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scRCMF: Identification of Cell Subpopulations 
and  Transition  States From Single-Cell 

Transcriptomes 
Xiaoying Zheng, Suoqin Jin  C,  Qing Nie  0,  and Xiufen Zou 

Abstract—Single cell technologies provide an unprece-
dented opportunity to explore the heterogeneity in a 
biological process at the level of single cells. One major 
challenge in analyzing single cell data is to identify cell 
subpopulations, stable cell states, and cells in transition 
between states. To elucidate the transition mechanisms in 
cell fate dynamics, it is highly desirable to quantitatively 
characterize cellular states and intermediate states. Here, 
we present scRCMF, an unsupervised method that iden-
tifies stable cell states and transition cells by adopting 
a nonlinear optimization model that infers the latent 
substructures from a gene-cell matrix. We incorporate a 
random coefficient matrix-based regularization into the 
standard nonnegative matrix decomposition model to 
improve the reliability and stability of estimating latent 
substructures. To quantify the transition capability of each 
cell, we propose two new measures: single-cell transition 
entropy (scEntropy) and transition probability (scTP). When 
applied to two simulated and three published scRNA-seq 
datasets, scRCMF not only successfully captures multiple 
subpopulations and transition processes In large-scale 
data, but also identifies transition states and some known 
marker genes associated with cell state transitions and sub-
populations. Furthermore, the quantity scEntropy is found 
to be significantly higher for transition cells than other 
cellular states during the global differentiation, and the 
scTP predicts the "fate decisions" of transition cells within 
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the transition. The present study provides new insights into 
transition events during differentiation and development. 

Index  Twins—Single cell, transition states, cell cluster-
ing, optimization model. 

I.  INTRODUCTION 

WITH the development  of  new single-cell technologies, 
a large amount  of  single-cell data have been collected. 

Three of the most important challenges in analyzing single-cell 
RNA-sequencing (scRNA-seq) data are the identification of cell 
subpopulations (states), the identification  of  cells in transition 
between states (i.e., transition cells), and the quantitative char-
acterization of those transition cells because cells often transit 
from one state (type) to another through  a  sequence of fate 
decisions during cell development  [1],  121. 

A transition state is an intermediate state during  cell  fate de-
cisions in which a cell exhibits  a  mixed identity between two or 
more states, often representing the state of origin  (i.e.,  the initial 
state the  cell)  and the state of destination (i.e., the identity that 
the cell is adopting) [11. The transition cells are defined as those 
cells that are in transition states in cell fate dynamics. Many 
attempts have been made to understand critical transitions and 
cell fate decisions in developing organisms and  to  identify the 
underlying molecular mechanisms 11144 However, to the best 
of our knowledge, only  a  few studies have sought  to  quantify the 
cellular states and transition states based on single cell  data  131, 
[51, 16]. For example, SLICE and SCENT both quantify  cell  po-
tency and cellular differentiation processes using entropy-based 
measures [61, 171. 131 proposed a quantitative index to predict 
critical transitions, which revealed a decrease in the correlation 
between cells and a concomitant increase in the correlation be-
tween genes as cells approach a tipping point 131. Therefore, 
identifying the transitional processes and quantitatively char-
acterizing them based on global ftanscriptome profiles remain 
largely unanswered at the single-cell level. 

Trajectory methods offer an unbiased and transcriptome-wide 
understanding of a dynamic process, thereby allowing the ob-
jective identification of subsets of cells and the delineation of a 
differentiation tree 18]-1111. TSCAN using minimum spanning 
tree (MST) 191, SLICER using local linear embedding 1101 and 
Monocle2 using Reverse Graph Embedding (DDRtree)  1111. 
Resolving subpopulations is one of the main tasks in the anal-
ysis of single cell data 1121. Several approaches have recently 
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been developed  to  address  this  task  [13]—[15]. Dimension  reduc-
tion  techniques, e.g., principal components  analysis  (PCA) [13] 
and [-distributed stochastic  neighbor embedding (tSNE)  [14] are 
widely  employed to  capture the structure  of  the  data for  visu-
alization and  pattern  detection.  Based on  the  transformed low-
dimensional  space, graph  and community  detection  such  as  SO 
[15],  SNN-Cliq  [16]  and Seurat [17], can  be used to  identify  the 
cell  clusters. In  contrast to these  methods,  optimization-based 
algorithms  (e.g.,  SIDEseq[181) seek to learn  a cell-cell similar-
ity matrix to  further classify cells into  subpopulations based  on 
their similarity. However, none of these  methods can  identify 
transition  cells  simultaneously. Nonnegative matrix factoriza-
tion (NMF)  is a  powerful matrix factorization technique, that 
typically decomposes a  nonnegative  data  matrix into the  prod-
uct  of two low-rank nonnegative matrices  [19]. NMF has  been 
shown  to be  able  to  generate  sparse and part-based  representa-
tion of  data. In other words, the factorization  allows us to  easily 
identify  meaningful substructures underlying the  data  [20].  Al-
though it has  been  widely  used for  classification  [21],  it  was not 
used to  identify the transition  states  in  cell  differentiation  and de-
velopment. In this study, we presented the  scRCMF  (single-cell 
Random  Constrained  Nonnegative  Matrix Factorization) algo-
rithm, which incorporates a new regularization  term  involving 
the constraint  of the decomposed  coefficient matrix, to identify 
cell  subpopulations  and transition  prncesces  from  scRNA-seq 
data.  Moreover,  two  new measures,  termed  single-cell transition 
entropy  (scTE) and  transition  probability  (scTP),  were used to 
quantify the  plasticity  of  transition  cells and predict the dynamic 
behavior of  transition states, respectively.  scRCMF  also allows 
us  to  identify critical subpopulations and transition  processes, 
and to  extract significant gene patterns during development  pro-
cesses. Finally, we  evaluated the performance  of  scRCMF by 
comparison with  several  existing methods using  two simulated 
and  four published  datasets. 

II. METHODS 

The overview of  the  analysis  workflow  that underlies  scR-
CMF  is  shown in  Fig. 1.  There are  some  critical  cells  with mul-
tiple  functions in the development process. The identification 
of subpopulations and the transition state can capture distinct 
functional  cell types and better predict the functional capacity of 
cells.  These  critical transition states need  to be  identified with 
more  diversity  and  plasticity  in the projected state  space of  a 
single cell,  as  shown in  Fig. 1(a).  To  address  these questions, 
in  Fig. 1(b),  we  present  scRCMF,  a  random constrained  NMF 
algorithm  that enables  the  simultaneous  detection of meaningful 
subpopulations  and  identification  of  transition states from single 
cell data. scRCMF takes X  =  (re )  as  input, where X is an  ex-
pression matrix in which  rows correspond to  genes/transcripts 
and  columns  correspond  to cells.  Each  element  xi/  of X gives  the 
expression of a gene/transcript  i in  a  given cell  j. scRCMF  con-
sists of three critical steps.  First,  a  nonlinear optimization model 
is  proposed to  learn  a  low-rank  representation of  the matrix  X 
based  on NMF, giving the latent substructures of the data matrix. 
Second, cell subpopulations and transition states as well as the 
associated  feature genes can be  identified  based on the learned 

Fig. 1.  The workflow of scRCMF aimed at identifying subpopulation 
structures and transition cells.  (a)  A series of transition cells occurs from 
initial states (blue Circles) to final states (purple circles) during cell devel-
opment, and each of these transition cells (red circles) exhibits a different 
probability of transiboning to another state (i.e., making a cell fate de-
cision) and higher diversity and plasticity (compared to the stable initial 
and final states, these cells have a higher ability to transition to another 
state, both forward and backwards).  (b)  Pipeline of the scRCMF algo-
rithm. Random constrained NMF decomposes a gene-cell expression 
matrix into a coefficient matrix H and a basis matrix Wvrith rank k. H and 
Ware used to identify subpopulations and transition states, and priori-
tize feature genes associated with each identified duster, respectively. 
scEntropy is proposed to quantify the plasticity of cells and scTP (e.g., 
pl  and p2)  is  proposed to predict the behavior ("cell fate decision') of 
these transition cells. 

coefficient matrix H and  basis matrix W, respectively.  Finally, 
two measures,  scEntropy  and  scTP,  are defined  to  quantitatively 
characterize and predict  the  transition cells  (states). 

A. Extracting Low-Rank Structures vfa a Nonlinear 
Optimization Model 

To reveal substructures in  the  underlying single-cell data, 
scRCMF decomposes  X  (In  x  n)  into  two  low-rank nonnegative 
matrices  W and H  with  a  given  cluster  number  k  using  the 
following  optimization model: 

min F (W,H,k)=  —  WHIIF  +  — w  >0,H>0 

(1) 
where  Wand H  are the basis matrix  and  coefficient  matrix  with 
sizes of an  x  k  and k  x  n  respectively,  and in and  ii  are the 
numbers  of  genes and  cells, respectively.  Rank k represents  the 
number  of  subpopulations, and  A  is  the  regularization  param-
eter. / is an  /i x  it  identity matrix,  and  R is an  it  x  k  random 
matrix with  Al  E  [0,  1].  The regularization terms  or  constraints 
are  often  required to  guarantee more accurate  and  robust  results 
because of the  non-uniqueness  and  ill-posedness  of NMF  [22]. 
motivated by [22],  we apply a stochastic constraint to  the co-
efficient matrix H.  The regularization  parameter  A  in  model  (1) 
balances  stability and  the precision  of  the  resulting low-rank 
structure. We determine the  rank k  using  the Gap  statistic  [23] 
and the  parameter  A  - chosen from  0.001, 0.01,  0.1,  I,  10  -  us-
ing  the  BIC principle  [24].  The  gap  statistic  is  calculated with 
k-medoid clustering using  I-  Pearson's  correlation as  the  clus-
tering  distance metric.  The model  selection and update rules for 
this optimization model are shown in Supplementary A. 
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B. Identifying Cell Subpopulations and Transition Cells 
The optimization model  (1) based  on  the  inferred  number  of 

clusters  k,  and the expression matrix  X is  projected into low-
rank structures to  explore  meaningful substructures (groups  of 
cells or genes). Typically,  the  maximal value of  each  column 
of  coefficient matrix H can  be  used  to  determine clusters  [21]. 
In this way,  each  cell  is assigned  to  a  unique cluster. However, 
transition  cells are considered an intermediate state, in which 
cells exhibit a mixed identity between two  or  more subpopu-
lations  and might  be  involved in several functional states  [1]. 
Given these facts, we  normalized  H  to  make each  column unity. 
The normalized value in  each  column  can be  thought  of as the 
probability of the j-th cell  belonging  to  i-th  cluster.  Formally, 
we define  a probability  matrix P  of  size  k  x  n  as follows: 

I-12u 
Ply  r,  Tr (2) 

z.„,:=1.  no 
With this  probability matrix P.  we can define cell  clusters and 

transition  cells. Intuitively,  a  cell  j  is  assigned to a  unique cluster 
i  if the  probability  Pgi  highly dominates the cluster i  (i.e.,  Pi,  is 
larger than  some threshold  co)  compared to  the probabilities in 
other clusters;  otherwise,  if  the probabilities in all clusters are 
similar (i.e.,  Pi, <  q, i =  1,2,  ... ,  k),  which means that  these 
cells have almost equal probabilities  belong  to  all cell  clusters. 
These cells are therefore defined  as  transition  cells.  Thus, the 
probability matrix P provides  a  natural way  to  define transition 
cells. In addition,  the  basic matrix W provides  a  direct, unbiased 
method  to  select feature genes  avsnciated  with  each  cell cluster. 
Mathematically, cell cluster  C,  and  its  associated  gene cluster 
G,  were  defined  as  follows. 

• =  tilPgj  >= co,  i s,s =  1, • • •  k} 
• =  (Wig  >.= # =  1,  • • • ,  k} (3) 

where  co  is  a  threshold  of  the probability. Generally,  it  is  set 
to  be  Ilk  or  greater, where  k  is  the  number  of  clusters. The 
overall results are not sensitive  to  choices  of  co  within  certain 
ranges, and the specific ranges  of  co  for the six  datasets are 
shown in Supplementary Table I.  12,1  means that j-th cells with 
maximal probability belonged to i-th cluster larger than  co.  We 
focus on the transition  processes  consisted of transition  cells 
and cells belonged  to  two corresponding  clusters  with first  two 
probability less  than  co.  We further define transition  cells  (TC) 
as most likely occurring between two  cell  clusters,  Cu  and  Co, 
as follows: 

TC  =  {ilc°  >  Put  > >  Plf U  0  I  7, 1  <  1  <  k}  . 

In this study, we consider two  types  of gene signatures: 
cluster-specific genes  and  transition genes that  are coexpressed 
by multiple clusters leading to this transition event. In addition 
to selecting  feature genes based on gene cluster  G,  defined in 
(3),  cell-type-specific gene signatures (differentiated genes and 
coexpressed  genes)  need  to  be  discovered. For different  popula-
tions, the  gene patterns  of differentiated  expression  and  function 
differences can  be analyzed by  comparing  the  fold change and 
statistical test results  of  these gene clusters. Considering  the 
mixed states  of  transition cells, the coexpressed marker genes  

leading  to  transition are ranked based on the average expression 
value in transition  cells. 

C. Quantification of the Transition Capability by 
Estimating Single-Cell Transition Entropy (scEntropy) 
and Transition Probability (scTP) 

We observe  the  chaos  of  stable  states and  transition states 
from the entropy during  the  differentiation,  and  further predict 
the transition  behavior of  transition states  based on  fuzzy degree 
during  the  transition  [25]. To quantitatively assess  the cell-to-
cell variability  in gene  expression,  we  introduce  a  quantity called 
single-cell transition entropy (scEntropy)  as  a  measure  of  cell 
plasticity,  i.e.,  the ability  of  cells  transitioning to  new cell states. 
Based  on  the  Shannon  entropy equation,  scEntropy  of  j-th  cell 
is defined  as: 

El  = E (4) 
1=1 

where  Psi  is defined in Equation  (2).  Obviously,  the  transition 
entropy  of  a  cell indicates  the degree  of  uncertainty  of cell fate. 
Thus  transition cells  should  possess  a  higher entropy value  than 
other  cells  in different subpopulations. 

Given #e transition  cells  Me  =  (Si, e2, ,  ed.  with  initial 
probability P  between  the u-th  and  v-th cell subpopulations, we 
can predict  the probability  of  such  a  transition state transferring 
to other cell cluster behavior  (scTP):  P (Pu.  :  sr  —) C1 , r  = 
1, 2,  ...  ,e;  t  =  u,v).  For the e  transition  prorns  the  initial 
membership  degree  Po  can be  obtained  by  P: 

Po
,  

= 
ruxc 
ri  7,TC,  2 

(5) 

where Po is  the  matrix with  a  size  of  2  x  e  and  represents 
transition  probability  from  e  transition  states  to states from the 
u-th  and v-th cell clusters. The objective function  of  the fuzzy 
membership  degree analysis  of  n cells  is  defined  as: 

(12,1r )  E E  (A,02  liz  —  'cas e, (6) 
,Eu,o  5.1 

where  X,,  represents the gene expression  of  the  j-th transition 
cell  in TCe,  Y  =  [Y„, Yu]  is the  gene expression matrix with 
sizes  of  2  x  m and  Yi  (i  =  u,  v)  represents the expression of 
cluster center belonging  to the  i-th cluster. 

Based  on the definition and properties (nonnegativity  and 
incompatibilities)  of  fuzzy  membership degree [26], we predict 
the final transition probability (scTP) for e  transition  states  to 
u-th  or  v-th cell clusters  as: 

P  =  min  J (P,Y)  , (7) 
P,Y 

where the initial value  of  the  above  optimization problem 
is  Po and  the update strategy  details  in  (7) are  shown in 
Supplementary B. 

D. livo Simulated Datasets 
To  assess  the performance of scRCMF,  we  generate two sim-

ulated dataseAs using the Splatter package  in  [27].  The simulated 
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Fig. 2.  scRCMF identifies subpopulation structure and transition cells in the list simulated data.  (a)  The heatmap of coefficient matrix H, signifying 
two cell subpopulations (C1, C2) and one transition state (TC) denoted by a red frame.  (b—c)  Cells are visualized on the first two principal components 
and coloured by the scRCMF-derived states and transition entropy, respectively. Five red cells with labels represent transition cells.  (d)  Comparison 
of scEntropy among Cl, C2 and TC.  (e)  Transition probability (TP) of five transition cells to Cl and C2. Cell are colored as in panel (c).  (f)  Potential 
landscape of the first simulated data. Cells are colored as in panel (b). 

expression levels for  cell clusters  are based on  a  Gamma-Poisson 
distribution. To simulate  transition  cells,  we choose the  top  most 
relevant  based  on  Pearson  correlation coefficient pairs  of cells 
from distinct cell clusters and generated the mean values  that 
represent  the mixed gene expressions  of  'transition cells' in one 
transition.  In total, we generated the first simulated dataset of 
two clusters and  one transition with expressions of  10000  genes 
across 100 cells and 5 transition cells, the second simulated 
dataset of  five clusters  and  two transitions with expressions of 
10000  genes across 1200  cells and  40 transition  cells. 

E. Data Sources 
To further demonstrate the performance  of scRCMF as 

well  as  biological discovery, we  adopt the  three  real  scRNA-
seq  datasets, which  capture  dynamical  processes  during 
mouse/human  early  embryo development  [2814311  The first 
dataset  (MEG,  GSEI00597)  consists of 204  cells  collected  at 
E3.5  and  E4.5  during the  mouse early  gastrulation  [28].  The 
second dataset consists  of 88  cells from seven stages in human 
early embryos (HEE,  GSE36552) [31].  The  third  dataset  (qPCR, 
J:140465)  consists  of  334 cells from mouse  late preimplanta-
lion  development [30].  The  scRNA-seq and  cell  stages  of  MEG, 
FLEE  and qPCR cells  were  obtained  from  [28], [30], [31]. 

F Evaluation  of  The Algorithms 
To  evaluate the performance of  clustering algorithms,  the ad-

justed Rand  index (ARD  [32]  is  widely  used  to evaluate accuracy 
and similarity between  the inferred labels  and reference labels. 

III. RESULTS 

A.  scRCMF Accurately Recovers Cell  Subpopulallons 
and Transition Cells in The Simulated Dataset 

First, we  apply scRCMF  to  two  simulated  datasets  that  con-
tain  multiple subpopulations  and transition processes located 
close  to  one  another in  gene  space  (See Methods).  In first dataset 
(Sim), as  shown in  Fig.  2(a)  and  (Fig.  S  I  (a) in  Supplementary 
C),  the  coefficient matrix  H clearly revealed two  distinct cell 
subpopulations (Cl,  C2) and  one  transition state between these 
two  subpopulations  (1=  0.01  and co  =  0.6).  The two  cell  clus-
ters identified by  scRCMF are well  separated on the  first  two 
principal  components  (Fig.  2(b))  and characterized  by  relatively 
low transition entropy  (Fig.  2(c)  and  2(d)).  As expected, the 
identified 5 transition cells are  located between the two  subpop-
ulations in the low-dimensional  space, and  are characterized by 
high  transition  entropy  (deep  red  color in  Fig. 2(b)).  Further-
more, using  fuzzy degree  analysis, we  observe that these  5 tran-
sition cells  (Its)  exhibited  distinct transition directions: TC  1 
likely switches  to  cluster C2, while TC  3 and  TC 5  likely  switch 
to  cluster  CI; TC 2  and  TC  4  am  very  plastic  with approximately 
0.5 probability  of  transitioning to  either cluster  (Fig.  2(e)).  To 
gain clearer  insight into  how  the different  behaviors of these 
transition  cells translate  to distinct differentiation propensities 
of  cells, we  create  a  3D  global  potential  landscape  of the single-
cell data  based on the  reduced  dimensional space.  The  landscape 
topography  is  characterized  by two narrow potential  energy 
wells  corresponding to the  Cl and  C2  states  and one barrier 
corresponding to  the  transition  cells.  In terms  of  the  dynamic 
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behaviors of these transition cells, TC 2 likely favors  a  transition 
in the C2 direction, while TC  4  is more likely to convert into Cl 
cells. To further test the performance on multiple cell popula-
tions,  the  second dataset consisted of five populations with two 
transition processes can  be  identified by scRCMF (Fig. S2 in 
Supplementary C). Five distinct cell subpopulations (Cl, C2, 
C3, C4 and C5) with low entropy are clearly identified  by  scR-
CMF in the low-dimensional space with the coefficient matrix 
11 in (Fig. S2 in Supplementary C). Two transitions (Cl-CS and 
C3-05) consisted of 39 cells are characterized by higher transi-
tion entropy and exhibit distinct transition directions (Fig. S2 in 
Supplementary C). Taken together, scRCMF accurately iden-
tifies the multiple subpopulations and transition states. The 
defined transition entropy significantly distinguishes transition 
cells from other cells. Fuzzy degree analysis as well as the po-
tential landscape gains us insight into the transition behavior. 

B. scRCMF Identities Critical Lineage Commitments and 
Mixed-Lineage State During Mouse Embryo Implantation 

Next, we demonstrate the performance of scRCMF using 
the MEG dataset [28]. This dataset provides a high-resolution 
scRNA-seq map of mice  from  preimplantation to early gas-
trulation, from E3.5 to E6.5. lb gain insights into the critical 
lineage commitment, i.e., the segregation of mouse inner cell 
mass (ICM) into the epiblast (EPI) and primitive endoderm 
(PE) lineages, we focus only on the stages before implanta-
tion of  the  embryo, i.e., E3.5 and E4.5, including 204 cells. We 
selected potentially informative genes (n = 14451) with the vari-
ance of log2-transformed FPKM of each gene greater than 0.1. 
Unsupervised clustering using scRCMF leads to three clusters 
(Fig.S1(b) in Supplementary C). The heatrnap of 11 describes 
the low-rank structure of the  three  cell subpopulations (Cl, C2, 
and  C3)  and  one transition state between C2 and C3  =  0.001 
and  to  =  0.63), as shown in  Fig. 3(a).  By comparing with the 
known  labels  and marker genes in the subpopulations  identified 
by  scRCMF, our  results  show that cluster CI  from  E3.5 is  ICM 
stage, characterized by high Gata6 and high Nanog (C1-ICM, 
97  cells); cells from E4.5  are clustered into  two  distinct subpop-
ulations: cluster C2 with high Gata6  and  low  Nanog  is the PE 
state (C2-PE, 67 cells),  and  cluster C3 with high  Nanog and  low 
Gata6 is  EPI  state  (C3-EPI, 28 cells)  (Fig. 3(b), Fig. 3(c)  and 
Fig. S2 in  Supplementary  C). Importantly, we identified  10  tran-
sition  cells  in  the  PAS  stage. These  cells  express a  middle level 
of  Nanog  or  Gata6 (Fig. S2 in Supplementary C)  and  are  located 
between C2-PE  and  C3-EPI in  the PCA  space  (Fig. 3(b)),  indi-
cating  a mixed-lineage  state  during lineage  commitment. Again, 
higher entropies observed  in  these transition states than  in  cells 
belonged  to other clusters  (Fig. 3(d)  and  Fig. 3(e)).  The  mixed-
lineage state  was also observed  recently in the  hematopoietic 
stem  cell  differentiation  process  [33].  Based on fuzzy degree 
analysis,  Fig. 3(t)  shows that 5  transition  cells (TIC 3  and  TC 
8)  appear  prepared  to convert into  the  C2-PE  state,  which  are 
closer to cells  from  C2-PE  in PCA  space  (Fig. 3(d)),  and five 
cells (e.g., TIC  2 and  TC  7) are  more likely  to become  the C3-
EPI  state. We also  find several  transition states located  in  the  

well between  C2  and  C3  and pmcPcs the  higher potential energy 
in  Fig. 3(h).  Transitions  with  multiple directions  and  energies 
indicate  that  these  transition cells are indeed very plastic dur-
ing the PE and EPI stages in mouse early gastrulation which  is 
consistent with previous papers, and the overexpression gene of 
Gata4,  a  differentiated gene in C2-PE, in embryonic stem  cells 
is sufficient to direct cells toward  a  PE-like  state [34], [35]. 

To further elaborate whether this critical  transition  between 
two lineages is  likely to  be  functional, we  performed  differential 
expression  and co-expression analysis. We  observed  significant 
172  marker  genes  and  clear gene patterns among  the three  clus-
ters.  Fig. 3(g)  shows the  top  10 feature genes  associated with 
each  cluster, where some signature genes reported in  previous 
studies are also uncovered.  Nanog and Gata4  identified  pio-
neering symmetry  that  primarily represent transcription  factors 
[28].  Gene Gata6 and Aim were marker genes co-expressed  in  a 
non-lineage-based random manner  at  E3.5,  exhibiting  substan-
tial coexpression  before  displaying mutually exclusive lineage-
specific expression patterns at E4.5  [28],  [35]. We further found 
that  Dppa5a  expressed  in the  transition state  and is associated 
with a shift toward  the  EPI  fate and  PE  cell  fate. Therefore, 
scRCMF captures the critical lineage commitment  and  mixed-
lineage  state  with meaningful biological  function  during  mouse 
embryo implantation. 

C. scRCMF Pinpoints the liming of Key Transitions of 
Human Early Embryo Development 

As a  third demonstration, we applied scRCMF  to scRNA-seq 
data  studying human  early  embryo  (HEE)  development [31], 
which consists  of 88  individual cells  from  seven developmen-
tal stages:  oocyte,  from  the 2-cell to 8-cell  stages,  the morula, 
and the  late  blastocyst  stage.  To perform  principal  component 
analysis,  we  selected  potentially informative genes  (n  =  10,316) 
with the variance  of the log2-transformed FPICM greater than 
0.5.  We  also  performed unsupervised clustering, leading to three 
clusters determined with A  =  I  and to  =  0.63  (Fig.  S1(c) in  Sup-
plementary  C). In  Fig. 4(a),  the  heatmap of H  indicates three 
distinct  blocks corresponding to  three  subpopulations (Cl,  C2 
and  C3) and  one  transition  state between Cl  and C.  scRCMF 
classifies the  oocyte, zygote, 2-cell  and 4-cell  stages into a  single 
subpopulation  (Cl, 24 cells),  8-cell and Morula  cells  together 
(C2, 30  cells), and  the late  blastocyst stage as another  subpop-
ulation (C3,  30 cells)  (Fig. 4(b)  and  Fig. 4(c)).  Interestingly, 
the most  significant transition state, consisting of 4 transition 
cells, occurs  at the  8-cell stage, which  is located  in the  middle 
between Cl  and C2 in  the  low-dimensional  space, and emerged 
at  a  higher entropy  than other cells  (Fig. 4(d)  and  Fig. 4(e)). 
These results  suggest that  a critical transition occurs from the 
4-cell  to  8-cell in human early  embryo development,  which  is 
consistent  with previous studies  [29],  [31] showing that the ma-
jor  maternal-zygotic transition  occurs at  the  8-cell  stage and 
that  gene  expression  signatures  first occur  between the 4-cell 
and  8-cell  stages  during the preimplantation stages of human 
development. To  further  describe the dynamic characteristics 
of  the transition state,  fuzzy degree  analysis shows  that  two 
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Fig. S.  scRCMF identifies critical lineage commitments and mixed-lineage state as well as associated marker genes during mouse embryo 
implantation.  (a)  The heatmap of coefficient matrix H, signifying three cell subpopulations (C1, C2, C3) and one transition state (TC) denoted by 
a red frame in the MEG dataset 1281  (b—c)  Cells are visualized on the first two principal components and colored by identified clusters (b) and 
developmental stages (c).  (d)  Cells are labeled by transition entropy. Five red cells with labels are representative transition cells.  (e)  Comparison 
of scEntropy among Cl, C2, C3 and TC.  (f)  Transition probability if P) of ten transition cells to C2 and C3. Cell labels are consistent with panel 
(d).  (g)  Heatmap of the top 33 marker genes for three dusters and one transition state. Genes are ranked by average expression value in three 
clusters and transition states respectively.  (h)  Potential landscape of the data. Cells are colored as in panel (b). 

transition cells  appear likely  to  translate  into the Cl  state (TC1 
and TC4), and the other  two transition cells  appear likely  to C2 
state  (Fig. 4(d)  and  Fig. 4(0).  These results were consistent with 
the  findings that cells reconverged in both timing and function 
from the  8-cell to the morula stage after the gene expression of 
cells  had  achieved significant overlap and spread through the 
4-cell and 8-cell stage [29]. 

To further elaborate whether this critical transition and these 
clusters are likely to  be  functional, we identify the significant 
feature genes associated with  each  cell state. We perform  a 
two-sample West for  any  two clusters (Fold Change (FC)  >2, 
p-value  <0.001) and  compute  the  intersection  of  these differ-
entially expressed genes with cluster-specific genes given  by 
the basis matrix W.  Fig.  4(g)  shows the heatmap of the  top  33  

feature genes, which reveals  a  clear specific-expression  pattern 
in  each  cluster  as well  as a coexpression pattern in transition  cells 
defined  by  scRCMF. The  top  10 differentiated expressed genes 
from each cluster are ranked by average expression value in each 
cluster. DAVID functional enrichment analysis [36] of 642 key 
genes  of  Cl  (p-value <0.01) revealed that these feature genes 
relate  to  mRNA metabolism  and  transcription (count  > 30), 
e.g., alternative splicing  (p-value = 5.55  x  104),  transcription 
(p-value = 0.0035)  and  phosphoprotein  (p-value  =  0.0036) in 
the early stage (4-cell,  2-cell,  oocyte and zygote)  (Fig. 4(h)).  A 
total of 303 feature genes  of  C2  are  involved in DNA metabolism 
and the  cell  nucleus (count >10  and  p-value <0.001),  such as 
DNA  binding (p-value =  1.18  x  10-1°),  nuclosome  (p-value = 
2.67  x  10-17)  and  cell  differentiation  (p-value = 4.03 x  10-7), 
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Fig. 4.  scRCMF  identifies subpopulaticc structure and pinpoints the timing of key transitions during human early embryo development  (a)  The 
heatmap of H with three cell subpopulations and four transition cells (TCs) denoted by a red frame in the HEE clataset [31].  (b-c)  Celts are visualized 
on the first two principal components and colored by identified clusters  and  developmental stages.  (d)  Cells are labeled  by  transition entropy Two 
red cells with labels are representative transition cells.  (e)  The distribution of entropy for TC and  three  dusters.  (f)  Transition probability (scTP) from 
the four transition cells to relevant two cell subpopulations (Cl and C2).  (g)  Heatrnap of the  top  33 masker genes breach cluster and four transition 
cells in human early embryo development. Genes are ranked by average expression value  in  three dusters and transition state.  (h)  Comparison of 
key functional annotation for enriched genes in the three clusters. 

implying that the epigenetics  and  cell-cycle regulation  are also 
shifting  after the  highly  expressed  genes are  activated  in  the  mid-
dle  stage (4-cell  and  8-cell).  Similarly,  the  functional enrichment 
of  304 important  genes  in  C3  associated with  cell  metabolism 
and cytoplasm  (count  >  30 and p-value  <  0.001),  including  the 
cytosol,  membrane  and  metabolic pathways in  Fig. 4(h).  More-
over,  we  observed  119 significant transition  genes  in transition 
cells  that are  coexpressed  by Cl, C2  and  TC  (Fig. 4(g)).  The 
GO  terms  of these  coexpressed  genes  focused on DNA  binding 
(p-value  =  246  x  10),  Zinc (p-value =  0.0030), Nucleus 
(p-value  =  0.0079) and  transcription regulation  (p-value = 
0.0085), as  shown  in  Supplementary Table 11.  These  findings 
suggested that scRCMF  can  be  used  for  the unbiased identifi-
cation  of  biologically  meaningful  subpopulations, critical tran-
sition and marker genes  during early embryo  development. 

D. scRCMF Identifies Multiple Transition States During 
Mouse Prelmplantation Development 

As a  third demonstration,  we show  the performance of scR-
CMF  using  qPCR data on mouse embryo  development from 
zygote to  blastocyst  [30].  Guo  et al. ([30])  conducted a qPCR 
experiment on  48  genes  in  seven  different  developmental stages. 
To understand  the  critical cell fate decisions in  a  develop-
ing mouse  embryo, we  used  334 individual cells from the  8-
cell,  16-cell,  32-cell  and  64-cell  stages. The gap statistics  pm-
diet  seven  clusters (Fig.  S1(d)  in Supplementary C). Heatmap 
of  the coefficient matrix H  shows the distinct patterns of the 
seven  cell  subpopulations  and  41  transition  cells identified with 

= 0.001  and  co =  0.38  (Fig. 5(a)).  Our results  in  Fig. 5(b)  and 
Fig. 5(c),  show  that  scRCMF separates  the 32-cell  stage into  two 
clusters,  C1-32C-ICM with high Sox2/Nanog/Gata6  and  C5- 
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Fig.  5.  scRCMF identifies subpopulation structure and multiple transition states during mouse preimplantation development  (a)  The heatrnap of  H 
with seven cell subpopulations and four transition states (TC) denoted by red frames  in  the qPCR dataset [30].  (b-c)  Cells are visualized on the first 
two principal components and coloured by the identified subpopulafions and developmental stages, respectively  (d)  Cells are labeled by entropy. 
Seven  red cells with labels represent the representative transition cells.  (e)  The distribution of entropy for TC and seven dusters.  (f-g)  Transition 
probability  (scTP) from two transition states between two cell subpopulations (Cl  and  C3, C2 and C5).  (h)  Heatmap of 34 marker genes breach 
cluster and four transition states. Genes are ranked according to their similarity  (i)  Summary of the identified four transition states  and  the number 
of  cells in each  state. 

32C-TE  with  high  Cdx2 and low Sox2, and  the  64-cell  stage 
into three clusters C3-64C EPI with high Nanog and low Gata6, 
C4-64C-PE with high Gata6/Gata4  and  low Nanog, and C6-
64C-TE with high Cdx2 and low Sox2  (Fig.  5(h)  and  Fig. S3 
in Supplementary C). The other  two  clusters  are  0 enriched in 
the  8-cell stage  and  0 enriched in  the  16-cell  stage. We also 
identify 4  transition states  (Fig.  5(a)  and  Fig. 5(i)).  The  first 
transition occurs between  C1-32C-ICM  and  C3-64C-EPI, and 
5  transition cells exhibit a mixed  location  between  CI  and  C3, 
while  9  transition  cells appear  in  the  second  transition  state be-
tween C2-16cell and C5-32C-TE  (Fig. 5(b)).  Similarly,  18  tran-
sition cells  were  observed in  the third  transition state between 
C7-8cell  and  C2-16cell,  and 9  transition cells  were  observed in  

the  fourth  transition  state between  C5-32C-TE  and  C6-64C-TE 
(Fig. S3 in Supplementary C).  The  last  transition  was located 
between C6-64C-TE and C5-32C-TE,  as  shown C5 in  Fig. 5(b). 
41  transition  cells in the four  transition  states  possessed  higher 
entropy than the other seven  clusters  identified by scRCMF in 
Fig. 5(e).  The  second  and  third  transitions among C2, 0 and 
Cl  (Fig.  5(g)  and Fig. S3) indicated the multiple shift  and  tran-
sition  of  cell states at 16-cell stages, in agreement with the study 
reported  that  mixed  lineage expression in  16 cell  blastomeres 
[30].  We  further observe  that two cells (e.g.,  TC  5)  intend to 
CI, two  cells (e.g.,  TC  3)  are  closer  to  C3,  and  TC 1  is  plastic 
between CI and 0 in  Fig. 5(d)  and  Fig. 5(1).  We further  found 
that 6 transition cells  (e.g.  TC  9  and  TC 11)  are likely  to convert 
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into C2, while the plastic TC 14 and two other states (e.g. TC 
13) might translate into C5, as shown in  Fig. 5(d)  and  Fig.  
Taken together, the results show that scRCMF captures the tran-
sition states in the critical lineage commitment during mouse 
preimplantation development 

To further elaborate whether the three transitions are likely 
to be functional, we examined the differential expression and 
the coexpression patterns in different transitions by gene clus-
ten (IV). We observe 34 significant marker genes and multiple 
clear gene patterns among the seven clusters in  Fig. 5(h).  We 
further found that Pecaml is expressed in the transition between 
Cl and 0, Apq3 and fgfr2 are expressed in the transition be-
tween C2 and C5, Cdx2, Grh12 and Lc& are expressed in the 
transition between C5 and C6 in late mouse preimplantation de-
velopment. We further found that the same marker coexpressed 
genes showed different regulation in the four transition pro-
cesses, such as the marker gene Klf5 is expressed in C2, 0 
and O. Among these genes, several have been identified as key 
genes in previous studies. 

Cdx2 is a the it-specific transcription factor coexpressed 
from the 8-cell stage through to the blastocyst [37], [38]. Both 
Gata6 and Gata4 are early markers of the PE [30]. Biologi-
cal subpopulation structures, multiple transition processes and 
key gene markers can be identified by scRCMF during mouse 
preimplantation development 

These three different datasets emphasize different aspects of 
the dynamic process of the early embryo development, allowing 
us to comprehensively understand the distribution and trend in 
gene expression during the transition in Fig. 54 and Fig. 55. 
In the MEG dataset [28], cells were from mouse preimplanta-
tion ICM at E3.5 and the epiblast at E4.5. Therefore, no 'FE 
cells existed in these data (FE marker Cdx2 is not expressed, 
Fig. 54 in Supplementary C), allowing us to focus on the seg-
regation from ICM into EPI and PE. We also identified a tran-
sition/intermediate state with the mixed gene signatures  of  both 
EPI and PE. The HEE dataset  [31]  described the whole process 
from oocyte to late blastocyst during human early embryo devel-
opment. Due to the excessive expression of PE marker GATA6 
in late blastocyst (Fig. 54 in Supplementary C), we were not 
able to distinguish EPI from PE in an unbiased manner. How-
ever, we observed a transition state between the 4-cell and 8-cell 
stages in agreement with previous studies showing that the major 
maternal-zygotic transition occurs at the 8-cell stage [29], [31]. 
The third mouse qPCR dataset [30] allowed us to investigate two 
critical lineage commitments: the segregation of 16 cells into TE 
and ICM, and subsequently from ICM into PE and EPI. From 
Fig. 55, we further observed that the transition state was the 
extreme point for several marker genes' expressions, that was, 
gene expression value was first increasing and then decreasing 
or first decreasing and then increasing. The gene expression 
changes  of  these maker genes may lead to distinct cell fate de-
cisions and various biological functions of different cell types 
[1]. Moreover, We used the scRCMF to one more dataset with 
57951 genes across 379 cells related to immune cell lineage, 
identify seven clusters and 4 transitions (C1-C3,C1-C7,C4-C7 
and C6-C7) in primary breast cancer (PBC) [39]. We labeled 

SCR NhIF 
 NMI- 
803 
t-SNE•K-rneons 

0 
Sim  MEG HEE qPCR 

Fig. 6.  Comparison of the performance of scRCMF with that of sev-
eral other clustering methods on one simulated dataset and three real 
datasets. 

CDl belonged to the B cell stage with marker gene CD2D, Cl 
belonged to the Macrophages stage with marker gene CD68 
and Cl contained T cell stage with marker gene CD3D. Fig. 56 
in Supplementary C further showed that transition states fo-
cused on the BC07 (lymph node metastasis  of  BC07) and BC09 
(Breast cancer cells) with highest entropy. Taken together, our 
results reveal that multiple transition states occur in both mouse, 
human early embryo and primary breast cancer development. 
Such transitions may exhibit very different characteristics when 
the starting cell state is different, as observed in many biolog-
ical processes, such as the transition from the hepatocellular 
carcinoma state to the normal liver state [4], and the epithelial-
mesenchymal transition (EMT) [40], [41]. 

E Comparison of scRCMF With Other 
Clustering Methods 

We compare the performance of scRCMF on the one simu-
lated dataset and three real datasets with three other algorithms: 
t-SNE+K-means [14], [15], SO [15] and the classical NMF 
[19]. We repeated NMF and scRCMF for 20 times and present 
the average result. The number of clusters  is  assured by Gap 
statistics, and transition states are not considered in the compar-
ison. As a test statistic, we used the adjusted Rand index (AR) 
to quantify the consistence between the predicted clusters and 
real developmental stages. For the real datasets and simulated 
dataset, scRCMF exhibits a good performance  (Fig. 6).  We fur-
ther compared our methods with dPath  [42]  in terrns of the accu-
racy and time complexity on three simulated datasets produced 
by splatter [27]. In  Fig. 7,  the computation time was initially less 
than two minutes but slowly increased with the number  of  clus-
ters. scRCMF has better accuracy and is obviously superior to 
dPath [42] in terms of computation time. Our method and dPath 
[42] are computed on a dual 3.40 GI& Dell desktop computer 
with 8 GB of RAM. 

1 
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Fig. 7. Comparison of the performance of scRCMF and dPath [42] on 
three  simulated  datasets  with different dusters in  terms  of  accuracy (ARI) 
and time complexity (min). K indicates the number of cell subpopulations. 

IV. DISCUSSION 

Compared with  typical  sequential methods, such  as  identifi-
cation  of  cell  populations  using clustering methods  (e.g., SO) 
and  then  inference  of cell transitions  using pseudotime analysis, 
scRCMF enables  the simultaneous identification  of  cell  popu-
lations and estimation  of  cell transition probability. On the one 
hand, our integrative framework can increase accuracy and re-
duce  computational cost Moreover, it can identify which cell 
clusters are more likely making transitions to the other states. 
The pseudotime analysis characterizes continuous  cell  states, 
while the clustering analysis usually captures discrete cell states. 
Such characterization  of  individual cells might make the iden-
tification of transition states less robust and introduce errors in 
finding the transition states. As shown in our previous studies 
[43],  [44] on the pseudotime analysis, some  cell  states might  be 
mixtures  of  multiple identified cell subpopulations through di-
rect application of clustering methods. Thus, it is  a  challenging 
task to identify the cell transitions and transition  states  connect-
ing the identified subpopulations. 

In addition, it is also a challenging task to distinguish different 
transitions when different cell populations are closely related. In 
this study, we distinguish  them  through calculating the transition 
probabilities  of  cells.  More  effective methods that can  deal  with 
such  case  will  be  explored in the future. 

CONCLUSION 

Here we present scRCMF,  a  new method for simultaneously 
identifying  cell  subpopulations and transition cells, and quan-
tifying transition cells from single-cell gene expression data. 
The main contributions  of  this study include  three  aspects:  (1) 
we proposed a matrix factorization model  by  introducing  a  new 
regularization with random constraints, which  is  shown  to  im-
prove accuracy for inferring cell subpopulations;  (2)  we  used 
the quantity scEntropy  to  measure the plasticity of cells and 
found  that the  entropy of transition state is significantly higher 
than  that of  cells belonging to other clusters, which further re-
veals the instability during transition;  (3)  a quantity scTP based 
on fuzzy membership degree was proposed to predict the fate 
decision and dynamic behavior of transition cells by calculating  

their probability  of  moving from the transition state to other 
states. 

We apply scRCMF  to  two simulated datasets and four pub-
lished datasets. Applied to the first three real datasets involved 
in the early embryo development, scRCMF identifies the bio-
logical meaningful subpopulations, and the transition processes. 
Moreover, we identified maker genes  of  the associated subpop-
ulations and transition states (Supplementary Table III). 

Although we have made significant progress toward identify-
ing transition states and cell subpopulations, much interesting 
work remains  to  be done in the future, such as  cell  trajectory 
reconstruction, network inference, and stochastic dynamic anal-
ysis. We further suggest that the experimental datasets  of  single 
cell  with batch effects can be removed by matching mutual 
neatest neighbors  [45]. 

In conclusion, the proposed scRCMF provides a computa-
tional framework to quantitatively analyze scRNA-seq data and 
advance our understanding of single-cell  biology. We believe 
that the proposed scRCMF will help to capture meaningful cell 
types and transition states and to identify key genes in emergent 
biological processes and cell fate decisions. 

SOFTWARE AND DATA 

The source code  of scRCMF  package  can be downloaded at 
https://github.comntiaoyinglheng121/scRCMF.  
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