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Evolutionary biologists typically envision a trait's genetic basis and fitness
effects occurring within a single species. However, traits can be determined
by and have fitness consequences for interacting species, thus evolving in
multiple genomes. This is especially likely in mutualisms, where species
exchange fitness benefits and can associate over long periods of time. Partners
may experience evolutionary conflict over the value of a multi-genomic trait,
but such conflicts may be ameliorated by mutualism’s positive fitness feed-
backs. Here, we develop a simulation model of a host-microbe mutualism
to explore the evolution of a multi-genomic trait. Coevolutionary outcomes
depend on whether hosts and microbes have similar or different optimal
trait values, strengths of selection and fitness feedbacks. We show that
genome-wide association studies can map joint traits to loci in multiple gen-
omes and describe how fitness conflict and fitness feedback generate different
multi-genomic architectures with distinct signals around segregating loci.
Partner fitnesses can be positively correlated even when partners are in con-
flict over the value of a multi-genomic trait, and conflict can generate strong
mutualistic dependency. While fitness alignment facilitates rapid adaptation
to a new optimum, conflict maintains genetic variation and evolvability,
with implications for applied microbiome science.

1. Introduction

Evolutionary biologists have known for decades that traits of one individual
can affect both its own fitness as well as the fitness of interacting con- or hetero-
specific individuals. A host’s immune response affects the fitness of its pathogenic
and beneficial microbes [1]; an individual’s behaviour impacts the fitness of other
group members [2] and so on. The idea that a trait has fitness effects beyond the
trait-bearer is enshrined in the concept of an extended phenotype [3] and is neces-
sary for coevolution, defined as reciprocal adaptation between species [4].
Extended phenotypes have renewed relevance with the revelation from micro-
biome science that many so-called plant and animal traits are actually partly
determined by microbial genomes [5-7]. Thus, phenotypes may map to genes
in the genome of a completely different species—which raises the question:
whose trait is it anyways? And how do these joint phenotypes evolve?
Nowhere is the importance of extended phenotypes more obvious than mutu-
alisms, reciprocally beneficial interactions between species. In host-microbe
mutualisms and other symbioses, prolonged physical association may link trait-
fitness relationships across species especially tightly [8]. Even in non-symbiotic
mutualisms, reciprocal benefits can result in selection for traits that enhance the
interaction and allow their pariner to influence trait expression, in contrast to antag-
onisms (which can be interpreted as joint traits with selection for reduced or
increased interactions, respectively, in victims and exploiters [9]). In mutualisms,
an individual’s fitness will be determined by its own genome’s influence on
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traits, the influence of its partner’s genome on traits, and also by
the fitness costs or benefits accrued through interacting with its
partner, which may in turn depend on how expressed traits alter
partner fitness via fitness feedbacks. Thus, the fitnesses of both
partners are jointly determined by both partners’ genomes,
which coevolve. However, the genetic basis and evolutionary
trajectories of mutualism-related traits have received relatively
little attention from evolutionary quantitative geneticists.

Understanding the evolutionary quantitative genetics of
joint traits in mutualisms is pressing in light of the debate
over the extent of conflict in these otherwise cooperative
interactions. Although mutualisms are defined by mutual
benefit, they can be viewed equivalently as mutual exploita-
tion [10]. Mutualists are widely expected to be under
selection to ‘cheat’ by over-exploiting or under-provisioning
their partners, although there is currently only weak evidence
for cheating [11,12] and conflicts may be more usefully
viewed as over jointly determined traits [12]. When partner
fitnesses are positively genetically correlated (i.e. aligned),
natural selection favours more cooperation between species,
but when this correlation is negative, increased fitness in
one comes at the expense of fitness in the other [11].

Here, we describe mounting evidence for the existence of
joint traits and their evolutionary relevance and develop a
simulation framework to explore their evolutionary dynamics,
focusing on two themes. First, we track coevolutionary trajec-
tories of traits, alleles and patterns of genetic variation,
considering impacts of trait-fitness relationships in both spe-
cies and fitness conflict between species. Second, we sample
simulated genomes for in silico genome-wide association
study (GWAS) to validate methods for inferring the genetic
basis and selective history of a multi-genomic trait.

2. Background

(a) Traits with a multi-genomic basis

There is a growing literature on intraspecific indirect genetic
effects [13] and their contributions to genetic variance (e.g.
[14]). However, though the multi-genomic basis of traits is
also a research theme in both ‘niche construction’ [15] and
community genetics [16], identifying loci underlying multi-
genomic traits and the evolutionary forces acting on them
remains relatively rare, especially in mutualisms.

When we consider how traits evolve in mutualisms, the traits
we consider are often those that directly mediate the interaction.
For example, legumes produce host-specific flavonoids, indu-
cing compatible rhizobial bacteria to produce Nod factors that
initiate the formation of root nodules where plant and bacterial
metabolism interact to fuel the fixation of atmospheric nitrogen
into plant-accessible forms [17]. Both Nod factor secretion and
nitrogen fixation by rhizobia are bacterial traits encoded by
bacterial genes whose expression is affected by the plant host.
Likewise, nodule number and leaf nitrogen content are legume
traits altered by rhizobia [6]. Thus, these are joint phenotypes
encoded by loci in both legume and rhizobium genomes.

However, not all multi-genomic traits are directly involved
in the host-microbe interaction [5,6]. Flowering time has a
major genetic basis in plant genomes and is under strong selec-
tion [18], yet is also impacted by microbes [19,20]. Abiotic
stress is also often modulated by microbes, such as the fungi
associated with Pinus edulis that confer drought tolerance
[21]. Similarly, microbial symbionts regulate many traits in

animal hosts, including maturation, reproduction, neurodeve-
lopment and obesity in model animals [5,7,22] and even social
status in a non-model animal, the hyena [23].

Thus, microbial and host genomes can act together to pro-
duce a wide variety of joint phenotypes. Indeed, some have
proposed that microbiomes may help resolve the ‘missing
heritability’ paradox: since (host) loci identified via GWAS
incompletely explain heritable trait variation, some causal var-
iants may reside in genomes of inherited microbes [24] (but see
other possible explanations [25]). If this view is correct, then we
need to map jointly determined phenotypes to multiple gen-
omes to study trait evolution. The combination of GWAS to
detect loci underlying traits and population genetic tests to dis-
tinguish among selection regimes on those traits has proven
highly effective in single species [26]. With sequence data
from interacting genomes and joint phenotype measurements,
we may have the power to infer coevolutionary scenarios.

(b) The joint fitness effects of joint phenotypes
For multi-genomic traits that impact one or both partner’s
fitnesses, alleles underlying the trait may evolve in both
genomes. For example, plant flowering time can evolve in bac-
teria, demonstrated by artificial selection on the rhizosphere
microbiome of Arabidopsis thaliana shifting flowering time
[19]. Such change can feed back to the host genome: microbial
variation in effects on maturation in Drosophila melanogaster
induced evolutionary change at loci in the fly genome [27].
To predict the selective response of a multi-genomic trait,
we must understand how the trait influences both partners’ fit-
ness. First, a trait may have direct effects on each partner’s
fitness; i.e. varying the trait influences each partner’s survival
and reproduction (figure 1a), in similar (figure 1b) or different
(figure 1c—e) ways. For instance, plant and microbial fitness
could both be maximized by the same flowering time and
under the same strength of selection, as in figure 1b, or plant
fitness may be maximized by an earlier flowering time, as in
figure 1c, or plants may experience stronger selection on
traits (yielding a pattern like figure 1e). When the two species
have the same trait optimum, their fitnesses are aligned and
there is no conflict over the expressed trait value. If the trait
is far from the optimum, selection will favour alleles in both
species that move the trait closer. Otherwise, selection will
purge alleles underlying extreme phenotypes. In contrast,
when partners have different optima for the joint trait, adapta-
tion in one partner generally comes at the expense the other,
producing fitness conflict. Yet, how the trait evolves under con-
flict can also depend on fitness feedbacks between partners and
how far the phenotype is from the optima (figure 1 and below).
An important determinant of the amount of evolutionary
conflict between species is what we here call partner fitness
feedbacks. Positive fitness feedbacks occur in mutualisms if
fitness benefits provided by species A to species B eventually
feed back to benefit species A [29]. This occurs when A
increases the condition or overall vigour of B, which then
directly benefits A. Equivalently, if A ‘skimps” on providing
fitness benefits to B, A gets fewer fitness benefits in return
(commonly called ‘sanctions’, among other names [29-31]).
There is empirical evidence of these feedbacks in many mutu-
alisms: when mycorrhizae provide more phosphorus to
plants, plants reward them with more carbon [31]; when
yucca moths or fig wasps do not pollinate yucca or fig flow-
ers, plants selectively abort their offspring ([30] and
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Figure 1. (a) The genomes of two species, A (host, green) and B (microbe, purple), affect a joint trait (yellow) that can affect the fitness of both. Fitness of A and B
results in direct selection on the genomes of A and B, respectively. (b) The relationship between the trait and fitnesses of hosts and microbes when both experience
stabilizing selection for the same trait value. This aligns fitness interests regardless of expressed trait values in the population. (c) A difference between species A and
B in the optimal value of the trait. This results in conflict across the range of trait values between the two optima (grey shading). (d) Such conflicts can be
ameliorated or resolved by indirect effects of traits on each species’ fitness via positive fitness feedbacks (see text), which effectively move the trait optima together
(indicated by arrows). (e) Data (points) from Haney et al. [28] for host (Arabidopsis thaliana) and microbe (Pseudomonas fluorescens) fitness as a function of a joint
trait, plant root branching. Lines show data fit to a Gaussian curve for each species, which predict different optima, potentially creating conflict (grey-shaded region)

and stronger direct selection on plants (curve steepness).

references therein); etc. While many mutualisms are horizon-
tally transmitted, another source of fitness feedback can be
vertical transmission, which links symbiont and host
reproduction and therefore fitness interests [32].

Our simulation model imagines a general case where spe-
cies B can benefit from shifting the joint trait value closer to the
optimum for species A, because the higher fitness of species A
then feeds back to benefit species B (figure 1d). For example,
nitrogen fixation by rhizobia is energetically costly, so the
direct trait-fitness function for rhizobia might have a low
optimum—ijust enough to sustain the rhizobia themselves.
However, nitrogen-starved plants are small and do not sup-
port much microbial growth. Because microbes on fit plants
have much greater fitness than microbes on unfit plants,
both partners can benefit from more exchange of carbon for
nitrogen [33] and the optimal amount of nitrogen fixation by
microbes may instead be near the plant’s optimal phenotype.
Thus, fitness feedbacks can shift the microbe’s effective
optimal trait value towards the host’s optimum (figure 1d).

Most past work has emphasized directional selection in
mutualisms and simply asked whether partner fitnesses are
positively or negatively correlated overall [11,12]. Yet, in reality,
we expect most traits to be under stabilizing selection [34],
especially traits involved in mutualisms. If the fitness of species

A has heritable, genetic variation in species B, then mutualistic
fitness feedbacks between A and B imply that higher fitness of
species A will increase the fitness of species B. However, this
cannot continue indefinitely. May [35] famously derided this
possibility by calling unbounded, positive feedback between
mutualistic partners ‘an orgy of reciprocal benefaction” because
at some point, more mutualism is not better. At some point, rhi-
zobia have fixed sufficient nitrogen for their plant hosts and
plant growth is limited by other resources [36]. Furthermore,
the point at which continuing to invest in the mutualism
becomes maladaptive may differ between partners. Thus, even
with fitness feedbacks, differences in optimal values across part-
ners can lead to evolutionary conflicts [37]. In short, we have an
a priori expectation that traits in mutualisms should generally
be under stabilizing selection with weak conflicts.

3. A simulated case study of joint trait evolution
in host—microbe mutualisms

(a) Simulation details
We simulated coevolving loci in host and microbial genomes
that impact a joint trait with fitness consequences for one or
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both species in R (further details in electronic supplementary
material; code: see ‘Data accessibility’) [38]. Selection acts
initially on a trait with no segregating variation (e.g. a joint
trait in a mutualism that has recently formed or invaded a
novel habitat, thereby resulting in an initially narrow base
of genetic variation and a trait mean far from the optimum).

For each simulation step, we draw from the populations of
hosts and microbes (both of size # = 2000) such that they inter-
act at random, assuming for simplicity that each host interacts
with one microbe (therefore, 11 also equals the number of host—
microbe pairs). Our model incorporates the fundamentally
different genetic architectures of macrobes and microbes:
plants and animals are most often diploid, while their micro-
bial partners are generally haploid. The joint trait is
quantitative, and the phenotypic value expressed is the sum
of the additive effects (2) at each allele (a; and a, with no dom-
inance in diploid hosts, e.g. dominance coefficients all 0.5; but
a single allele in haploid microbes) at each locus (I) across all
loci (totalling Lys and Lgy) within both host (H) and microbe
(M) individuals. Ly;=40 and Ly =20 to equalize mutational
target size across partners. The phenotypic value (z) of the
nth host-microbe pair is given by

Ly Ly

By = IZ: [a1m, + azm] + IE;RM, 3.1)
=1

in a similar, additive, fashion as models of joint phenotypes in
evolutionary conflicts [9].

Next, direct fitness effects of trait values are determined
by the difference between the expressed phenotype and
each partner’s phenotypic optimum (6) with a Gaussian
function with variance »> [39]. For hosts,

2
_m—%q 53

fH(Zn) = exp |: R
H

where the direct fitness component (Cy) derived from the
trait is relative to trait values expressed by all host-microbe
pairs,

fH(Zn)

Cuylzy) =—F—"—.
S e

(3.3)

Previous theoretical work on the evolution of quantitative
traits in mutualisms has mainly considered independent
traits that must match between species for the interaction to
happen (e.g. phenology, the length of pollinator tongues
and flower corolla tubes, etc.) and often incorporates stabiliz-
ing selection similarly to equation (3.2) [40]. Low fitness from
failed interactions forces these non-joint traits to evolve away
from their ‘direct’ optima (i.e. the optima when not interact-
ing as mutualists) and towards values enabling interactions.
In contrast, we assume all individuals interact, but that the
jointly determined trait values affect interaction outcomes.
Specifically, fitness feedbacks occur when host and microbe
direct components (equation (3.3)) contribute as weighted
indirect components to each other’s fitnesses, as in indirect
genetic effects models (see [41]). Fitness is weighted between
each component via a, which sets the relative importance of
direct and indirect effects of a trait on fitness. Lower values
give more weight to indirect effects via partner fitness feed-
backs and interact with the variance (w?, inverse ‘strength’
of selection) of the direct trait—fitness function in both hosts
and microbes to determine the effective optimal trait value

and combined selection strength. Thus, the relative fitness n

of the host in the nth combination of a host and microbe is
wH(ZH) = ay X CH(ZTE) + (I - CEH) X CM(ZH)- (3-4)

Microbial direct trait fitness component (Cpy) and relative
fitness (w,,) are calculated similarly, substituting microbe
parameters for host parameters and vice versa.

Because each fitness component depends on the distance
to the optima of all hosts and microbes in the populations
(equation (3.3)), the fitness landscape and effects of fitness
feedbacks can change through time (electronic supplemen-
tary material, figures S4 and S5). The next generation of
individuals are then sampled from parents according to
parent relative fitness, with free recombination between loci
in hosts and clonal reproduction in microbes, mimicking
real-world eukaryotes and microbes.

Next, mutations occur with binomial probability
Pu = 1074, effect size exponentially distributed with 4 =25,
an equal chance of being negative or positive (both genomes,
electronic supplementary material, figure S1), and are added
to the previous value of alleles (initially, all a = 0; n x ploidy or
evolutionary dynamics limit the number of alleles per locus).
While parameters are equal here for simplicity, in practice,
mutational inputs may differ between hosts and microbes;
diploid, eukaryotic genomes more often generate point muta-
tions [42], while microbes readily lose and acquire portions of
genomes through horizontal gene transfer (HGT) [43]. We
allow HGT of single microbial loci with binomial probability
Prrz = 0.2, wherein another individual’s genotype is drawn at
random and copied to the focal. This occurs simultaneously
across all individuals. Finally, the cycle begins again and
repeats for 300 generations. Note that included features of
microbes (clonality and haploidy) can reduce the efficacy
of selection and evolutionary rates, because beneficial
mutations compete with one another [44]. HGT may partially
counteract this, but for simplicity, we do not model other
potentially counteracting forces: different generation duration
between hosts and microbes, and dominance.

We explored six scenarios of joint trait evolution in inter-
acting species. In the first three, there is no fitness feedback,
so ag=ay=1. These three scenarios are as follows. (1) A
null model. The trait directly affects the fitness of only the
host, though loci in both genomes affect the trait. To achieve
this, we flattened the direct trait-fitness curve for microbes
(wpr=10 much greater than both @y =0.75 and the range of
phenotypic values during simulations; figure 1). (2) A joint
trait under fitness alignment. The trait directly affects both
host and microbe fitness equally (wy; =y =0.75) and part-
ners have the same optimum. (3) A joint trait under conflict.
We shifted the microbe trait optimum (6,,=2) away from
the host trait optimum (6 = 3), creating conflict. In scenarios
4-6 we added fitness feedbacks by setting ap=op=0.6 but
keeping other parameters the same as in scenarios 1-3. Sce-
narios 4—6 are more realistic models of mutualism than 1-3,
which lack the exchange of fitness benefits. We further
explored outcomes beyond these six scenarios, including flip-
ping host and microbe parameters for scenarios 1, 3, 4 and 6
(electronic supplementary material, figures S2 and S3), and
independent and interactive influence of parameters on
outcomes in replicated simulations across a range of values
(see electronic supplementary material, figures S6-58).
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Figure 2. Simulation results for different scenarios. Mean and range of breeding values for host (green) and microbes (purple), and expressed phenotype (grey).
Trait optima or midpoints at dashed lines (see legend). Top left: a trait is directly linked to host fitness only. Top middle: a trait is directly linked to host and microbe
fitness, with identical optima. Top right; trait is directly linked to both microbe and host fitness, at separate optima. Bottom row: as above, but host and microbe

fitnesses are linked via positive fitness feedbacks.

(b) Joint trait responses to selection depend on conflict

and fitness feedbacks

When a joint trait is only linked to host fitness and there are no
fitness feedbacks (scenario 1), adaptation occurs in hosts alone.
The host’s mean breeding value moves rapidly to the host opti-
mum, 8, while the microbe’s breeding value takes a random
walk (figure 2, top left). When the trait also directly affects
microbe fitness, and hosts and microbes have identical trait
optima (scenario 2; figure 2, top middle), both partners evolve
increased breeding values until the joint trait reaches the
shared optimum. Despite equal selection strength in direct
trait-fitness components (wp=wpy) in scenario 2, breeding
values respond more in the host than the microbe, reflecting
more efficient selection in hosts (see also flipped scenarios,
electronic supplementary material, figures S2 and S3).

When hosts and microbes have conflicting phenotypic
optima (scenario 3; figure 2, top right; see also electronic
supplementary material, figure S3) both partners’ breeding
values initially increase, because the joint trait is below both
optima (dashed lines). As soon as the joint trait value passes
the microbe optimum, microbes experience selection for
lower breeding values while the host still benefits from
higher trait values. Host and microbe breeding values evolve
in opposite directions indefinitely, while the expressed pheno-
type remains approximately equidistant from host and microbe
optima and neither partner ‘wins’. The near-constancy in the
expressed phenotype at the midpoint between optima is simi-
lar to coevolutionary outcomes when mutualisms depend on
trait matching [40], while the dynamics of breeding value evo-
lution are similar to coevolution in antagonistic interactions

(e.g. [45]), yet this interaction is neither inherently mutualistic
nor antagonistic per se. Instead, partners are in conflict over
the joint phenotype.

In most scenarios (2-6), hosts become dependent on
microbes for optimal phenotype expression. Counter-intuitively,
under greater conflict, hosts become more dependent: in the top
right panel of figure 2, after 300 generations, a host with no
microbe expresses a trait value far beyond its optimum. Pheno-
typic expression often goes awry in novel environments, where
development can be miscued; this is particularly true for hosts
that develop gnotobiotically [46]. Our simulation shows how
host evolution in response to microbial influences on joint
traits could underlie this. In nature, this outcome would be clas-
sified as a mutualism, since both partners have higher fitness
together; in fact, evolved dependence may be a common way
mutualism originates [47].

Fitness feedbacks (scenarios 4-6) cause strikingly different
simulation outcomes, even when the trait only indirectly
affects microbe fitness (in scenario 4; figure 2, bottom left;
see also electronic supplementary material, figure 52). In sce-
nario 4, positive fitness feedbacks cause the effective microbe
optimum to match the host optimum, albeit with a shallower
fitness landscape (see electronic supplementary material,
figure S4). Microbe breeding values thus initially increase
and maintain contributions to the joint trait. This result
could explain why microbiota affect such a wide variety of
host traits, including traits unlikely to directly affect microbe
fitness [6,7]; partner fitness feedbacks mean that any joint
trait under selection in the host can evolve in microbes, even
if the trait has little to do with the host-microbe interaction.
Adding fitness feedbacks to direct selection with a shared
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optimum (compare scenarios 2 and 5; figure 2, middle) causes
a lag in reaching the optimum, because segregating loci in
multiple partners adds error and weakens selection relative
to drift (electronic supplementary material, figure 59). The effi-
cacy of selection may generally be lower whenever fitness
benefits accrue indirectly: work on social evolution similarly
finds that selection via indirect fitness effects is weaker than
via direct fitness effects [48].

The most realistic scenario we modelled is scenario 6,
wherein the joint trait has different fitness optima for hosts
and microbes, but they experience positive fitness feedbacks.
In this scenario (figure 2, bottom right), moderate fitness feed-
backs weaken conflict. Each genome continues shifting trait
values towards its own optimum indefinitely, but much more
slowly than without fitness feedbacks (compare scenarios
3 and 6, figure 2, right; see also electronic supplementary mate-
rial, figure S3). Further simulations of fitness conflicts with
feedbacks reveal that larger differences in optima and more
similar selection strengths drive rapid evolution, while increas-
ing fitness feedbacks (smaller as) slow evolutionary conflict
(see electronic supplementary material, figures 56 and S8).
These results help resolve an apparent paradox about the
tempo of mutualism evolution, which is alternately expected
to be slow due to widespread stabilizing selection [49] or fast
because of underlying conflict [37].

How much conflict actually occurs in mutualisms and
whether mutualists ‘cheat’ remain unresolved questions,
despite much attention [12,30,31]. Previous studies have taken
negative fitness correlations as evidence of selection for cheating
[11,12]. However, our simulations show that evolutionary con-
flict sometimes occurs alongside positive fitness correlations
(electronic supplementary material, figures 56, S8). Thus, mutu-
alism evolution does not follow a dichotomy between selection
for ‘cheating’ or ‘cooperation’. When hosts and microbes have
equal trait optima, their fitnesses are perfectly correlated,
although as selection reduces genetic variance, detecting corre-
lations would become difficult (electronic supplementary
material, figure S5). When pariners have different trait optima,
there is a trait value on either side of 8y that results in the
same host fitness but generates very different microbial fitnesses
(figure 1). As a result, rather fit hosts can have low- or high-
fitness microbes, explaining the horseshoe shape of the relation-
ship between partner fitnesses under conflict (electronic
supplementary material, figure S5, bottom right panel). Thus,
while evolutionary conflicts in mutualisms are often invoked
as evidence for cheating (e.g. [37]), our simulations show that
conflict is compatible with positive, negative or non-linear
fitness correlations, depending on evolutionary trajectories.

(c) Evolution shapes the multi-genomic architecture of
joint traits and multi-genomic architecture affects
evolution

Genetic variance is necessary for natural selection to act, yet
selection often erodes variance. After decades of research
into what prevents mutualists from cheating, Heath et al.
[50] recast the fundamental problem of mutualism evolution:
hosts often preferentially associate with or reward more ben-
eficial symbionts and thus select for cooperative symbionts
[11,29-31], so it is puzzling that ample genetic variation for
symbiont quality persists in natural populations [50]. Our
simulation results show how genetic variance for a joint

trait is eroded or maintained across partner genomes,
depending on the evolutionary scenario.

In scenario 1, where the trait only affects host fitness and
there are no fitness feedbacks, host genomes” additive genetic
variance initially spikes as mutations with large, positive effects
rise in frequency (figure 3, top left). As the trait approaches the
optimum, unfixed large-effect alleles more often produce pheno-
types overshooting the optimum so they decrease in frequency
[51]; the additive genetic variance declines as segregating alleles
are removed. In contrast, the microbial genome slowly accumula-
tes variation, approaching mutation-drift equilibrium (figures 3;
electronic supplementary material, S9 and S10, top left).

In scenarios 2 and 3, which add alignment or conflict over
traits, respectively, genetic variance initially spikes then falls in
both partners. The spike is larger for hosts (figure 3), as more
alleles initially escape drift to rise in frequency (compare electro-
nic supplementary material, figures 510 and S9). Scenarios 2 and
3 diverge after the joint trait value passes the microbe optimum
in scenario 3 and the partners begin experiencing conflict. When
the joint trait value is between the two partners” optima, large-
effect alleles again rise in frequency, but only positive-effect
alleles in hosts and only negative-effect alleles in microbes (elec-
tronic supplementary material, figures S9 and 510). The joint
trait value remains in this conflict zone and alleles accumulate
in both partners. Points in time when many or especially large
effect alleles are segregating correspond to the largest peaks in
genetic variance (compare top right panels of figure 3 and
electronic supplementary material, 59 and S10). Hosts generally
retain segregating variants for longer (compare electronic
supplementary material, figures S9 and 510, right panels, includ-
ing alleles ultimately lost), increasing genetic variance (figure 3).
This resembles common findings of victim—exploiter coevolu-
tionary models, in which coevolution often increases genetic
variation [52]. Adding fitness feedbacks in scenarios 4-6
generally diminishes the host’s relative contribution to genetic
variance (figure 3, bottom panels, not scenario 5). Even when
the trait only indirectly affects microbe fitness through feedbacks
(comparing scenarios 1 and 4), the initial uptick in total trait var-
iance is quicker, and the microbial genome contributes
substantially (figure 3, bottom left), because microbial loci also
respond to selection (electronic supplementary material, figures
59 and 510). When partner fitness feedbacks increase the indirect
component of fitness for microbes (scenario 5), the decrease in
variance is slower than in scenario 2, reflecting that indirect selec-
tion is weaker than direct [48].

While partner fitness feedbacks strengthen correlated selec-
tion in the positive direction (scenarios 4 and 5), they weaken
correlated selection in opposing directions (scenario 6). As
feedbacks shift effective optima closer together (figure 1c;
electronic supplementary material, figure 54), the expressed
phenotype at the midpoint is closer to the effective optima
and selection weakens. Alleles that rise in frequency after the
microbe optimum is passed have smaller effects (electronic
supplementary material, figures S9 and S510), dampening
peaks in genetic variance (compare scenarios 3 and 6, figure 3).

(d) GWAS can detect causal variants in multiple
genomes, which may permit inferences about trait

selective history
Rather than an all-or-nothing view of ‘cheaters’ in a mutual-
ism, mutualist genomes are probably mosaics of loci, with
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Figure 3. Genetic variance through time for each scenario in figure 2. Vertical green (host), grey (both), purple (microbe) lines on each panel mark when the
average trait value reaches (or passes, right-hand panels) the respective trait optimum.

some encoding traits under conflict, but most encoding traits
with a shared optimum. Population genetic analyses of loci
[53] can reveal the history of selection acting on quantitative
traits [54]. We seek to verify whether the loci underlying
multi-genomic traits can be identified with GWAS, and if
loci that GWAS identifies have different selective histories
among evolutionary scenarios.

We designed an in silico GWAS ‘experiment’, similar to
real empirical GWAS. Briefly, we simulated neutral, unlinked
loci in the six simulation scenarios, sampled 800 hosts and
microbes each from the 300th generation, redefined our
multi-allelic quantitative loci as sets of linked biallelic sites
and interacted one host genotype with all microbes and one
microbe genotype with all hosts in two GWAS “experiments’
(see electronic supplementary material for details).

GWAS detects coarsely similar proportions of causal loci
across most scenarios and host and microbial genomes (gen-
erally 30-60%), and the number of false positives reflects the
false positive rate (set to 5%) and number of neutral loci (elec-
tronic supplementary material, figures 515 and S16). It is
hard to detect loci with alleles that are small-effect, rare
or both (electronic supplementary material, figure S14)
[25]. Yet, estimated and known effect sizes are positively cor-
related (mostly p>0.3; electronic supplementary material,
figure S13), and large-effect loci provide more information
about evolutionary scenarios.

When the trait only affects host fitness (scenario 1), the
microbe genome retains few segregating variants and those
that are retained will resemble neutral sites in diversity (electro-
nic supplementary material, figure S11, upper left). Across
conflicts with weak or no fitness feedbacks, selection remains
directional through time and more larger effect, younger alleles
with rapid trajectories remain segregating (electronic supple-
mentary material, figures 59-512, right panels). Therefore,

when evolving under conflict, large effect loci in both genomes
are likely to exhibit characteristic sweep or partial sweep pat-
terns, where the selected site carries adjacent, linked variants
to high frequency, reducing nearby diversity [55]. With fitness
alignment, selection is stabilizing, there are fewer segregating
variants, and common variants of large effect tend to be older
than under even weak fitness conflict (electronic supplementary
material, figures S11 and 512, right panels). Under alignment
(but also drift in microbe genomes), segregating loci at appreci-
able frequencies are likely to have had slower trajectories and
retained or accumulated linked diversity [56].

While recent shifts in optima under alignment might also
generate sweep signals, and weak conflict will have softer
sweeps, younger derived alleles in one species will have differ-
ent directions of effects from younger derived alleles in the other
in conflict only (electronic supplementary material, figures 511
and S12). With alignment, younger alleles will have concordant
or equally variable effects in hosts and microbes. Polarizing
derived alleles relative to phylogenetic outgroups can identify
effect signs of younger alleles and help distinguish purifying
selection from sweeps [53,56]. Distinguishing among scenarios
where fitness interests are aligned (scenarios 2, 4 and 5) would
be harder because segregating variants have similar trajectories
(electronic supplementary material, figures S9-512). Yet these
scenarios are also more biologically similar, and perhaps
distinguishing them is less urgent.

In summary, GWAS appears to be effective for identifying
loci underlying multi-genomic traits and selective forces
acting on them. Indeed, the greatest challenge we expect is
distinguishing strong selection when fitness interests are
aligned from low-powered GWAS when no segregating
large effect alleles are identified and from cases where traits
simply do not have a genetic basis in both genomes,
though others have overcome analogous hurdles [54].
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4. Closing remarks

Joint traits with a multi-genomic basis can affect the fitness of
multiple species, changing how we think about evolution.
The extent of evolutionary conflict in mutualisms will be
driven simultaneously by differences in fitness optima and
by the strength of direct selection relative to partner fitness
feedbacks (figure 2; electronic supplementary material, fig-
ures S6-S8). Furthermore, conflict leaves a signature on
alleles in the genome, and we show that this can be evaluated
with sequence data and GWAS (electronic supplementary
material, figures $9-516).

The scope of host traits affected by microbes is vast, going
far beyond traits directly involved in host-microbe interac-
tions [6,7,22], so almost any trait could have a multi-genomic
basis. Transcriptomics might help identify phenotypes
whose expression depends on multiple genomes [57] and
can be paired with GWAS through an eQTL approach to
identify loci [54].

Conflicts over multi-genomic traits underlaid by genetic
constraints could be resolved by breaking them. For example,
if late-flowering plants have frost-damaged fruits, but earlier
flowering reduces microbe fitness, constraint between flower-
ing time and fruiting success would drive conflict, and the
evolution of frost-tolerant fruit would resolve it. Conflict reso-
lution may occur through the microbiome via altered trait
covariances, such as between root mass and phenology
[20]. Much work has focused on whether the microbiome
itself is heritable (e.g. [58]), yet whether the microbiome
possesses genetic variation for host traits may matter more:
in our simulations, microbe genotype is not heritable in
hosts, yet multi-genomic traits still evolve.

Our model could be expanded to consider additional
genomic or ecological complexity. Whereas we modelled
purely additive traits, in nature, dominance and epistasis—
both within and across genomes—affect evolutionary rates
[59]. Genomic complexity could influence genetic variance
and evolutionary trajectories, as in multi-nucleate arbuscular
mycorrhizal fungi [60]. Furthermore, our model comprises a
panmictic population in a constant environment; yet environ-
ments fluctuate in space and time, especially for horizontally
transmitted microbes [61], and such variation in selection
could alter evolution [62] or generate spatial correlations
between host and symbiont breeding values. In our model,
partnerships form at random, so genetic correlations do not
arise pre-selection through spatial structure or other mechan-
isms (e.g. pariner choice, vertical transmission). Models
including pre-selection correlations could leverage quantita-
tive genetic theory for phenotypes influenced by interacting
conspecifics [13]. Lastly, our model assumes one microbe
interacts with each host, but real host-associated microbiomes
comprise diverse microbial taxa (e.g. [58]). Nonetheless,
GWAS methods for communities exist [63] and diffuse coevo-
lution across communities sometimes resembles pairwise

coevolution [4]. Simulations of mutualistic networks based n

on trait-matching show coevolution causes trait convergence
[64], according with patterns in nature [65].

Binary traits such as whether an interaction occurs may
also map to multiple genomes and thus be considered joint
traits. Many mutualisms begin with one partner producing a
signal that is received by the other; these independently
expressed traits jointly determine whether partners interact
[66]. Cleaner fish eat parasites attached to client fish, and sig-
nals emitted by cleaner fish and received by client fish initiate
interactions [67]. Likewise, floral scents and insect odorant
receptors presumably evolve only in their respective genomes
but co-determine whether insect pollinators visit plants
[66]. Signal emitters and signal receivers do not always
have the same fitness interests (e.g. visits to fully fertilized
flowers may benefit pollinators, but not plants). Screening
mechanisms that filter out ineffective partners can also be
considered joint traits. For example, the squid Euprymna sco-
lopes depends on the horizontally acquired bacterium Vibrio
fischeri to produce light the squid uses for predator evasion.
Light is an emergent property of host screening traits and
bacterial traits: mutualistic V. fisheri catabolize toxic reactive
oxygen species synthesized by the host with the light-produ-
cing enzyme luciferase [68]. Thus, interaction traits in both
host—-microbe and macrobe-macrobe mutualisms can also
be considered through the multi-genomic trait framework
we present.

Finally, multi-genomic trait evolution has implications for
global change biology. Widespread, rapid environmental
change can lead to mutualism breakdown [69], but mutualism
can also facilitate rapid adaptation [19]. The degree of mutual-
ism disruption and evolutionary rescue will hinge on whether
trait optima match under historical and new environmental
conditions. Fitness alignment facilitates, and fitness conflict
constrains, adaptation to a new optimum (figure 2). However,
traits historically under conflict retain the most genetic varia-
tion (figure 3) and thus evolvability. Understanding the
evolution of multi-genomic traits thus enhances our ability
to predict how mutualisms will adapt in a changing world.
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