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Abstract

In this paper, we propose a data privacy-preserving and
communication efficient distributed GAN learning frame-
work named Distributed Asynchronized Discriminator GAN
(AsynDGAN). Our proposed framework aims to train a cen-
tral generator learns from distributed discriminator, and
use the generated synthetic image solely to train the seg-
mentation model. We validate the proposed framework on
the application of health entities learning problem which is
known to be privacy sensitive. Our experiments show that
our approach: 1) could learn the real image’s distribution
from multiple datasets without sharing the patient’s raw
data. 2) is more efficient and requires lower bandwidth than
other distributed deep learning methods. 3) achieves higher
performance compared to the model trained by one real
dataset, and almost the same performance compared to the
model trained by all real datasets. 4) has provable guaran-
tees that the generator could learn the distributed distribu-
tion in an all important fashion thus is unbiased.We release
our AsynDGAN source code at: https://github.com/tommy-
qichang/AsynDGAN

1. Introduction

1.1. The privacy policies and challenges in medical
intelligence

The privacy issue, while important in every domain, is
enforced vigorously for medical data. Multiple level of reg-
ulations such as HIPAA [2, 11, 36, 13] and the approval
process for the Institutional Review Board (IRB) [6] pro-
tect the patients’ sensitive data from malicious copy or even
tamper evidence of medical conditions [38]. Like a double-
edge sword, these regulations objectively cause insufficient
collaborations in health records. For instance, America, Eu-
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ropean Union and many other countries do not allow patient
data leave their country [25, 47]. As a result, many hospitals
and research institutions are wary of cloud platforms and
prefer to use their own server. Even if in the same country
the medical data collaborate still face a big hurdle.

1.2. The restriction of the medical data accessibility

It’s widely known that sufficient data volume is nec-
essary for training a successful machine learning algo-
rithm [10] for medical image analysis. However, due to
the policies and challenges mentioned above, it is hard to
acquire enough medical scans for training a machine learn-
ing model. In 2016, there were approximately 38 million
MRI scans and 79 million CT scans performed in the United
States [41]. Even so, the available datasets for machine
learning research are still very limited: the largest set of
medical image data available to public is 32 thousand [51]
CT images, only 0.02% of the annual acquired images in the
United States. In contrast, the ImageNet [9] project, which
is the large visual dataset designed for use in visual object
recognition research, has more than 14 million images that
have been annotated in more than 20,000 categories.

1.3. Learning from synthetic images: a solution

In this work, we design a framework using centralized
generator and distributed discriminators to learn the genera-
tive distribution of target dataset. In the health entities learn-
ing context, our proposed framework can aggregate datasets
from multiple hospitals to obtain a faithful estimation of the
overall distribution. The specific task (e.g., segmentation
and classification) can be accomplished locally by acquir-
ing data from the generator. Learning from synthetic im-
ages has several advantages:

Privacy mechanism: The central generator has limited
information for the raw images in each hospital. When the
generator communicates with discriminators in hospitals,
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only information about the synthetic image is transmitted.
Such a mechanism prohibits the central generator’s direct
access to raw data thus secures privacy.

Synthetic data sharing: The natural of synthetic data
allows the generator to share the synthetic images without
restriction. Such aggregation and redistribution system can
build a public accessible and faithful medical database. The
inexhaustible database can benefit researchers, practitioners
and boost the development of medical intelligence.

Adaptivity to architecture updates: The machine
learning architecture evolves rapidly to achieve a better per-
formance by novel loss functions [48, 17], network mod-
ules [18, 45, 37, 42] or optimizers [46, 54, 32, 56, 57].
We could reasonably infer that the recently well-trained
model may be outdated or underperformed in the future as
new architectures invented. Since the private-sensitive data
may be not always accessible, even if we trained a model
based on these datasets, we couldn’t embrace new architec-
tures to achieve higher performance. Instead of training a
task-specific model, our proposed method trains a genera-
tor that learns from distributed discriminators. Specifically,
we learn the distribution of private datasets by a generator to
produce synthetic images for future use, without worrying
about the lost of the proprietary datasets.

To the best of our knowledge, we are the first to use GAN
to address the medical privacy problem. Briefly, our contri-
butions lie in three folds: (1) A distributed asynchronized
discriminator GAN (AsynDGAN) is proposed to learn the
real images’ distribution without sharing patients’ raw data
from different datasets. (2) AsynDGAN achieves higher
performance than models that learn from real images of
only one dataset. (3) AsynDGAN achieves almost the same
performance as the model that learns from real images of
all datasets.

2. Related Work
2.1. Generative Adversarial Networks (GANS)

The Generative Adversarial Nets [12] have achieved
great success in various applications, such as natural image
synthesis [43, 55, 8], image style translation [22, 58], image
super resolution [29] in computer vision, and medical image
segmentation [52, 50], cross-modality image synthesis [40],
image reconstruction [53] in medical image analysis. The
GAN estimates generative distribution via an adversarial su-
pervisor. Specifically, the generator G attempts to imitate
the data from target distribution to make the ‘fake’ data in-
distinguishable to the adversarial supervisor D. In Asyn-
DGAN framework, we mainly focus on the conditional
distribution estimation due to the nature of health entities
learning problems. However, the AsynDGAN framework
can be easily adopted into general GAN learning tasks.

Privacy Mechanism Data transmission Adaptivity
FL Randon Noise Parameters / Gradients No
SL Data Block Cut Layer Gradients No
AsynDGAN Data Block Fake Data, Auxiliary Variable Yes

& Discriminator Loss

Table 1. Comparison between different learning strategies.

2.2. Learning with data privacy

Federated Learning: The federated learning (FL) seeks
to collaborate local nodes in the network to learn a glob-
ally powerful model without storing data in the cloud. Re-
cently, FL attracts more attention as data privacy becomes
a concern for users [14, 27, 7, 19]. Instead of directly ex-
posing users’ data, FL only communicates model informa-
tion (parameters, gradients) with privacy mechanism so pro-
tects users’ personal information. In [1, 23, 34], the SGD
is shared in a privacy protection fashion. However, com-
municating gradients is dimension dependent. Considering
a ResNet101 [15] with d = 40 million parameters, it re-
quires at least 170 mb to pass gradients for each client per-
iteration. Even with compression technique similar to [1],
the communication cost is still non-affordable for large-size
networks.

Split Learning: The split learning (SL) [49] separates
shallow and deep layers in deep learning models. The cen-
tral processor only maintains layers that are several blocks
away from the local input, and only inter-layer information
is transmitted from local to central. In this way, the privacy
is guaranteed because the central processor has no direct ac-
cess to data. It reduces the communication cost from model-
dependent level to cut-layer-dependent layer while protect-
ing data privacy. However, such method does not apply to
neural networks with skip connections, e.g., ResNets [15].

In AsynDGAN framework, the communication cost in
each iteration is free of the dimension d. Only auxiliary
data (label and masks), ‘fake’ data and discriminator loss
are passed between the central processor and local nodes in
the network. For a 128 x 128 size gray-scale image, com-
munication cost per-iteration for each node is 8 mb with
batch size 128. Since the central processor has only access
to discriminator and auxiliary data, the privacy of client is
secured via separating block mechanism.

In addition, adaptivity is an exclusive advantage of Asyn-
DGAN framework. With rapid evolution of machine learn-
ing methods, practitioners need to keep updated with state-
of-the-art methods. However, there will be a high trans-
action cost to train a new model in a classical distributed
learning subroutine. With the AsynDGAN system, one can
maintain the generative distribution. Therefore, updating
machine learning models can be done locally with the free-
dom of generating training data. The comparison between
FL, SL and our AsynDGAN is shown in Table 1.
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3. Method
3.1. Overview

Our proposed AsynDGAN is comprised of one central
generator and multiple distributed discriminators located in
different medical entities. In the following, we present the
network architecture, object function and then analysis the
procedure of the distributed asynchronized optimization.

3.2. Network architecture

An overview of the proposed architecture is shown in
Figure 1. The central generator, denoted as G, takes task-
specific inputs (segmentation masks in our experiments)
and generates synthetic images to fool the discriminators.
The local discriminators, denote as D! to D™, learn to dif-
ferentiate between the local real images and the synthetic
images from G. Due to the sensitivity of patients’ images,
the real images in each medical center may not be accessed
from outside. Our architecture is naturally capable of avoid-
ing such limitation because only the specific discriminator
in the same medical entity needs to access the real images.
In this way, the real images in local medical entities will be
kept privately. Only synthetic images, masks, and gradients
are needed to be transferred between the central generator
and the medical entities.

The generator will learn the joint distribution from differ-
ent datasets that belong to different medical entities. Then
it can be used as an image provider to train a specific task,
because we expect the synthetic images to share the same or
similar distribution as the real images. In the experiments,
we apply the AsynDGAN framework to segmentation tasks
to illustrate its effectiveness. The U-Net [45] is used as the
segmentation model, and details about G and Ds designed
for segmentation tasks are described below.

3.2.1 Central generator

For segmentation tasks, the central generator is an encoder-
decoder network that consists of two stride-2 convolutions
(for downsampling), nine residual blocks [15], and two
transposed convolutions. All non-residual convolutional
layers are followed by batch normalization [20] and the
ReLU activation. All convolutional layers use 3 x 3 ker-
nels except the first and last layers that use 7 x 7 kernels.

3.2.2 Distributed discriminators

In the AsynDGAN framework, the discriminators are dis-
tributed over N nodes (hospitals, mobile devices). Each
discriminator D; only has access to data stored in the j-
th node thus discriminators are trained in an asynchronized
fashion. For segmentation, each discriminator has the same
structure as that in PatchGAN [21]. The discriminator indi-
vidually quantifies the fake or real value of different small

patches in the image. Such architecture assumes patch-wise
independence of pixels in a Markov random field fashion
[30, 22], and can capture the difference in geometrical struc-
tures such as background and tumors.

3.3. Objective of AsynDGAN

The AsynDGAN is based on the conditional GAN [39].
The objective of a classical conditional GAN is:

mén mgx V(D, G) = ]EINS(GJ)EZINPdata(le) [10g D(y|1‘)]

where D represents the discriminator and G is the gener-
ator. (G aims to approximate the conditional distribution
Pdata(y|z) so that D can not tell if the data is ‘fake’ or not.
The hidden variable x is an auxiliary variable to control the
mode of generated data [39]. In reality, x is usually a class
label or a mask that can provide information about the data
to be generated. Following previous works ([33, 21]), in-
stead of providing Gaussian noise z as an input to the gen-
erator, we provide the noise only in the form of dropout,
which applied to several layers of the generator of Asyn-
DGAN at both training and test time.

In the AsynDGAN framework, the generator is super-
vised by N different discriminators. Each discriminator is
associated with a subset of datasets. It is natural to quan-
tify such a setting using a mixture distribution on auxiliary
variable z. In another word, instead of given a naive s(x),
the distributions of  becomes s(z) = > m;s;(z). For

JEN
each sub-distribution, there is a corresponEiir}lg discrimina-
tor D; which only receives data generated from prior s;(z).
Therefore, the loss function of our AsynDGAN becomes:

. D,
ménDr?%XN V(D1.n,G)

= Z T {EINSJ(r)EyNPdam(yIr) [log D;(ylz)] 2)
JE[N]

+ Egpy (12 [log(1 — Dj(gl2))]}
3.4. Optimization process

The optimization process of the AsynDGAN is shown
in Figure 2. In each iteration, a randomly sampled tuple
(z,y) is provided to the system. Here, = denotes the input
label which observed by the generator, and y is the real im-
age only accessible by medical entities. Then the network
blocks are updated iteratively in the following order:

1) D-update: Calculating the adversarial loss for j-th dis-
criminator D; and update D;, where j = 1,2,--- , N.

2) G-update: After updating all discriminators, G' will be
updated using the adversarial loss Z;VZI loss(Dj).
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Figure 1. The overall structure of AsynDGAN. It contains two parts, a central generator G and multiple distributed discriminators
D' D?,... D" in each medical entity. G takes a task-specific input (segmentation masks in our experiments) and output synthetic
images. Each discriminator learns to differentiate between the real images of current medical entity and synthetic images from G. The
well-trained G is then used as an image provider to train a task-specific model (segmentation in our experiments).
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Figure 2. The optimization process of AsynDGAN. The solid ar-
rows show the forward pass, and the dotted arrows show gradient
flow during the backward pass of our iterative update procedure.
The solid block indicate that it is being updated while the dotted
blocks mean that they are frozen during that update step. Red and
blue rectangles are source mask and target real image, respectively.

This process is formulated as Algorithm 1. We apply
the cross entropy loss and in the algorithm and further an-
alyze the AsynDGAN framework in this setting. We stress
that the framework is general and can be collaborated with
variants of GAN loss including Wasserstein distance and
classical regression loss [3, 31].

3.5. Analysis: AsynDGAN learns the correct distri-
bution

In this section, we present a theoretical analysis of Asyn-
DGAN and discuss the implications of the results. We first
begin with a technical lemma describing the optimal strat-
egy of the discriminator.

Lemma 1. When generator G is fixed, the optimal discrim-
inator Dj(y|x) is :

D) = pylo) )

pyla) +q(ylz)

Suppose in each training step the discriminator achieves
its maxima criterion in Lemma 1, the loss function for the
generator becomes:

mén V(G) = EyEprdata(?J'I) [log D(y|.’1:)]

+ Egp, (910 [log(1 — D(g[x))]
I o e 2o pylz)
=3 @ [ o0 Vo8 L6Te) + aole)

JEINT x

q(y|z)
pylz) + q(ylz)
Assuming in each step, the discriminator always performs
optimally, we show indeed the generative distribution G

seeks to minimize the loss by approximating the underly-
ing distribution of data.

+ q(y|x) log dxdy

Theorem 1. Suppose the discriminators D1 n always be-
have optimally (denoted as D7,y ), the loss function of gen-
erator is global optimal iff q(y, x) = p(y, x) where the op-
timal value of V (G, D3, 5 ) is — log 4.

Remark 1. While analysis of AsynDGAN loss shares sim-
ilar spirit with [12], it has different implications. In the dis-
tributed learning setting, data from different nodes are often
dissimilar. Consider the case where Q(s;(x)) NQ(sx(y)) =
0, for k # j, the information for p(y|x),y € Q(s;(z)) will
be missing if we lose the j-th node. The behavior of trained
generative model is unpredictable when receiving auxiliary
variables from unobserved distribution s;(z). The Asyn-
DGAN framework provides a solution for unifying different
datasets by collaborating multiple discriminators.
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Algorithm 1 Training algorithm of AsynDGAN.
for number of total training iterations do
for number of interations to train discriminator do
for each node j € [N] do
— Sample minibatch of of m auxiliary variables
{x1,...,2} from s;(z) and send to generator G.

— Generate m fake data from generator G,
{91, ..., 92} ~ q(§]x) and send to node j.

— Update the discriminator by ascending its
stochastic gradient:

m

Vo, = " [log Dy (y) + log(1 - Dy (G(31))].

i=1
end for
end for
for each node j € [N] do
— Sample minibatch of m auxiliary variables
{x], ...,z } from s;(x) and send to generator G.

— Generate corresponding m fake data from gener-
ator G, {91,...,92.} ~ q(g|z) and send to node j.

— Discriminator D; passes error to generator G.
end for
— Update G by descending its stochastic gradient:

N m
1 y
Voo Z_: Zlog(l — D;(G(#])))-
end for g=1i=1

The gradient-based updates can use any standard
gradient-based learning rule. We used momentum in our
experiments.

4. Experiments

In this section, we first perform experiments on a syn-
thetic dataset to illustrate how AsynDGAN learns a mixed
Gaussian distribution from different subsets, and then ap-
ply AsynDGAN to the brain tumor segmentation task on
BraTS2018 dataset [5] and nuclei segmentation task on
Multi-Organ dataset [28].

4.1. Datasets and evaluation metrics

4.1.1 Datasets

Synthetic dataset The synthetic dataset is generated by
mixing 3 one-dimensional Gaussian. In another word, we
generate € {1,2,3} with equal probabilities. Given z,
the random variable y is generated from y = y;1,—1 +
yoly—o + y3l,—3 where 1.,¢p; is the indicator function
and y; ~ N(=3,2),y2 ~ N(1,1),y35 ~ N(3,0.5). Sup-
pose the generator learns the conditional distribution of y:
p(y|z) perfectly, the histogram should behave similarly to

the shape of the histogram of mixture gaussian.

BraTS2018 This dataset comes from the Multimodal
Brain Tumor Segmentation Challenge 2018 [4, 5, 35]
and contains multi-parametric magnetic resonance imaging
(mpMRI) scans of low-grade glioma (LGG) and high-grade
glioma (HGG) patients. There are 210 HGG and 75 LGG
cases in the training data, and each case has four types of
MRI scans and three types of tumor subregion labels. In
our experiments, we perform 2D segmentation on T2 im-
ages of the HGG cases to extract the whole tumor regions.
The 2D slices with tumor areas smaller than 10 pixels are
excluded for both GAN training and segmentation phases.
In the GAN synthesis phase, all three labels are utilized to
generate fake images. For segmentation, we focus on the
whole tumor (regions with any of the three labels).

Multi-Organ This dataset is proposed by Kumar et
al. [28] for nuclei segmentation. There are 30 histopathol-
ogy images of size 1000 x 1000 from 7 different organs.
The train set contains 16 images of breast, liver, kidney and
prostate (4 images per organ). The same organ test set con-
tains 8 images of the above four organs (2 images per organ)
while the different organ test set has 6 images from bladder,
colon and stomach. In our experiments, we focus on the
four organs that exist both in the train and test sets, and per-
form color normalization [44] for all images. Two training
images of each organ is treated as a subset that belongs to a
medical entity.

4.1.2 Evaluation metrics

We adopt the same metrics in the BraTS2018 Challenge [5]
to evaluate the segmentation performance of brain tumor:
Dice score (Dice), sensitivity (Sens), specificity (Spec), and
95% quantile of Hausdorff distance (HD95). The Dice
score, sensitivity (true positive rate) and specificity (true
negative rate) measure the overlap between ground-truth
mask G and segmented result S. They are defined as

. _2/Gn S|
Dice(G, S) = &Kl 4)
Sens(G, S) = |G|2|S| (5)
1-GnNn1-S
Spec(G,S) = ( 1)_ é| ) (6)

The Hausdorff distance evaluates the distance between
boundaries of ground-truth and segmented masks:

HD(G,S) = max{ sup inf d(x,y), sup inf d(x,
(G,5) {mea%yeas (z,9) sup nf, (@, 9)}
(7N
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where 0 means the boundary operation, and d is Euclidean
distance. Because the Hausdorff distance is sensitive to
small outlying subregions, we use the 95% quantile of the
distances instead of the maximum as in [5]. To simplify the
problem while fairly compare each experiment, we choose
2D rather than 3D segmentation task for the BraTS2018
Challenge and compute these metrics on each 2D slices and
take an average on all 2D slices in the test set.

For nuclei segmentation, we utilize the Dice score and
the Aggregated Jaccard Index (AJI) [28]:

251 1Gi N S(G))
211G US(G)l + Xek |Sk]

where S(G;) is the segmented object that has maximum
overlap with GG; with regard to Jaccard index, K is the set
containing segmentation objects that have not been assigned
to any ground-truth object.

AJI =

®)

4.2. Implementation details

In the synthetic learning phase, we use 9-blocks
ResNet [16] architecture for the generator, and multiple dis-
criminators which have the same structure as that in Patch-
GAN [21] with patch size 70 x 70. We resize the input
image as 286 x 286 and then randomly crop the image to
256 x 256. In addition to the GAN loss and the L1 loss, we
also used perceptual loss as described in [24]. We use mini-
batch SGD and apply the Adam solver [26], with a learn-
ing rate of 0.0002, and momentum parameters 3; = 0.5,
B2 = 0.999. The batch size we used in AsynDGAN de-
pends on the number of discriminators. We use batch size
3 and 1 for BraTS2018 dataset and Multi-Organ dataset, re-
spectively.

In the segmentation phase, we randomly crop images
of 224 x224 with a batch size of 16 as input. The model
is trained with Adam optimizer using a learning rate of
0.001 for 50 epochs in brain tumor segmentation and 100
epochs in nuclei segmentation. To improve performance,
we use data augmentation in all experiments, including ran-
dom horizontal flip and rotation in tumor segmentation and
additional random scale and affine transformation in nuclei
segmentation.

4.3. Experiment on synthetic dataset

In this subsection, we show that the proposed synthetic
learning framework can learn a mixture of Gaussian dis-
tribution from different subsets. We compare the quality
of learning distribution in 3 settings: (1) Syn-All. Train-
ing a regular GAN using all samples in the dataset. (2)
Syn-Subset-n. Training a regular GAN using only samples
in local subset n, where n € {1,2,3}. (3) AsynDGAN.
Training our AsynDGAN using samples in all subsets in a
distributed fashion.

— True
oo| W Generated

— True 01| — True
1 Subset-1 s WM Generated
Subset-2
Subset-3

- A

(b) Syn-Subset-n  (c)

(a) Syn-All AsynDGAN

Figure 3. Generated distributions of different methods.

The learned distributions are shown in Figure 3. In par-
ticular, any local learning (indicated in Figure 3(b)) can only
fit one mode Gaussian due to the restriction of local infor-
mation while AsynDGAN is able to capture global infor-
mation thus has a comparable performance with the regular
GAN using the union of separated datasets (Syn-All).

4.4. Brain tumor segmentation

In this subsection, we show that our AsynDGAN can
work well when there are patients’ data of the same disease
in different medical entities.

4.4.1 Settings

There are 210 HGG cases in the training data. Because we
have no access to the test data of the BraTS2018 Challenge,
we split the 210 cases into train (170 cases) and test (40
cases) sets. The train set is then sorted according to the
tumor size and divided into 10 subsets equally, which are
treated as data in 10 distributed medical entities. There are
11,057 images in the train set and 2,616 images in the test
set. We conduct the following segmentation experiments:
(1) Real-All. Training using real images from the whole
train set (170 cases). (2) Real-Subset-n. Training using
real images from the n-th subset (medical entity), where
n = 1,2,---,10. There are 10 different experiments in
this category. (3) Syn-All. Training using synthetic images
generated from a regular GAN. The GAN is trained directly
using all real images from the 170 cases. (4) AsynDGAN.
Training using synthetic images from our proposed Asyn-
DGAN. The AsynDGAN is trained using images from the
10 subsets (medical entities) in a distributed fashion.

In all experiments, the test set remains the same for fair
comparison. It should be noted that in the Syn-All and
AsynDGAN experiments, the number of synthetic images
are the same as that of real images in Real-All. The regular
GAN has the same generator and discriminator structures as
AsynDGAN, as well as the hyper-parameters. The only dif-
ference is that AsynDGAN has 10 different discriminators,
and each of them is located in a medical entity and only has
access to the real images in one subset.

4.4.2 Results

The quantitative brain tumor segmentation results are
shown in Table 2. The model trained using all real images
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(d) Syn-All (e) Real-Subset-6  (f) AsynDGAN

Figure 4. Typical brain tumor segmentation results. (a) Test images. (b) Ground-truth labels of tumor region. (c)-(f) are results of models
trained on all real images, synthetic images of regular GAN, real images from subset-6, synthetic images of AsynDGAN, respectively.

(b) AsynDGAN

(a) Input (c) Real

Figure 5. The examples of synthetic brain tumor images from the
AsynDGAN. (a) The input of the AsynDGAN network. (b) Syn-
thetic images of AsynDGAN based on the input. (c) Real images.

Method Dicet Sens{ SpectT HD95]
Real-All 0.7485 0.7983 0.9955 12.85
Real-Subset-1 0.5647 0.5766 0.9945  26.90
Real-Subset-2  0.6158 0.6333 0.9941 21.87
Real-Subset-3  0.6660 0.7008 0.9950  21.90
Real-Subset-4  0.6539 0.6600 0.9962  21.07
Real-Subset-5  0.6352 0.6437 0.9956 19.27
Real-Subset-6  0.6844 0.7249 0.9935  21.10
Real-Subset-7  0.6463 0.6252 0.9972 15.60
Real-Subset-8  0.6661 0.6876 0.9957 18.16
Real-Subset-9  0.6844 0.7088 0.9953 18.56
Real-Subset-10  0.6507 0.6596 0.9957 17.33
Syn-All 0.7114 0.7099 0.9969 16.22
AsynDGAN 0.7043  0.7295 0.9957 14.94

Table 2. Brain tumor segmentation results.

(Real-All) is the ideal case that we can access all data. It is

our baseline and achieves the best performance. Compared
with the ideal baseline, the performance of models trained
using data in each medical entity (Real-Subset-1~10) de-
grades a lot, because the information in each subset is lim-
ited and the number of training images is much smaller.
Our AsynDGAN can learn from the information of all
data during training, although the generator doesn’t “see”
the real images. And we can generate as many synthetic
images as we want to train the segmentation model. There-
fore, the model (AsynDGAN) outperforms all models using
single subset. For reference, we also report the results us-
ing synthetic images from regular GAN (Syn-All), which is
trained directly using all real images. The AsynDGAN has
the same performance as the regular GAN, but has no pri-
vacy issue because it doesn’t collect real image data from
medical entities. The examples of synthetic images from
AysnDGAN are shown in Figure 5. Several qualitative seg-
mentation results of each method are shown in Figure 4.

4.5. Nuclei segmentation

In this subsection, we apply the AsynDGAN to multi-
ple organ nuclei segmentation and show that our method is
effective to learn the nuclear features of different organs.

4.5.1 Settings

We assume that the training images belong to four dif-
ferent medical entities and each entity has four images of
one organ. Similar to Section 4.4, we conduct the follow-
ing experiments: (1) Real-All. Training using the 16 real
images of the train set. (2) Real-Subset-n. Training us-
ing 4 real images from each subset (medical entity), where
n € {breast, liver, kidney, prostate}. (3) Syn-All. Training
using synthetic images from regular GAN, which is trained
using all 16 real images. (4) AsynDGAN. Training using
synthetic images from the AsynDGAN, which is trained us-
ing images from the 4 subsets distributively. In all above
experiments, we use the same organ test set for evaluation.
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(b) Label (c) Real-All

® o

(e) subset-prostate  (f) AsynDGAN

(d) Syn-All

Figure 6. Typical nuclei segmentation results. (a) Test images. (b) Ground-truth labels of nuclei. (c)-(f) are results of models trained on
all real images, synthetic images of regular GAN, real images from prostate, synthetic images of AsynDGAN, respectively. Distinct colors

indicate different nuclei.

Method Dice T AJI1
Real-All 0.7833  0.5608
Real-Subset-breast 0.7340 0.4942
Real-Subset-liver 0.7639 0.5191
Real-Subset-kidney  0.7416  0.4848
Real-Subset-prostate  0.7704  0.5370
Syn-All 0.7856  0.5561
AsynDGAN 0.7930 0.5608

Table 3. Nuclei segmentation results.

(a) Input

(c) Real

Figure 7. The examples of synthetic nuclei images from the Asyn-
DGAN. (a) The input of the AsynDGAN network. (b) Synthetic
images of AsynDGAN based on the input. (c) Real images.

4.5.2 Results

The quantitative nuclei segmentation results are presented
in Table 3. Compared with models using single organ data,
our method achieves the best performance. The reason is
that local models cannot learn the nuclear features of other
organs. Compared with the model using all real images, the
AsynDGAN has the same performance, which proves the

J

effectiveness of our method in this type of tasks. The result
using regular GAN (Syn-All) is slightly worse than ours,
probably because one discriminator is not good enough to
capture different distributions of nuclear features in multi-
ple organs. In AsynDGAN, each discriminator is responsi-
ble for one type of nuclei, which may be better for the gen-
erator to learn the overall distribution. We present several
examples of synthetic images from AsynDGAN in Figure 7,
and typical qualitative segmentation results in Figure 6.

5. Conclusion

In this work, we proposed a distributed GAN learning
framework as a solution to the privacy restriction problem
in multiple health entities. Our proposed framework ap-
plies GAN to aggregate and learns the overall distribution
of datasets in different health entities without direct access
to patients’ data. The well-trained generator can be used as
an image provider for training task-specific models, with-
out accessing or storing private patients’ data. Our evalua-
tion on different datasets shows that our training framework
could learn the real image’s distribution from distributed
datasets without sharing the patient’s raw data. In addition,
the task-specific model trained solely by synthetic data has a
competitive performance with the model trained by all real
data, and outperforms models trained by local data in each
medical entity.
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