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scRCMF: Identification of Cell Subpopulations
and Transition States From Single-Cell
Transcriptomes

Xiaoying Zheng, Suoqin Jin

Abstract—Single cell technologies provide an unprece-
dented opportunity to explore the heterogeneity in a
biological process at the level of single cells. One major
challenge in analyzing single cell data is to identify cell
subpopulations, stable cell states, and cells in transition
between states. To elucidate the transition mechanisms in
cell fate dynamics, it is highly desirable to quantitatively
characterize cellular states and intermediate states. Here,
we present scRCMF, an unsupervised method that iden-
tifies stable cell states and transition cells by adopting
a nonlinear optimization model that infers the latent
substructures from a gene-cell matrix. We incorporate a
random coefficient matrix-based regularization into the
standard nonnegative matrix decomposition model to
improve the reliability and stability of estimating latent
substructures. To quantify the transition capability of each
cell, we propose two new measures: single-cell transition
entropy (scEntropy) and transition probability (scTP). When
applied to two simulated and three published scRNA-seq
datasets, scRCMF not only successfully captures multiple
subpopulations and transition processes In large-scale
data, but also identifies transition states and some known
marker genes associated with cell state transitions and sub-
populations. Furthermore, the quantity scEntropy is found
to be significantly higher for transition cells than other
cellular states during the global differentiation, and the
scTP predicts the "fate decisions" of transition cells within
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the transition. The present study provides new insights into
transition events during differentiation and development.

Index Twins—Single cell, transition states, cell cluster-
ing, optimization model.

I.INTRODUCTION

ITH the development of new single-cell technologies,
Wa large amount of single-cell data have been collected.
Three of the most important challenges in analyzing single-cell
RNA-sequencing (scRNA-seq) data are the identification of cell
subpopulations (states), the identification of cells in transition
between states (i.e., transition cells), and the quantitative char-
acterization of those transition cells because cells often transit
from one state (type) to another through a sequence of fate
decisions during cell development [1], 121.

A transition state is an intermediate state during cell fate de-
cisions in which a cell exhibits a mixed identity between two or
more states, often representing the state of origin (i.e., the initial
state the cell) and the state of destination (i.e., the identity that
the cell is adopting) [11. The transition cells are defined as those
cells that are in transition states in cell fate dynamics. Many
attempts have been made to understand critical transitions and
cell fate decisions in developing organisms and to identify the
underlying molecular mechanisms 11144 However, to the best
of our knowledge, only a few studies have sought to quantify the
cellular states and transition states based on single cell data 131,
[51, 16]. For example, SLICE and SCENT both quantify cell po-
tency and cellular differentiation processes using entropy-based
measures [61, 171. 131 proposed a quantitative index to predict
critical transitions, which revealed a decrease in the correlation
between cells and a concomitant increase in the correlation be-
tween genes as cells approach a tipping point 131. Therefore,
identifying the transitional processes and quantitatively char-
acterizing them based on global ftanscriptome profiles remain
largely unanswered at the single-cell level.

Trajectory methods offer an unbiased and transcriptome-wide
understanding of a dynamic process, thereby allowing the ob-
jective identification of subsets of cells and the delineation of a
differentiation tree 18]-1111. TSCAN using minimum spanning
tree (MST) 191, SLICER using local linear embedding 1101 and
Monocle2 using Reverse Graph Embedding (DDRtree) 1111.
Resolving subpopulations is one of the main tasks in the anal-
ysis of single cell data 1121. Several approaches have recently
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been developed to address this task [13]—[15]. Dimension reduc-
tion techniques, e.g., principal components analysis (PCA) [13]
and [-distributed stochastic neighbor embedding (tSNE) [14] are
widely employed to capture the structure of the data for visu-
alization and pattern detection. Based on the transformed low-
dimensional space, graph and community detection such as SO
[15], SNN-Clig [16] and Seurat [17], can be used to identify the
cell clusters. In contrast to these methods, optimization-based
algorithms (e.g., SIDEseq[181) seek to learn a cell-cell similar-
ity matrix to further classify cells into subpopulations based on
their similarity. However, none of these methods can identify
transition cells simultaneously. Nonnegative matrix factoriza-
tion (NMF) is a powerful matrix factorization technique, that
typically decomposes a nonnegative data matrix into the prod-
uct of two low-rank nonnegative matrices [19]. NMF has been
shown to be able to generate sparse and part-based representa-
tion of data. In other words, the factorization allows us to easily
identify meaningful substructures underlying the data [20]. Al-
though it has been widely used for classification [21], it was not
used to identify the transition states in cell differentiation and de-
velopment. In this study, we presented the scRCMF (single-cell
Random Constrained Nonnegative Matrix Factorization) algo-
rithm, which incorporates a new regularization term involving
the constraint of the decomposed coefficient matrix, to identify
cell subpopulations and transition prncesces from scRNA-seq
data.Moreover, two new measures, termed single-cell transition
entropy (scTE) and transition probability (scTP), were used to
quantify the plasticity of transition cells and predict the dynamic
behavior of transition states, respectively. sScRCMF also allows
us to identify critical subpopulations and transition processes,
and to extract significant gene patterns during development pro-
cesses. Finally, we evaluated the performance of scRCMF by
comparison with several existing methods using two simulated
and four published datasets.

II. METHODS

The overview of the analysis workflow that underlies scR-
CMF is shown in Fig. 1.There are some critical cells with mul-
tiple functions in the development process. The identification
of subpopulations and the transition state can capture distinct
functional cell types and better predict the functional capacity of
cells. These critical transition states need to be identified with
more diversity and plasticity in the projected state space of a
single cell, as shown in Fig. 1(a). To address these questions,
in Fig. 1(b), we present scRCMF, a random constrained NMF
algorithm that enables the simultaneous detection of meaningful
subpopulations and identification of transition states from single
cell data. ScCRCMF takes X = (re ) as input, where X is an ex-
pression matrix in which rows correspond to genes/transcripts
and columns correspond to cells. Each element X;, of Xgives the
expression of a gene/transcript i in a given cell j. sScRCMF con-
sists of three critical steps.First, a nonlinear optimization model
is proposed to learn a low-rank representation of the matrix X
based on NMF, giving the latent substructures of the data matrix.
Second, cell subpopulations and transition states as well as the
associated feature genes can be identified based on the learned
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Fig. 1. The workflow of scRCMF aimed at identifying subpopulation
structures and transition cells. (a) A series of transition cells occurs from
initial states (blue Circles) to final states (purple circles) during cell devel-
opment, and each of these transition cells (red circles) exhibits a different
probability of transiboning to another state (i.e., making a cell fate de-
cision) and higher diversity and plasticity (compared to the stable initial
and final states, these cells have a higher ability to transition to another
state, both forward and backwards). (b) Pipeline of the scRCMF algo-
rithm. Random constrained NMF decomposes a gene-cell expression
matrix into a coefficient matrix Hand a basis matrix Wvrith rank k. Hand
Ware used to identify subpopulations and transition states, and priori-
tize feature genes associated with each identified duster, respectively.
scEntropy is proposed to quantify the plasticity of cells and scTP (e.qg.,
pi1and p2) is proposed to predict the behavior (“cell fate decision') of
these transition cells.

coefficient matrix H and basis matrix W, respectively. Finally,
two measures, scEntropy and scTP, are defined to quantitatively
characterize and predict the transition cells (states).

A. Extracting Low-Rank Structures vfa a Nonlinear
Optimization Model

To reveal substructures in the underlying single-cell data,
scRCMF decomposes X (In x n) into two low-rank nonnegative
matrices W and H with a given cluster number k using the
following optimization model:

ng])!an (W,H,k)= — WHIllg +

(1)
where Wand H are the basis matrix and coefficient matrix with
sizes of an x k and k x n respectively, and in and ii are the
numbers of genes and cells, respectively. Rank k represents the
number of subpopulations, and A is the regularization param-
eter. / is an /i x it identity matrix, and R is an it x kK random
matrix with A, E [0, 1]. The regularization terms or constraints
are often required to guarantee more accurate and robust results
because of the non-uniqueness and ill-posedness of NMF [22].
motivated by [22], we apply a stochastic constraint to the co-
efficient matrix H. The regularization parameter A in model (1)
balances stability and the precision of the resulting low-rank
structure. We determine the rank k using the Gap statistic [23]
and the parameter A - chosen from 0.001, 0.01, 0.1, I, 10 - us-
ing the BIC principle [24]. The gap statistic is calculated with
k-medoid clustering using I- Pearson's correlation as the clus-
tering distance metric. The model selection and update rules for
this optimization model are shown in Supplementary A.
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B. Identifying Cell Subpopulations and Transition Cells

The optimization model (1) based on the inferred number of
clusters &, and the expression matrix X is projected into low-
rank structures to explore meaningful substructures (groups of
cells or genes). Typically, the maximal value of each column
of coefficient matrix H can be used to determine clusters [21].
In this way, each cell is assigned to a unique cluster. However,
transition cells are considered an intermediate state, in which
cells exhibit a mixed identity between two or more subpopu-
lations and might be involved in several functional states [1].
Given these facts, we normalized H fo make each column unity.
The normalized value in each column can be thought of as the
probability of the j-th cell belonging to i-th cluster. Formally,
we define a probability matrix P of size k x n as follows:

I12u

Ply > Tr
Z.,,.=1. O

2

With this probability matrix P. we can define cell clusters and
transition cells. Intuitively, a cell ] is assigned to a unique cluster
i if the probability /; highly dominates the cluster i (i.e., P, is
larger than some threshold co) compared to the probabilities in
other clusters; otherwise, if the probabilities in all clusters are
similar (i.e., P;, < q.i= 1,2, ... , k), which means that these
cells have almost equal probabilities belong to all cell clusters.
These cells are therefore defined as transition cells. Thus, the
probability matrix P provides a natural way to define transition
cells. In addition, the basic matrix W provides a direct, unbiased
method to select feature genes avsnciated with each cell cluster.
Mathematically, cell cluster C, and its associated gene cluster
G, were defined as follows.

s =tilPgj >= co, i 5,8 =1k}

- =(Wig>.= # =1k G)

where ¢, is a threshold of the probability. Generally, it is set
to be Ilk or greater, where K is the number of clusters. The
overall results are not sensitive to choices of co within certain
ranges, and the specific ranges of co for the six datasets are
shown in Supplementary Table I. I°,; means that j-th cells with
maximal probability belonged to i-th cluster larger than c,. We
focus on the transition processes consisted of transition cells
and cells belonged to two corresponding clusters with first two
probability less than co. We further define transition cells (TC)
as most likely occurring between two cell clusters, C, and Co,
as follows:

TC:*{iIC°>Put> > pir U orng =1 —rg-

In this study, we consider two types of gene signatures:
cluster-specific genes and transition genes that are coexpressed
by multiple clusters leading to this transition event. In addition
to selecting feature genes based on gene cluster G, defined in
(3), cell-type-specific gene signatures (differentiated genes and
coexpressed genes) need to be discovered. For different popula-
tions, the gene patterns of differentiated expression and function
differences can be analyzed by comparing the fold change and
statistical test results of these gene clusters. Considering the
mixed states of transition cells, the coexpressed marker genes

leading to transition are ranked based on the average expression
value in transition cells.

C. Quantification of the Transition Capability by
Estimating Single-Cell Transition Entropy (scEntropy)
and Transition Probability (scTP)

We observe the chaos of stable states and transition states
from the entropy during the differentiation, and further predict
the transition behavior of transition states based on fuzzy degree
during the transition [25]. To quantitatively assess the cell-to-
cell variability in gene expression, we introduce a quantity called
single-cell transition entropy (scEntropy) as a measure of cell
plasticity, i.e., the ability of cells transitioning to new cell states.
Based on the Shannon entropy equation, scEntropy of j-th cell
is defined as:

El = E

1=1

(4)

where P;; is defined in Equation (2). Obviously, the transition
entropy of a cell indicates the degree of uncertainty of cell fate.
Thus transition cells should possess a higher entropy value than
other cells in different subpopulations.

Given #e transition cells M. = (Si, 2, , ed. with initial
probability P between the u-th and v-th cell subpopulations, we
can predict the probability of such a transition state transferring
to other cell cluster behavior (scTP): P (P,.: s,—) C;, r =
1,2,...,e; 1 = U, V). For the e transition prorns the initial
membership degree Po can be obtained by P:

ruxc

Po = (5)

ril\TC, 2
where Po is the matrix with a size of 2 x € and represents
transition probability from e transition states to states from the
u-th and v-th cell clusters. The objective function of the fuzzy
membership degree analysis of n cells is defined as:

a2y E EI(A,Ozliz—'case,

,Eu,0 5.

where X, represents the gene expression of the j-th transition
cellin TCe, Y =[Y.,, Yu]is the gene expression matrix with
sizes of 2 x m and Y; (i = u, v) represents the expression of
cluster center belonging to the i-th cluster.

Based on the definition and properties (nonnegativity and
incompatibilities) of fuzzy membership degree [26], we predict
the final transition probability (scTP) for e transition states to
u-th or v-th cell clusters as:

P =111)1’¥1J(P,Y),

(6)

)

where the initial value of the above optimization problem
is Po and the update strategy details in (7) are shown in
Supplementary B.

D. livo Simulated Datasets

To assess the performance of sScRCMF, we generate two sim-
ulated dataseAs using the Splatter package in [27]. The simulated
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Fig. 2. scRCMF identifies subpopulation structure and transition cells in the list simulated data. (a) The heatmap of coefficient matrix H, signifying
two cell subpopulations (C1, C2) and one transition state (TC) denoted by a red frame. (b—c) Cells are visualized on the first two principal components
and coloured by the scRCMF-derived states and transition entropy, respectively. Five red cells with labels represent transition cells. (d) Comparison
of scEntropy among Cl, C2 and TC. (e) Transition probability (TP) of five transition cells to Cl and C2. Cell are colored as in panel (c). (f) Potential

landscape of the first simulated data. Cells are colored as in panel (b).

expression levels for cell clusters are based on a Gamma-Poisson
distribution. To simulate transition cells, we choose the top most
relevant based on Pearson correlation coefficient pairs of cells
from distinct cell clusters and generated the mean values that
represent the mixed gene expressions of 'transition cells' in one
transition. In total, we generated the first simulated dataset of
two clusters and one transition with expressions of 10000 genes
across 100 cells and 5 transition cells, the second simulated
dataset of five clusters and two transitions with expressions of
10000 genes across 1200 cells and 40 transition cells.

E. Data Sources

To further demonstrate the performance of scRCMF as
well as biological discovery, we adopt the three real scRNA-
seq datasets, which capture dynamical processes during
mouse/human early embryo development [2814311 The first
dataset (MEG, GSEI00597) consists of 204 cells collected at
E3.5 and E4.5 during the mouse early gastrulation [28]. The
second dataset consists of 88 cells from seven stages in human
early embryos (HEE, GSE36552) [31]. The third dataset (qPCR,
J:140465) consists of 334 cells from mouse late preimplanta-
lion development [30]. The scRNA-seq and cell stages of MEG,
FLEE and qPCR cells were obtained from [28], [30], [31].

F Evaluation of The Algorithms

To evaluate the performance of clustering algorithms, the ad-
justed Rand index (ARD [32] is widely used to evaluate accuracy
and similarity between the inferred labels and reference labels.

1. RESULTS

A.scRCMF Accurately Recovers Cell Subpopulallons
and Transition Cells in The Simulated Dataset

First, we apply scRCMF to two simulated datasets that con-
tain multiple subpopulations and transition processes located
close to one another in gene space (See Methods). In first dataset
(Sim), as shown in Fig. 2(a) and (Fig. S'I (a) in Supplementary
C), the coefficient matrix /1 clearly revealed two distinct cell
subpopulations (Cl, C2) and one transition state between these
two subpopulations (1= 0.01 and co = 0.6). The two cell clus-
ters identified by scRCMF are well separated on the first two
principal components (Fig. 2(b)) and characterized by relatively
low transition entropy (Fig. 2(c) and 2(d)). As expected, the
identified 5 transition cells are located between the two subpop-
ulations in the low-dimensional space, and are characterized by
high transition entropy (deep red color in Fig. 2(b)). Further-
more, using fuzzy degree analysis, we observe that these 5 tran-
sition cells (Its) exhibited distinct transition directions: TC 1
likely switches to cluster C2, while TC 3 and TC 5 likely switch
to cluster CI; TC 2 and TC 4 am very plastic with approximately
0.5 probability of transitioning to either cluster (Fig. 2(e)). To
gain clearer insight into how the different behaviors of these
transition cells translate to distinct differentiation propensities
of cells, we create a 3D global potential landscape of the single-
cell data based on the reduced dimensional space. The landscape
topography is characterized by two narrow potential energy
wells corresponding to the Cl and C2 states and one barrier
corresponding to the transition cells. In terms of the dynamic
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behaviors of these transition cells, TC 2 likely favors a transition
in the C2 direction, while TC 4 is more likely to convert into Cl
cells. To further test the performance on multiple cell popula-
tions, the second dataset consisted of five populations with two
transition processes can be identified by scRCMF (Fig. S2 in
Supplementary C). Five distinct cell subpopulations (Cl, C2,
C3, C4 and C5) with low entropy are clearly identified by scR-
CMF in the low-dimensional space with the coefficient matrix
11 in (Fig. S2 in Supplementary C). Two transitions (CI-CS and
C3-05) consisted of 39 cells are characterized by higher transi-
tion entropy and exhibit distinct transition directions (Fig. S2 in
Supplementary C). Taken together, scRCMF accurately iden-
tifies the multiple subpopulations and transition states. The
defined transition entropy significantly distinguishes transition
cells from other cells. Fuzzy degree analysis as well as the po-
tential landscape gains us insight into the transition behavior.

B. scRCMF Identities Critical Lineage Commitments and
Mixed-Lineage State During Mouse Embryo Implantation

Next, we demonstrate the performance of scRCMF using
the MEG dataset [28]. This dataset provides a high-resolution
scRNA-seq map of mice from preimplantation to early gas-
trulation, from E3.5 to E6.5. Ib gain insights into the critical
lineage commitment, i.e., the segregation of mouse inner cell
mass (ICM) into the epiblast (EPI) and primitive endoderm
(PE) lineages, we focus only on the stages before implanta-
tion of the embryo, i.e., E3.5 and E4.5, including 204 cells. We
selected potentially informative genes (n = 14451) with the vari-
ance of log2-transformed FPKM of each gene greater than 0.1.
Unsupervised clustering using SCRCMF leads to three clusters
(Fig.S1(b) in Supplementary C). The heatrnap of 11 describes
the low-rank structure of the three cell subpopulations (Cl, C2,
and C3) and one transition state between C2 and C3 = 0.001
and to = 0.63), as shown in Fig. 3(a). By comparing with the
known labels and marker genes in the subpopulations identified
by scRCMF, our results show that cluster CI from E3.5 is ICM
stage, characterized by high Gata6 and high Nanog (C1-ICM,
97 cells); cells from E4.5 are clustered into two distinct subpop-
ulations: cluster C2 with high Gata6 and low Nanog is the PE
state (C2-PE, 67 cells), and cluster C3 with high Nanog and low
Gatab is EPI state (C3-EPI, 28 cells) (Fig. 3(b), Fig. 3(c) and
Fig. S2 in Supplementary C). Importantly, we identified 10 tran-
sition cells in the PAS stage. These cells express amiddle level
of Nanog or Gatab6 (Fig. S2 in Supplementary C) and are located
between C2-PE and C3-EPI in the PCA space (Fig. 3(b)), indi-
cating a mixed-lineage state during lineage commitment. Again,
higher entropies observed in these transition states than in cells
belonged to other clusters (Fig. 3(d) and Fig. 3(e)). The mixed-
lineage state was also observed recently in the hematopoietic
stem cell differentiation process [33]. Based on fuzzy degree
analysis, Fig. 3(t) shows that 5 transition cells (TIC 3 and TC
8) appear prepared to convert into the C2-PE state, which are
closer to cells from C2-PE in PCA space (Fig. 3(d)), and five
cells (e.g., TIC 2 and TC 7) are more likely to become the C3-
EPI state. We also find several transition states located in the

well between C2 and C3 and pmcPcs the higher potential energy
in Fig. 3(h). Transitions with multiple directions and energies
indicate that these transition cells are indeed very plastic dur-
ing the PE and EPI stages in mouse early gastrulation which is
consistent with previous papers, and the overexpression gene of
Gata4, a differentiated gene in C2-PE, in embryonic stem cells
is sufficient to direct cells toward a PE-like state [34], [35].

To further elaborate whether this critical transition between
two lineages is likely to be functional, we performed differential
expression and co-expression analysis. We observed significant
172marker genes and clear gene patterns among the three clus-
ters. Fig. 3(g) shows the top 10 feature genes associated with
each cluster, where some signature genes reported in previous
studies are also uncovered. Nanog and Gata4 identified pio-
neering symmetry that primarily represent transcription factors
[28]. Gene Gata6 and Aim were marker genes co-expressed in a
non-lineage-based random manner at E3.5, exhibiting substan-
tial coexpression before displaying mutually exclusive lineage-
specific expression patterns at E4.5 [28], [35]. We further found
that Dppa5a expressed in the transition state and is associated
with a shift toward the EPI fate and PE cell fate. Therefore,
ScRCMF captures the critical lineage commitment and mixed-
lineage state with meaningful biological function during mouse
embryo implantation.

C. SCRCMF Pinpoints the liming of Key Transitions of
Human Early Embryo Development

As a third demonstration, we applied scRCMF to scRNA-seq
data studying human early embryo (HEE) development [31],
which consists of 88 individual cells from seven developmen-
tal stages: oocyte, from the 2-cell to 8-cell stages, the morula,
and the late blastocyst stage. To perform principal component
analysis, we selected potentially informative genes (n= 10,316)
with the variance of the log2-transformed FPICM greater than
0.5.We also performed unsupervised clustering, leading to three
clusters determined with A= Tand to= 0.63 (Fig. S1(c) in Sup-
plementary C). In Fig. 4(a), the heatmap of H indicates three
distinct blocks corresponding to three subpopulations (Cl, C2
and C3) and one transition state between Cl and C. scRCMF
classifies the oocyte, zygote, 2-cell and 4-cell stages into a single
subpopulation (Cl, 24 cells), 8-cell and Morula cells together
(C2, 30 cells), and the late blastocyst stage as another subpop-
ulation (C3, 30 cells) (Fig. 4(b) and Fig. 4(c)). Interestingly,
the most significant transition state, consisting of 4 transition
cells, occurs at the 8-cell stage, which is located in the middle
between Cl and C2 in the low-dimensional space, and emerged
at a higher entropy than other cells (Fig. 4(d) and Fig. 4(e)).
These results suggest that a critical transition occurs from the
4-cell to 8-cell in human early embryo development, which is
consistent with previous studies [29], [31] showing that the ma-
jor maternal-zygotic transition occurs at the 8-cell stage and
that gene expression signatures first occur between the 4-cell
and 8-cell stages during the preimplantation stages of human
development. To further describe the dynamic characteristics
of the transition state, fuzzy degree analysis shows that two
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Fig. S. scRCMF identifies critical lineage commitments and mixed-lineage state as well as associated marker genes during mouse embryo
implantation. (a) The heatmap of coefficient matrix H, signifying three cell subpopulations (C1, C2, C3) and one transition state (TC) denoted by
a red frame in the MEG dataset 1281 (b—c) Cells are visualized on the first two principal components and colored by identified clusters (b) and
developmental stages (c). (d) Cells are labeled by transition entropy. Five red cells with labels are representative transition cells. (e) Comparison
of scEntropy among Cl, C2, C3 and TC. (f) Transition probability /fP) of ten transition cells to C2 and C3. Cell labels are consistent with panel
(d). (g) Heatmap of the top 33 marker genes for three dusters and one transition state. Genes are ranked by average expression value in three
clusters and transition states respectively. (h) Potential landscape of the data. Cells are colored as in panel (b).

transition cells appear likely to translate into the Cl state (TC1
and TC4), and the other two transition cells appear likely to C2
state (Fig. 4(d) and Fig. 4(0). These results were consistent with
the findings that cells reconverged in both timing and function
from the 8-cell to the morula stage after the gene expression of
cells had achieved significant overlap and spread through the
4-cell and 8-cell stage [29].

To further elaborate whether this critical transition and these
clusters are likely to be functional, we identify the significant
feature genes associated with each cell state. We perform a
two-sample West for any two clusters (Fold Change (FC) >2,
p-value <0.001) and compute the intersection of these differ-
entially expressed genes with cluster-specific genes given by
the basis matrix W. Fig. 4(g) shows the heatmap of the top 33

feature genes, which reveals a clear specific-expression pattern
in each cluster as well as a coexpression pattern in transition cells
defined by scRCMF. The top 10 differentiated expressed genes
from each cluster are ranked by average expression value in each
cluster. DAVID functional enrichment analysis [36] of 642 key
genes of ClI (p-value <0.01) revealed that these feature genes
relate to mRNA metabolism and transcription (count > 30),
e.g., alternative splicing (p-value = 5.55 x 10™), transcription
(p-value = 0.0035) and phosphoprotein (p-value = 0.0036) in
the early stage (4-cell, 2-cell, oocyte and zygote) (Fig. 4(h)). A
total of 303 feature genes of C2 are involved in DNA metabolism
and the cell nucleus (count >10 and p-value <0.001), such as
DNA binding (p-value = 1.18 x 10°'°), nuclosome (p-value =
2.67 x 107" ") and cell differentiation (p-value = 4.03 x 10™7),
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Fig. 4. scRCMF identifies subpopulaticc structure and pinpoints the timing of key transitions during human early embryo development (a) The
heatmap of H with three cell subpopulations and four transition cells (TCs) denoted by a red frame in the HEE clataset [31]. (b-c) Celts are visualized
on the first two principal components and colored by identified clusters and developmental stages. (d) Cells are labeled by transition entropy Two
red cells with labels are representative transition cells. () The distribution of entropy for TC and three dusters. (f) Transition probability (scTP) from
the four transition cells to relevant two cell subpopulations (Cl and C2). (g) Heatrnap of the top 33 masker genes breach cluster and four transition
cells in human early embryo development. Genes are ranked by average expression value in three dusters and transition state. (h) Comparison of

key functional annotation for enriched genes in the three clusters.

implying that the epigenetics and cell-cycle regulation are also
shifting after the highly expressed genes are activated in the mid-
dle stage (4-cell and 8-cell). Similarly, the functional enrichment
of 304 important genes in C3 associated with cell metabolism
and cytoplasm (count > 30 and p-value < 0.001), including the
cytosol, membrane and metabolic pathways in Fig. 4(h). More-
over, we observed 119 significant transition genes in transition
cells that are coexpressed by Cl, C2 and TC (Fig. 4(g)). The
GO terms of these coexpressed genes focused on DNA binding
(p-value = 246 x 10), Zinc (p-value = 0.0030), Nucleus
(p-value = 0.0079) and transcription regulation (p-value =
0.0085), as shown in Supplementary Table 11. These findings
suggested that sScRCMF can be used for the unbiased identifi-
cation of biologically meaningful subpopulations, critical tran-
sition and marker genes during early embryo development.

D. scRCMF Identifies Multiple Transition States During
Mouse Prelmplantation Development

As a third demonstration, we show the performance of scR-
CMF using qPCR data on mouse embryo development from
zygote to blastocyst 307. Guo et al. ([30]) conducted a qPCR
experiment on 48 genes in seven different developmental stages.
To understand the critical cell fate decisions in a develop-
ing mouse embryo, we used 334 individual cells from the 8-
cell, 16-cell, 32-cell and 64-cell stages. The gap statistics pm-
diet seven clusters (Fig. S7(d) in Supplementary C). Heatmap
of the coefficient matrix H shows the distinct patterns of the
seven cell subpopulations and 41 transition cells identified with

=0.001 and co = 0.38 (Fig. 5(a)). Our results in Fig. 5(b) and
Fig. 5(c), show that scRCMF separates the 32-cell stage into two
clusters, C1-32C-ICM with high Sox2/Nanog/Gata6 and C5-
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of cells in each state.

32C-TE with high Cdx2 and low Sox2, and the 64-cell stage
into three clusters C3-64C EPI with high Nanog and low Gata6,
C4-64C-PE with high Gata6/Gata4 and low Nanog, and C6-
64C-TE with high Cdx2 and low Sox2 (Fig. 5(h) and Fig. S3
in Supplementary C). The other two clusters are €2 enriched in
the 8-cell stage and 0 enriched in the 16-cell stage. We also
identify 4 transition states (Fig. 5(a) and Fig. 5(i)). The first
transition occurs between C1-32C-ICM and C3-64C-EPI, and
5 transition cells exhibit a mixed location between CI and C3,
while 9 transition cells appear in the second transition state be-
tween C2-16c¢ell and C5-32C-TE (Fig. 5(b)). Similarly, 18 tran-
sition cells were observed in the third transition state between
C7-8cell and C2-16c¢ell, and 9 transition cells were observed in

the fourth transition state between C5-32C-TE and C6-64C-TE
(Fig. S3 in Supplementary C). The last transition was located
between C6-64C-TE and C5-32C-TE, as shown C5 in Fig. 5(b).
41 transition cells in the four transition states possessed higher
entropy than the other seven clusters identified by scRCMF in
Fig. 5(e). The second and third transitions among C2, 0 and
Cl (Fig. 5(g) and Fig. S3) indicated the multiple shift and tran-
sition of cell states at 16-cell stages, in agreement with the study
reported that mixed lineage expression in 16 cell blastomeres
[30]. We further observe that two cells (e.g., TC 5) intend to
CI, two cells (e.g., TC 3) are closer to C3, and TC 1 is plastic
between CI and 0 in Fig. 5(d) and Fig. 5(1). We further found
that 6 transition cells (e.g. TC 9 and TC 11) are likely to convert
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into C2, while the plastic TC 14 and two other states (e.g. TC
13) might translate into C5, as shown in Fig. 5(d) and Fig.
Taken together, the results show that scRCMF captures the tran-
sition states in the critical lineage commitment during mouse
preimplantation development

To further elaborate whether the three transitions are likely
to be functional, we examined the differential expression and
the coexpression patterns in different transitions by gene clus-
ten (IV). We observe 34 significant marker genes and multiple
clear gene patterns among the seven clusters in Fig. 5(h). We
further found that Pecaml is expressed in the transition between
Cl and 0, Apq3 and fgfr2 are expressed in the transition be-
tween C2 and C5, Cdx2, Grh12 and Lc& are expressed in the
transition between C5 and C6 in late mouse preimplantation de-
velopment. We further found that the same marker coexpressed
genes showed different regulation in the four transition pro-
cesses, such as the marker gene KIf5 is expressed in C2, 0
and O. Among these genes, several have been identified as key
genes in previous studies.

Cdx2 is a the it-specific transcription factor coexpressed
from the 8-cell stage through to the blastocyst [37], [38]. Both
Gata6 and Gata4 are early markers of the PE [30]. Biologi-
cal subpopulation structures, multiple transition processes and
key gene markers can be identified by scRCMF during mouse
preimplantation development

These three different datasets emphasize different aspects of
the dynamic process of the early embryo development, allowing
us to comprehensively understand the distribution and trend in
gene expression during the transition in Fig. 54 and Fig. 55.
In the MEG dataset [28], cells were from mouse preimplanta-
tion ICM at E3.5 and the epiblast at E4.5. Therefore, no 'FE
cells existed in these data (FE marker Cdx2 is not expressed,
Fig. 54 in Supplementary C), allowing us to focus on the seg-
regation from ICM into EPI and PE. We also identified a tran-
sition/intermediate state with the mixed gene signatures of both
EPI and PE. The HEE dataset [31] described the whole process
from oocyte to late blastocyst during human early embryo devel-
opment. Due to the excessive expression of PE marker GATA6
in late blastocyst (Fig. 54 in Supplementary C), we were not
able to distinguish EPI from PE in an unbiased manner. How-
ever, we observed a transition state between the 4-cell and 8-cell
stages in agreement with previous studies showing that the major
maternal-zygotic transition occurs at the 8-cell stage [29], [31].
The third mouse qPCR dataset [30] allowed us to investigate two
critical lineage commitments: the segregation of 16 cells into TE
and ICM, and subsequently from ICM into PE and EPI. From
Fig. 55, we further observed that the transition state was the
extreme point for several marker genes' expressions, that was,
gene expression value was first increasing and then decreasing
or first decreasing and then increasing. The gene expression
changes of these maker genes may lead to distinct cell fate de-
cisions and various biological functions of different cell types
[1]. Moreover, We used the scRCMF to one more dataset with
57951 genes across 379 cells related to immune cell lineage,
identify seven clusters and 4 transitions (C1-C3,C1-C7,C4-C7
and C6-C7) in primary breast cancer (PBC) [39]. We labeled

1 SCR NhIF

NMI-

803
Sim MEG HEE gPCR

t-SNE*K-rneons

Fig. 6. Comparison of the performance of scRCMF with that of sev-
eral other clustering methods on one simulated dataset and three real
datasets.

CDI belonged to the B cell stage with marker gene CD2D, CI
belonged to the Macrophages stage with marker gene CD68
and Cl contained T cell stage with marker gene CD3D. Fig. 56
in Supplementary C further showed that transition states fo-
cused on the BCO7 (lymph node metastasis of BC07) and BC09
(Breast cancer cells) with highest entropy. Taken together, our
results reveal that multiple transition states occur in both mouse,
human early embryo and primary breast cancer development.
Such transitions may exhibit very different characteristics when
the starting cell state is different, as observed in many biolog-
ical processes, such as the transition from the hepatocellular
carcinoma state to the normal liver state [4], and the epithelial-
mesenchymal transition (EMT) [40], [41].

E Comparison of sScRCMF With Other
Clustering Methods

We compare the performance of sScRCMF on the one simu-
lated dataset and three real datasets with three other algorithms:
t-SNE+K-means [14], [15], SO [15] and the classical NMF
[19]. We repeated NMF and scRCMF for 20 times and present
the average result. The number of clusters is assured by Gap
statistics, and transition states are not considered in the compar-
ison. As a test statistic, we used the adjusted Rand index (AR)
to quantify the consistence between the predicted clusters and
real developmental stages. For the real datasets and simulated
dataset, sScRCMF exhibits a good performance (Fig. 6). We fur-
ther compared our methods with dPath [42] in terrns of the accu-
racy and time complexity on three simulated datasets produced
by splatter [27]. In Fig. 7, the computation time was initially less
than two minutes but slowly increased with the number of clus-
ters. sSc(RCMF has better accuracy and is obviously superior to
dPath [42] in terms of computation time. Our method and dPath
[42] are computed on a dual 3.40 GI& Dell desktop computer
with 8 GB of RAM.
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Fig. 7. Comparison of the performance of scRCMF and dPath [42] on

three simulated datasets with different dusters in terms of accuracy (ARI)
and time complexity (min). K indicates the number of cell subpopulations.

IV. DISCUSSION

Compared with typical sequential methods, such as identifi-
cation of cell populations using clustering methods (e.g., SO)
and then inference of cell transitions using pseudotime analysis,
scRCMF enables the simultaneous identification of cell popu-
lations and estimation of cell transition probability. On the one
hand, our integrative framework can increase accuracy and re-
duce computational cost Moreover, it can identify which cell
clusters are more likely making transitions to the other states.
The pseudotime analysis characterizes continuous cell states,
while the clustering analysis usually captures discrete cell states.
Such characterization of individual cells might make the iden-
tification of transition states less robust and introduce errors in
finding the transition states. As shown in our previous studies
[43], [44] on the pseudotime analysis, some cell states might be
mixtures of multiple identified cell subpopulations through di-
rect application of clustering methods. Thus, it is a challenging
task to identify the cell transitions and transition states connect-
ing the identified subpopulations.

In addition, it is also a challenging task to distinguish different
transitions when different cell populations are closely related. In
this study, we distinguish them through calculating the transition
probabilities of cells.More effective methods that can deal with
such case will be explored in the future.

CONCLUSION

Here we present scRCMF, a new method for simultaneously
identifying cell subpopulations and transition cells, and quan-
tifying transition cells from single-cell gene expression data.
The main contributions of this study include three aspects: (1)
we proposed a matrix factorization model by introducing a new
regularization with random constraints, which is shown to im-
prove accuracy for inferring cell subpopulations; (2) we used
the quantity scEntropy to measure the plasticity of cells and
found that the entropy of transition state is significantly higher
than that of cells belonging to other clusters, which further re-
veals the instability during transition; (3) a quantity scTP based
on fuzzy membership degree was proposed to predict the fate
decision and dynamic behavior of transition cells by calculating

their probability of moving from the transition state to other
states.

We apply scRCMF to two simulated datasets and four pub-
lished datasets. Applied to the first three real datasets involved
in the early embryo development, scRCMF identifies the bio-
logical meaningful subpopulations, and the transition processes.
Moreover, we identified maker genes of the associated subpop-
ulations and transition states (Supplementary Table III).

Although we have made significant progress toward identify-
ing transition states and cell subpopulations, much interesting
work remains to be done in the future, such as cell trajectory
reconstruction, network inference, and stochastic dynamic anal-
ysis. We further suggest that the experimental datasets of single
cell with batch effects can be removed by matching mutual
neatest neighbors [45].

In conclusion, the proposed scRCMF provides a computa-
tional framework to quantitatively analyze scRNA-seq data and
advance our understanding of single-cell biology. We believe
that the proposed scRCMF will help to capture meaningful cell
types and transition states and to identify key genes in emergent
biological processes and cell fate decisions.

SOFTWARE AND DATA

The source code of scRCMF package can be downloaded at
https://qithub.comntiaoyinglheng121/scRCMF.
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