

Decades of proteomics research have led to the identification of more than 2,400 plastid-

localized proteins in Arabidopsis (http://ppdb.tc.cornell.edu; http://cymira.colostate.edu/). Yet,

these proteins may only represent about 70% of the plastid proteome (Millar et al., 2006; van
Wijk & Baginsky, 2011; Christian et al., 2020). Large-scale plastid proteomic surveys are
limited by ascertainment bias associated with protein expression level, tissue- and condition-
specificity of expression/plastid-localization, and biochemical properties that impact mass
spectrometry (van Wijk & Baginsky, 2011). ERC offers an alternative line of evidence for
plastid function/localization that is complementary to biochemical approaches and may not share
the same biases. Our analyses returned several proteins that lack plastid-targeting annotations
(Table 2) and represent candidates for novel N-pt proteins. For example, two of our strongest
non-plastid-localized hits are annotated as RNA-binding (AT5G59860) and GPI-anchored
adhesin-like (AT1G16750) proteins based on in silico predicted domains but are, otherwise,
lacking in functional information. The signature of plastid-nuclear ERC that we observe for the
genes in Table 2 suggests they have experienced correlated changes selection associated with

accelerated plastome evolution. A natural hypothesis is that these are cryptic N-pt proteins that
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have evaded biochemical identification and curation in CyMIRA and its underlying databases
(Forsythe et al., 2019). However, an alternative explanation is that they contribute to plastid
function without localizing to plastids, similar to our hypothesis for cytosolic ribosomes and the
pseudouridine synthase described above. A third possibility is that the proteins are plastid-
localized in many plants but not in Arabidopsis, which is possible given the apparent lability of
plastid-targeting across plants (Christian et al., 2020; Costello et al., 2020). While each of these
explanations come with their own functional and evolutionary implications, future work to
disentangle these alternative hypotheses will undoubtably advance our understanding of the full

repertoire of plastid-nuclear interactions.

Methods

Obtaining and processing sequence data

Our analysis was conducted on publicly available genomes and transcriptomes. We obtained the
full set of 20 proteomes from several sources (Table S1) and processed fasta files to add
standardized sequence identifiers. For genome-based datasets that contained multiple splice
variants per gene, we used only the first gene model (i.e. gene model ending in .1) and removed

the rest to avoid falsely defining splice variants as paralogs in gene family clustering.

Plastome gene datasets were extracted from GenBank files (see Table S1) using a custom
BioPerl script and manually curated to deal with missing annotations and inconsistent naming
conventions. The corresponding protein sequences were either analyzed individually (ClpP1,
AccD, and MatK) or concatenated from multiple plastid genes that are part of a common plastid
complex and/or pathway (photosynthesis, ribosomes, RNA polymerase, and Ycf1/Ycf2) (Table
S2). The plastome sampling matched the nuclear proteome samples described above except that
no plastome sequence was available for Acacia aulacocarpa, so we used the Acacia ligulata
plastome in its place. The accD gene is missing from the plastome of Oryza sativa and Lobelia
siphilitica, and ycfI and ycf2 are missing from Oryza sativa and Geranium maderense. These
species were omitted from the alignments and trees for AccD and Ycfl/Ycf2. Amino acid

alignments based on plastome partitions were used to estimate branch lengths on a constraint tree
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with a topology based on Angiosperm Phylogeny Website
(http://www.mobot.org/MOBOT/research/APweb) (Fig. 1).

Gene family clustering, sequence alignment, and phylogenetic inference

We clustered homologous gene families using Orthofinder (v2.2.6) (Emms & Kelly, 2015) and
performed multiple sequence alignment using the L-INS-1 algorithm in MAFFT (v7.407) (Katoh
& Standley, 2013). We used RAXML (v8.2.12) (Stamatakis, 2014) to infer maximum likelihood
trees with 100 bootstrap replicates. Tree inference was performed using the command below for
each gene. The -m argument indicates the model used (gamma distributed rate heterogeneity,
empirical amino-acid frequencies, and the LG substitution model). The -p argument provides a
seed for parsimony search. The -x argument provides a seed for rapid bootstrapping. The -#
argument indicates the number of bootstrap replicates. The -f a argument implements rapid
bootstrap analyses and best scoring tree search. The -T argument indicates the number of threads

used for parallel computing.

raxmI/HPC-PTHREADS-SSE3 -s <input file name> -n <output file name> -m
PROTGAMMALGEF -p 12345 -x 12345 -# 100 -fa -T 24

For the step in which we optimized branch lengths on a constraint tree (see below), we used the

following command, with -f e indicating parameter and branch-length optimization.

raxmI/HPC-PTHREADS-SSE3 -s <input file name> -n <output file name> -t <name of constraint

tree file> -m PROTGAMMALGEF -p 12345 -T 24 -fe

Subtree extraction and quality control pipeline

ERC analyses are sensitive to false inferences of orthology. Particularly, treating cryptic out-
paralogs as orthologs can alter branch length estimates (Smith & Hahn, 2020). While
Orthofinder clusters sequences that share homology, these clusters do not always represent

groups that share strict orthology. ERC analyses are also sensitive in poorly aligned sequences,
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which can result in long outlier branches on trees. To address these inherent challenges to
genome-scale phylogenetic analyses, we built a pipeline to process nuclear gene trees and retain
the portions of alignments and trees least likely to be affected by biasing factors. Our pipeline
enlists several existing programs. In this section we provide a summary of the steps in the
pipeline and point the reader to subsequent sections for details on our application of individual

components of the pipeline.

(Step 1) Starting with the full gene trees we performed GT/ST reconciliation in order to root the
tree, rearrange poorly supported portions of the tree to conform with the species tree, and infer
nodes in the tree that represent gene duplication rather than speciation. (Step 2) We used
duplication information from step 1 to extract subtrees representing orthology groups. (Step 3)
We performed a second round of sequence alignment (using MAFTT as above) to generate
alignments that contain only the sequences in subtrees. (Step 4) We trimmed these alignments to
remove poorly aligned regions using GBLOCKS. We filtered out any alignments with a length
of less that 50 amino acids as well any alignments for which GBLOCKS trimming resulted in the
removal of an entire sequence from the alignment. (Step 5) We inferred a new phylogeny for
each subtree from the trimmed alignment using RAXML as above and again applied GT/ST
reconciliation to the subtree trees to rearrange poorly supported nodes and root the tree. (Step 6)
We used the reconciled versions of the gene trees (as constraint trees) and the trimmed version of
the alignments to optimize final branch lengths for use in downstream ERC analyses. (Step 7) As
a final means of quality control before performing ERC analyses, we assessed each tree to ask
whether the ingroup forms a monophyletic clade in the branch-length-optimized tree. Those that
were not monophyletic were pruned and rerooted in order to retain ingroup monophyly. We also
filtered out trees with one very long outlier branch by removing any trees in which the longest

branch is more than ten times the length of the second longest branch.

GT/ST reconciliation

We used GT/ST reconciliation to reconstruct the history of gene duplication for each gene tree

using Notung (v2.9) (Vernot et al., 2008; Stolzer et al., 2012). Briefly, Notung compares the

topology of a gene tree inferred from an individual gene to the topology of a user-input species
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tree. We used the topology of the plastome trees described above as our species tree.
Incongruencies between the gene tree and species tree are taken to be the result of historical gene
duplication occurring at specific nodes of the tree. Notung uses a parsimony framework to
reconcile these incongruences by inferring duplication and loss events along the gene tree to
yield the most parsimonious series of duplication and loss events for each gene tree. Notung can
also apply this logic to root unrooted gene trees by the most parsimonious root. Since topological
incongruence is the signature by which Notung infers duplication events, inferences are sensitive
to phylogenetic error, evidenced by branches with low bootstrap support. To avoid false
inference of duplication from weakly supported branches, we made use of Notung’s option to

only infer duplication that is supported by branches with bootstrap support of at least 80 percent.

We performed the rearranging step for each gene tree on the command line with the following

command:

java -jar Notung-2.9.jar <path to gene tree file> -s <path to species tree file> --rearrange --
threshold 80 --treeoutput nhx --nolosses --speciestag prefix --edgeweights name --outputdir

<output directory>

We performed the rooting step for each gene tree with the following command:

java -jar Notung-2.9.jar <path to rearranged gene tree file> -s <path to species tree file> --root --

treeoutput nhx --nolosses --speciestag prefix --edgeweights name --outputdir <output directory>

In both of the above commands, --treeoutput nhx indicates trees to be output in the newick
extended format, which allows for the retention of duplication information. --nolosses indicates
that loss information is omitted from the output file (but still included in the reconciliation
process). --speciestag and --edgeweights instructs Notung where to find relevant information in

the input file.

Orthologous subtree extraction
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We used duplication information from Notung to extract portions of gene trees (i.e. subtrees) in
which the taxa share orthology relationships to each other (as opposed to paralogy). We required
that these subtrees contain at least one eudicot, one monocot, and one outgroup sequence
(Amborella trichopoda or Liriodendron chinense). We required that at least ten species be
represented in each subtree and the eudicot and monocot taxa in the subtree (i.e. the ingroup)
form a monophyletic clade. To extract subtrees that fulfill these criteria, for each gene tree we
started by iteratively splitting the tree at each node indicated as a duplication node by Notung
and retaining the two daughter trees from the splits. Daughter trees were assessed independently
and those that fulfilled the above criteria were retained, meaning that multiple subtrees were
retained from an initial gene tree in some cases. The final subtrees retained after this process
were non-overlapping subtrees containing at least ten taxa representing eudicots, monocots, and

at least one outgroup with eudicots and monocots forming a monophyletic clade.

Multiple sequence alignment trimming with GBLOCKS

We used GBLOCKS (v0.91b) (Castresana, 2000) to trim poorly aligned regions of our
alignments using the below command, with -b4 indicating the minimum length of the retained
block, -b5=h indicating that gaps are allowed in up to half of the total species, and -b2 indicating

the minimum number of sequences for a flank position.

Gblocks <aln directory> <aln file name> -b5=h -b4=5 -b2=<half the total number of sequences>

Rerooting to retain ingroup monophyly following subtree phylogenetic inference

We realigned and inferred a new phylogeny for subtrees using the same methodology described
above. In some cases, these new trees no longer placed eudicots and monocots (i.e. the ingroup)
as a monophyletic group, which is a requirement of our downstream ERC analyses. This problem
arose in trees in which there were multiple sequences from outgroup species and one or more of
these taxa was nested within the ingroup causing the ingroup to be polyphyletic. For these trees,
we identified the offending outgroup branches and pruned them from the tree. If Amborella

trichopoda remained following pruning, we rooted on a branch leading to that species, choosing
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one at random if there were multiple Amborella trichopoda sequences. If no Amborella

trichopoda branches remained, we rooted on Liriodendron chinense in a similar fashion.

ERC analysis

Branch lengths for ERC analyses were obtained from rooted branch-length-optimized gene trees.
The branch lengths for these trees were calculated with an LG substitution model, empirical
amino-acid frequencies, and gamma-distributed rate heterogeneity across sites (see RAXML
command above). We used a root-to-tip method that measures the collective lengths of the path
of branches from each ingroup tip to the node representing the most recent common ancestor of
all ingroup tips, allowing for phylogeny-aware measurement of the amino acid substitutions in
each lineage. We obtained these root-to-tip branch length measurements for all ingroup species
for each gene tree using dist.nodes() command from the Ape package (Paradis et al., 2004) in R.
When multiple paralogs from a given species were present, the mean root-to-tip distance from all
paralogs was used. When species were absent from trees, branch lengths were indicated as
missing values for those species and excluded from ERC analysis for those genes. To account for
lineage-specific differences in whole genome rate of evolution, we normalized the branch length
for each species be dividing the value for each tree by the average branch length for that species
across all genes in our analysis. These normalized branch length values were used for pairwise

ERC comparisons.

We compared each of the seven plastome partition trees against all nuclear trees. Each pairwise
comparison comprised a correlation analysis of the branch lengths for each species in the plastid
tree versus the branch lengths for the same species in the nuclear gene tree (see Fig. 3 for visual
depiction). For each pairwise comparison we calculated Pearson and Spearman correlation
coefficients. Because there is no clear biological expectation for significant inverse relationships
in ERC, we only considered genes with positive correlations (slope > 0) in downstream analyses.
We adjusted p-values for multiple comparisons using the false discovery rate (FDR) method

implemented with the p.adjust() function in R.

CyMIRA and Gene Ontology functional enrichment analyses
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In order to perform functional enrichment analyses, we needed a threshold to separate our ‘hits’
from our background genes. We chose to make use of p-values from both Pearson correlation
and Spearman correlation as metrics because Pearson gains power from large branch lengths,
potentially expected under true evolutionary co-acceleration, and Spearman is less sensitive to
outlier branches. Any gene with a Pearson p-value < 0.05 and a Spearman p-value < 0.1 was
designated as a ‘hit’. Our goal here was to identify the tail of the distribution for the sake of
functional enrichment analysis. A more stringent threshold was applied when assessing the

significance of individual hits (Table 1 and 2).

We used the Arabidopsis sequence identifiers present within gene families to probe functional
enrichment of significant hits based on localization/interaction annotations from CyMIRA and
functional annotations from Gene Ontology. We used the 7929 genes in our filtered dataset as
the background (rather than using the full Arabidopsis genome). For gene families that contained
multiple Arabidopsis paralogs, we selected a single Arabidopsis paralog at random to represent
the family. Families that did not contain any Arabidopsis sequences were omitted from this
portion of the analysis. Fold enrichment was calculated as number of observed hits in a category
divided by the number of expected hits in a category, where the expected is the proportion of the
background in a category multiplied by the number of hits. The localization/interaction

enrichment analyses were performed in R. Gene Ontology enrichment analyses was performed

using the PANTHER web-based tool (http://geneontology.org/) (database release from 10-08-
2019). Significance of enrichment was assessed with Fisher’s Exact Test with an FDR correction

for multiple comparisons.

Identification of genes displaying strong signatures of ERC.

To identify individual genes displaying the strongest signatures of plastid-nuclear ERC, we
applied more stringent criteria that considered Pearson and Spearman correlation p-values in
their raw and FDR-corrected forms. Our criteria for labeling a gene as a strong hit is that either
the adjusted Pearson p-value or the adjusted Spearman p-value (or both) must be <0.05.

Additionally, for the genes in which only one of the two adjusted p-values was <0.05, we also


http://geneontology.org/

639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669

required that the raw Pearson and raw Spearman p-value both be <0.05. This approach allowed
us to incorporate information from both correlation coefficients and from FDR multiple test
correction while still retaining power to detect the strongest hits. Genes passing these criteria are

presented in Table 1 and 2.

Multiple regression analyses

To investigate the relative contributions of each plastome partition to the evolutionary rates of
each nuclear-encoded protein, we conducted a multiple regression analysis using branch lengths
from our constructed trees. Due to the lack of accD in Oryza sativa and Lobelia siphilitica and
the lack of ycf1/ycf2 in Oryza sativa and Geranium maderense, we excluded branch lengths
those three species, which allowed us to include all seven plastome partitions. Each nuclear gene
was analyzed separately, where the y values were the normalized branch lengths for each species
for that particular gene and the x values were the normalized branch lengths for each plastome
partition for each species. Any additional missing data led to removal of the involved species.

Models were created using the /m() function in R with default parameters.

Data availability
Alignments and phylogenetic trees used in this analysis have been deposited at Dryad Digital
Repository and can be accessed at: https://doi.org/10.5061/dryad.7h4470zs3

Code used to conduct this analysis is available at:

https://github.com/EvanForsythe/Plastid nuclear ERC
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Figure 1. Trees based on plastome partitions. Branch length optimized trees inferred from
amino acid sequence alignments for plastid genes partitioned into seven functional categories
(described in Table S2). Branch lengths are shown on the same scale for all trees to highlight
differences in rates of amino acid evolution among partitions. Each plastome partition tree was
used for ERC analysis against all nuclear gene trees.
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Figure 2. Phylogenomic pipeline used to identify and analyze nuclear gene families. (A)
Flowchart depicting the steps leading up to ERC analyses. (B) Steps of the extraction and
quality-control procedure.
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Figure 3. Case study of ERC between plastid-encoded ClpP1 and nuclear gene trees. (A)
ClpP1 and ClpR1 gene trees shown mirrored to highlight correlation of branch lengths. (B)
Linear regression quantifying correlation of evolutionary rates between ClpP1 and ClpR1. Points
represent normalized branch lengths estimated from ClpP1 (x-axis) and CIpR1 (y-axis) gene
trees. Dotted line indicates best fit trend line. (C) Results from ERC analyses of ClpP1 versus all
nuclear genes. Each point represents p-value and R? values from a pairwise ERC analysis
(Pearson correlation). ERC comparisons with negative slopes are not shown. Known Clp
complex nuclear genes are colored by their placement in the Clp structure (depicted in the
legend). Dotted lines indicate a raw p-value of 0.05 (bottom) and a genome-wide significance at
an FDR-corrected p-value of 0.05 (top).
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Figure 4. Subcellular localization and cytonuclear interactions of ERC hits. Genes
exhibiting signatures of coevolution with plastome partitions were analyzed for their localization
and interactions as classified by the CyMIRA database (Forsythe et al., 2019). Categories
indicating ‘interacting’ refers to nuclear proteins predicted to directly physically interact with
organelle-encoded proteins. The number of total genes in each category are indicated in
parentheses. Statistical significance of enrichment/depletion (Fisher’s exact test) is indicated by

filled points (p < 0.05).
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Figure 5. Functional enrichment of ERC hits. Gene Ontology (GO) functional enrichment
analyses were performed for ERC hits from each of the plastome partitions. Categories with
significant enrichment/depletion in at least one partition are shown. Categories are grouped by
type of GO annotation (cellular component, biological process, molecular function). Some
redundant or highly overlapping categories were removed (see Supplementary Data for full
results). Asterisks indicate shortening of category name to fit figure dimensions. The number of
total genes in each category are indicated in parentheses. Statistical significance of
enrichment/depletion (Fisher’s exact test) is indicated by filled points (p < 0.05). P-values were
corrected for multiple tests using FDR.
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Figure S1. Taxon composition of trees and subtrees. Histograms representing total number of
sequences per tree (A and D), number of species represented per tree (B and E), and average
number of sequences per represented species per tree (C and F). Distributions are shown for
original trees before subtree extraction (see Methods) (A-C) as well as for final subtrees after
orthologous subtree extraction (D-F). Supports Figure 1.
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Figure S2. ERC case studies for known plastid complexes. Results from ERC analyses of the
ribosome plastome partition (A) and photosynthesis plastome partition (B) versus all nuclear
genes. Each point represents the p-value and R? value from a pairwise ERC analysis (Pearson
correlation). ERC comparisons with negative slopes are not shown. Known plastid ribosome
nuclear genes are colored in magenta (A), and known photosynthesis genes are colored
according to complex (B). Dotted lines indicate a raw p-value of 0.05 (bottom) and a genome-
wide significance at an FDR-corrected p-value of 0.05 (top). Supports Figure 3.
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Figure S3. Plastome partition ERC result overlap and multiple regression analysis. (A-B)
ERC hit overlap for the single-correlation analyses used in Figs. 4 and 5. (A) UpSet plot showing
the overlap of ERC hits between partitions (Conway et al., 2017). Intersects of four or more
partitions are not shown to save space. (B) Histogram showing the number of partitions in which
each nuclear gene was a hit. (C-D) ERC hit overlap for the multiple regression analyses. (C)
UpSet plot of the overlap of ERC hits between partitions. Intersects of four or more partitions are
not shown. (D) Histogram of the number of partitions in which each nuclear gene was a hit.
Supports Figures 4 and 5.
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Figure S4. Cytosolic ribosome subunits found to have significant ERC with ClpP1.
Correlation plots comparing normalized branch lengths from ClpP1 versus normalized branch
lengths for cytosolic ribosome gene trees. All families contained multiple Arabidopsis paralogs.
The y-axis labels indicate the AGI locus identifier for the randomly chosen paralog used for
enrichment analyses. The white box insets list AGI locus identifiers for all Arabidopsis paralogs
in each family. All loci shown were compared against previous datasets (Bonen & Calixte, 2005;
Tiller et al., 2012; Sloan et al., 2014; Bieri et al., 2017; Boerema et al., 2018; Waltz et al., 2019)
and found to be annotated as cytosolic ribosomes except for AT4G31700 (indicated with *),
which was not annotated as a ribosome subunit in the above studies but is annotated at a
cytosolic ribosomal subunit elsewhere (Creff et al., 2010). Supports Figure 5.
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Figure S5. Comparison of ERC hits to genes with altered expression in proteostasis
mutants. (A-B) Venn diagrams depicting overlap of ERC hits with upregulated chloroplast
proteins from mutants for the metalloprotease subunit FtsH2 (Dogra et al., 2019) (A) and ClpP3
(Kim et al., 2013) (B). (C) Enrichment analyses testing whether proteins detected with
differential expression are enriched among ERC hits. For all panels, ERC hits were filtered to
include only chloroplast-localized proteins according to CyMIRA (Forsythe et al., 2019).

Supports Figure 5.



Table 1: Organelle-localized strong ERC hits. AGI locus identifiers are shown for nuclear
genes with significant ERC with plastome partition(s). * indicates significant ERC for the
partition in multiple regression. ** indicates the shown partition was the only significant ERC
under multiple regression. For genes that are hits in multiple plastome partitions, the slope, R?,
and P-values for partition with the lowest Pearson P-value are reported. Shown here is a subset of
the 99 total organelle-localized strong ERC hits. For full results see Supplementary Data.

.. Localiz .. , | Adj.P Adj. P Mult.
Plastome partition [AGI ID locus ation Gene symbol TAIR description Slope | R (o) (S|l
Ribo., RNA pol., L
Phot., AccD, |ATIG17220| CP FUGI Translation initiation factor 2, small GTP-1 -y 440,95 9.27-07| 3.49E-13 [1.21E-01
& | Ycf1/2, ClpP1 ep
= ATSCOLl, . .
Z| Ribo,Phot. |ATIG62750| Dual | ATSCOI/CPEF- | ranslation elongation factor EFG/EE2 5 61 o 7615 35503 | 2.12B-01 [5.03E-01
s protein
= G, SCO1
AceD AT5G67510| CP NA Translation pr‘;tr‘z?e;m'hke family 326 |0.67| 1.77E-02 | 7.08E-01 [3.48E-02
Ribo., RNA pol., . s . .
Phot. AT4G34730| CP NA ribosome-binding factor A family protein 0.50 |0.84| 8.52E-04 | 8.30E-01 |2.06E-02
& | Ribo., ClpP1 |AT2G33800| CP NA Ribosomal protein S5 family protein 0.41 ]0.76]| 5.31E-03 | 1.93E-01 |5.04E-02
g MatK AT5G02740| MT NA Ribosomal protein S24e family protein 0.33  |0.81]7.67E-03 | 2.91E-13 |1.33E-02
8 AccD* AT5G10360| CP |EMB3010, RPS6B Ribosomal protein S6e 1.23  [0.70| 1.03E-02 | 6.91E-01 |1.48E-02
& | Ribo., RNA pol. [AT3G44890| CP RPL9 ribosomal protein L9 0.75 [0.71| 1.15E-02 | 6.09E-01 |9.37E-01
Ribo. AT5G40950| CP RPL27 ribosomal protein large subunit 27 1.35 |0.64|2.07E-02 | 7.26E-01 |2.04E-01
ClpP1 AT1G64880| MT NA Ribosomal protein S5 family protein 3.73 10.60| 4.56E-02 | 8.90E-01 |1.67E-01
ClpP1*, AccD,
Ribo., RNA pol,, [AT1G49970| cp [P Ré’VI;gLP P3,1 " CLP protease proteolytic subunit 1 146 [0.94] 4.70E-06 | 2.49E-13 [8.26E-06
Phot.*
* * - 1 1
ClpPI*, AccD, | 71609130 | Dual NA ATP-dependent caseinolytic (Clp) 130 |0.89| 2.68E-05 | 2.49E-13 |5.82E-05
Ribo., Phot. protease/crotonase family protein
o ClpP1*, AccD* |AT1G12410| CP CLPR%&ELPPZ’ CLP protease proteolytic subunit 2 2.03 0.90| 2.68E-05 | 5.44E-03 [1.10E-03
G [AceD, Ribo., RNA
pol., Phot., AT5G45390| CP | CLPP4, NCLPP4 CLP protease P4 3.17 |0.87|4.64E-04 | 5.93E-01 |3.17E-03
ClpP1**, Ycfl1/2
ClpP1, AccD |AT4G17040| CP CLPR4 CLP protease R subunit 4 2.21 0.81] 6.08E-04 | 2.49E-13 |4.45E-03
AccD**, ClpP1 |ATIG11750| CP CLPP6 CLP protease proteolytic subunit 6 2.13  |0.83] 2.46E-03 | 6.00E-01 |2.28E-03
Clppé};) cfl’2, AT1G66670| CP | CLPP3, NCLPP3 CLP protease proteolytic subunit 3 2.62 |0.76| 4.52E-03 | 2.92E-01 [6.46E-03
AccD AT5G58870| CP ftsh9 FTSH protease 9 9.22  |0.75] 7.52E-03 | 6.96E-01 |1.37E-02
Z | Ribo., ClpP1*,
= | AccD, RNA pol., | AT5G53170| Dual FTSHI11 FTSH protease 11 1.47 ]0.76|3.27E-03 | 3.16E-01 |1.05E-03
Phot.
RNApol, | \14G16390| CP SVR7 pentatricopeptide (PPR) repeat-containing | 49 |0 97| 3 34E-05 | 4.50E-02 |5.77E-04
Ribo.**, Phot. protein
Ribo., Phot., RNA S .
pol., AceD, Ycf1/2 AT5G66470| CP NA RNA binding; GTP binding 1.58 0.82| 7.60E-04 | 2.47E-02 |1.44E-01
w| AceD VN2 aragaiono| Mt NA RNA-binding CRSI / YhbY (CRM) | ¢ 39 10 87/ 9.07E-04 | 6.30E-01 [9.42E-02
g ot. domain-containing protein
= — -
5| AccD, RNA pol. |AT3G52150| CP NA RNA-binding (RRM/RBD/RNP motifs) | 5 33 |0 g7/ | 65603 | 5.53E-01 |4.25E-02
< family protein
CZ‘ RNA pol., Ribo. | AT3G23700| CP NA Nucleic acid-binding proteins superfamily| 0.40 [0.68| 2.82E-02 | 4.16E-02 [8.82E-03
RNA pol. ** AT1G12800| CP NA Nucleic acid-binding, OB-fold-like protein| 0.25 [0.70| 3.12E-02 | 4.50E-02 |2.12E-02
RNApol.  |AT2G20020| CP CAFL, RNA-binding CRS1 / YhY (CRM) | 75 10 61| 3 40E-02 | 2.84E-01 [4.68E-02
ATCAF1 domain-containing protein
AccD AT5G14580| MT NA p°Iyrlb"““CleOt“;‘;‘;‘ﬁ‘;"“dy“m“Sfer"‘Sf” 9.88  |0.62|6.86E-02 | 2.18E-13 [9.07E-02
AccD, CIpP1, ATTICI110, translocon at the inner envelope membrane
RNA pol. AT1G06950| CP TIC110 of chloroplasts 110 5.77 10.79| 3.45E-03 | 5.53E-01 |1.42E-02
- MORN (Membrane Occupation and
3 Ycfl/2, RNA pol.*| AT5G22640| CP embl211 Recognition Nexus) repeat-containing 1.72  |0.91| 3.45E-04 | 1.12E-01 |1.43E-03
g protein
FFC, 34CP, chloroplast signal recognition particle 54
AccD**  |AT5G03940| CP CPSRP54, plast 1 gIon p 15.57 [0.82| 1.65E-03 | 5.53E-01 [3.84E-02
SRP54CP kDa subunit




Ribo., Phot., RNA

Mitochondrial import inner membrane

1 AT4G26670| Dual NA translocase subunit Tim17/Tim22/Tim23 0.45 |0.72| 5.14E-03 | 6.85E-01 |7.42E-01
pol. family protein
Ribo. AT3G23710| CP NA Tic22-like family protein 0.47 10.75]9.53E-03 | 2.91E-01 |5.87E-01
Phot. AT3G04340| CP FTSHi5 FTSH protease-like 5 0.09 ]0.71|4.89E-02 | 8.98E-01 |1.37E-01
EMBI156, EMB36,
Ycfl/2%* AT1G79560| CP EMB1047, FTSH protease 12 331 |0.87| 7.86E-04 | 2.73E-01 |2.09E-02

FTSH12




Table 2: Strong ERC hits lacking organelle-localized annotation. AGI locus identifiers are
shown for nuclear genes with significant ERC with plastome partition(s). * indicates significant
ERC for the partition in multiple regression. ** indicates the shown partition was the only
significant ERC under multiple regression. For genes that are hits in multiple plastome partitions,
the Slope, R?, and P-values for partition with the lowest Pearson P-value are reported. O. sativa

IDs are shown for families in which A. thaliana is not present. One ERC hit lacking an 4.
thaliana and O. sativa 1D was omitted. For full results see Supplementary Data.

Plastome .. 2 Adj. P Adj. P
et AGI locus | Gene symbol TAIR description Slope | R ) () Mult. reg. P
AceD* | AT5G59860 Na  |RNA-binding (RRM/RBD/RNP motifs) |y 5o | o4 | 6.076-04 | 6.51E-01 | 7.41E-06
family protein
AccD* AT1G16750 NA Protein of unknown function, DUF547 2.18 | 0.94 | 1.65E-03 | 6.91E-01 3.32E-03
Ycfl/2 ATI1G04110 SDD1 Subtilase family protein 091 [0.94 [ 1.71E-03 | 3.63E-01 1.66E-02
Ycfl/2*¥* | AT5G22450 NA unknown protein 1.68 | 0.81 | 8.14E-03 | 1.92E-01 6.25E-02
RNA pol.* |0S03G58204 NA NA 039 | 0.75 | 8.50E-03 | 1.97E-01 | 6.91E-03
Ribo. AT4G14100 NA transferases, transferring glycosyl groups| 0.41 | 0.67 | 1.02E-02 | 7.52E-01 4.74E-01
RNA pol. | AT3G26618 ERF1-3  |eukaryotic release factor 1-3 0.54 | 0.68 | 1.08E-02 | 7.37E-01 | 6.40E-01
ClpP1** | AT1G09800 NA Pseudouridine synthase family protein 5.28 | 0.74 | 1.23E-02 | 5.69E-01 1.53E-03
Yefl2 | AT4G25320 NA ﬁrztgﬁfk motif DNA-binding family 0.75 | 0.75 | 2.22E-02 | 2.66E-01 | 2.61E-02
Ycfl/2 |0S03G53360 NA NA 159 | 0.88 |2.22E-02 | 2.19E-01 | 2.14E-01
AccD | AT5G36000|  NA ?eftiiTtyA‘thahana match: reduced male | o | g0 |2 65502 | 5.53E-01 | 8.69E-03
Yefl2* | ATiGsss70 | ATPARN, |Polynucleotidyl transferase, ribonuclease| ¢\ | 73 15 ¢5p.02 | 337E-01 | 4.26E-03
AHG2 H-like superfamily protein
ClpP1** | AT2G16770 | bzipp3  |DBasic-leucine zipper (bZIP) transcription |y o | 63 | 3.05E-02 | 7.41E-01 | 9.04E-04
factor family protein
RNA pol.,
AceD, | AT4G19985 NA  |Acyl-CoA N-acyltransferases (NAT) | 45 | 66 [320E-02 | 4.10E-01 | 7.14E-01
: superfamily protein
Ribo.
RNA pol. | AT1G69410 Aggi’f‘f’ cukaryotic clongation factor 5A-3 0.12 | 0.61 | 3.20E-02 | 8.76E-01 | 4.79E-01
HIP, ATTDX, | e domain-contain
RNA pol. | AT3G17880 | ATHIP2, |- ancopeptide domam-contaming 0.11 | 0.62 | 3.37E-02 | 7.47E-01 | 8.60E-02
TDX thioredoxin
AccD | AT4G19350 | EMB3006 |embryo defective 3006 1.88 | 0.75 | 3.42E-02 | 7.16E-01 | 1.97E-02
Ycf1/2%* |0S03G26080 NA NA 4.10 | 0.71 | 3.50E-02 | 2.20E-01 | 1.17E-01
RNA pol. | AT5G25840 NA Protein of unknown function (DUF1677)| 0.45 | 0.63 | 3.54E-02 | 2.60E-01 1.98E-01
RNA pol. | AT4G39920 | POR, TFCC |C-CAP/eofactor C-like domain- 0.36 | 0.65 | 3.71E-02 | 5.08E-01 | 2.94E-01
containing protein
R‘b‘;;ﬂRNA ATIG71000 NA gr}(‘igi";‘me Dnal-domain superfamily | ' &> | 6> 1393802 | 5.96E-01 | 5.68E-01
AccD | AT5G39420 | cdc2cAt  |CDC2C 459 | 0.74 | 3.95E-02 | 6.58E-01 | 4.11E-01
RNA pol. | AT1G03330 NA S:’;:‘gn““dear ribonucleoprotein family | ¢ | 77 | 427502 | 2.188-01 | 1.83E-01
Ribo. |AT2G03820| ~ Na  [nonsense-mediated mRNA decay NMD3| o 19 | 59 | 434502 | 7.526-01 | 1.06E-01
family protein
RNA pol. | AT5G26610 NA E&;i/f'pmh domain-containing 0.65 | 0.58 | 4.49E-02| 5.07E-01 | 5.88E-01
Pho;j{NA AT5G20040 IPT9 isopentenyltransferase 9 0.35 | 0.63 [ 4.74E-02 | 1.70E-01 1.61E-02
AccD AT5G52860 ABCG8  |ABC-2 type transporter family protein 7.03 | 0.57 | 1.16E-01 | 2.18E-13 | 6.62E-02
AccD | AT2G28315 NA ;‘g:ﬁ“de/sugar transporter family 645 | 0.63 | 1.17E-01 | 2.18E-13 | 1.53E-01
AccD_ |0S09G39370 NA NA 1.68 | 0.59 | 2.70E-01 | 2.18E-13 | 1.51E-01
Matk | AT4G23330 NA  |BESTA. thaliana match: eukaryotic 037 | 043 | 3.96E-01 | 2.91E-13 | 5.69E-01
translation initiation factor 3A




Table S1. Proteome data sources.

Species Lineage Plastome Dataset Type Nuclear data source Plastome.NCBI
rate accession
Arabidopsis thaliana Eudicot (rosid) Slow Genome lelrl:p((:]riisll;) n NC_000932.1
Amborella trichopoda Amborellales Slow Genome Phytozome (version 12) NC 005086.1
Cucumis sativus Eudicot (rosid) Slow Genome Phytozome (version 12) NC 007144.1
Eucalyptus grandis Eudicot (rosid) Slow Genome Phytozome (version 12) NC 014570.1
Gossypium raimondii Eudicot (rosid) Slow Genome Phytozome (version 12) NC 016668.1
Musa acuminata Monocot Slow Genome Phytozome (version 12) HF677508.1
Oryza sativa Monocot Fast Genome Phytozome (version 12) NC 001320.1
Populus trichocarpa Eudicot (rosid) Slow Genome Phytozome (version 12) NC 009143.1
Prunus persica Eudicot (rosid) Slow Genome Phytozome (version 12) NC 014697.1
Solanum lycopersicum Eudicot (asterid) Slow Genome Phytozome (version 12) NC 007898.3
Vitis vinifera Eudicot (rosid) Slow Genome Phytozome (version 12) NC 015891.1
Spirodela polyrhiza Monocot Slow Genome Phytozome (version 12) NC 015891.1
Helianthus annuus | Eudicot (asterid) Slow Genome https:// S“nﬂo‘;‘g"ergenome NC_007977.1
Lobelia siphilitica Eudicot (asterid) Fast Transcriptome 1.000 Plant' oy KY354225.1
Transcriptome Initiative
Oenothera biennis Eudicot (rosid) Fast Transcriptome 1.000 Plant. _ NC 010361.1
Transcriptome Initiative
. . . . 1000 Plant
Plantago maritima Eudicot (asterid) Fast Transcriptome . o NC _028519.1
Transcriptome Initiative
Acacza. Eudicot (rosid) Fast Transcriptome PlanTransDB NC 026134.2
aulacocarpalligulata
Geranium maderense Eudicot (rosid) Fast Transcriptome PlanTransDB NC 029999.1
Liriodendron chinense Magnoliid Slow Transcriptome Yang et al., 2014 NC 030504.1
Silene noctiflora Eudicot Fast Transcriptome Sloan et al., 2014b NC 016728.1

(caryophyllid)




Table S2: Plastome partition multiple sequence alignments. Information about plastome
partitions used to infer plastid trees.

Plastome Number of Gene(s) Alignment Missing species
partition genes length (AAs) gsp
Oryza sativa and
AceD ! AceD 1281 Lobelia siphilitica
ClpP1 1 ClpP1 177 NA
MatK 1 MatK 458 NA

AtpA, AtpB, AtpE, AtpF, AtpH,
Atpl, NdhA, NdhB, NdhC, NdhD,
NdhE, NdhF, NdhG, NdhH, NdhlI,

NdhJ, NdhK, PetA, PetB, PetD,
Photosynthesis 46 PetG, PetL, PetN, PsaA, PsaB, PsaC, 10437 NA
Psal, PsaJ, PsbA, PsbB, PsbC, PsbD,
PsbE, PsbF, PsbH, Psbl, PsbJ, PsbK,

PsbL, PsbM, PsbN, PsbT, PsbZ,
RbcL, Ycf3, Ycf4

Rpl14, Rpl16, Rpl2, Rpl20, Rpl22,
Rpl32, Rpl33, Rpl36, Rps11, Rps12,

Ribosomes 20 Rps14, Rps15, Rps16, Rps18, Rps19, 2492 NA

Rps2, Rps3, Rps4, Rps7, Rps8
RNA pol. 4 RpoA, RpoB, RpoCl1, RpoC2 3209 NA
Yefl/Yef2 2 Yefl, Yef2 2479 Oryza sativa and

Geranium maderense




Table S3. ERC hits identified for each plastome partition. Number of hits designated for each
partition according to different thresholds referenced throughout the manuscript. Single
correlation hits were used in Fig. 4 and 5. Single correlation (strong hits) were used for Table 1
and 2. Multiple regression hits were used in Fig. S3C-F.

AccD | ClpP1 | MatK Phot. Ribo. | RNA pol. | Yefl/2

Single correlation 514 371 333 324 322 289 284

Single correlation (strong hits) 48 21 6 33 59 60 38

Multiple regression 159 182 131 160 118 303 226




Table S4. ERC comparisons among the seven plastome partitions. R? values (top) and

Pearson p-values (bottom in parentheses) for the ERC comparisons of plastome partitions to each

other. All p-values remained significant (p < 0.05) after FDR correction using the p-values
posted in this table.

AccD ClpP1 MatK Phot. Ribo. RNA pol. Ycfl/2
AccD - - - - - - -
0.58
CIPPL 1 (5 928-04) - - - - - -
0.27 0.25
Matk |3 976.02) | (3.41E-02) - - - - -
Phot 0.64 0.37 0.74 ] ] ] ]
| (1.94E-04) | (7.63E-03) | (4.90E-06)
Ribo 0.72 0.50 0.51 0.83 ] ] ]
| (3.06E-05) | (9.61E-04) | (8.50E-04) | (1.64E-07)
RNA sl 0.70 0.38 0.41 0.65 0.82 ] ]
POl | (555E-05) | (6.29E-03) | (4.26E-03) | (5.24E-05) | (2.55E-07)
Vel 0.79 0.40 0.33 0.68 0.79 0.64 ]
(9.94E-06) | (9.11E-03) | (1.91E-02) | (9.06E-05) | (3.72E-06) | (1.85E-04)
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