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Many cellular processes, such as cell division1–3, cell motility4, 
wound healing5 and tissue folding6,7, rely on the precise posi-
tioning of proteins on the membrane. Such protein patterns 
emerge from a combination of protein interactions, transport, 
conformational state changes and chemical reactions at the 
molecular level8. Recent experimental and theoretical work 
clearly demonstrates the role of geometry, including mem-
brane curvature9–11 and local cytosolic-to-membrane ratios12,13, 
and advective cortical flow in modulating membrane protein 
patterns. However, it remains unclear how these proteins 
achieve robust spatiotemporal organization on the membrane 
during the dynamic cell shape changes involved in physi-
ological processes. Here we use oocytes of the starfish Patiria 
miniata as a model system to elucidate a shape-adaptation 
mechanism that robustly controls spatiotemporal protein 
dynamics on the membrane in spite of cell shape deforma-
tions. By combining experiments with biophysical theory, we 
show how cell shape information contained in a cytosolic gra-
dient can be decoded by a bistable regulator of the enzyme 
Rho, which is associated with contractility. This bistable 
front in turn controls a mechanochemical response by locally 
triggering excitable dynamics of Rho. We posit that such a 
shape-adaptation mechanism based on a hierarchy of protein 
patterns may constitute a general physical principle for cell 
shape sensing and control.

In starfish oocytes, the cell shape is dynamically deformed by 
surface contraction waves that travel along the membrane from the 
vegetal pole (VP) to the animal pole (AP) during meiotic anaphase 
(Fig. 1a,b). Surface contraction waves are observed in many spe-
cies14–18, but their functional role is still under debate19,20. Recent 
work21 has clearly demonstrated that surface contraction waves 
are induced by the GTPase Rho, which, when GTP-bound, locally 
triggers actomyosin contractility and thereby generates a zone of 
surface contraction that travels as a band across the membrane  
(Fig. 1c and Supplementary Video 1). When the mechanical prop-
erties of the oocyte surface are altered by removing the extracel-
lular jelly layer21, the degree of deformation becomes greater and, 
remarkably, the surface contraction wave slows down (Fig. 1d). 
The same effect was observed previously when myosin contractility 
was increased to amplify shape deformations22. These observations 
establish the starfish oocyte as an ideal model system to unravel the 
dynamic interplay between cell shape and biochemical dynamics.

To investigate how the Rho dynamics are affected by cell shape, 
we adopt a strategy established previously2,21, which is to confine 
the oocytes in microfabricated chambers of various shapes (Fig. 1e).  

We find that shape affects both the initiation and the propaga-
tion speed of the Rho-GTP band. Specifically, we observe that 
the Rho-GTP band always initiates from regions of high curva-
ture, which we refer to as ‘corners’ (Fig. 1f–i and Supplementary  
Videos 2–5). Moreover, in elliptical (Fig. 1g and Supplementary 
Fig. 1a,b) and triangular (Fig. 1h and Supplementary Fig. 1c,d) 
geometries, multiple wave initiations occur, with the first start-
ing from the corner farthest from the nucleus (Fig. 1g,h, c1 label). 
Interestingly, in the star geometry, wave initiations occur simul-
taneously from the two corners farthest away from the nucleus  
(Fig. 1i, c1 and c2 labels, and Supplementary Fig. 1e), even though 
there are five corners with the same local curvature, which suggests 
that local mechanics alone are not sufficient to trigger wave initia-
tions. Strikingly, these waves propagate with varying speeds on dif-
ferent sections of the membrane such that they always meet closest 
to the nucleus (AP). This suggests that wave initiations and propa-
gation are globally coordinated.

Motivated by recent experimental evidence that the Rho-GTP 
band is guided by a temporally decaying cytosolic gradient of 
the kinase-active Cdk1-cyclinB complex21, we hypothesize that 
Cdk1-cyclinB provides this global coordination, analogous to posi-
tional information in morphogenesis23. In an unconfined oocyte, the 
Cdk1-cyclinB forms a cytosolic gradient that is high at the AP and 
low at the VP21 (Fig. 1j–l and Supplementary Video 6). To test how 
cell shape modulates this gradient, we imaged the evolution of the 
Cdk1-cyclinB concentration gradient (in short, the cytosolic Cdk1 
gradient) in different cell shapes (Fig. 1m, Supplementary Fig. 2  
and Supplementary Videos 7–9). In all cell shapes tested, this gradi-
ent extends radially from the AP into the cytoplasm (Fig. 1j,m and  
Supplementary Fig. 2). Consequently, the gradient perceived along 
the membrane (in short, the membrane Cdk1 gradient) depends on 
the membrane orientation relative to the cytosolic Cdk1 gradient. In 
an elliptical geometry, the membrane Cdk1 gradient is shallow at the 
corners (c1 and c2) but steeper in the middle of the elliptically shaped 
oocyte (Fig. 1m–o). These results demonstrate how the membrane 
Cdk1 gradient encodes information about cell shape.

In the different cell shapes, the Cdk1-cyclinB concentration is 
always lowest at the corner farthest away from the nucleus, which 
precisely coincides with the first wave initiation points (Fig. 1o 
and Supplementary Fig. 2). In addition, Cdk1-cyclinB concentra-
tion forms local minima at other corners, which coincides with 
subsequent wave initiation points (Fig. 1f–i and Supplementary 
Fig. 2). This is consistent with previous work that indicates that the 
Rho-GTP band originates at the point of lowest Cdk1-cyclinB con-
centration in unconfined oocytes21. Furthermore, our experiments 
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Fig. 1 | Contraction waves in starfish oocytes confined in compartments with different geometries. a, Differential interference contrast images of a 
surface contraction wave travelling from the VP to the AP during meiotic anaphase I. b, Kymograph of the surface contraction wave showing the trace 
of the cell surface curvature. c, Kymograph showing the distribution of active Rho-GTP (labelled with rGBD-GFP), which coincides with the surface 
contraction wave (Supplementary Video 1). d, Contraction wave speed plotted as a function of curvature change. Error bars indicate standard deviation 
(Methods). e, Schematic of the confinement experiments. PDMS, polydimethylsiloxane. f–i, Representative confocal cross-sections of Rho (top left), 
differential interference contrast images (top right) and membrane Rho kymographs of oocytes confined in different geometries: ellipse with AP at the 
tip (N = 4) (f), ellipse with AP on the long side (N = 4) (g), triangle (N = 6) (h) and star (N = 2) (i) (Supplementary Videos 2–5 and Supplementary Fig. 
1). White dotted circles indicate positions of the nucleus. j–o, Spatiotemporal gradient of Cdk1-cyclinB in wild-type (circular) and elliptical oocytes. 
Confocal cross-sections of Cdk1-cyclinB distribution in wildtype oocyte (Supplementary Video 6, N = 3) and in elliptical oocyte with AP on the long side 
(Supplementary Video 7, N = 2) (j,m). Cdk1 distribution along the membrane at three different time points (k,n). The times t1, t2 and t3 are 100 s, 400 s and 
700 s, respectively, after the first wave initiation. Kymographs of the membrane Cdk1 gradient during passage of the surface contraction wave in wildtype 
and elliptical oocytes (l,o). The dotted line indicates the position of the Rho-GTP band estimated from cell surface deformation (Methods). Cdk1-cyclinB 
intensity is normalized to the value at the initiation point of the first wave. All white scale bars represent 50 µm.
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show that, as the Cdk1 gradient decays, the Rho-GTP band (as 
indicated by the surface contraction wave) follows an isocline of the 
Cdk1-cyclinB concentration such that multiple waves arrive at the 
nucleus simultaneously. Hence, the Rho-GTP band on the mem-
brane must follow a specific concentration of the decaying mem-
brane Cdk1 gradient.

How can the Rho-GTP band be coupled to a particular level of 
Cdk1-cyclinB? A likely molecular link between the Cdk1 gradient 
and the Rho-GTP band is the Rho guanine nucleotide exchange fac-
tor (GEF) Ect2, which activates Rho (Fig. 2a). Cdk1-cyclinB phos-
phorylates Ect2, which has been suggested to decrease its membrane 
affinity24. Moreover, it has been reported that Ect2 overexpression 
induces a propagating front of Rho-GTP spiral waves (Rho spi-
rals) instead of a Rho-GTP-band25 (Fig. 2b,c and Supplementary  
Video 10). When we imaged the fluorescently tagged Ect2 (Methods), 
we observed that an Ect2 front coincides with the Rho-GTP band 
(Fig. 2d,e and Supplementary Video 11). We hypothesize that the 
Ect2 front follows a threshold of Cdk1-cyclinB concentration and 
that the Ect2 front in turn regulates the downstream Rho dynam-
ics. To test these hypotheses, we simultaneously imaged Ect2 and 
Rho. Indeed, we find that the domain of high Ect2 concentration 
coincides with the domain of Rho spirals (Fig. 2f, dashed line, 
Supplementary Fig. 3a and Supplementary Video 12). Furthermore, 
simultaneous imaging of Ect2 and Cdk1-cyclinB confirmed that the 
Ect2 front approximately follows a single Cdk1-cyclinB level (Fig. 2g,  
dashed line, Supplementary Fig. 3b and Supplementary Video 13).

Taken together, these findings suggest that the propagating 
Rho-GTP band is a result of the following hierarchy of protein local-
ization patterns (Fig. 2h). Cdk1-cyclinB forms a cytosolic gradient 
in the cell, which serves as a spatial map to guide a front of Ect2 

by localizing the front interface to a threshold Cdk1-cyclinB level. 
The Ect2 front demarcates a domain of high Ect2 concentration 
and a domain of low Ect2 concentration, which provides a spatial 
cue for the Rho-GTP band on the membrane. This cue leads to a 
Rho-GTP band at the interface of the Ect2 front in the wild type, or 
Rho spirals in the high-concentration domain when Ect2 is over-
expressed. As the position of the two Ect2 domains are determined 
by the Cdk1-cyclinB threshold concentration, the propagation of 
the Rho-GTP band is ultimately controlled by the degradation of 
Cdk1-cyclinB. To elucidate the underlying physical mechanism of 
this Cdk1–Ect2–Rho pattern hierarchy, we propose a reaction–dif-
fusion model with two distinct modules. First, we demonstrate how 
the Ect2 front controls the downstream Rho-GTP band and spiral 
front dynamics. We then propose a mechanism for how the mem-
brane Cdk1 gradient controls the position of the Ect2 front.

The first module of our model captures key features of the Rho 
GTPase cycle26,27 (Fig. 3a and Supplementary Figs. 7 and 8). In its 
inactive GDP-bound state, Rho can either be membrane-bound or 
cytosolic (GDI-bound). Once bound to the membrane, Rho-GDP 
can undergo nucleotide exchange which converts it into an active 
GTP-bound state, a process mediated by GEFs. When Rho-GTP 
is hydrolysed by GTPase-activating proteins, it detaches from the 
membrane. The GEF Ect2 front demarcates subdomains on the 
membrane with high and low nucleotide exchange rates (Fig. 3a,  
Supplementary Figs. 11 and 13, and Supplementary Sections  
2.3–2.6). Thus, viewed from a position on the membrane, the pass-
ing Ect2 front induces a sudden increase in the nucleotide exchange 
rates (Fig. 3b,c). Can such an increase lead to the observed Rho-GTP 
band? As the Ect2 increase shifts the steady-state concentration 
of Rho-GTP upwards, one might, at first glance, assume that this 
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Fig. 2 | The Cdk1–Ect2–Rho pattern hierarchy. a, Biochemical interaction network of the signalling molecules that control surface contraction wave in 
starfish oocyte. GAP, GTPase-activating protein. b–e, Snapshots of the Rho spiral front (b) and the cumulative intensity difference of the Ect2 front (d) 
on the membrane during surface contraction wave propagation in an Ect2-overexpressing oocyte (Supplementary Videos 10 and 11). The kymographs 
show the Rho signal (c) and the cumulative intensity difference of Ect2 (e) within a narrow region around the AP–VP axis during surface contraction wave 
propagation (white dashed boxes in b and d, respectively). Grey dashed line in d marks the boundary of the cell. Scale bars in b and d represent 50 µm.  
f, Kymographs of Ect2 and Rho concentrations along the membrane of an oocyte expressing both rGBD-GFP and Ect2-mCherry during surface contraction 
wave propagation (Supplementary Video 12). g, Kymographs of Cdk1-cyclinB and Ect2 concentration along the membrane of an oocyte expressing both 
cyclinB-GFP (a marker for Cdk1 activity) and Ect2-mCherry during surface contraction wave (Supplementary Video 13). The Cdk1-cyclinB intensity is 
normalized as in Fig. 1l. Grey dotted lines in f and g are guides for the eyes showing approximately the front positions. h, Schematic showing how the 
spatial distributions of Cdk1-cyclinB (top), Ect2 (middle) and Rho (bottom) proteins couple to each other during surface contraction wave propagation.
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merely translates the Ect2 front into a Rho-GTP front. However, this 
focus on steady states assumes an instantaneous response and there-
fore overlooks the transient dynamics, which can be qualitatively 
different when the increase in the Ect2 concentration occurs sud-
denly (Supplementary Fig. 14). Consider an initially low Ect2 con-
centration, such that most Rho is in the inactive GDP-bound form 
(Fig. 3d,e, point 1). A sudden increase in the Ect2 concentration 
then shifts the steady state towards a (slightly) increased Rho-GTP 
and decreased Rho-GDP concentration on the membrane (Fig. 3d, 
points 1 to 3). Owing to the positive feedback on Rho activation, the 
Rho concentrations do not relax directly into the new steady state, 
but transition to it via a large excursion in phase space; in other 
words, the Rho dynamics are excitable (Supplementary Figs. 9 and 
10, and Supplementary Sections 2.3 and 2.4). The large excursion 
in phase space corresponds to a transient increase in the Rho-GTP 
concentration on the membrane (Fig. 3d,e, point 2). Thus, the time 
differential of the local Ect2 concentration, rather than the absolute 
Ect2 level, induces the large transient increase in Rho activation.

As the Ect2 front moves along the membrane, it continuously 
triggers such local excitations, which results in a spatially local-
ized band of Rho activity that follows the Ect2 front (Fig. 3f and 
Supplementary Video 14). Consequently, this model predicts that 
the width of the Rho-GTP band is given by the product of the exci-
tation time and the propagation speed. We confirm this numerically  

using finite element simulations of the system in different geom-
etries (Supplementary Videos 15–17). Indeed, we find that the 
band width is positively correlated with the propagation speed 
(Supplementary Fig. 15). To test this prediction experimentally, we 
confine oocytes in three different geometries and also observe the 
predicted increase in band width with propagation speed (Fig. 3g).

In oocytes that overexpress Ect2, we observe a propagating front 
of Rho-GTP spirals (Fig. 2c). Viewed from a fixed position on the 
membrane, spirals correspond to oscillations in Rho-GTP concen-
tration. In accordance with this experimental observation, our model 
exhibits limit-cycle oscillations over a broad parameter regime  
(Fig. 3h,i, Supplementary Fig. 12 and Supplementary Sections 2.4 
and 2.7). Indeed, our simulations show that the resulting oscillatory 
medium can exhibit spiral waves (Fig. 3k, Supplementary Fig. 16 
and Supplementary Video 18). In fact, this is generic because excit-
ability and limit-cycle oscillations are closely related nonlinear phe-
nomena, and are often found in neighbouring parameter regimes. 
The model provides a mechanism that explains how different levels 
of Ect2 can account for both the Rho-GTP band and spiral wave 
dynamics in the starfish oocyte. In addition, it shows that the prop-
agation of the Ect2 front fully determines the propagation of the 
Rho-GTP band, and therefore the surface contraction wave.

To elucidate how the propagating Rho-GTP band adapts to 
changes in cell shape, we ask how the propagating Ect2 front itself is 
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controlled by the upstream Cdk1 gradient. Propagating fronts are a 
generic feature of bistable media. These fronts connect two plateaus, 
which correspond to the two stable steady states28,29, and propagate 
such that the steady state with the stronger attraction (dominant 
steady state) invades the other steady state. Although such a mecha-
nism of front propagation does not depend on the precise origin 
of the underlying bistability, we hypothesize that a candidate for 
bistable dynamics in starfish oocytes is Ect2, potentially as part of 
an interaction network with other Rho regulators, in which active 
(unphosphorylated) Ect2 autocatalytically enhances its own dephos-
phorylation (Fig. 4a, Supplementary Fig. 18 and Supplementary 
Section 3.2). Furthermore, we assume that Ect2 can be phosphory-
lated by cytosolic Cdk1-cyclinB24 and that Ect2 can only bind to or 
detach from the membrane in its active conformation. These reac-
tion kinetics exhibit bistability for a range of Cdk1-cyclinB concen-
trations, with the two steady states corresponding to high and low 
Ect2 concentrations on the membrane (Fig. 4b and Supplementary 
Fig. 15). To demonstrate the bistable nature of Ect2 dynamics, we 
developed a photo-recruitable GEF catalytic domain in starfish 
oocytes30 (Methods). We showed that oocyte contractility exhibits 
an abrupt and switch-like response to membrane GEF recruitment 
(Supplementary Fig. 4 and Supplementary Video 19). This result, 
together with the observation that Ect2 forms a front, suggests that 
Ect2 activation dynamics are bistable.

In the model, the Cdk1-cyclinB concentration determines the 
relative dominance between the two steady states, and therefore the 

speed of the Ect2 front (Fig. 4c). For a critical Cdk1-cyclinB con-
centration, c*Cdk1

I
 (Fig. 4b, purple line, and Supplementary Fig. 19), 

the front is equally attracted to both steady states, which results in a 
stalled front. As Cdk1-cyclinB forms a gradient, the critical concen-
tration c*Cdk1

I
 at which the front stalls corresponds to a certain posi-

tion on the membrane, and the Ect2 front will move towards this 
position, where it in turn stalls31 (Fig. 4d). As the gradient decays, 
this stalling point will itself move in space, which causes the Ect2 
front to follow (Fig. 4e and Supplementary Fig. 20). Hence, the speed 
at which the stalling point moves along the membrane is determined 
by the ratio of the decay rate (temporal variation of the concentra-
tion) to the slope (spatial variation of the concentration) of the Cdk1 
gradient (Fig. 4e). This implies that the speed of the Ect2 front, and 
therefore of the Rho-GTP band, is determined by the same ratio. By 
simulating the reaction–diffusion dynamics numerically, we indeed 
find that the Ect2 front propagates up to the stalling point and then 
follows this concentration as the gradient decays (Supplementary 
Videos 15–17). Thus, propagation of the Ect2 front is strongly cor-
related with, and limited by, the speed of the stalling point.

We have identified a direct link between the speed of the Rho-GTP 
band and the decaying Cdk1 gradient. Based on this insight, we can 
now explain how the propagating Rho-GTP band adapts to the 
cell shape. A striking example that illustrates this adaptation is the 
propagation of the Rho-GTP band in a star geometry, in which the 
different arms of the star exhibit membrane Cdk1 gradients of vary-
ing slope (Fig. 4f). As a consequence, the speed of the Ect2 front 
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and the Rho-GTP band vary greatly from slow speed along arms 
with steep gradients to high speed along arms with shallow gradi-
ents. We verified this using finite element simulation (Fig. 4g,h), 
which agrees well with the experimental data (Fig. 4i). To further 
test this relationship between the speed of the Rho-GTP band and 
the decaying gradient quantitatively, we analysed the Cdk1-cyclinB 
distribution in different cell shapes and measured both the aver-
age slope and average decay rate of the membrane Cdk1 gradient 
(Supplementary Section 1.2). We estimated the front speed from the 
membrane deformation induced by the surface contraction wave 
(Supplementary Section 1.2 and Supplementary Fig. 5). By com-
bining measurements of multiple surface contraction waves from 
different cell shapes, we indeed find that the propagation speed is 
positively correlated with, and limited by, the ratio of the decay rate 
to the slope of the membrane Cdk1 gradient (Fig. 4j).

As a final test of our model, we ask whether the Cdk1–Ect2–Rho 
pattern hierarchy can explain the negative correlation between the 
speed of the Rho-GTP band and the magnitude of deformation dur-
ing the contraction wave (Fig. 1d). We reason that the contraction 
wave must reorient the membrane with respect to the gradient, such 
that the Cdk1 gradient along the membrane becomes steeper, result-
ing in a slower front propagation. In agreement with this expecta-
tion, we find that for oocytes with a larger shape deformation, the 
ratio of the decay rate to the slope of Cdk1 gradient is reduced  
(Fig. 4k). Furthermore, our proposed mechanism predicts that the 
Cdk1 gradient during meiosis II should be shallower or should 
decay faster, resulting in a faster progression of the surface contrac-
tion wave during meiotic anaphase II (Supplementary Fig. 6).

The shape-adaptation mechanism confers robustness to cell 
shape changes by integrating positional information encoded in the 
Cdk1 gradient with self-organized protein patterns32 of Ect2 and 
Rho. The excitable dynamics underlying the Rho-GTP band are 
reminiscent of the spiking dynamics in neural systems33, which sug-
gests that information processing on widely differing scales arises 
from similar organizing principles. The hierarchical coupling of 
bistability and excitability elucidates how the Rho-GTP band and 
spiral front propagation arise from the same underlying regulatory 
network and unify the two phenomena that have been previously 
reported separately21,25,34. In addition, the Cdk1–Ect2–Rho hierar-
chy processes cell shape information to induce a mechanochemi-
cal response. As Rho induces actomyosin contractility to change 
cell shape, this mechanism provides a mechanochemical feedback 
loop that could also facilitate cell shape control, a process that is dis-
tinct from previously reported mechanochemical coupling mecha-
nisms35,36. Although the shape-adaptation mechanism reported 
here is solely based on the Cdk1 gradient, there could also be subtle 
effects from cell mechanics. In future work, it would be instruc-
tive to explore the interplay of cortical tension with cell shape and 
biochemical dynamics in the context of putative mechanochemical 
feedbacks35,36. Interestingly, the Cdk1–Ect2–Rho hierarchy shows 
striking similarities with surface contraction waves in Xenopus 
eggs37, nuclear positioning38 and cell cycle waves in Drosophila 
embryos39,40, and with morphogenetic furrow formation during 
Drosophila eye development41, which suggests that our results may 
underpin a wide range of cellular patterning processes. We hypoth-
esize that this hierarchical coupling of protein patterns is a generic 
mechanism that facilitates robust spatiotemporal information pro-
cessing on various scales, from single cells to tissues.
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Methods
Experimental methods. Starfish oocyte preparation. Starfish Patiria Miniata was 
procured from South Coast Bio-Marine. The animals were kept in a salt-water 
fish tank maintained at 15 °C. The ovaries were extracted through a small incision 
made at the bottom of the starfish. The ovaries were carefully fragmented 
using a pair of scissors to release the oocytes. Extracted oocytes were washed 
twice with calcium-free seawater to prevent maturation and were incubated 
in filtered seawater at 15 °C. Experiments were performed within three days of 
oocyte extraction. To induce large shape deformation, oocytes are incubated in 
0.1 mg mL−1 actinase E for 30 min.

Constructs. The following constructs used were described in previous studies: 
GFP-labelled rhotekin-binding domain construct EGFP-rGBD42 (Addgene plasmid 
#26732); 3XmCherry-labelled Ect243 (gift from K.-C. Su); and EGFP-labelled 
cyclinB21 (gift from P. Lenart). In addition, the constitutively active Ect2 construct 
fluorescently labelled with mCherry, mCherry-Ect2-T808A, was used (gift from  
G. von Dassow).

To manipulate Rho activity with light, we adapted the TULIP optogenetic 
system30 to enable photo-recruitment of GEF to the membrane. The system 
consists of two components: a membrane-targeted photosensitive domain 
LOVpep, and a GEF LARG fused with tandem PDZ tag that binds to LOVpep 
in a 405 nm light-dependent manner. To adapt this system in starfish 
oocyte, we cloned the Stargazin-GFP-LOVpep (Addgene plasmid #80406, 
using primers atggggctgtttgatcgagg and ttacacccaggtatccaccgc) and PR-GEF 
YFP (2XPDZ-YFP-LARG DH, Addgene plasmid #80408, using primers 
atggcaaaacaagagattcgagtga and ttagcgctgcttgttttctgcc) into pCS2+8 backbone 
constructs44 (Addgene plasmid #34931). Stargazin-GFP-LOVpep and PR-GEF  
YFP (2XPDZ-YFP-LARG DH) were gifts from M. Glotzer and PCS2+8 was a  
gift from A. Hamdoun.

In vitro synthesis of mRNA and microinjection. For in vitro synthesis of mRNA, 
we first amplified the constructs by bacterial growth overnight. The plasmids 
were then purified using Miniprep (Qiagen) and linearized using the appropriate 
restriction enzymes. EGFP-rGBD and 3XmCherry-Ect2 mRNA were synthesized 
using the SP6 mMessage mMachine transcription kits (Thermo Fisher Scientific). 
CyclinB-EGFP mRNA was synthesized using the T7 Ultra mMessage mMachine 
transcription kits (Thermo Fisher Scientific). To express the constructs, the 
synthesized mRNA was microinjected into the cytoplasm of the oocytes and 
incubated overnight at 15 °C.

Chamber fabrication. Microfabricated chambers were fabricated by casting 
polydimethylsiloxane (PDMS) onto patterned silicon wafers. The chamber shapes 
were designed with a height of 80 µm and surface area of around 27,000 µm2, 
to match typical volumes of the oocytes. The patterned silicon wafer was 
manufactured using photolithography (Microfactory SAS). The silicon wafer was 
silanized with trichlorosilane (Sigma, product number 448931). PDMS was made 
by mixing Dow SYLGARD 184 Silicone Elastomer Clear solution at a 10:1 ratio of 
base to curing agent. After thorough mixing, the elastomer was poured over the 
silicon master mold, degassed in a vacuum chamber and cured at 60 °C in an oven 
for 1 h.

Confocal imaging. Fluorescence imaging was performed on either the Zeiss 700 
or 710 laser scanning confocal microscope (LSM) system. The Zeiss 700 laser 
scanning confocal system consists of a Zeiss AxioObserver motorized inverted 
microscope stand, an LSM photomultiplier detector and a transmitted light 
detector. Images were acquired using a ×40/NA = 1.3 Oil Plan-Apochromat 
objective with the appropriate laser line and emission filter. The system was 
operated using Zeiss Zen 2010 acquisition software.

The Zeiss 710 laser scanning confocal system consists of a Zeiss AxioObserver 
motorized inverted microscope stand with differential interference contrast optics, 
motorized XY stage, two LSM photomutiplier detectors and a transmitted light 
detector. Images were acquired using a ×40/NA = 1.1 Water LD C-Apochromat 
objective with the appropriate laser line and emission filter. The system was 
operated using Zeiss Zen Black 2012 acquisition software.

Image analysis and quantification. Space–time kymograph of Rho-GTP. The 
space–time kymograph of GFP-labelled Rho-GTP IR(s, t) is computed by first 
extracting the boundary of the oocyte r sð Þ ¼ x sð Þ; y sð Þð Þ

I
 and then extracting the 

fluorescence intensity IR(s) along the boundary for all time frames t. Here, we used 
s to parameterize the arc length of the oocyte boundary. For each time frame t, 
we performed a Gaussian filtering step (with a standard deviation of 1.2 pixels) 
on the confocal image of the oocyte cross-section before applying a thresholding 
step (with threshold level set at 80% of the mean intensity of each frame) to make 
a binary image. The oocyte boundary r sð Þ

I
 is obtained by using the ‘bwboundaries’ 

function in MATLAB on the binary image, which is then smoothed using the 
MATLAB function ‘smoothing’. The intensity IR(s) is obtained by first identifying 
a local window with a size of 12 × 12 pixels that is centred at r sð Þ

I
, and then taking 

the mean intensity of the pixels in the top 50th percentile intensity within the local 
window. To construct the full kymograph IR(s, t), the intensity IR(s) at each time 

frame t is aligned such that the AP corresponds to the same arc length position and 
is resampled at the appropriate arc length s.

Space–time kymograph of membrane curvature change. From the oocyte boundaries 
r sð Þ ¼ ðx sð Þ; yðsÞÞ
I

 measured for all time points, the positions x(s) and y(s) are 
aligned to a common point (consistent with the alignment for IR(s)) and are 
resampled at the appropriate arc length s to produce ~xðsÞ

I
 and ~yðsÞ

I
. The in-plane 

membrane curvature is computed using the resampled positions and according to 
the equation

κ ¼ ~x0~y00 � ~y0~x00j j
~x02 þ ~y02ð Þ3=2

where primes refer to the derivative with respect to arc length s. The full curvature 
kymograph κ(s, t) is obtained by repeating the calculation for all time points t. The 
kymograph of membrane curvature change ~κðs; tÞ

I
 is obtained by subtracting the 

rest state curvature κ(s, t = 0) from the kymograph. The contraction wave appears 
as a band of negative values in the curvature change kymograph. The maximum 
curvature change plotted in Fig. 1d is the average of six curvature values that are 
sampled mid-wave (when the curvature change is at a maximum). The error bar is 
the standard deviation of the six values. To minimize batch-to-batch variation, all 
experiments in Fig. 1d are performed using oocytes from the same batch.

Space–time kymograph and contour plot Cdk1. The Cdk1 concentration near 
the membrane c(s) is obtained by averaging the intensity measurements within 
an annulus region beneath the membrane. A set of four progressively smaller 
perimeters that share the same centroid are obtained from the oocyte boundary 
r sð Þ ¼ ðx sð Þ; yðsÞÞ
I

 with dilation factors (0.95, 0.91, 0.87 and 0.83). The intensity 
ICi ðsÞ
I

 along the ith perimeter ri sð Þ
I

 is obtained by first identifying a local window 
with a size of 12 × 12 pixels that is centred at ri sð Þ

I
, and then taking the mean 

intensity of the pixels in the top 50th percentile intensity within the local window. 
The fluorescence intensity of Cdk1 IC(s) is obtained by taking the average of the 
four intensities ICi ðsÞ

I
. To construct the full kymograph IC(s, t), the fluorescence 

intensity IC(s) at each time frame t is aligned such that the AP corresponds to the 
same arc length position and is resampled at the appropriate arc length s. The final 
kymograph is obtained by normalizing IC(s, t) with the concentration of Cdk1 at 
the point at which the contraction wave was first initiated, c0. The contour plot is 
obtained from the kymograph using MATLAB function ‘contour’. Supplementary 
Fig. 2 shows confocal cross-sections and the corresponding kymographs for a 
freely floating oocyte and oocytes confined to elliptical and triangular geometries.

Space–time kymograph of Ect2. The Ect2 kymograph along the cell boundary 
IE(s, t) is obtained using a method similar to that for the Cdk1 kymograph, 
with one notable difference. In addition to background fluorescence from 
cytosolic Ect2-mCherry, the cortex of starfish oocyte contains granules with 
autofluorescence in the mCherry fluorescence window. To better separate signal 
from background, the fluorescence intensity of Ect2 IE(s) at each time point is 
first obtained from the oocyte boundary r sð Þ

I
 using the same approach as for the 

Cdk1 intensity IC(s), but with three dilation factors (0.95, 0.91 and 0.87) instead 
of four. To remove noise, a smoothing spline is fitted to IE(s) using the MATLAB 
smoothing spline function ‘spaps’, with the tolerance value set at 10% of the range 
of IE(s) (that is, tol ¼ max IE sð Þ �min IE sð Þ½ =10

I
). To remove background, the time 

difference of IE(s) at subsequent time point ΔIE s; tð Þ ¼ IE s; tð Þ � IE s; t � 1ð Þ
I

 is 
obtained. The final Ect2 kymograph, IE(s, t), is taken to be the cumulative sum of 
the intensity difference ΔIE(s, t), that is, IE s; tð Þ ¼

Pt
τ¼1 ΔIE s; τð Þ

I
.

The Ect2 cumulative difference snapshot and kymograph in Fig. 2b is obtained 
using a similar procedure for background subtraction. Starting from the raw 
video for IE r; tð Þ

I
 (Supplementary Video 10, left), we computed the temporal 

intensity difference at subsequent time point ΔIE r; tð Þ ¼ IE r; tð Þ � IE r; t � 1ð Þ
I

. 
The final cumulative difference snapshot is taken to be IE r; tð Þ ¼

Pt
τ¼1 ΔIE r; τð Þ

I
 

(Supplementary Video 10, right). The kymograph in Fig. 2b is obtained by taking 
the average intensity of a thin section in the middle of membrane over the duration 
of the surface contraction wave.

Co-localization of Ect2 with Cdk1/Rho-GTP. To show that the Ect2 front 
co-localizes with Cdk1/Rho-GTP, we co-expressed Ect2-mCherry with 
cyclinB-GFP/rGBD-GFP (Rho-GTP reporter) simultaneously and performed 
confocal imaging. We extracted the space–time kymograph of Ect2 together with 
Cdk1/Rho-GTP as described above. We were unable to visualize co-localization 
of Ect2 with Rho pulse for the wildtype condition, as we lack the tools to label 
the endogenous pool of Ect2 proteins. However, our Ect2/Rho-GTP two-colour 
imaging experiment clearly demonstrates that the Ect2 front co-localizes well with 
a Rho-GTP spiral front.

Cdk1 decay rate γ and slope α calculation. To estimate the decay rate γ, the total 
Cdk1 intensity over the entire oocyte boundary, ICT tð Þ ¼ P

s ICðt; sÞ
I

, is plotted 
as a function of time. The intensity curve is approximately linear over the time 
window of the wave. The decay rate γ is obtained by taking the slope of the linear 
line connecting ICT tstartð Þ

I
 and ICT tendð Þ

I
. The spatial slope of Cdk1 can be estimated 
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from the spatial profile of Cdk1 at mid-wave, ICmid sð Þ ¼ IC s; tmidð Þ
I

. The slope α for 
each wave segment is obtained by taking the slope of the linear line connecting 
ICmid sstartð Þ
I

 and ICmid sendð Þ
I

, where sstart and send are the initiation and the annihilation 
position of each wave segment. The slopes similarly calculated from the spatial 
profiles of Cdk1 at the start and end of the wave IC(s, tstart) and IC(s, tend) are used as 
upper and lower error bars.

Ect2 front speed calculation from oocyte shape deformation. As the membrane 
deformation arises from the Rho peak, which in turn localizes at the Ect2 front, 
we use the deformation of the membrane as a proxy for the Ect2 front position. 
To estimate the Ect2 front speed, we track the point of maximal deformation 
of the membrane along the arc length. From the curvature kymograph κ(s, 
t), the curvature difference Δκ s; tð Þ ¼ κ s; tð Þ � κðs; t � 1Þ

I
 is computed. For 

a particular arc length location s, we found that the point at which curvature 
change Δκ(t) passes zero is a good estimate of the Rho peak position. We verified 
this by performing Rho fluorescent imaging and showed that the Rho peak 
trajectory corresponds to point of maximal deformation identified from Δκ(s, 
t) (Supplementary Fig. 5). After identifying all the points of zero crossing in the 
curvature difference kymograph Δκ(s, t), a straight line is fitted for each wave 
segment. The slope of the linear line gives the Ect2 front speed for the particular 
oocyte segment. The error bar is the 95% prediction interval.

Reaction–diffusion model for Rho and Ect2 module. In this section, we specify 
the model equations and parameters. For a detailed description of the model, we 
refer to Supplementary Sections 2 and 3.

Reaction–diffusion equations for the Ect2 module. We propose a model in which 
Ect2 cycles between an inactive phosphorylated state (concentration uEpðr; tÞ

I
) 

and an active non-phosphorylated state (concentration uEðr; tÞ
I

). Furthermore, 
we assume that active Ect2 can bind to and detach from the membrane (ueðr; tÞ

I
). 

Ect2 can diffuse on the surface of a two-dimensional elliptical, triangular or 
star geometry, which represents the focus plane in experiments of geometrically 
confined oocytes. To describe the dynamics of Ect2, we use a reaction– 
diffusion model:

∂tuE ¼ Dc∇2uE þ fEðuE; uEp; ueÞ
∂tuEp ¼ Dc∇2uEp þ fEpðuE; uEp; ueÞ
∂tue ¼ Dm∇2ue þ feðuE; uEp; ueÞ;

where Dc and Dm are the diffusion constant of the cytosolic components and 
membrane component, respectively. Motivated by the observation that Ect2 forms 
a front pattern on the membrane (Fig. 2d), we propose a model that exhibits 
bistability with the following reaction kinetics:

fE ¼ koffue � konuE � k½Cdk1uE
KpþuE

þ ðkdp þ kfbuEÞuEp;
fEp ¼ k½Cdk1uE

KpþuE
� ðkdp þ kfbuEÞuEp;

fe ¼ konuE � koffue:

These reaction kinetics conserve total protein mass, such that R
ΩdrðuE þ uEp þ ueÞ ¼ nE
I

 (where Ω denotes the computational domain) 
remains constant. The active Ect2 conformation can attach to and detach from 
the membrane with the rates kon and koff, respectively. In the cytosol, Ect2 can get 
phosphorylated enzymatically with a rate k[Cdk1], which we describe by Michaelis–
Menten kinetics with a Michaelis–Menten constant Kp. Furthermore, Ect2 can get 
dephosphorylated with a rate kdp. As bistability typically arises from feedback loops 
in the reaction kinetics, we include a feedback loop such that active Ect2 enhances 
its own activation with a rate kfb.

Parameters for the Ect2 module. The parameters of this model are specified in 
Supplementary Table 2. The reaction rates represent effective rates that can 
depend on the concentration of other proteins. These rates are chosen such that 
the model exhibits a bistable window for a range for phosphorylation rates (Cdk1 
concentrations). The diffusion constants are chosen such that the diffusion 
constant in the cytosol is much larger than the diffusion constant on the membrane 
(Dc ≫ Dm). The ratio of the Cdk1 decay rate to the Cdk1 slope can be estimated 
from the surface contraction wave propagation speed (10–35 μm min−1).

To emulate the effect of the Cdk1 gradient, we assume that the 
Cdk1-dependent phosphorylation rate k Cdk1½ ðr; tÞ

I
 is a decaying linear gradient:

k Cdk1½  r; tð Þ ¼ c0 � αrð Þ 1� t
γ þ t

� �
:

Here, γ is the Cdk1 concentration half-life and c0 and α are the maximum and 
slope of the gradient, respectively. As an initial condition, we assume that Ect2 is in 
the phosphorylated state such that uEp = nE and ue = uE = 0.

Reaction–diffusion equations for the Rho module. We consider a model in which 
the Rho GTPase diffuses on the surface of a three-dimensional (3D) volume 
and can cycle between three conformations: an inactive (GDP-bound) cytosolic 

conformation close to the membrane (concentration uRðr; tÞ
I

), an inactive state on 
the membrane (concentration urdðr; tÞ

I
) and an active (GTP-bound) conformation 

on the membrane (concentration urtðr; tÞ
I

). We consider only the cytosolic 
concentration close to the membrane, assuming the absence of cytosol gradients 
normal to the membrane. The corresponding reaction–diffusion equations are 
given by

∂tuR ¼ DR∇2uR þ fRðuR; urd; urtÞ;
∂turd ¼ Drd∇2urd þ frd uR; urd; urtð Þ;
∂turt ¼ Drt∇2urt þ frtðuR; urd; urtÞ;

where Rho in the cytosolic state diffuses with a diffusion constant DR, which is 
much higher than the diffusion constants of the membrane-bound states, Drd and 
Drt. For the reaction kinetics, we assume a generic GTPase reaction cycle, with the 
reaction terms

fR ¼ koffurd � konuR þ kgapurt;
frd ¼ konuR � koffurd � ðkr þ kdtu2rtÞurd;
frt ¼ ðkr þ kdtu2rtÞurd � kgapurt:

These reaction kinetics conserve total protein mass, such that R
ΩdrðuR þ urd þ urtÞ ¼ nR
I

, where Ω denotes the computational domain (here 
the surface of a 3D cytosolic volume). The inactive Rho conformation can attach 
to and detach from the membrane with rates kon and koff, respectively. On the 
membrane, the inactive conformation can get activated with the basal activation 
rate kr and the autocatalytic activation rate kdt. Upon hydrolysis of the active state, 
Rho detaches from the membrane with a rate kgap.

Parameters for the Rho module. The parameters of this model are specified in 
Supplementary Table 1. Diffusion constants are chosen such that diffusion in 
the cytosol is much faster than diffusion on the membrane (DR ≫ Drd, Drt). The 
reaction rates of this model represent effective rates and may depend on the 
concentration of other regulatory proteins that are not explicitly accounted for in 
our minimal model. To reproduce the experimental observations, we choose the 
rate constants such that the reaction kinetics are excitable. A detailed motivation 
for the parameter is presented in Supplementary Sections 2.6 and 2.7.

To emulate the concentration profile of the propagating Ect2 front, we use a 
propagating front ξEct2 ¼ 0:01þ 0:99Θ r � r0 � VEct2tð Þð Þ

I
, where r0 is the initial 

front position and VEct2 is the front speed. We multiply the emulated Ect2 front 
ξEct2 with the activation rates kr and kdt. This was done for the simulations shown 
in Fig. 3f,k and Supplementary Videos 14 and 18. Note that one can also use 
ξEct2 ¼ ue r; tð Þ þ uE r; tð Þ
I

, which couples the concentration profile of active  
Ect2 of the Ect2 module to the Rho module of the model. The latter was used  
for the simulation in elliptical, triangular and star geometries in Supplementary 
Videos 15–17.

Simulation methods, geometry and domain size. The simulations presented in 
Fig. 3f,k, Supplementary Fig. 17c and Supplementary Videos 14 and 18 are finite 
element simulations on the surface of a 3D volume, implemented in COMSOL 
Multiphysics version 5.4 and with parameters as in Supplementary Table 1. The 
simulations presented in Fig. 4f–h and Supplementary Videos 15–17 are finite 
element simulations on the surfaces of 3D ellipsoidal-, triangular- and star-shaped 
domains, with parameters as in Supplementary Tables 1 and 2. Here, the Rho and 
Ect2 dynamics are constrained to the surfaces of the static 3D geometries, whereas 
the Cdk1 concentration is modelled as a linear gradient in the 3D bulk, which 
extends radially from the position of the nucleus into the cytoplasm.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All data that support the plots within this paper and other findings of this study are 
available from the corresponding author upon reasonable request.

Code availability
The code that supports the plots within this paper are described in the Methods 
and Supplementary Information and are available from the corresponding author 
upon reasonable request.
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