

TITLE

Divergence-based introgression polarization

AUTHORS

Evan S. Forsythe^{1,2*}, Daniel B. Sloan¹, and Mark A. Beilstein²

AFFILIATIONS

¹Department of Biology, Colorado State University, Fort Collins, CO 80523, USA.

²School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA.

CORRESPONDENCE

Evan. S. Forsythe; 1878 Campus Delivery, Fort Collins, CO 80523; esfors@rams.colostate.edu

1 **ABSTRACT**

2 Introgressive hybridization results in the transfer of genetic material between species, often with
3 fitness implications for the recipient species. The development of statistical methods for
4 detecting the signatures of historical introgression in whole-genome data has been a major area
5 of focus. While existing techniques are able to identify the taxa that exchanged genes during
6 introgression using a four-taxon system, most methods do not explicitly distinguish which taxon
7 served as donor and which as recipient during introgression (i.e. polarization of introgression
8 directionality). Existing methods that do polarize introgression are often only able to do so when
9 there is a fifth taxon available and that taxon is sister to one of the taxa involved in introgression.
10 Here, we present *Divergence-based Introgression Polarization (DIP)*, a method for polarizing
11 introgression using patterns of sequence divergence across whole genomes, which operates in a
12 four-taxon context. Thus, *DIP* can be applied to infer the directionality of introgression when
13 additional taxa are not available. We use simulations to show that *DIP* can polarize introgression
14 and identify potential sources of bias in the assignment of directionality, and we apply *DIP* to a
15 well-described hominin introgression event.

16

17 **INTRODUCTION**

18 Hybridization is an influential evolutionary force (Stebbins 1968) that is widespread in
19 natural populations (Yakimowski and Rieseberg 2014; Mallet et al. 2016). Through backcrossing
20 to parental populations, hybrids can serve as bridges for the transfer of alleles and adaptive traits
21 between species or populations, a process known as introgression (Rieseberg and Soltis 1991;
22 Rieseberg et al. 1996; Green et al. 2010; Dasmahapatra et al. 2012; Mallet et al. 2016; Suarez-
23 Gonzalez et al. 2016). Whole genome sequences and advances in phylogenetic methods (Soltis
24 and Soltis 2003) have revealed signatures of historical introgression in scientifically and
25 economically important groups, including well-studied examples in Neanderthals and non-
26 African human populations (Green et al. 2010; Kuhlwilm et al. 2016). Several methods have
27 been developed to identify taxa that exchanged genes during introgression (Huson et al. 2005;
28 Than et al. 2008; Green et al. 2010; Durand et al. 2011; Liu et al. 2014; Martin et al. 2015; Pease
29 and Hahn 2015; Stenz et al. 2015; Rosenzweig et al. 2016). While these methods generally
30 perform well across a variety of biological and experimental scenarios (Zheng and Janke 2018),

31 theoretical and empirical studies have identified conditions under which each method is
32 susceptible to bias (Eriksson and Manica 2012; Rosenzweig et al. 2016).

33 One challenging aspect of analyzing introgression is to identify taxa serving as donors *vs.*
34 recipients of genetic material during introgression (i.e. introgression directionality). If hybrids
35 successfully backcross to both parents, alleles will move in both directions, meaning each parent
36 will serve as donor for some introgressed loci and recipient for other loci. However, if
37 backcrosses with one parent but not the other are favored by physiological (Rieseberg and Soltis
38 1991), selective (Orive and Barton 2002), or biogeographical (Currat et al. 2008) factors, it can
39 lead to asymmetrical (Barton and Hewitt 1985) movement of alleles (directional introgression,
40 denoted hereafter with \Rightarrow). Introgression has been shown to underlie the transfer of adaptive
41 traits to recipient lineages (Whitney et al. 2006; Dasmahapatra et al. 2012; Dannemann et al.
42 2016; Figueiró et al. 2017), so the ability to infer the directionality of introgression (i.e. polarize
43 introgression) is essential in order to form hypotheses about functional and adaptive
44 consequences.

45 The majority of tests to detect the occurrence of introgression do not explicitly polarize
46 directionality (Zheng and Janke 2018), and those that can only do so in certain cases. For
47 example, the D statistic (Green et al. 2010) is widely-used to infer instances of introgression in a
48 four-taxon system. Introgression polarization is possible under D only when data for a fifth taxon
49 are available (Green et al. 2010; Eaton and Ree 2013; Eaton et al. 2015; Pease and Hahn 2015).
50 Moreover, the fifth taxon must be sister to one taxon involved in introgression but cannot itself
51 be involved in introgression. (Pease and Hahn 2015) define this specific configuration of
52 introgressing taxa and sister taxa as “intergroup” introgression and describe how, when these
53 specific five-taxon conditions are met, the branching order of introgressed gene trees indicates
54 directionality. However, the authors also describe how other types of introgression (e.g.
55 “ancestral” introgression) cannot be polarized. Moreover, there are many cases in which a fifth
56 taxon with the required phylogenetic placement is either not sampled or does not exist. In these
57 cases, it is possible to statistically identify introgression using existing methods but not
58 necessarily to polarize introgression. Thus, there is a need for a more widely applicable statistical
59 method to distinguish between bidirectional and unidirectional introgression, while identifying
60 donor and recipient taxa.

61 Here, we describe and test a method for inferring directionality of introgression from
62 genome-scale data, which we refer to as *Divergence-based Introgression Polarization (DIP)*.
63 *DIP* is based on the observation that, when introgression occurs, it alters not only the level of
64 nucleotide sequence divergence between the two species exchanging genes (Rosenzweig et al.
65 2016) but also divergences with related species that are not directly involved in introgression;
66 these changes occur in systematic and predictable ways according to the directionality of
67 introgression (Fig. 1) (Forsythe et al. in revision; Fontaine et al. 2015; Hibbins and Hahn 2019).
68 *DIP* is calculated from pairwise sequence divergence between taxa involved in introgression and
69 a sister taxon, comparing divergence values obtained from introgressed loci *vs.* non-introgressed
70 loci. It takes as input the same types of data used to infer introgression by existing methods
71 (whole genome/chromosome alignments or single-gene alignments of loci sampled throughout
72 the genome). However, unlike most existing methods, *DIP* is applicable to cases in which only
73 four taxa are sampled, thereby expanding inference of introgression directionality to a broader
74 scope of evolutionary histories.

75 We present tools to implement the *DIP* method: <https://github.com/EvanForsythe/DIP>.
76 We also simulate whole genome alignments in which a subset of loci were introgressed either
77 unidirectionally, asymmetrically, or symmetrically. We use these simulated genome alignments
78 to assess how accurately *DIP* polarizes asymmetrical introgression and to investigate the effects
79 of parameters that are known to affect existing introgression inference methods, such as the
80 proportion and timing of introgression (Durand et al. 2011; Martin et al. 2015; Zheng and Janke
81 2018). We have recently used the principles of *DIP* to document asymmetrical introgression
82 among Brassicaceae species (Forsythe et al. in revision), and here, we also apply *DIP* to
83 empirical data from modern and archaic hominins.

84

85 **NEW APPROACHES**

86 Introgression alters levels of sequence divergence between taxa, and these changes can differ
87 depending on directionality (Forsythe et al. in revision; Hibbins and Hahn 2019) (Fig. 1). While
88 several statistics focus on the effects of introgression on sequence divergence between species
89 involved in introgression (Feder et al. 2005; Joly et al. 2009; Rosenzweig et al. 2016), here we
90 describe how patterns of sequence divergence in a taxon that is sister to those involved in
91 introgression can be indicative of the directionality of introgression. To define the properties of a

92 divergence-based introgression test, we use hypothetical species $P1$, $P2$, $P3$ and an outgroup, O .
 93 Species $P1$ and $P2$ are sister within the species tree, and we model introgression between species
 94 $P2$ and $P3$. We denote the timing of the three successive speciation events among these taxa as
 95 T_γ , T_β , and T_α and the timing of the introgression event between $P2$ and $P3$ as T_{INT} (Fig. 1A).
 96 When introgression has occurred between $P2$ and $P3$, some loci will reflect a history of
 97 introgression, while other loci will reflect a history of speciation. In applying *DIP*, a gene tree is
 98 inferred for each locus, and the resulting topology is used to distinguish introgressed loci from
 99 non-introgressed loci. For all loci, we quantify pairwise sequence divergence values between $P2$
 100 and $P3$ (K_{23}), between $P1$ and $P2$ (K_{12}), and between $P1$ and $P3$ (K_{13}) (Fig. 1). The values of K_{23} ,
 101 K_{12} , and K_{13} on a given gene tree are expected to correspond to T_{INT} , T_α , and T_β in a way that
 102 depends on the introgression history of that gene. Note that K_{23} is the divergence measurement
 103 that is most commonly used to indicate the presence of introgression (Feder et al. 2005; Joly et
 104 al. 2009; Rosenzweig et al. 2016) because introgression in either direction is expected to reduce
 105 K_{23} relative to genes that reflect the species tree, as the divergence time between the sequences of
 106 these taxa is reduced from T_β to T_{INT} (Fig. 1). In contrast, changes in K_{12} and K_{13} will depend on
 107 the direction of introgression. For example, introgression can cause K_{12} to increase
 108 corresponding to a change in divergence time from T_α to T_β but only if introgression occurred
 109 from $P3$ to $P2$ (Fig. 1B). Introgression in the other direction should not affect K_{12} . The effects on
 110 K_{13} are also sensitive to the direction of introgression. If it occurs from $P2$ to $P3$, introgression
 111 should decrease K_{13} based on a change in divergence time from T_β to T_α (Fig. 1C), but there
 112 should be no effect on K_{13} if introgression occurs in the other direction. To quantify these effects,
 113 differences are calculated between the mean values of K_{23} , K_{12} , and K_{13} from all loci displaying
 114 the species topology (abbreviated SP loci in equations/figures) and the mean values of the same
 115 corresponding divergence measurements from all loci displaying the introgression topology
 116 (abbreviated INT loci in equations/figures) in the following fashion:
 117
 118 *Eq. 1:*

$$119 \Delta K_{23} = \bar{K}_{23}(\text{SP loci}) - \bar{K}_{23}(\text{INT loci})$$

120

121 *Eq. 2:*

$$122 \Delta K_{12} = \bar{K}_{12}(\text{INT loci}) - \bar{K}_{12}(\text{SP loci})$$

123

124 *Eq. 3:*

125
$$\Delta K_{13} = \bar{K}_{13}(\text{SP loci}) - \bar{K}_{13}(\text{INT loci})$$

126

127 Note that the order of subtraction used in defining these terms is not always the same with
 128 respect to species and introgression loci and was chosen such that the effects of relevant
 129 introgression are expected to yield positive (rather than negative) ΔK in each case. Together, this
 130 set of ΔK values composes the divergence profile of *DIP*. Below we show the relative
 131 magnitudes of these values can be used to differentiate evolutionary histories based on the
 132 polarity of introgression. We also use coalescent-based simulations to identify biases that can be
 133 introduced by other sources of genealogical discordance such as incomplete lineage sorting
 134 (ILS), and we devise additional layers of *DIP* comparisons that can be used to partially alleviate
 135 these biases.

136

137 **RESULTS**138 *DIP: Distinguishing modes of unidirectional and bidirectional introgression*

139 The simplest application of *DIP* involves testing whether ΔK_{23} , ΔK_{12} , and ΔK_{13} are significantly
 140 greater than zero and compares these results to the expectations for ΔK under different
 141 introgression scenarios (Fig. 2). If introgression has occurred in both directions between *P2* and
 142 *P3*, then all three ΔK values should be positive. However, as noted above, if introgression has
 143 occurred exclusively in one direction, the expectation for either ΔK_{12} or ΔK_{13} should remain zero
 144 (Fig. 2). To test the performance of *DIP*, we simulated alignments for thousands of loci (5000 bp
 145 each) undergoing unidirectional introgression in each direction, as well as symmetric
 146 bidirectional introgression (see Methods and Fig. S1). We applied *DIP* to each simulated
 147 genome. For the genome simulated under unidirectional $P2 \Rightarrow P3$ introgression, we observed $\Delta K_{23} > 0$, $\Delta K_{12} = 0$, and $\Delta K_{13} > 0$ (Fig. 3A), which is the expected pattern for that direction of
 148 introgression (Fig. 1). For the genome simulated under symmetric bidirectional introgression, we
 149 observed $\Delta K_{23} > 0$, $\Delta K_{12} > 0$, and $\Delta K_{13} > 0$ (Fig. 3B), which is the expected pattern if some
 150 introgression is occurring in both directions. For the genome simulated under unidirectional
 151 $P3 \Rightarrow P2$ introgression, we observed $\Delta K_{23} > 0$, $\Delta K_{12} > 0$, and $\Delta K_{13} = 0$ (Fig. 3C), again reflecting

153 our expected *DIP* profile for that direction. These results indicate that *DIP* can correctly classify
154 all three types of introgression under these simulated conditions.

155 Next, we explored the performance of *DIP* across a range of different parameter settings,
156 including the proportions of genes in the genome that had been subject to introgression ($pINT$).
157 We also varied the proportions of introgressed loci that moved in one direction or the other
158 [$p(P3 \Rightarrow P2)$]. We performed a parameter scan (Fig. S1) by generating simulated genomes with
159 different values of $pINT$ and $p(P3 \Rightarrow P2)$ and applying *DIP* to each genome (Fig. 3D). We found
160 the expected $P3 \Rightarrow P2$ *DIP* profile for the majority of replicated genomes generated with
161 $p(P3 \Rightarrow P2)=1$ (i.e. unidirectional $P3 \Rightarrow P2$ introgression) (Fig. 3D, red boxes). Further, we found
162 the expected $P2 \Rightarrow P3$ *DIP* profile for the majority of replicated genomes generated with
163 $p(P3 \Rightarrow P2)=0$ (i.e. unidirectional $P2 \Rightarrow P3$ IG) (Fig. 3D, gray boxes). Intermediate $p(P3 \Rightarrow P2)$
164 values all yielded the expected *DIP* profile for bidirectional introgression for all replicates (Fig.
165 3D, white boxes). These simulations constitute the basic implementation of *DIP* (hereafter,
166 referred to as Single-*DIP* or $1 \times DIP$), which can detect the presence of bidirectional introgression
167 (see Fig. 3B profile and Fig. 3D white boxes), but does not report directional asymmetry (i.e.
168 whether either of the two directions predominates) at intermediate values of $p(P3 \Rightarrow P2)$..
169

170 *Double-DIP: Detecting asymmetry in cases of bidirectional introgression*

171 Existing introgression polarization methods tend to assume unidirectionality of introgression, but
172 it is also important to consider the possibility of asymmetric bidirectional introgression that falls
173 short of being strictly unidirectional [discussed in (Martin et al. 2015)]. To more directly test for
174 asymmetry in cases of bidirectional introgression, we developed an additional step in the *DIP*
175 analysis, which we refer to as Double-*DIP* or $2 \times DIP$. The premise of $2 \times DIP$ is that ΔK_{12} for loci
176 introgressed $P3 \Rightarrow P2$ and ΔK_{13} for loci introgressed $P2 \Rightarrow P3$ have the same expected values, as
177 they are both based on a shift in divergence time between T_β and T_α (Fig. 1). Therefore, under
178 symmetric bidirectional ($P3 \Leftrightarrow P2$) introgression, we expect genome-wide values of ΔK_{12} and
179 ΔK_{13} to equal each other. Alternatively, if $P3 \Rightarrow P2$ introgression exceeds $P2 \Rightarrow P3$ introgression,
180 we expect genome-wide $\Delta K_{12} > \Delta K_{13}$. $2 \times DIP$ compares the magnitudes of ΔK_{12} and ΔK_{13} by
181 formulating a simple summary statistic, $\Delta \Delta K$, which is defined as follows:
182

183 *Eq. 4:*

184 $\Delta\Delta K = \Delta K_{12} - \Delta K_{13}$

185

186 The expectation for the $\Delta\Delta K$ summary statistic is zero under symmetric bidirectional
187 introgression, positive under introgression that is biased towards $P2$, and negative under
188 introgression that is biased towards $P3$ (Fig. 4).

189 We explored the performance of $2\times DIP$ by simulating genomes in the same manner as
190 described above for $1\times DIP$. For the genome simulated under unidirectional $P2 \Rightarrow P3$ introgression
191 ($p(P3 \Rightarrow P2) = 0$), we observed a significantly negative $\Delta\Delta K$ (Fig. 5A, $p < 0.0002$), consistent
192 with our expectations. For the genome simulated under symmetric bidirectional introgression,
193 $\Delta\Delta K$ did not significantly differ from zero (Fig. 5B, $p = 0.914$), also consistent with
194 expectations. For the genome simulated under unidirectional $P3 \Rightarrow P2$ introgression ($p(P3 \Rightarrow P2) =$
195 1), we observed significantly positive $\Delta\Delta K$ (Fig. 5C, $p < 0.0002$), again reflecting expectations.
196 These results indicate that $2\times DIP$ correctly classified all three types of simulated introgression
197 events. As above, we also performed a parameter scan to explore $2\times DIP$. We found that genomes
198 simulated with $p(P3 \Rightarrow P2) = 0.5$ (i.e. symmetric bidirectional introgression) returned $\Delta\Delta K$ value
199 that did not significantly differ from zero (Fig. 5D, white boxes). We also found significant $\Delta\Delta K$
200 < 0 for nearly all replicated genomes simulated with $p(P3 \Rightarrow P2) < 0.5$ and significant $\Delta\Delta K > 0$
201 for nearly all replicated genomes simulated with $p(P3 \Rightarrow P2) > 0.5$ (Fig. 5D). The only exception
202 to these patterns were found when ten percent or less of loci in the simulated genome ($pINT \leq$
203 0.1) underwent nearly symmetrical introgression ($p(P3 \Rightarrow P2) = 0.45$ and 0.55).

204 To test the influence of recombination on DIP performance, we also applied an
205 alternative simulation approach in which full chromosomes were simulated under different rates
206 of recombination (resulting in varying haplotype block sizes), while applying the same 5000-bp
207 partition size used in our other analyses (see Methods). We found that $2\times DIP$ correctly inferred
208 unidirectional introgression regardless of recombination rate (Fig. S2; $p(P3 \Rightarrow P2) = 0$ and 1) and
209 reliably detected slight ($p(P3 \Rightarrow P2) = 0.4$ and 0.6) directional asymmetries when the size of
210 haplotype blocks were the same or smaller than the size of the sliding window applied during
211 DIP (Fig. S2B-C). However, when haplotype blocks were an order of magnitude larger than the
212 window size, we observed increased noise in DIP at intermediate $p(P3 \Rightarrow P2)$ values (Fig. S2A),
213 likely due to pseudoreplication caused by many trees reflecting the exact same genealogy (Fig.
214 S2D), ultimately leading to increased sampling variance (see Discussion). Taken together, these

215 results indicate that $2 \times DIP$ correctly inferred asymmetrical introgression, even in many cases in
216 which there is only slight asymmetry, meaning it is a sensitive method for polarizing
217 asymmetrical introgression that is robust across a variety of parameter values.

218

219 *Robustness of DIP to population divergence time*

220 The task of accurately classifying loci as introgressed *vs.* non-introgressed (i.e. INT loci *vs.* SP
221 loci, respectively) based on gene tree topology is an integral part of *DIP*; however, this task is
222 confounded when the topology of a gene tree doesn't accurately reflect the history of
223 introgression (or lack thereof) that occurred at that locus. For example, phylogenetic methods
224 rely on diagnostic synapomorphies to infer gene tree topologies; scarcity of synapomorphies or
225 large amounts of homoplasy in an alignment can lead to phylogenetic error and, thus, inaccurate
226 classification. Another important confounding factor is ILS, which can result in gene trees that
227 reflect a history of deep coalescence at a locus, as opposed to the underlying history of speciation
228 and/or introgression at that locus. This process can result in non-introgressed loci displaying the
229 introgressed topology. Alternatively, because ILS and introgression are not mutually exclusive
230 processes, ILS can also lead to introgressed loci displaying the species topology. Importantly,
231 ILS is also expected to yield gene trees displaying an alternative third topology that is neither the
232 species topology or the introgressed topology (Green et al. 2010) (see Triple-*DIP* below).

233 Both phylogenetic error and ILS are more pronounced during rapid divergence (i.e. short
234 internal branches) (Fontaine et al. 2015). Moreover, it has been shown that, because $P3 \Rightarrow P2$
235 introgression trees have longer internal branch lengths than $P2 \Rightarrow P3$ introgression trees, the latter
236 are more prone to both phylogenetic error and ILS (Zheng and Janke 2018), ultimately leading
237 them to be more prone to misclassification in *DIP*. This feature introduces the potential for
238 directional bias in *DIP* (see Discussion). Therefore, we explored divergence times, as an
239 additional parameter that may influence performance. We focus our discussion on the process of
240 ILS, but it should be noted that phylogenetic error also has the potential to occur in empirical
241 datasets.

242 All previous simulations were implemented with constant and large divergence times (see
243 Fig. 1). To explore the branch length parameter, we modified divergence times by multiplying all
244 of the branch lengths by a scaling factor (SF) (see Methods), essentially modifying the height of
245 the entire tree used for simulations. SFs greater than one yield taller trees, while SFs less than

246 one yield shorter trees. For each SF, we simulated five replicate genomes and calculated $\Delta\Delta K$ for
247 each replicate. We first classified introgressed and non-introgressed loci based on the known
248 history used to simulate the data and plotted the resulting $\Delta\Delta K$ values (omniscient $2\times DIP$). We
249 found that $2\times DIP$ correctly inferred asymmetry (or lack thereof) at all branch lengths and that the
250 magnitude of $\Delta\Delta K$ was proportional to the SF (Fig. 6A, D and G). However, when working with
251 real datasets it is rare to know if individual loci with introgression topologies are the result of
252 bona fide introgression, as opposed to ILS or errors in phylogenetic inference. To explore the
253 impact of the SF on the ability of $2\times DIP$ to distinguish between a signature of bona fide
254 introgression versus the effects of ILS, we calculated $\Delta\Delta K$ using topology-based (non-
255 omniscient) classification. With this approach, we observed an upward bias in $\Delta\Delta K$ at low SFs
256 (Fig. 6B, E, and H). This bias favors inference of $P3 \Rightarrow P2$ introgression even when there is
257 asymmetry in the opposite direction (Fig. 6E). As expected, this bias exists at the SFs for which
258 misclassification of gene trees is most pronounced (Fig. S3), suggesting that it results from ILS
259 (see Discussion).

260 We also explored the influence of the timing of introgression relative to speciation nodes.
261 We held the timing of speciation constant while varying only the timing of the introgression
262 event (i.e. relative introgression time). We found that $2\times DIP$ accurately polarizes asymmetric
263 introgression in all cases under omniscience (Fig. S4A and D). Under non-omniscience, $2\times DIP$
264 is accurate when speciation and introgression are separated by a substantial period of time (i.e.
265 relatively recent introgression times) (Fig. S4B). However, we observe a bias in favor of
266 inference of $P3 \Rightarrow P2$ introgression (similar to the bias described above) when introgression
267 occurs immediately following speciation (Fig. S4B) and this effect is compounded when total
268 tree-height is small (i.e. SF=0.1) (Fig. S4E). Below we explore sources of bias and strategies for
269 mitigating its effects.

270

271 *Triple-DIP: Adjusting for gene tree classification bias*

272 To address the directional bias in $2\times DIP$ caused by gene tree ILS at short branch lengths, we
273 developed an additional layer that can be applied in DIP analysis, which we refer to as Triple-
274 DIP or $3\times DIP$, so named because it includes an additional Δ component (i.e. the “delta of the
275 delta of the delta”). Briefly, in addition to calculating the standard $2\times DIP$ as above, we also

276 calculate an alternative $\Delta\Delta K$ ($\Delta\Delta K_{ALT}$) that substitutes gene trees with the alternative topology,
277 $((P1, P3), P2)$, for the introgressed loci used in the standard $\Delta\Delta K$:

278

279 *Eq. 5*

280
$$\Delta\Delta K_{ALT} = (\bar{K}_{12}(ALT \text{ loci}) - \bar{K}_{12}(SP \text{ loci})) - (\bar{K}_{23}(SP \text{ loci}) - \bar{K}_{23}(ALT \text{ loci}))$$

281

282 Note that, K_{23} values are substituted in place of K_{13} values in calculating this version of $\Delta\Delta K$
283 because we are now focusing on a conflicting topology in which $P1$ and $P3$ are sister to each
284 other. Because $P2$ and $P3$ are the two taxa subject to introgression, loci with this alternative
285 topology should arise only from ILS and not introgression. Following the logic of standard D
286 statistics (Green et al. 2010; Durand et al. 2011), we reasoned that ILS should be equally likely
287 to produce each of the two topologies that conflict with the species tree. Therefore, this
288 alternative $2\times DIP$ calculation may provide a measure of the amount of bias that is introduced by
289 ILS. In applying $3\times DIP$, we weight this value by the counts of loci with the expected ($P3 \Leftrightarrow P2$)
290 introgression topology (N_{INT} loci) and the alternative topology (N_{ALT} loci). The $\Delta\Delta\Delta K$ summary
291 statistic is calculated as follows (see Methods for derivation):

292

293 *Eq. 6*

294
$$\Delta\Delta\Delta K = \frac{(\Delta\Delta K * N_{INT}) - (\Delta\Delta K_{ALT} * N_{ALT})}{N_{INT} - N_{ALT}}$$

295

296 It should be noted that calculation of a $3\times DIP$ correction is only possible when there is at
297 least some ILS because it relies on the presence of $((P1, P3), P2)$ loci. As such, when we applied
298 $3\times DIP$ to genomes simulated with different branch lengths, we were only able to consistently
299 obtain measurements under short-branch conditions ($SF < 1.0$) where ILS is prevalent (Fig. 6C,
300 F, and I) because these were the only conditions that returned some loci with the relevant
301 topology. Under these short-branch conditions, we found that $3\times DIP$ reduced but did not
302 eliminate the bias observed in $2\times DIP$. While $\Delta\Delta\Delta K$ was still erroneously positive for the lowest
303 branch length values (Fig. 6F and I), the magnitude of $\Delta\Delta\Delta K$ was less than that of $\Delta\Delta K$.

304 We further explored bias in $2\times DIP$ and $3\times DIP$ by simulating short branch trees (with SF
305 of 0.1, 0.2, and 0.3) across a range of $p(P3 \Rightarrow P2)$ values. We first applied omniscient $2\times DIP$ to
306 give context to the bias introduced. As expected, omniscient $2\times DIP$ yielded negative $\Delta\Delta K$ values
307 for all replicates in which $p(P3 \Rightarrow P2) < 0.5$ (Fig. 7A). Consistent with the bias observed in Fig. 6,
308 standard (non-omniscient) $2\times DIP$ yielded erroneously positive $\Delta\Delta K$ values, especially for the
309 shortest branch length conditions (Fig. 7B). $3\times DIP$ reduced the bias, only yielding erroneously
310 positive $\Delta\Delta K$ values for the highest $p(P3 \Rightarrow P2)$ values and the shortest branch length conditions
311 (Fig. 7C). We also tested the performance of DIP in a situation in which ILS has occurred but
312 not introgression ($pINT=0$; SF=0.1) (Fig. S5). Despite the lack of true introgression in these
313 simulations, $1\times DIP$ produced a profile consistent with $P3 \Rightarrow P2$ introgression (Fig. S5B), although
314 the relative positions of ΔK_{23} , ΔK_{12} , and ΔK_{13} distributions differed from the pattern in Fig. 3C.
315 $2\times DIP$ also significantly indicated $P3 \Rightarrow P2$ introgression (Fig. S5C), but $3\times DIP$ produced a
316 $\Delta\Delta K$ that was not significantly different from zero, again indicating that $3\times DIP$ is less prone to
317 falsely indicating $P3 \Rightarrow P2$ introgression. However, when we explored bias in the context of
318 relative introgression timing (as opposed to total tree height), we found some situations in which
319 $3\times DIP$ showed increased directional bias compared to $2\times DIP$ (Fig. S4). $3\times DIP$ bias exceeded
320 $2\times DIP$ bias in situations in which total tree height was large (high SFs) (Fig. S4G) but the
321 opposite was true for low SFs (Fig. S4H). Together, these results indicate that $3\times DIP$ reduces
322 bias in some (but not all) situations, meaning that information can be gained by applying both
323 $2\times DIP$ and $3\times DIP$ when analyzing empirical data.

324

325 *Analysis of hominin introgression*

326 To understand the performance of DIP on empirical data, we applied DIP to existing genomic
327 data for introgression that occurred between Neanderthal and a modern human European lineage
328 (Green et al. 2010; Prüfer et al. 2014). Applying a five-taxon version of the D -statistic that made
329 use of the phylogenetic position of multiple modern African populations, a previous study
330 (Green et al. 2010) determined that unidirectional introgression occurred from Neanderthal to
331 European lineages. We applied DIP to Chromosome 1 from a Neanderthal sample, a Denisovan
332 sample, two modern human (San [African] and French [European]) samples, and the chimpanzee
333 reference genome. The availability of a Denisovan sample allowed us to infer DIP in two

334 different ways using two different taxon sampling schemes (TSS1 and TSS2) (Fig. 8A and F).
335 For both TSSs, there were three gene tree topologies present (Fig. 8B and G), indicating the
336 possibility of misclassification due to phylogenetic error and ILS.

337 Using TSS1, $1 \times DIP$ yielded a profile indicating the presence of at least some
338 bidirectional introgression (Fig. 8C), a scenario which was not ruled out by (Green et al. 2010).
339 However, it should be noted that, while ΔK_{12} and ΔK_{13} were both significantly positive, the ΔK_{13}
340 was much closer to zero, which would indicate a substantial asymmetry towards
341 Neanderthal \Rightarrow French introgression. $2 \times DIP$ and $3 \times DIP$ indicated significantly positive $\Delta \Delta K$ and
342 $\Delta \Delta \Delta K$, respectively (Fig. 8D and E), consistent with asymmetric introgression in the
343 Neanderthal \Rightarrow French direction. However, when we applied DIP to TSS2, we saw contradictory
344 results. While, $1 \times DIP$ again indicated the presence of bidirectional introgression, although
345 without the near-zero ΔK_{13} (Fig. 8H), $2 \times DIP$ and $3 \times DIP$ yielded positive $\Delta \Delta K$ and $\Delta \Delta \Delta K$,
346 respectively (Fig. 8I and J). $2 \times DIP$ and $3 \times DIP$ from TSS2 thus indicate French \Rightarrow Neanderthal
347 introgression. While introgression from modern humans has been inferred in other Neanderthal
348 samples (Kuhlwilm et al. 2016), it is at odds with findings from TSS1 and (Green et al. 2010).

349 To understand this discrepancy and put our empirical analyses in the context of our
350 simulations, we plotted distributions of divergence estimates (K_{23} , K_{12} , and K_{13}) calculated from
351 two simulated genomes and the TSSs used for the empirical analysis (Fig. S6). The empirical
352 distributions display a wider spread than the simulated distributions, potentially introducing
353 noise into the empirical analysis. Importantly, empirical data also show reduced levels of
354 divergence, even compared to the dataset simulated with the shortest branch lengths (SF = 0.1).
355 This suggests that the biasing factors explored above could be even more at play in the hominin
356 analysis (see Discussion).

357

358 **DISCUSSION**

359

360 *Intended applications of DIP*

361 Our simulation analyses provide a proof-of-principle that divergence data can be used to polarize
362 introgression in a four-taxon context, narrowing the methodological gap between our ability to
363 identify introgression and our ability to determine the direction of gene transfer. It should be
364 noted that DIP is not designed to replace existing methods and act as a frontline test of whether

365 introgession has occurred. Instead, we recommend cases of introgression first be confidently
366 identified with existing tools (Huson et al. 2005; Than et al. 2008; Green et al. 2010; Durand et
367 al. 2011; Martin et al. 2015; Pease and Hahn 2015; Stenz et al. 2015; Rosenzweig et al. 2016). In
368 these cases, *DIP* can then be used to polarize the direction of introgression, a critical step toward
369 interpreting biological implications. As we have shown above, *DIP* has the potential to
370 distinguish unidirectional and bidirectional introgression and, in cases of bidirectionality, to test
371 for asymmetry between the two directions.

372 While there are population genetic (Schrider et al. 2018) and five-taxon phylogenetic
373 (Green et al. 2010; Pease and Hahn 2015) methods capable of polarizing introgression, *DIP*
374 offers the ability to detect asymmetric introgression in both directions using a four-taxon context.
375 This will be valuable because very little is known about the extent of reciprocal exchange that
376 occurred during even well-studied introgression events (Green et al. 2010; Kuhlwilm et al.
377 2016), a deficit that likely stems from an absence of sensitive tools. Another group (Hibbins and
378 Hahn 2019) has recently proposed an approach that overlaps with *DIP*. They introduce a statistic,
379 D_2 , which is conceptually similar to ΔK_{13} described here. As such, non-zero values of D_2 indicate
380 the presence of $P_2 \Rightarrow P_3$ introgression ($B \Rightarrow C$ by their nomenclature). *DIP* goes further than
381 this approach because it also uses ΔK_{12} to test for introgression in the opposite direction and
382 $\Delta \Delta K$ to determine the predominant direction of introgression. The primary focus of the recent
383 work by Hibbins and Hahn (2019) is the development of another statistic, D_1 , that assesses the
384 timing of introgression relative to speciation events and can be used in assessing possible cases
385 of homoploid hybrid speciation. This is an elegant application of the same type of divergence-
386 based logic that underlies *DIP* to a biological question that cannot currently be addressed with
387 our method. We suggest that further improvements in polarizing introgression can be made by
388 combining the explicit coalescent-based modeling of Hibbins and Hahn (2019) with the more
389 comprehensive summary provided by $1\times$, $2\times$, and $3\times DIP$.

390

391 *Bias in DIP*

392 It should be noted that the simulation branch length parameters used in Fig. 3 and Fig. 5 resulted
393 in gene trees with relatively deep divergences. These branch lengths were chosen because they
394 emphasize differences in divergence and minimize potential biasing factors, thus providing the
395 clearest view of the general properties of *DIP*. However, it has been shown that timing of

396 population divergence is an extremely influential parameter in introgression analyses (Durand et
397 al. 2011; Martin et al. 2015; Zheng and Janke 2018). This is true, in part, because the length of
398 internal branches is directly related to the extent of ILS that occurs (Maddison and Knowles
399 2006). Short branches lead to increased ILS (Degnan and Rosenberg 2013), which can mimic
400 introgression and introduce noise and bias into introgression analyses. Coalescent simulations,
401 such as those that we performed, capture this phenomenon (Hudson 2002; Degnan and
402 Rosenberg 2009), introducing discordant gene trees at a rate dependent on branch length
403 parameters.

404 Population divergence is additionally important for *DIP* for a more intuitive reason; the
405 magnitude of the ΔK measurements, which are the cornerstone of *DIP*, are directly proportional
406 to the length of internal branches, meaning that *DIP* gains power to differentiate between
407 alternative hypotheses as branches are lengthened. Finally, there is a disparity in the accuracy of
408 topology classification for loci introgressed $P3 \Rightarrow P2$ vs. the opposite direction (Zheng and Janke
409 2018). This disparity stems from the fact that the internal branch on $P2 \Rightarrow P3$ introgression gene
410 trees are shorter than the same branch on $P3 \Rightarrow P2$ introgression gene trees, making for fewer
411 diagnostic synapomorphies by which to infer the introgression topology. This disparity is most
412 pronounced under conditions in which phylogenetically informative synapomorphies are scarce
413 (i.e. short branch lengths). Moreover, the specific disparity between genes introgressed in each
414 direction has an important consequence for simulation analyses, the short internal branch on
415 $P2 \Rightarrow P3$ introgression gene trees results in a higher rate of ILS for these loci compared to other
416 categories of loci, meaning that ILS obscures the introgression history of these loci at a higher
417 rate than loci introgressed in the opposite direction. This disparity is especially problematic for
418 *DIP* because it is likely to introduce a directional bias, favoring inference of $P3 \Rightarrow P2$
419 introgression.

420 For the above reasons, we performed parameter scans to explore the influence of branch
421 lengths and timing of introgression. We found that $2 \times DIP$ performs as expected when the
422 classification step is bypassed in omniscient mode (Fig 6A, D and G) but bias at short branch
423 lengths arises when introgressed and non-introgressed loci must be classified directly based on
424 the data (Fig. 6B, E, and H). When working with empirical datasets, omniscience about origins
425 and the effects of introgression vs. ILS on individual loci is not possible. As such, classification
426 error may be unavoidable, so we sought to develop a strategy to correct for bias that arises from

427 it, leading to the development of $3\times DIP$. A benefit of $3\times DIP$ is that it is applicable under the
428 conditions in which bias is most pronounced. Following the logic of the D -statistic (Green et al.
429 2010), $3\times DIP$ is based on the expectation that ILS is equally likely to produce the two topologies
430 that conflict with the species tree: $(P1(P2,P3))$ and $(P2(P1,P3))$. Therefore, under the assumption
431 that there has been no introgression between $P3$ and $P1$, the number of ALT loci, which are
432 defined by having the $(P2(P1,P3))$ topology, provides an estimate for the number of identified
433 loci displaying the introgressed topology that were actually the result of ILS. Accordingly,
434 $3\times DIP$ applies a correction for ILS that is proportional to the frequency of these ALT loci. We
435 found that $3\times DIP$ reduces directional bias at short branch lengths (Fig. 6C, F, and I; Fig. 6) and
436 does not provide false positive results in the complete absence of introgression (Fig. S5). These
437 results indicate that $3\times DIP$ is a step toward overcoming directional bias; however, bias persisted
438 for the shortest branch length simulations, meaning that there are biological scenarios in which
439 $3\times DIP$ is not free from bias. Further, under situations in which introgression occurs immediately
440 following speciation, we observed cases in which $2\times DIP$ exhibited less bias than $3\times DIP$ (Fig.
441 S4G).

442 The basic premise of $3\times DIP$ is that the number of ALT loci serves as a proxy for the
443 number of loci that have a true history of speciation but display an introgression topology due to
444 ILS. This assumption appears valid in a scenario with ILS but not introgression, as indicated by
445 the ability of $3\times DIP$ to eliminate bias under these simulated conditions (Fig. S5). However,
446 $3\times DIP$ does not account for the fact that ILS occurs not only for loci with a speciation history,
447 but also loci with an introgression history. In other words, some of the loci that exhibit the ALT
448 topology will have a true history of introgression, making these loci an imperfect proxy for the
449 number of loci with a speciation history affected by ILS. This can cause undesired behavior of
450 $3\times DIP$ in situations in which most or all of the ALT topologies stem from loci with a history of
451 $P2 \Rightarrow P3$ introgression. Therefore, we suggest that there is a benefit to applying all three
452 variations of DIP to provide the most comprehensive view of introgression directionality.

453 Fully overcoming bias introduced into introgression analyses by classification error
454 represents a future goal for the field. With current implementations of DIP , inferences of
455 introgression in the $P3 \Rightarrow P2$ direction should be viewed with caution, especially in taxa with very
456 recent divergence times or when introgression occurred very shortly after a speciation event. On

457 the other hand, it can be viewed as a conservative test for $P2 \Rightarrow P3$ introgression, so identification
458 of introgression in that direction can be interpreted as a much more confident prediction. As
459 suggested above, further progress in this area may come through more complex models that
460 explicitly include ILS that occurs at introgressed loci (Hibbins and Hahn 2019), rather than
461 solely at non-introgressed loci.

462 A related challenge to *DIP* analyses is associated with the question of how to partition the
463 genome. Arbitrarily breaking chromosomes into loci of a fixed size may be problematic because
464 the resulting ‘loci’ may either be composed of multiple haplotype blocks with different
465 genealogies due to intralocus recombination or, conversely, an individual haplotype block may
466 contain multiple partitioned ‘loci’, resulting in pseudoreplication as it will be sampled numerous
467 times by *DIP*. Our simulations of introgression and recombination revealed that these issues do
468 not introduce a directional bias but do dramatically increase the variance of *DIP* when the size of
469 true haplotype blocks is much larger than the window size used by *DIP*. One potential strategy
470 for mitigating this challenge would be to incorporate methods that explicitly infer recombination
471 breakpoints (e.g. the four-game test (Hudson and Kaplan 1985)) into the window-definition
472 phase of *DIP*.

473 There are also unexplored factors that should be considered when implementing *DIP*
474 because our simulations were run under simplifying assumptions such as random mating,
475 constant population size, and a single bout of instantaneous introgression solely between $P3$ and
476 $P2$. Violation of these assumptions in natural populations (Eriksson and Manica 2012; Prüfer et
477 al. 2014; Kuhlwilm et al. 2016; Slon et al. 2018) may introduce additional sources of bias. Our
478 simulation strategies also do not fully capture rate heterogeneity across the genome, branch-
479 specific variation in effective population size/mutation rate, technical biases caused by read-
480 mapping, and introgression from unsampled taxa (i.e. “ghost lineages”). These factors should be
481 investigated in future studies with more complex simulation scenarios.

482

483 *DIP performance on empirical data*

484 We chose hominin introgression as a test case because it is one of the most famous and best-
485 studied examples of introgression. An additional benefit is that the sampling in the group is
486 dense; several modern human samples as well as samples from ancient Neanderthal and
487 Denisovan tissues are available. A benefit of this dense taxon sampling is that previous studies

488 have been able to apply five-taxon statistics to polarize introgression, leading to the conclusion
489 that “all or almost all of the gene flow detected was from Neandertals into modern humans”
490 (Green et al. 2010). However, more recent analyses of additional archaic samples from different
491 parts of the hominin geographical range also indicated introgression in the opposite direction
492 (Kuhlwilm et al. 2016) as well as mating between Neanderthals and Denisovans (Slon et al.
493 2018).

494 An additional benefit of dense hominin taxon-sampling is that the phylogenetic
495 placement of samples allows us to analyze the same introgression event with four-taxon statistics
496 from two different angles. We devised a TSS in which Neanderthal and a modern human acted
497 as P_3 and P_2 , respectively (TSS1, Fig. 8A) as well as one in which the roles were reversed
498 (TSS2, Fig. 8F). Importantly, these TSSs allowed us to evaluate whether the directional bias
499 described above was strong enough to outweigh the true signature from introgression. DIP
500 returned contradictory results for TSS1 and TSS2. In both cases, $2 \times DIP$ and $3 \times DIP$ favored
501 $P_3 \Rightarrow P_2$ introgression, despite the identity of P_3 and P_2 being reversed in the two cases. The fact
502 that both analyses sided with the directional bias we documented above, suggests that bias may
503 be outweighing the introgression signature. This is consistent with the observation that hominin
504 divergence is both lower and more heterogenous than our simulated branch lengths (Fig. S6),
505 suggesting that biasing factors are strong enough to bias even $3 \times DIP$. It is worth noting,
506 however, that the magnitude of $\Delta\Delta K$ from TSS1 is higher than that from TSS2 and the variance
507 of $\Delta\Delta\Delta K$ is much larger for TSS2 than for TSS1, meaning the signal favoring
508 Neanderthal \Rightarrow French introgression (the expected direction) is stronger and less noisy than the
509 signal in the opposite direction.

510 Our general takeaway from analysis of hominin data is that, like all introgression analysis
511 tools, there are limits to the conditions under which DIP can be reliably applied. Although
512 $3 \times DIP$ may represent a step in the right direction, in the case of hominin introgression, the level
513 of ILS swamps out the signal of introgression. We suggest that incorporating an alternative
514 means of identifying introgressed loci, such as f_d (Durand et al. 2011; Martin et al. 2015), may
515 yield more reliable results when ILS is prevalent, representing an area of future work. For the
516 time being, DIP will be most reliable in cases of introgression that occurred at more ancient time
517 scales (Forsythe et al. in revision; Dasmahapatra et al. 2012; Fontaine et al. 2015).

518

519 **METHODS**

520 *Resource availability*

521 URLs for downloading previously published data are provided in place in the following sections.

522 Scripts for reproducing the analyses in this study are available at:

523 <https://github.com/EvanForsythe/DIP>. Also included are *R* scripts for performing *DIP* on
524 genomic data. All scripts are callable from the command line. Users have the choice of inputting
525 either whole chromosome alignments, which will be divided into single-window (i.e. locus)
526 alignments in preparation for *DIP*. Alternatively, *DIP* takes single-locus alignments, bypassing
527 the window partitioning step. *DIP* outputs descriptive statistics and PDF figures similar to Fig. 8.

528

529 *Simulations of sequence evolution*

530 We generated whole genome alignments in which introgression has occurred in some
531 (but not all) loci, and in which donor and recipient taxa for each introgressed locus are known.
532 To accomplish this, we simulated sequence evolution of loci 5000 nucleotides in length in a four-
533 taxon system (three in-group taxa, *P1*, *P2*, and *P3* and an outgroup, *O*) (Fig. 1). All simulations
534 were performed with *ms* (Hudson 2002) and *seq-gen* (Rambaut and Grassly 1997) implemented
535 in *R* v3.5.0 with *phyclust* v0.1-22 (Chen 2011) similar to (Martin et al. 2015). *Ms* was used to
536 generate a coalescence tree, which was passed to *seq-gen* in order to generate a sequence
537 alignment. A portion of the loci were simulated to have evolved along a path of simple
538 speciation. In the absence of ILS, the gene trees for these loci should match the speciation
539 history, $((P1, P2)P3)O$ (Fig. 1A). These loci, denoted as species topology loci, were simulated
540 with the following *R* commands:

541

542 `ret.mssp<-ms(nsam = 4, nreps = 1, opts = "-T -t 50 -I 4 1 1 1 1 -ej 4 2 1
543 -ej 8 3 1 -ej 12 4 1 -r 5 5000")`

544

545 `seqssp<-seqgen(opts = "-mHKY -15000 -s 0.01", newick.tree = ret.mssp[3])`

546

547 In the above *ms* call, the *-T* argument directs *ms* to output gene trees, one of which is used as
548 input for *seq-gen*. The *-t* argument sets the *theta* value used by *ms*, which was held constant
549 across all simulations. The arguments *-I 4 1 1 1 1* indicate that four populations were simulated
550 with one individual sampled from each, which was also held constant across all simulations.

551 Each -ej command represents a speciation event (in a forward-time context), the first number
552 following the -ej flag being the timing of the event and the two following numbers being the two
553 daughter populations arising from the speciation. The -r argument indicates the rate of
554 recombination and the final number indicates the length of the segments being simulated by *ms*.
555 However, for this simulation strategy we only input one tree into seq-gen, essentially simulating
556 non-recombining loci (however, see below for our explicit treatment of recombination).

557 Loci with instantaneous unidirectional introgression occurring between *P2* and *P3* were
558 also simulated. Introgression trees (transferred in either direction) will have the topology,
559 (*P3,P2*)*O*, and thus differ from the species tree. The direction of introgression for an
560 individual locus was indicated by ‘donor taxon’ and ‘recipient taxon’ as in the following *R*
561 command:

562
563 `ret.msIG <- ms(nsam = 4, nreps = 1, opts= "-T -t 50 -I 4 1 1 1 1 -ej 4 2
564 1 -ej 8 3 1 -ej 12 4 1 -es 2 <recipient taxon> 0.4 -ej 2 5 <donor taxon>
565 -r 5 5000")`
566
567 `seqsIG<-seqgen(opts = "-mHKY -15000 -s 0.01", newick.tree = ret.msIG[3])`
568

569 We replicated the above commands for species and introgressed topology loci to create datasets
570 representing simulated whole-genome alignments composed of a total of 5000 loci (Fig. S1). The
571 argument in the above command that specify introgression are the -es argument and the final -ej
572 command. We define the proportion of all loci in the genome resulting from simulated
573 introgression in either direction as p_{INT} and the proportion of introgressed genes that were
574 transferred in the $P3 \Rightarrow P2$ direction as $p(P3 \Rightarrow P2)$. Because a single locus can only be transferred
575 in one direction or the other, the proportion of loci transferred in the $P2 \Rightarrow P3$ direction,
576 $p(P2 \Rightarrow P3)$, is $1 - p(P3 \Rightarrow P2)$. Whole genome alignments with known values of $p(IG)$ and
577 $p(P3 \Rightarrow P2)$ were used to test the performance of *DIP*. We performed parameter scans by
578 simulating genome alignments with varying combinations of $p(IG)$ and $p(P3 \Rightarrow P2)$ (See Fig. S1).

579 Recognizing that the above simulation strategy does not realistically model
580 recombination, we also employed an alternative simulation strategy in which we simulate whole
581 chromosomes (rather than individual loci) while allowing for varying levels of recombination.

582 Introgression in the presence of recombination was simulated with the following *ms* command in
583 *R*.

584
585 `ms(nsam = 4, nreps = 1, opts = T -t 50 -I 4 1 1 1 1 -ej 4 2 1 -ej 8 3 1 -`
586 `ej 12 4 1 -es 1 <recipient taxon> <pINT> -ej 1 5 <donor taxon> -r`
587 `<recombination rate> 12500000)`

588
589 The output files from the above *ms* command (run twice in cases of bidirectional
590 introgression—once for each direction of introgression) were combined into a single file, which
591 was input to *seq-gen* in order to generate a whole chromosome alignment. *Seq-gen* was called
592 from the command line with the following command:

593
594 `seq-gen -mHKY -l 25000000 -s 0.01 -p <number of haplotype blocks from ms>`
595 `< <ms_output_file> > <seqgen output file name> 2> <file name to store`
596 `haplotype block positions>`

597
598 Whole chromosome alignments were replicated five times for each parameter value and
599 *DIP* analyses were performed with the 5000-bp partitioning approach applied elsewhere in this
600 manuscript.

601 The default branch length parameters used for Fig. 3 and Fig. 5 are $T_{INT}=1$, $T_\alpha=4$, $T_\beta=8$,
602 and $T_\gamma=12$ measured in coalescent units of $4N$ generations (see Fig. 1). To explore the effects of
603 divergence times, we multiplied all branch length parameters by a range of different scaling
604 factor (SF) values. For example, SF=0.1 results in the following node depths: $T_{INT}=0.1$, $T_\alpha=0.4$,
605 $T_\beta=0.8$, and $T_\gamma=1.2$.

606 As an additional means of exploring the effects of speciation and introgression timing, we
607 also varied the timing of introgression in proportion to the most recent speciation even (relative
608 introgression time). The timing of introgression was set relative to the T_α speciation time. For
609 example, under default SF described in the previous paragraph with $T_\alpha=4$, a relative
610 introgression time of 0.8 translates to $T_{INT}=3.2$. For parameter scans involving branch lengths, we
611 generated point estimates of $\Delta\Delta K$ and $\Delta\Delta\Delta K$ from five replicate genomes for each condition.

612
613 *Classification of introgressed and non-introgressed loci*

614 The first step in all versions of *DIP* is sorting loci to distinguish the loci that were
615 introgressed from those that follow the species branching order (i.e. classification). Using
616 simulated data affords us omniscience at this step (i.e. we know whether each locus was
617 originally simulated as introgressed or not). However, unless specifically stated, we did not make
618 use of the known history of simulated loci. Instead, *DIP* infers the introgression status of loci
619 based on the topology of a neighbor joining gene tree inferred for each locus using *Ape* v5.2
620 (Paradis et al. 2004). Loci displaying the $((P1, P2)P3)O$ topology are marked as non-
621 introgressed loci. Loci displaying the $((P2, P3)P1)O$ topology (introgressed topology) are
622 designated as introgressed loci. Any loci displaying the alternative topology, $((P1, P3)P2)O$,
623 which are not produced by speciation or introgression, are omitted from $1 \times DIP$ and $2 \times DIP$ but
624 used by $3 \times DIP$ to calculate a correction factor (see below).

625

626 *Inferring introgression directionality with $1 \times DIP$*

627 We calculated the pairwise divergences, K_{23} , K_{12} , and K_{13} (as indicated in Fig. 1A) for
628 each locus using the *dist.dna* command from the *Ape* package with default settings. Pairwise
629 divergences, K_{23} , K_{12} , and K_{13} are named for the taxa involved in the distance calculation. For
630 example, K_{23} measures the divergence of $P2$ and $P3$ (see Fig. 1). ΔK_{23} , ΔK_{12} , and ΔK_{13} were
631 calculated based on difference in mean K values between SP and introgression loci as shown in
632 *Eqs. 1-3*. To test for significance, bootstrapped distributions were obtained by resampling (with
633 replacement) loci from the genome to achieve genome alignments equal in number of loci to the
634 original genome alignment. One thousand such replicates were performed, recalculating ΔK_{23} ,
635 ΔK_{12} , and ΔK_{13} for each replicate. P -values for the significance of ΔK values were calculated as
636 the proportion of replicates for which $\Delta K \leq 0$. For the parameter scan of $1 \times DIP$ (Fig. 3D),
637 inference of a significant directional profile required that all three measures, ΔK_{23} , ΔK_{12} , and
638 ΔK_{13} , adhere to their expected profile with a significant ($p < 0.05$) p -value for each (with the
639 exception of cases in which the expectation is $\Delta K = 0$).

640

641 *Inferring introgression directionality with $2 \times DIP$ and $3 \times DIP$*

642 $\Delta \Delta K$ was calculated from ΔK_{12} , and ΔK_{13} as described in *Eq. 4*. The bootstrap resampling scheme
643 described in the previous paragraph was used to assess the significance of $2 \times DIP$. $\Delta \Delta K$ was
644 calculated for each replicate and p -values were obtained from the proportion of replicates for

645 which $\Delta\Delta K$ overlapped zero (multiplied by two for a two-sided test). Like $2 \times DIP$, $3 \times DIP$ makes
646 use of $\Delta\Delta K$ to indicate the directionality of introgression. However, $3 \times DIP$ also introduces
647 $\Delta\Delta K_{ALT}$, which is calculated according to *Eq. 5*. $\Delta\Delta\Delta K$ is obtained from the difference between
648 $\Delta\Delta K$ and $\Delta\Delta K_{ALT}$ (see *Eq. 6*).

649 The rationale for the $3 \times DIP$ correction is that the observed value of $\Delta\Delta K$ may be viewed
650 as a weighted average of 1) a corrected value ($\Delta\Delta\Delta K$) that is based only on the loci that truly
651 experienced a history of introgression and 2) a spurious signal ($\Delta\Delta K_{ILS}$) arising from the
652 unknown number of loci that exhibit an introgression topology that is actually the result of ILS
653 (N_{ILS}).

654

655 *Eq. 7*

656

657
$$\Delta\Delta K = \left(\frac{N_{INT} - N_{ILS}}{N_{INT}} \right) \Delta\Delta\Delta K + \left(\frac{N_{ILS}}{N_{INT}} \right) \Delta\Delta K_{ILS}$$

658

659 Based on the expected symmetry of ILS, we can use $\Delta\Delta K_{ALT}$ and N_{ALT} as estimates of $\Delta\Delta K_{ILS}$ and
660 N_{ILS} , respectively.

661

662 *Eq. 8*

663

664
$$\Delta\Delta K = \left(\frac{N_{INT} - N_{ALT}}{N_{INT}} \right) \Delta\Delta\Delta K + \left(\frac{N_{ALT}}{N_{INT}} \right) \Delta\Delta K_{ALT}$$

665

666

667 Solving *Eq. 8* for $\Delta\Delta\Delta K$ yields *Eq. 6* (see Results). This approach is based on substantial
668 simplifying assumptions. For example, it does not account for the misidentification of loci that
669 have a true history of introgression but exhibit the species or ALT topology because of ILS (see
670 Discussion). As for $\Delta\Delta K$ above, significance of $\Delta\Delta\Delta K$ is obtained from resampled whole-genome
671 alignments.

672

673 *Hominin data analysis*

674 To generate whole-chromosome alignments from the hominin dataset for *DIP*,
675 Chromosome I sequencing data for two Neanderthal, one Denisovan, and two modern human
676 samples from (Prüfer et al. 2014) were downloaded from <http://cdna.eva.mpg.de/neandertal/> as
677 VCF files. The human reference genome (hg19) (International Human Genome Sequencing
678 Consortium 2001), which was originally used for read mapping during the creation of VCF files,
679 was obtained from <http://hgdownload.cse.ucsc.edu/goldenPath/hg19/>.

680 Structural variation (indel) information was trimmed from VCF files, using *VCFtools* v.
681 0.1.13 (Danecek et al. 2011) and *Tabix* (Li et al. 2009) with the following commands:

682
683 `vcftools --gzvcf Chrom1_with_indels.vcf.gz --remove-indels --recode --`
684 `recode-INFO-all --out Chrom1_SNPs_only.vcf`
685
686 `bgzip Chrom1_SNPs_only.vcf`
687
688 `tabix -p vcf Chrom1_SNPs_only.vcf.gz`
689

690 Whole-chromosome consensus sequence was extracted from VCF files using *BCFtools*
691 v1.6 (Li et al. 2009) with the command below. For heterozygous sites, by default *bcftools*
692 *consensus* applies the alternative variant (i.e. the variant that does not match the reference
693 genome) to the consensus sequence for the given sample (see
694 <https://samtools.github.io/bcftools/bcftools.html>). It should be noted that heterozygosity
695 information may be lost at this step, which was necessary to match the format of the
696 phylogenetic data generated in our simulations.

697
698 `cat hg19_chrom1.fa | bcftools consensus Chrom1_SNPs_only.vcf.gz >`
699 `Chrom_1_consensus.fa`
700

701 We used the reference chimpanzee genome (PanTro5) (The Chimpanzee Sequencing
702 Consortium 2005) as an outgroup. We downloaded a MAF alignment of chromosome one from
703 PanTro5 and hg19 from: <http://hgdownload.cse.ucsc.edu/goldenpath/hg19/vsPanTro5/axtNet/>.
704 We converted this file to FASTA format using Galaxy tools (Afgan et al. 2018) available at
705 <https://usegalaxy.org/>. Finally, the consensus sequence from each hominin sample and
706 chimpanzee was concatenated into a whole-chromosome multiple sequence alignment in FASTA

707 format. This five-taxon alignment was pruned to contain four taxa according to each TSS (see
708 Fig. 8) and then divided into single-locus alignments 5000 bp in length, which were used as input
709 to *DIP*.

710

711 ACKNOWLEDGMENTS

712 This work was funded by NSF grant IOS-1444490 to M.A.B as well as NSF grant MCB-
713 1733227 to D.B.S. We thank M.W. Hahn, M.J. Sanderson, R.A. Mosher, A.D.L Nelson, K.
714 Dew-Budd, K. Palos, A.E. Baniaga, S.M. Lambert, G. Achaz, and one anonymous reviewer for
715 helpful comments and discussion.

FIGURE LEGENDS

Fig. 1. Expected divergence under simulated introgression

The species P_1 , P_2 , P_3 , and O were used for simulation analyses. (A) The species branching order. Introgression between species P_2 and P_3 is indicated with a double-sided dotted arrow. Default values used during all simulations, unless specified otherwise, are: $T_{IG}=1$, $T_\alpha=4$, $T_\beta=8$, and $T_\gamma=12$ in coalescent units (4N generations) (Hudson 2002). (B) A gene tree depicting a gene that was introgressed $P_3 \Rightarrow P_2$. (C) A gene tree depicting a gene that was introgressed $P_2 \Rightarrow P_3$. ΔK values are calculated based on changes in mean divergence between pairs of taxa in the set of trees with the speciation topology *vs.* the set of introgression trees (see *Eq. 1-3*). Note that the expected profiles of ΔK values for $P_3 \Rightarrow P_2$ introgression differs from that of $P_2 \Rightarrow P_3$ introgression, forming the basis for the *DIP* test (see Main Text and Fig. 2).

Fig. 2. Workflow of the *DIP* test.

Point estimates of ΔK_{23} , ΔK_{12} , ΔK_{13} are calculated from whole genomes, which are then resampled to yield distributions of ΔK_{23} , ΔK_{12} , ΔK_{13} . Unidirectional $P_3 \Rightarrow P_2$ introgression is indicated by the profile, $\Delta K_{23} > 0$, $\Delta K_{12} > 0$, and $\Delta K_{13} = 0$. Unidirectional $P_2 \Rightarrow P_3$ introgression is indicated by $\Delta K_{23} > 0$, $\Delta K_{12} = 0$, and $\Delta K_{13} > 0$. Bidirectional introgression is indicated by $\Delta K_{23} > 0$, $\Delta K_{12} > 0$, and $\Delta K_{13} > 0$. All other profiles are considered inconclusive regarding the occurrence and directionality of introgression. *P*-values for testing whether each ΔK value significantly differs from 0 are obtained from the proportion of replicates for which $\Delta K \leq 0$. Colors reflect the black, red, and gray genealogical histories from Fig. 1. In this illustration, all introgression loci are in the $P_3 \Rightarrow P_2$ (red) direction. But we use the red/gray dashed lines for showing the distribution of introgression loci because, in general, the set of introgression loci can contain $P_3 \Rightarrow P_2$ loci, $P_2 \Rightarrow P_3$ loci, or both.

Fig. 3. *DIP* analysis of simulated introgression.

Genomes were simulated according to steps 1-3 in Fig. S1, under unidirectional $P_2 \Rightarrow P_3$ introgression (A), symmetrical bidirectional $P_3 \Leftrightarrow P_2$ introgression (B), and unidirectional $P_3 \Rightarrow P_2$ introgression (C). Simulation parameters are as follows: (A), $n = 5000$, $pINT = 0.5$, $p(P_3 \Rightarrow P_2) = 0$; (B), $n = 5000$, $pINT = 0.5$, $p(P_3 \Rightarrow P_2) = 0.5$; (C), $n = 5000$, $pINT = 0.5$,

$p(P3 \Rightarrow P2) = 1$. DIP was applied to each genome to yield profiles of ΔK_{23} , ΔK_{12} , ΔK_{13} . ** indicates significant departure from 0 ($p < 0.01$). **(D)** A plot scanning simulation parameters, proportion of the genome that was introgressed ($pINT$) (y-axes) and proportion of introgressed loci transferred in each direction ($p(P3 \Rightarrow P2)$) (x-axis). Each square in the plot indicates the DIP results obtained from five replicated simulated genome alignments. Red boxes indicate the profile consistent with $P3 \Rightarrow P2$ introgression (see panel C). Gray boxes indicate the profile consistent with $P2 \Rightarrow P3$ introgression (see panel A). The shading of the boxes corresponds the percentage of replicates that indicate a given profile, as specified by the key to the right of the plot. Unshaded boxes indicate zero replicates yielded a significant unidirectional profile (i.e. all replicates yield the bidirectional introgression profile (see panel B)).

Fig. 4. Workflow of the $2 \times DIP$ test.

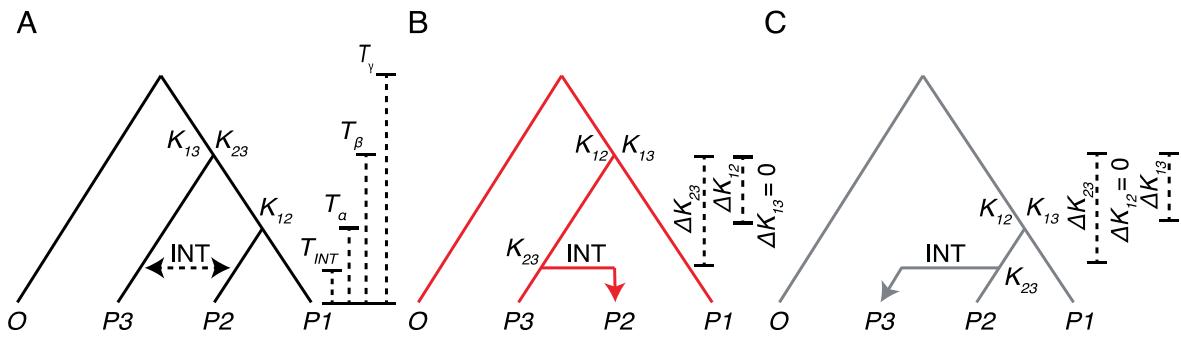
(Top) A point estimate of $\Delta\Delta K$ is calculated from a whole genome alignment from ΔK_{12} and ΔK_{13} values. **(Bottom)** A sampling distribution of $\Delta\Delta K$ is calculated from resampled gene alignments (bootstrapping) obtained from the original genome. If the majority of $\Delta\Delta K$ replicates are > 0 , it is an indication of asymmetric $P3 \Rightarrow P2$ introgression. In this case, the proportion of $\Delta\Delta K$ replicates < 0 determines the p -value (doubled for a two-sided test) for asymmetric $P3 \Rightarrow P2$ introgression. Asymmetric $P2 \Rightarrow P3$ introgression is indicated by the opposite pattern.

Fig. 5. $2 \times DIP$ analysis of simulated introgression.

Genomes were simulated according to steps 1-3 in Fig. S1. Genomes were simulated under unidirectional $P2 \Rightarrow P3$ introgression **(A)**, symmetrical bidirectional $P3 \Leftrightarrow P2$ introgression **(B)**, and unidirectional $P3 \Rightarrow P2$ introgression **(C)**. Simulation parameters are as follows: **(A)**, $n = 5000$, $pINT = 0.5$, $p(P3 \Rightarrow P2) = 0$; **(B)**, $n = 5000$, $pINT = 0.5$, $p(P3 \Rightarrow P2) = 0.5$; **(C)**, $n = 5000$, $pINT = 0.5$, $p(P3 \Rightarrow P2) = 1$. $2 \times DIP$ was applied to each genome to yield a sampling distribution of $\Delta\Delta K$. ** indicates significant departure from 0 ($p < 0.01$). **(D)** A plot scanning $pINT$ and $p(P3 \Rightarrow P2)$ as in Fig. 3D. Red boxes indicate significant ($p < 0.05$) $P3 \Rightarrow P2$ $2 \times DIP$ signature (see panel C). Gray boxes indicate significant ($p < 0.05$) $P2 \Rightarrow P3$ $2 \times DIP$ signature (see panel A). Five replicate genomes were simulated for each parameter value. The shading of the boxes corresponds the percentage of replicates for which $2 \times DIP$ significantly indicated a directional signature, as specified by the key to the right of the plot. Unshaded boxes indicate zero replicates yielded a significant directional signature (i.e. all five replicates failed to reject the null hypothesis of symmetrical introgression (see panel B)).

Fig. 6. Exploration of branch length parameters used during genome simulation.

The default branch lengths used during all previous simulations ($T_{IG}=1$, $T_{\alpha}=4$, $T_{\beta}=8$, and $T_{\gamma}=12$) were multiplied by branch-length scaling factors. For all plots, five replicate genomes were simulated for each scaling factor value. $pINT = 0.5$ was used for all simulations. DIP was performed on each replicate; individual points on plots represent point estimates of $\Delta\Delta K$ and $\Delta\Delta\Delta K$ (jittered for clarity). Genomes were simulated with asymmetric introgression favoring $P3 \Rightarrow P2$ **(A-C)**, symmetric bidirectional introgression **(D-F)**, and asymmetric introgression favoring $P2 \Rightarrow P3$ **(G-I)**. Omniscient $2 \times DIP$ **(A, D, and G)**, standard $2 \times DIP$ **(B, E, and H)**, and $3 \times DIP$ **(C, F, and I)** were performed. $\Delta\Delta\Delta K$ data points are absent at higher scaling factors because this adjusted version of $\Delta\Delta K$ can only be calculated when there are at least some loci with the unexpected topology (ALT loci) as a result of topology misclassification or ILS.


Fig. 7. Characterization of *DIP* bias under short branch conditions.

Genomes were simulated with different values of $p(P3 \Rightarrow P2)$ (x axis) and different branch length scaling factors (SF) (point colors). See Fig. 6 for description of SF. Purple, SF = 0.1; Orange, SF = 0.2; Green, SF = 0.3. As in Fig. 6, Omniscient $2 \times DIP$ (A), standard $2 \times DIP$ (B), and $3 \times DIP$ (C) were performed. Five replicate genomes were analyzed for each condition. $pINT = 0.5$ was used for all simulations.

Fig. 8. *DIP* analysis of hominin introgression. *DIP* was performed on whole-chromosome alignments of chromosome 1 using two different taxon sampling schemes (TSS). (A) Depiction of the samples used in TSS1. (B) Neighbor-joining gene-tree topologies from individual loci. (San.,French),Nean.), green; (French, Nean.),San), orange; (San, Nean.),French), purple. (C-E) Results from $1 \times DIP$ (C), $2 \times DIP$ (D), and $3 \times DIP$ (E) applied to TSS1 alignment. (F) Depiction of the samples used in TSS2. (G) Neighbor-joining gene-tree topologies from individual loci. (Deni.,Nean.),French), green; (Nean.,French),Deni.), orange; (Deni.,French),Nean.), purple. (H-J) Results from $1 \times DIP$ (H), $2 \times DIP$ (I), and $3 \times DIP$ (J) applied to TSS2 alignment. ** indicates significant departure from 0 ($p < 0.01$).

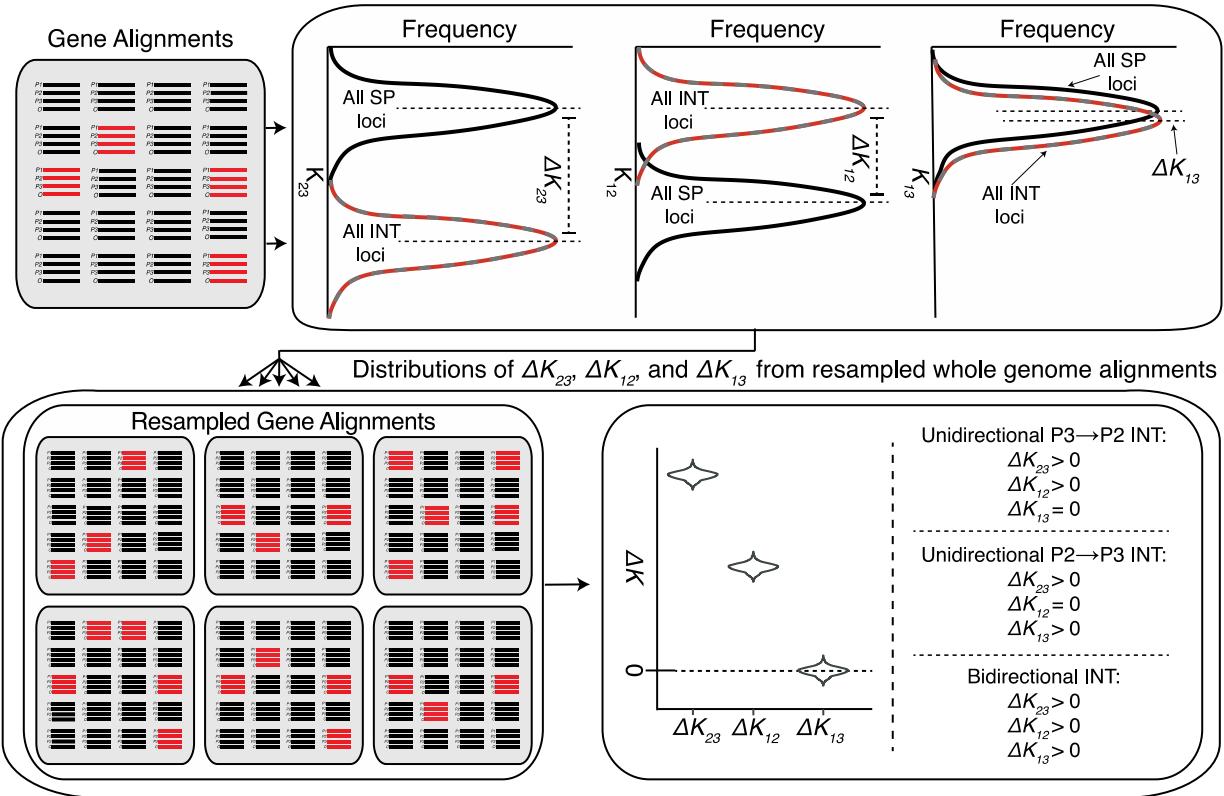

FIGURES

Fig. 1

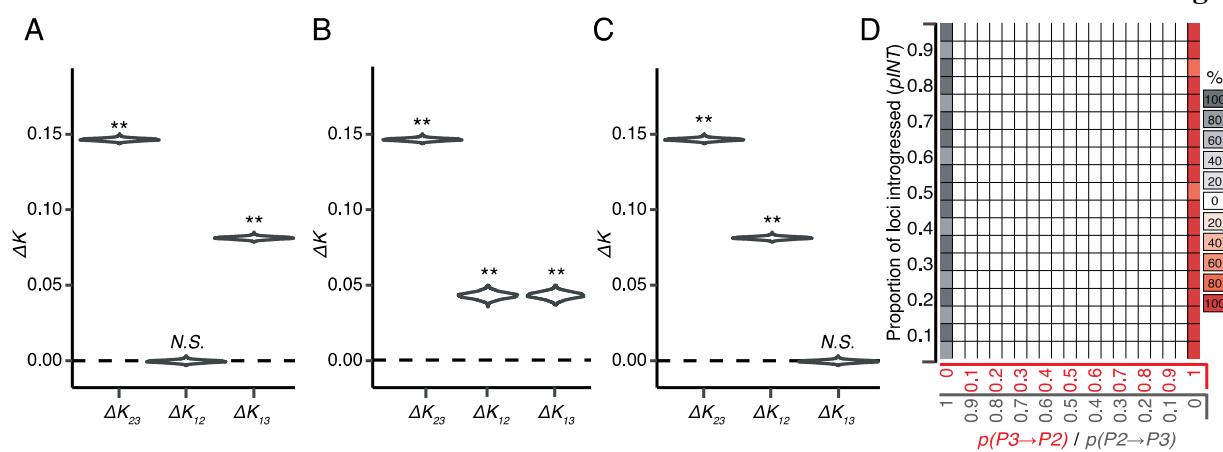


Fig. 2

ΔK_{23} , ΔK_{12} , and ΔK_{13} calculated from a whole genome alignment

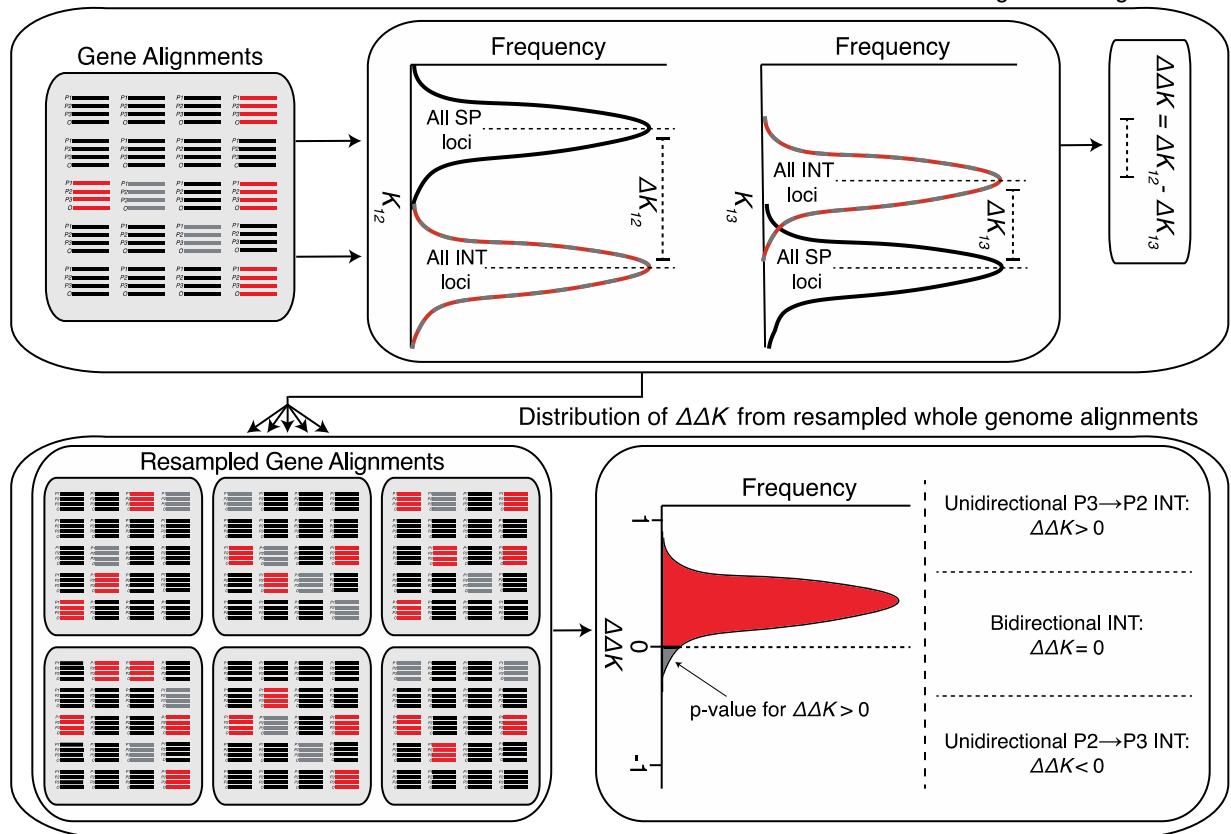


Fig. 3



Fig. 4

$\Delta\Delta K$ calculated from a whole genome alignment

Fig. 5

Fig. 6

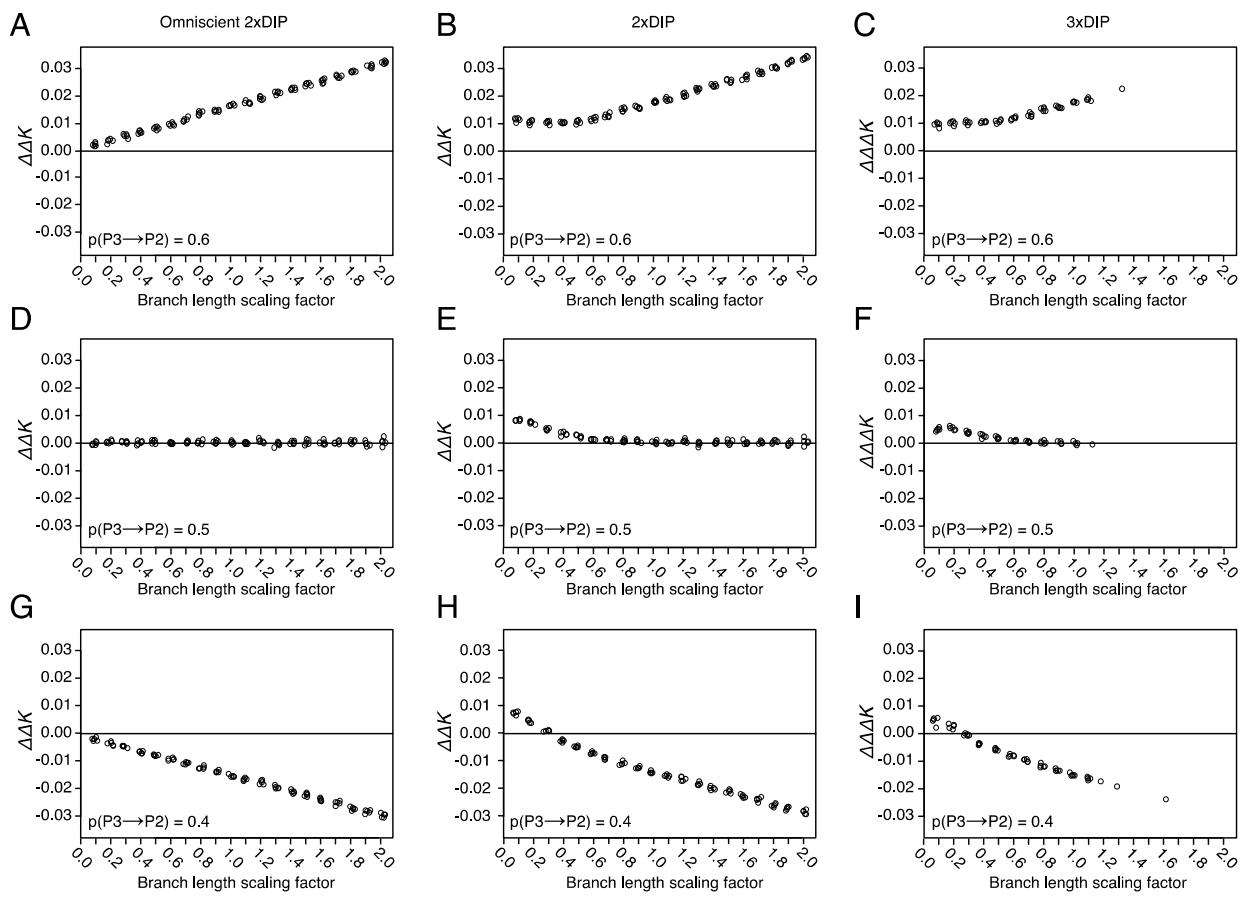


Fig. 7

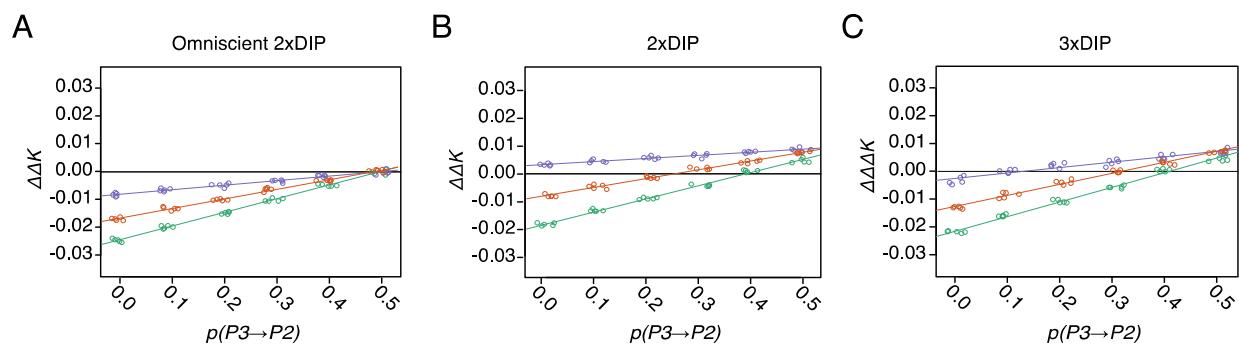
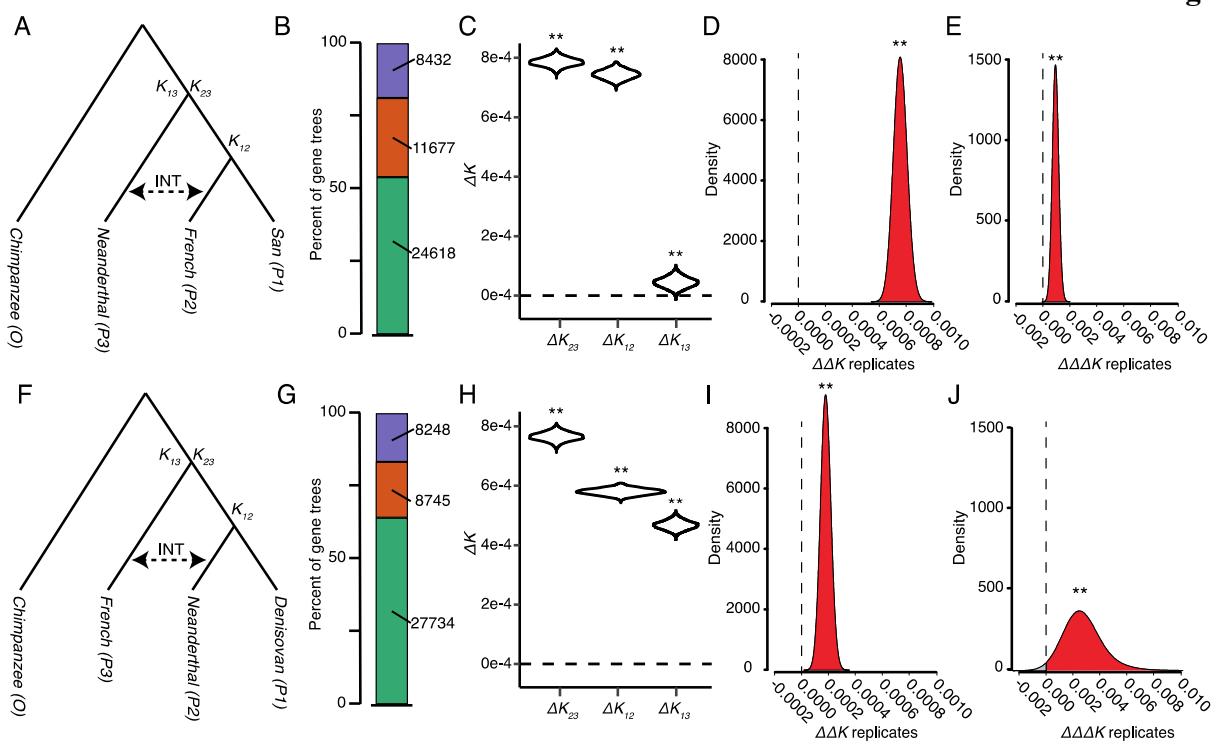



Fig. 8

CITATIONS

716 Afgan E, Baker D, Beek M Van Den, Bouvier D, Chilton J, Clements D, Coraor N, Guerler A,
717 Hillman-jackson J, Hiltemann S, et al. 2018. The Galaxy platform for accessible,
718 reproducible and collaborative biomedical analyses: 2018 update. *Nucleic Acids Res.*
719 46:537–544.

720 Barton NH, Hewitt GM. 1985. Analysis of hybrid zones. *Annu. Rev. Ecol. Syst.* 16:113–148.

721 Chen W-C. 2011. Overlapping Codon model, Phylogenetic Clustering, and Alternative Partial
722 Expectation Conditional Maximization Algorithm. Ph.D. Diss., Iowa Stat Univ.

723 Currat M, Ruedi M, Petit RJ, Excoffier L. 2008. The hidden side of invasions: Massive
724 introgression by local genes. *Evolution (N. Y.)*. 62:1908–1920.

725 Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G,
726 Marth GT, Sherry ST, et al. 2011. The variant call format and VCFtools. *Bioinformatics*
727 27:2156–2158.

728 Dannemann M, Andrés AM, Kelso J. 2016. Introgression of Neandertal- and Denisovan-like
729 Haplotypes Contributes to Adaptive Variation in Human Toll-like Receptors. *Am. J. Hum.
730 Genet.* 98:22–33.

731 Dasmahapatra KK, Walters JR, Briscoe AD, Davey JW, Whibley A, Nadeau NJ, Zimin A V.,
732 Hughes DST, Ferguson LC, Martin SH, et al. 2012. Butterfly genome reveals promiscuous
733 exchange of mimicry adaptations among species. *Nature* 487:94–98.

734 Degnan JH, Rosenberg N a. 2009. Gene tree discordance, phylogenetic inference and the
735 multispecies coalescent. *Trends Ecol. Evol.* 24:332–340.

736 Degnan JH, Rosenberg NA. 2013. Discordance of species trees with their most likely gene trees:
737 A unifying principle. *Mol. Biol. Evol.* 30:2709–2713.

738 Durand EY, Patterson N, Reich D, Slatkin M. 2011. Testing for Ancient Admixture between
739 Closely Related Populations. *Mol. Biol. Evol.* 28:2239–2252.

740 Eaton DAR, Hipp AL, González-Rodríguez A, Cavender-Bares J. 2015. Historical introgression
741 among the American live oaks and the comparative nature of tests for introgression.
742 *Evolution (N. Y.)*. 69:2587–2601.

743 Eaton DAR, Ree RH. 2013. Inferring Phylogeny and Introgression using RADseq Data: An
744 Example from Flowering Plants (Pedicularis: Orobanchaceae). *Syst. Biol.* 62:689–706.

745 Eriksson A, Manica A. 2012. Effect of ancient population structure on the degree of
746 polymorphism shared between modern human populations and ancient hominins. *Proc.
747 Natl. Acad. Sci.* 109:13956–13960.

748 Feder JL, Xie X, Rull J, Velez S, Forbes A, Leung B, Dambroski H, Filchak KE, Aluja M. 2005.
749 Mayr, Dobzhansky, and Bush and the complexities of sympatric speciation in *Rhagoletis*.
750 *Proc. Natl. Acad. Sci. U. S. A.* 102:6573–6580.

751 Figueiró H V, Li G, Trindade FJ, Assis J, Pais F, Fernandes G, Santos SHD, Hughes GM,
752 Komissarov A, Antunes A, et al. 2017. Genome-wide signatures of complex introgression
753 and adaptive evolution in the big cats. *Sci. Adv.* 3:1–14.

754 Fontaine MC, Pease JB, Steele A, Waterhouse RM, Neafsey DE, Sharakhov I V., Jiang X, Hall
755 AB, Catteruccia F, Kakani E, et al. 2015. Extensive introgression in a malaria vector species
756 complex revealed by phylogenomics. *Science* 80. 347:1–6.

757 Forsythe ES, Nelson AD, Beilstein MA. Biased gene retention in the face of massive nuclear
758 introgression obscures species relationships (In revision). *bioRxiv*.
759 <https://www.biorxiv.org/content/early/2018/10/18/197087?%3Fcollection=>

760 Green RE, Krause J, Briggs AW, Maricic T, Stenzel U, Kircher M, Patterson N, Li H, Zhai W,
761 Fritz MH-Y, et al. 2010. A Draft Sequence of the Neandertal Genome. *Science* (80-.).
762 328:710–722.

763 Hibbins MS, Hahn MW. 2019. The timing and direction of introgression under the multispecies
764 network coalescent. *Genetics* 211:1059–1073.

765 Hudson R. 2002. Ms a Program for Generating Samples Under Neutral Models. *Bioinformatics*
766 18:337–338.

767 Hudson RR, Kaplan NL. 1985. Statistical properties of the number of recombination events in
768 the history of a sample of DNA sequences. *Genetics* 111:147–164.

769 Huson DH, Kl T, Lockhart PJ, Steel M a, Klopper T, Lockhart PJ, Steel M a, Kl T, Lockhart PJ,
770 Steel M a. 2005. Reconstruction of Reticulate Networks from Gene Trees. *Res. Comput.*
771 *Mol. Biol. Proc.* 3500:233–249.

772 International Human Genome Sequencing Consortium. 2001. Initial sequencing and analysis of
773 the human genome. *Nature* 409:860–921.

774 Joly S, McLenahan PA, Lockhart PJ. 2009. A Statistical Approach for Distinguishing
775 Hybridization and Incomplete Lineage Sorting. *Am. Nat.* 174:E54–E70.

776 Kuhlwilm M, Gronau I, Hubisz MJ, De Filippo C, Prado-Martinez J, Kircher M, Fu Q, Burbano
777 HA, Lalueza-Fox C, De La Rasilla M, et al. 2016. Ancient gene flow from early modern
778 humans into Eastern Neanderthals. *Nature* 530:429–433.

779 Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R.
780 2009. The Sequence Alignment/Map format and SAMtools. *Bioinformatics* 25:2078–2079.

781 Liu KJ, Dai J, Truong K, Song Y, Kohn MH, Nakhleh L. 2014. An HMM-Based Comparative
782 Genomic Framework for Detecting Introgression in Eukaryotes. *PLoS Comput. Biol.* 10.

783 Maddison WP, Knowles LL. 2006. Inferring Phylogeny Despite Incomplete Lineage Sorting.
784 *Syst. Biol.* 55:21–30.

785 Mallet J, Besansky N, Hahn MW. 2016. How reticulated are species? *BioEssays* 38:140–149.

786 Martin SH, Davey JW, Jiggins CD. 2015. Evaluating the use of ABBA-BABA statistics to locate
787 introgressed loci. *Mol. Biol. Evol.* 32:244–257.

788 Orive ME, Barton NH. 2002. Associations between cytoplasmic and nuclear loci in hybridizing
789 populations. *Genetics* 162:1469–1485.

790 Paradis E, Claude J, Strimmer K. 2004. APE: Analyses of phylogenetics and evolution in R
791 language. *Bioinformatics* 20:289–290.

792 Pease JB, Hahn MW. 2015. Detection and Polarization of Introgression in a Five-Taxon
793 Phylogeny. *Syst. Biol.* 64:651–662.

794 Prüfer K, Racimo F, Patterson N, Jay F, Sankararaman S, Sawyer S, Heinze A, Renaud G,
795 Sudmant PH, De Filippo C, et al. 2014. The complete genome sequence of a Neanderthal
796 from the Altai Mountains. *Nature* 505:43–49.

797 Rambaut A, Grassly NC. 1997. Seq-Gen: an application for the Monte Carlo simulation of DNA
798 sequence evolution along phylogenetic trees. *Cabios* 13:235–238.

799 Rieseberg LH, Soltis DE. 1991. Phylogenetic consequences of cytoplasmic gene flow in plants.
800 *Evol. trends Plants* 5:65–84.

801 Rieseberg LH, Whitton J, Linder CR. 1996. Molecular marker incongruence in plant hybrid
802 zones and phylogenetic trees. *Acta Bot. Neerl.* 45:243–262.

803 Rosenzweig BK, Pease JB, Besansky NJ, Hahn MW. 2016. Powerful methods for detecting
804 introgressed regions from population genomic data. *Mol. Ecol.*:2387–2397.

805 Schrider D, Ayroles J, Matute DR, Kern AD. 2018. Supervised machine learning reveals

806 introgressed loci in the genomes of *Drosophila simulans* and *D. sechellia*. *PLoS Genet.*
807 10:1–29.

808 Slon V, Mafessoni F, Vernot B, de Filippo C, Grote S, Viola B, Hajdinjak M, Peyrégne S, Nagel
809 S, Brown S, et al. 2018. The genome of the offspring of a Neanderthal mother and a
810 Denisovan father. *Nature*.

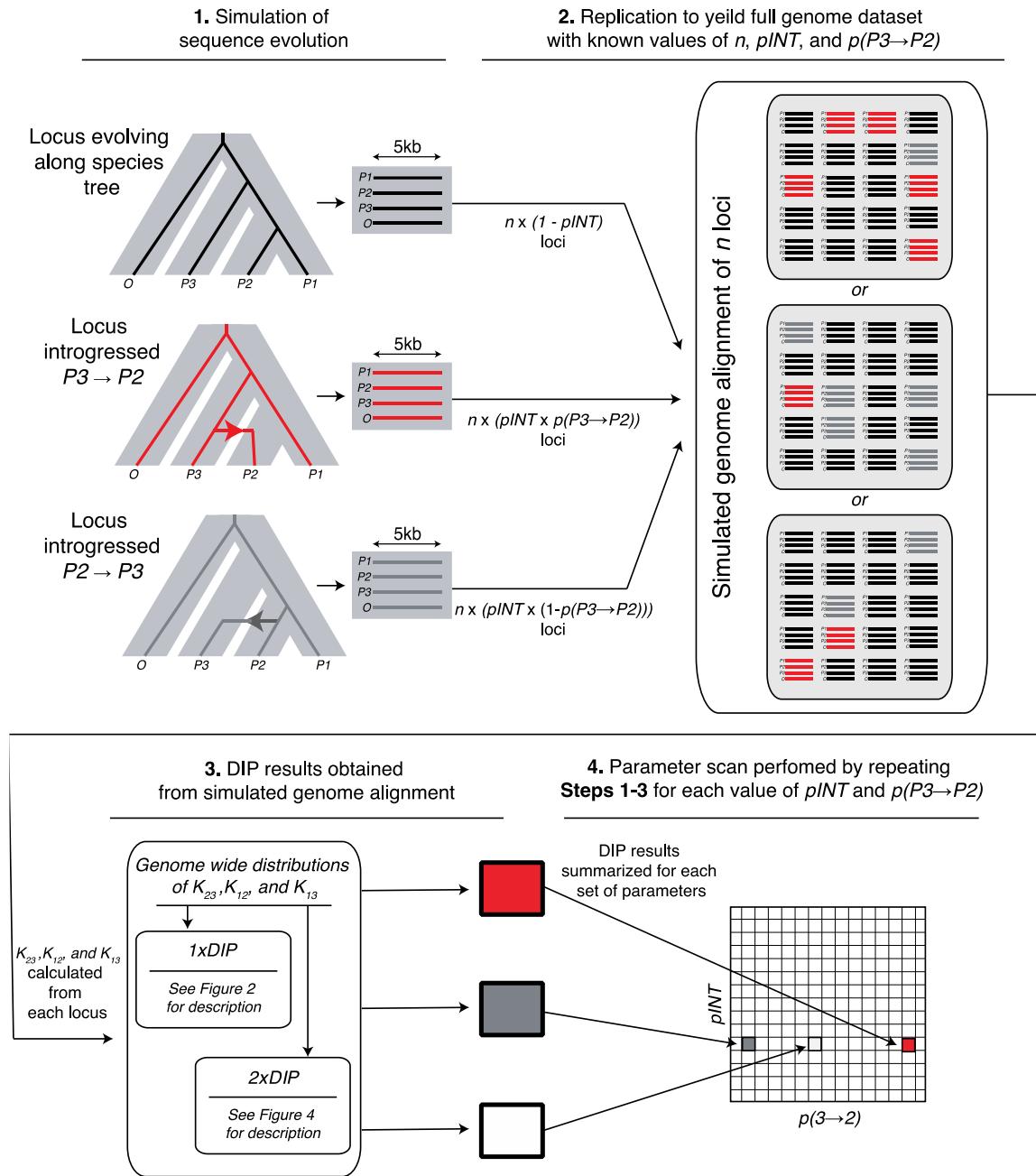
811 Soltis DE, Soltis PS. 2003. The role of phylogenetics in comparative genetics. *Plant Physiol.*
812 132:1790–1800.

813 Stebbins GL. 1968. The Significance of Hybridization for Plant Taxonomy and Evolution. *Taxon*
814 18:26–35.

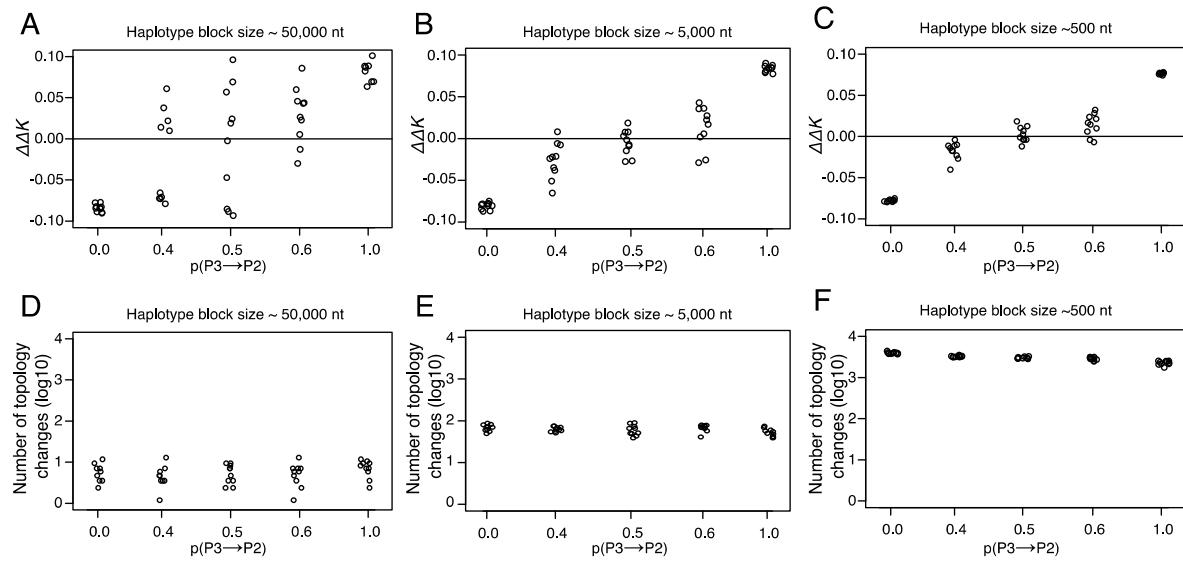
815 Stenz NWM, Larget B, Baum DA, Ané C. 2015. Exploring tree-like and non-tree-like patterns
816 using genome sequences: An example using the inbreeding plant species *Arabidopsis*
817 *thaliana* (L.) heynh. *Syst. Biol.* 64:809–823.

818 Than C, Ruths D, Nakhleh L. 2008. PhyloNet: a software package for analyzing and
819 reconstructing reticulate evolutionary relationships. *BMC Bioinformatics* 9:322.

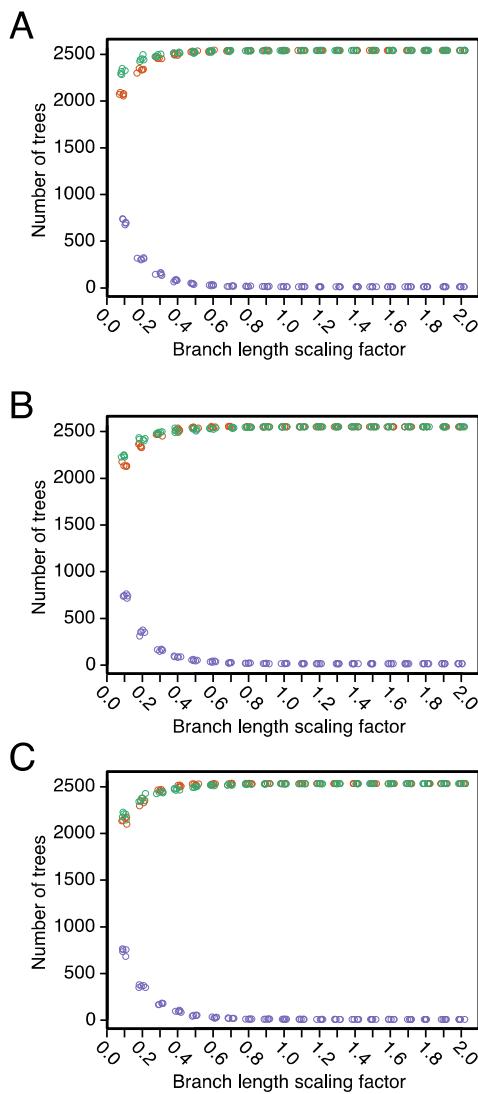
820 The Chimpanzee Sequencing Consortium. 2005. Initial sequence of the chimpanzee genome and
821 comparison with the human genome. *Nature* 437:69–87.

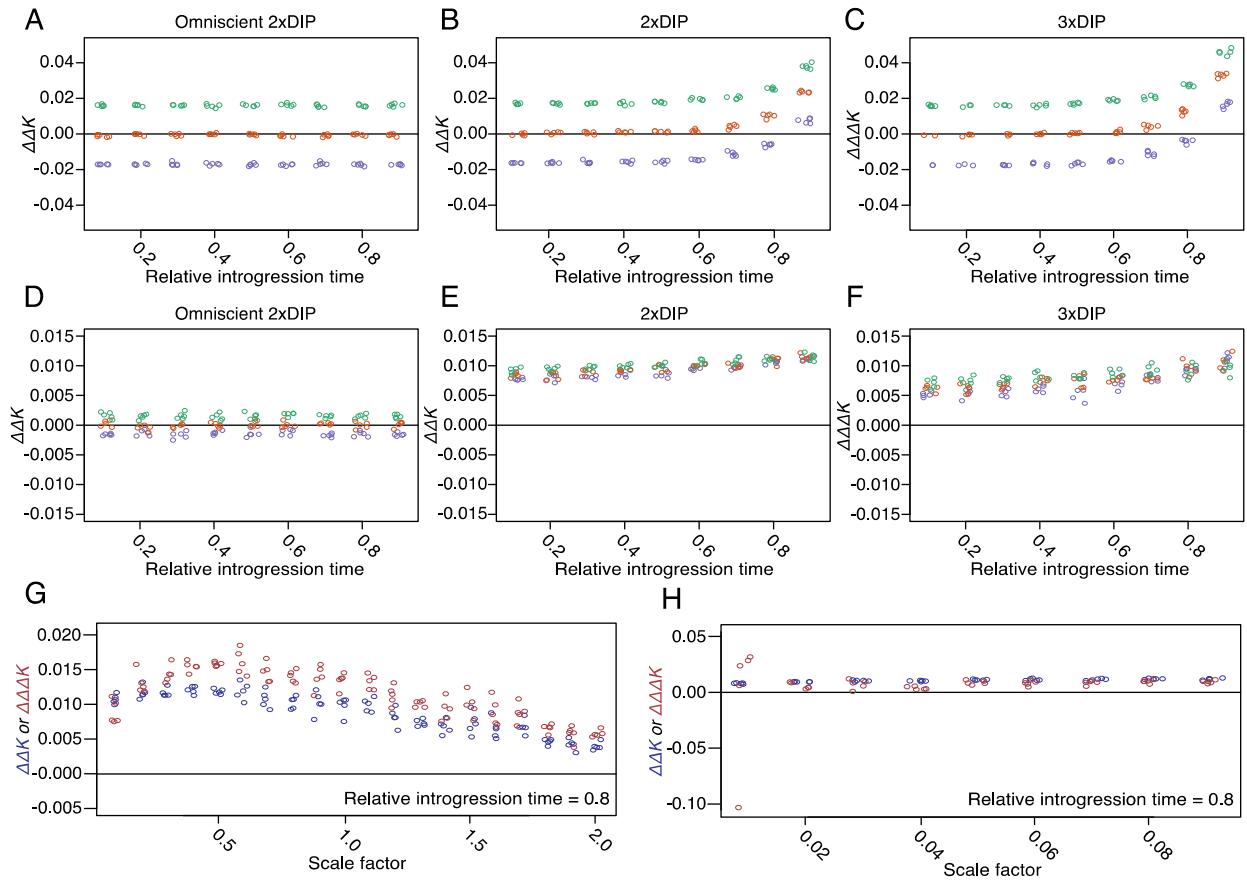

822 Whitney KD, Randell R a, Rieseberg LH. 2006. Adaptive introgression of herbivore resistance
823 traits in the weedy sunflower *Helianthus annuus*. *Am. Nat.* 167:794–807.

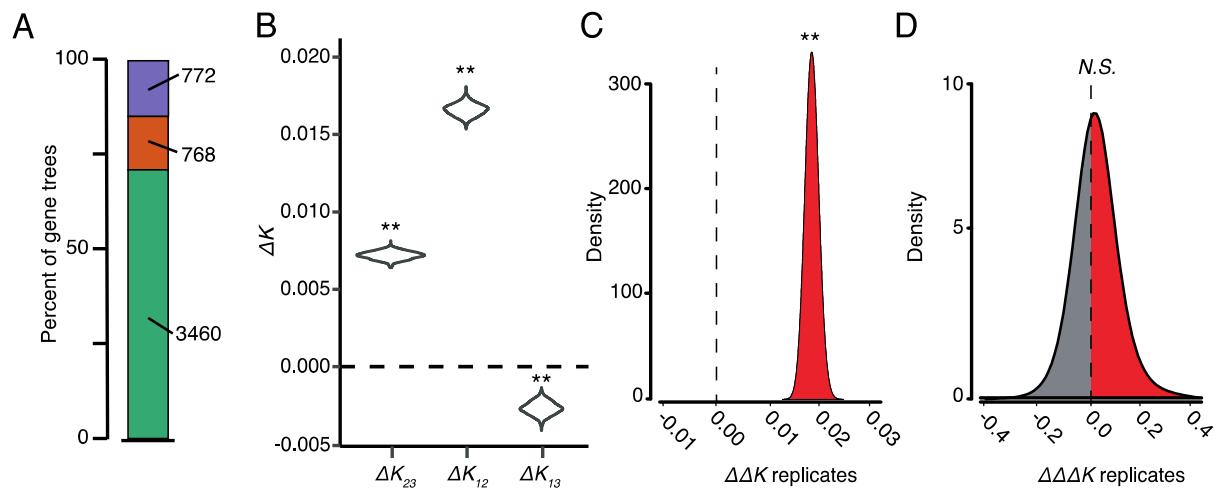
824 Yakimowski SB, Rieseberg LH. 2014. The role of homoploid hybridization in evolution: A
825 century of studies synthesizing genetics and ecology. *Am. J. Bot.* 101:1247–1258.


826 Zheng Y, Janke A. 2018. Gene flow analysis method, the D-statistic, is robust in a wide
827 parameter space. *BMC Bioinformatics* 19:1–19.

828


SUPPLEMENTAL INFORMATION


Fig. S1. Schematic of the workflow used to simulate introgression across a genome and perform DIP. (1) Each locus is evolved along the species tree or along a path of introgression and used to generate a 5000-bp alignment using *ms* and *seq-gen* similar to (Martin et al. 2015). (2) Step 1 was repeated to yield a full genome of $n=5000$ loci in which $n \times p\text{INT}$ loci were introgressed and the remaining loci evolved along the species tree. For example, a genome in which half of all genes were not transferred while the other half were transferred $P3 \Rightarrow P2$ would be generated with: $n=5000$, $p\text{INT} = 0.5$, $p(P3 \Rightarrow P2) = 1.0$. (3) Different steps in the DIP pipeline are performed on the simulated genome. (4) Steps 1-3 are repeated for each combination of $p\text{INT}$ and $p(P3 \Rightarrow P2)$. Each pixel in a parameter scan graph represents one or more runs of Steps 1-3.


Fig. S2. 2xDIP analyses of introgression simulated with recombination. Genomes were simulated using an alternative simulation strategy that includes recombination (see Methods). Three different recombination rates were used, $r=7$ (A and D), $r=70$ (B and E), and $r=700$ (C and F), resulting in haplotypes of different sizes. Five replicate genomes were simulated for each value of $p(P3 \Rightarrow P2)$. To provide a understanding of the haplotype blocks with diagnostic synapomorphies that exist at different levels of recombination, the number of instances in which neighboring blocks exhibit different topologies (i.e. topology changes) were summed (D-F). Note that number of topology changes differs from haplotype blocks because some SNPs occurred along branches that don't define the topology (i.e. not all SNPs represent diagnostic synapomorphies).

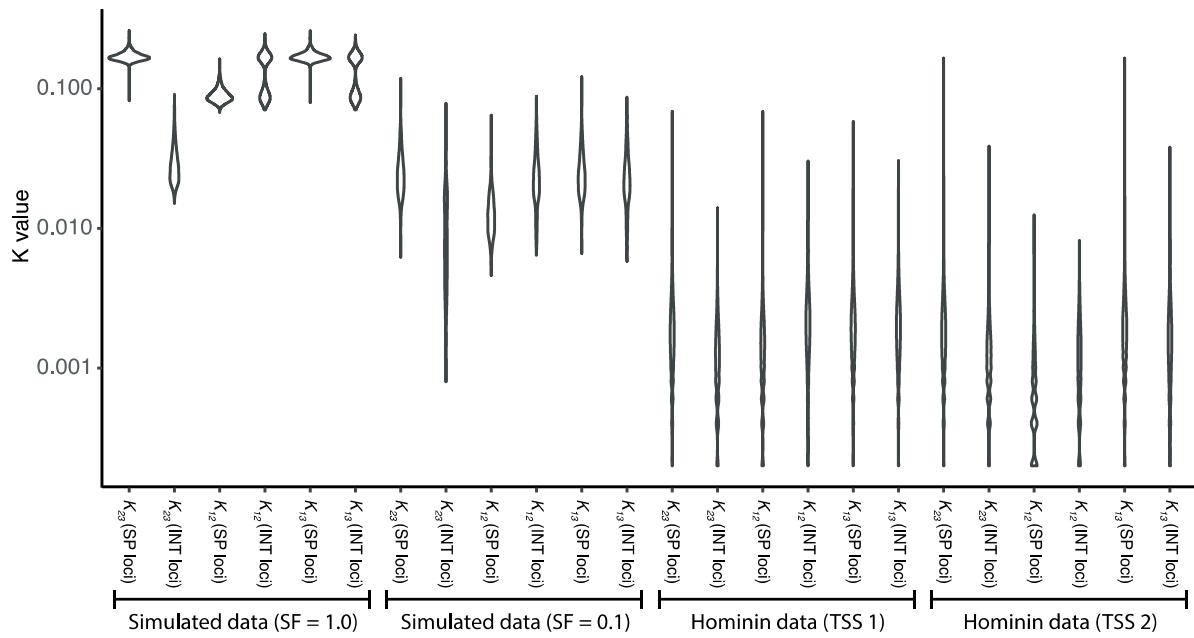

Fig. S3. Gene tree topologies inferred from simulated genomes. Gene tree counts for genomes simulated with different branch lengths (x-axes) and $p(P3 \Rightarrow P2)$ values of 0.6 (A), 0.5 (B), and 0.4 (C). Each point represents the number of trees displaying a given topology from a replicate genome. $((P1, P2), P3)$, orange; $((P2, P3), P1)$, green; $((P1, P3), P2)$, purple. These same simulated genomes were analyzed in Fig. 6.

Fig. S4. Simulations of relative introgression timing. (A-F) Genomes were simulated using two different scaling factors, SF=1 (A-C) and SF=0.1 (D-F) to determine the timing of speciation events. While the timing of all speciation events adhere to the given scaling factor, the timing of the introgression event (T_{INT}) was set as a fraction of the timing of the most recent speciation event (T_a) (i.e. relative introgression time). High relative introgression time indicates introgression occurred directly following speciation whereas low relative introgression time indicates introgression occurred a long duration of time following speciation. Three different types of asymmetrical/symmetrical bidirectional introgression were simulated for each relative introgression time, $p(P3 \Rightarrow P2) = 0.4$ (purple), $p(P3 \Rightarrow P2) = 0.5$ (orange), and $p(P3 \Rightarrow P2) = 0.6$ (green). Omniscient 2xDIP (A and D), non-omniscient 2xDIP (B and E), and 3xDIP (C and F) were performed on all genomes. (G-H) $\Delta\Delta K$ (blue) and $\Delta\Delta\Delta K$ (dark red) measurements for genomes simulated with $p(P3 \Rightarrow P2) = 0.5$ and different scaling factors. Five replicate genomes were simulated for each parameter value.

Fig. S5. DIP analysis of a genome with incomplete lineage sorting but no introgression. A genome alignment was simulated with $pINT$ set to zero using the scaling factor 0.1 (see Fig. 1 and Fig. 6). Therefore, all loci with topologies that conflict with species tree are the result of ILS and not introgression (A) The topologies of neighbor joining trees inferred from 5000 simulated loci. $((P1, P2), P3)$, green; $((P2, P3), P1)$, orange; $((P1, P3), P2)$, purple. (B-D) 1×DIP (B), 2×DIP (C) and 3×DIP (D) analysis of the genome alignment.

Fig. S6. Sequence divergence measures from simulated and Hominin data. Violin plot showing distributions of pairwise divergence values for inferred loci displaying the species (SP) and introgressed (INT) topology (see Fig. 1 and 2). Both simulated datasets were simulated with $pINT=0.5$ and $p(P3 \Rightarrow P2)=0.5$.