Downloaded via RICE UNIV on April 22, 2021 at 18:51:01 (UTC).
See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.

l‘ I ‘ Journal of Chemical Theory and Computation

pubs.acs.org/JCTC

Extensible and Scalable Adaptive Sampling on Supercomputers

Eugen Hruska, Vivekanandan Balasubramanian, Hyungro Lee, Shantenu Jha, and Cecilia Clementi*

Cite This: J. Chem. Theory Comput. 2020, 16, 7915-7925

I: I Read Online

ACCESS |

[l Metrics & More |

Article Recommendations |

@ Supporting Information

ABSTRACT: The accurate sampling of protein dynamics is an
ongoing challenge despite the utilization of high-performance
computer (HPC) systems. Utilizing only “brute force” molecular
dynamics (MD) simulations requires an unacceptably long time to
solution. Adaptive sampling methods allow a more effective
sampling of protein dynamics than standard MD simulations.
Depending on the restarting strategy, the speed up can be more
than 1 order of magnitude. One challenge limiting the utilization of
adaptive sampling by domain experts is the relatively high
complexity of efficiently running adaptive sampling on HPC
systems. We discuss how the EXTASY framework can set up new
adaptive sampling strategies and reliably execute resulting workflows at scale on HPC platforms. Here, the folding dynamics of four

proteins are predicted with no a priori information.

1. INTRODUCTION

Molecular dynamics (MD) simulations with all-atom force
fields allow simulating protein folding and protein kinetics with
good accuracy. Reaching biologically relevant processes, such
as protein folding or drug binding, is limited mainly by the
required large computational resources and long simulation
times. The long simulation times can be reduced either by
simulating parallel trajectories with massively distributed
computing"” or with special-purpose hardware.” Further
reduction of required computational resources or simulation
times would allow a more broad application of MD
simulations.

One method of reducing both the computational resources
and the simulation times is adaptive sampling." > Adaptive
sampling is an iterative process, where MD simulations from
previous iterations are analyzed, and, based on the analysis, a
new iteration of relatively short MD trajectories is initiated.
The starting conformations for the MD trajectories are
determined in such a way to efficiently reach a goal such as
crossing rare transitions barriers, folding a protein, or
recovering the dynamics of a macromolecule. The exact
strategy where to restart new MD simulations determines the
success of the adaptive sampling approach, and several
different methods have been proposed and investigated.”” "
Adaptive sampling requires to use multiple parallel simulations
and is therefore suitable for high-performance computers
(HPC).

Determining the efficiency, accuracy, and reliability of a
particular adaptive sampling strategy is challenging for several
reasons. Different proteins can behave differently for different
adaptive sampling strategies, but limited computational
resources do not allow to adaptively sample a statistically

© 2020 American Chemical Society

7 ACS Publications

7915

time
—— Start

1 conformations

S Step 4

lep Select batch of

Simulate batch of _ MD restart
D) .

‘ no

Step 2
Analyse existing
trajectories
(MSM,...)

repeated anplysi

nodes

yes

allocation
Finish

significant number of proteins with different strategies for
comparison. Accurate results are known only for a limited
number of proteins. Despite these challenges, some perform-
ance analyses of adaptive sampling strategies have been
reported.”~¥'* The results show that some adaptive sampling
strategies are both reliable and accurate and reach speed ups of
1 or more orders of magnitude compared to plain MD. For
larger, more complex proteins, a higher speed up is expected.'”

An important challenge in adaptive sampling simulations is
the complexity of performing the required computational tasks
efficiently on HPC platforms with heterogeneous software and
hardware environments. This complexity can detract from the
core objective of investigating the behavior of a particular
protein or the efficiency of new adaptive sampling strategies.
Some of the existing frameworks that currently strive to reduce
this entry barrier to adaptive sampling, such as HTMD,’
SSAGES,”” DeepDriveMD,” are either bound to specific
software packages, algorithms, computing platforms or are not
open source. Additional sampling frameworks involving neural
networks”*~>® have reported effective sampling of toy systems
and small peptides. Here, we discuss the EXTASY”” framework:
we show that it works for proteins significantly larger than
small peptides, scales to 1000s of GPUs, and is not limited to
specific software packages. ExXTASY supports multiple adaptive
sampling algorithms, different dimension reduction methods,

Received: September 24, 2020
Published: November 10, 2020

https://dx.doi.org/10.1021/acs.jctc.0c00991
J. Chem. Theory Comput. 2020, 16, 7915-7925

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Eugen+Hruska"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Vivekanandan+Balasubramanian"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Hyungro+Lee"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Shantenu+Jha"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Cecilia+Clementi"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jctc.0c00991&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00991?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00991?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00991?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00991?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00991?fig=abs1&ref=pdf
https://pubs.acs.org/toc/jctcce/16/12?ref=pdf
https://pubs.acs.org/toc/jctcce/16/12?ref=pdf
https://pubs.acs.org/toc/jctcce/16/12?ref=pdf
https://pubs.acs.org/toc/jctcce/16/12?ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://dx.doi.org/10.1021/acs.jctc.0c00991?ref=pdf
https://pubs.acs.org/JCTC?ref=pdf
https://pubs.acs.org/JCTC?ref=pdf

Journal of Chemical Theory and Computation

pubs.acs.org/JCTC

and is extensible to new algorithms and methods while being
open source and agnostic of the HPC platform. In addition to
a demonstration of the scientific results that can be achieved
using ExTASY, in this manuscript, we investigate the
advantages of scalability, reliability, or reproducibility arising
from the EXTASY framework for adaptive sampling.

2. METHODS

Many different implementations of adaptive sampling exist, but
they all have in common that MD trajectories are periodically
analyzed during the simulation, and restart points for the next
batch of trajectories are determined from the analysis of the
sampled configurational space. The different implementations
mainly differ in the analysis step, and they can be based on
Markov state models (MSMs),”*™** diffusion maps,* ™
likelihood-based approaches,”” cut-based free energy profiles,*®
or neural networks.””~*" In this manuscript, we exemplify the
usage of the ExTASY framework with Markov state models
with different restarting strategies, as described in Section 2.2.

2.1. Adaptive Sampling. In each iteration of Markov state
models-based adaptive sampling, all previous MD simulations
are analyzed. Figure 1 is a graphical representation of the

Start
conformations
Step 4
Step 1 Select batch of
Simulate batch of MD restart
MD trajectories conformations

Step 2
Analyse existing
trajectories
(MSM,...)

no

yes
Finish

Figure 1. Flow chart shows the basic structure of adaptive sampling.
The number of starting conformations is variable. The software and
hardware generating the MD simulations are variable. Different
analysis methods in step 2 are possible, commonly time-lagged
independent component analysis (TICA)**** and MSM*® are used,
but alternative methods such as VAMpnet® are possible. In step 3,
the goal can also be variable, from finding the whole protein dynamics
to exploring smaller-scale changes. Step 4 allows different adaptive
sampling strategies, such as the FAST method'* or the strategies
discussed in this work.

process. In the first iteration of the adaptive sampling, the MD
simulations are generated from a starting state for the system
under study, as shown in step 1.

In step 2, all previous trajectories are analyzed, first by
performing a dimension reduction. One possible dimension
reduction approach is the time-lagged independent component
analysis (TICA),"** which converts the raw trajectories into
low-dimensional trajectories. The Koopman method™*~* can
be used to reduce the nonequilibrium effects emerging from
collecting many short MD trajectories, and the resulting low-
dimensional trajectories can be scaled into a kinetic map,””""
which provides a measure of the kinetic distance between

7916

different configurations. Another possible dimension reduction
approach implemented (as the default) in EXTASY is based on
the state-free reversible VAMPnets (SRV).*”*> The SRV are
essentially a nonlinear extension of the TICA method, as they
originate from the same variational approach to conformational
dynamics.”>** In SRV, the trajectories are projected into a low-
dimensional space by means of a neural network that allows to
model nonlinearities. One practical advantage of the SRV is
that they can be accurate even when using lag times much
shorter than in TICA. For adaptive sampling, the shorter lag
time for analysis allows increasing the frequency of restarting
trajectories, which potentially improves the efficiency of the
sampling. In this case, the length of MD trajectories in each
iteration is reduced and the number of iterations is increased.

The dimension reduced trajectories are then clustered with
k-means into approximately 200 microstates (the exact values
for each protein are provided in the Supporting Information).
A maximum-likelihood estimation with a detailed balance
constraint”® allows obtaining an MSM transition matrix
between every pair of microstates. The analysis was performed
using the PyEMMA Python package, which allows fast
adjustments, and the hierarchical dynamics encoder package.>”
The exact parameters for the MSM construction for each
protein are listed in the Supporting Information. All of these
steps can be modified or replaced easily in the ExTASY
workflow.

The overall adaptive sampling process described in Figure 1
can be summarized as follows:

e Start: Start with a start conformation. In the cases
presented here, we start from one unfolded config-
uration as specified in Section 2.5.

Step 1: Generate a batch of molecular dynamics
trajectories from the selected conformations; the
parallelization is defined by the available computational
resources. This step is described in Section 2.5.

Step 2: Analyze all available data as described in Section
2.1, using the probabilities from the MSM transition
matrix.

Step 3: Decide if the goal of adaptive sampling is
achieved. In this work, the goal is finding the folded state
and obtaining a converged equilibrium dynamics for the
protein. If the goal is not achieved, proceed to step 4;
otherwise, stop the iterative process.

Step 4: Select the batch of protein conformations for
step 1 in the next iteration, as described in Section 2.2.

After step 2, the adaptive sampling continues with step 4 if
the goal is not achieved. This goal could be folding the protein,
achieving a predetermined accuracy of the protein dynamics,
but could also be manually set to finish after several iterations.
If the goal is not achieved in step 3, in step 4, a batch of protein
conformations for the next iteration is selected as described in
Section 2.2. If the goal in step 3 is achieved, the iterative
adaptive sampling finishes and the trajectories can be further
analyzed.

ExTASY allows to execute the iterative process in Figure 1 in
both synchronous and asynchronous manner. In the
synchronous case, the previous step has to be finished to
proceed with the next step. The disadvantage of synchronous
execution is the lower utilization of computational resources
since most of the GPUs would not perform any calculations
while steps 2—4 are executed. The asynchronous case as shown
in Figure 2 is designed to increase the utilization of

https://dx.doi.org/10.1021/acs.jctc.0c00991
J. Chem. Theory Comput. 2020, 16, 7915-7925

http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.0c00991/suppl_file/ct0c00991_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.0c00991/suppl_file/ct0c00991_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00991?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00991?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00991?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00991?fig=fig1&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://dx.doi.org/10.1021/acs.jctc.0c00991?ref=pdf

Journal of Chemical Theory and Computation

pubs.acs.org/JCTC

time
—_—

repeated anglysi

nodes

allocation

Figure 2. Asynchronous, concurrent execution of the individual
molecular dynamics and analysis tasks. Step 4 in Figure 1 uses the
restarting conformations from the latest available analysis results.

computational resources by continually updating the restarting
configurations for the next MD step by continually rerunning
the analysis step. When one MD trajectory finishes, the MD
worker will retrieve the last generated restarting configuration
for the next MD trajectory and immediately start the next MD
trajectory. This significantly reduces the downtime for the MD
workers. The disadvantage of the asynchronous approach is
that the analysis processes only a fraction of the MD
trajectories from the last iteration since these MD trajectories
are not finished when the analysis starts. These trajectories will
be fully analyzed only in the next iteration. To reduce the
unanalyzed length of the trajectories, the analysis step has to be
continuously rerun, shown in Figure 2. In the work presented
here, all of the simulations are executed asynchronously. The
ability of asynchronous execution is a significant advantage
over other adaptive sampling packages.

2.2, Restart Strategies for Adaptive Sampling. In the
ExTASY framework, the different restart strategies in step 4 in
Figure 1 are easily exchangeable. Here, we use two strategies:
the first one is based on the count of the number of
macrostates (hereby indicated as cmacro strategy); the second
one is based on the count of the number of microstate (hereby
indicated as cmicro strategy). The cmacro strategy was shown
to be more effective in reaching the folded state of a protein
from the unfolded state and the cmicro strategy was shown to
be more effective in exploring the whole protein landscape.'”
These strategies do not assume any a priori knowledge of the
system except the structure of the starting configuration in the
unfolded ensemble, but other adaptive sampling strategies that

use additional information about the protein can be used in the
ExTASY framework (e.g., ref 19).

2.2.1. Adaptive Sampling Strategy cmicro. One simple
restart strategy is starting new molecular dynamics trajectories
in the microstates, which have the worse statistics, that is,
which have been visited the least during prior iterations.”””'°
This statement can be quantified using the counts in the count
matrix of the MSM from step 2, which report on how many
times all previous trajectories have visited each microstate. The
probability that any given microstate is selected in step 4 for
the batch of restart conformations is set as inversely
proportional to its associated count. The cmicro strategy is
effective in quickly exploring new regions of the whole protein
landscape and to better sample the protein dynamics."”

2.2.2. Adaptive Sampling Strategy cmacro. Another
popular restart strategy for adaptive sampling is a macro-
state-based method indicated here as cmacro. The main
advantage of this method is the faster folding of proteins or
crossing of transition barriers.'” This advantage is achieved
using eigenvectors of the on-the-fly MSM from step 2 to select
more restart configurations in areas that are kinetically
disconnected or less explored. In this method, the microstates
of the on-the-fly MSM are clustered into macrostates, for
example with PCCA.*® Any microstate not connected to the
main MSM is treated as an additional macrostate. The number
of macrostates can be either fixed, as in this work, or
determined based on the number of slow processes emerging
from the analysis. The macrostate count is determined by
measuring how many times any previous trajectory has visited
each macrostate. The restart conformations for the next
iteration of adaptive sampling are then chosen from each
macrostate inversely proportional to the macrostate count.
Individual conformations within a macrostate are selected
inversely proportional to the microstate count within the
macrostate.

2.3. Tools and Software. ExTASY is a domain-specific
workflow system””*® for adaptive sampling algorithms on HPC
platforms. ExTASY exposes domain-specific parameters and
simulation configurations but abstracts complexities of
execution management, resource acquisition, and management
using RADICAL-Cybertools (RCT).>” RCTs are software
systems designed and implemented in accordance with the
building block approach.”® Each system is independently
designed with well-defined entities, functionalities, states,
events, and errors. Specifically, EXTASY uses ensemble toolkit

ExXTASY

| Configurational
Interface
' 1 2 2
Composer ‘ Resource H Execution Pattern H Simulation H Analysis
: T T

13 4 |4 4
D . Resource Application
| escriptor Descriptor Descriptor
... ll

15 16
Middleware Ensemble Toolkit

I 7

Figure 3. EXTASY-EnTK integration: the diagram illustrates the seven execution steps of an adaptive sampling algorithm using EXTASY.

7917

https://dx.doi.org/10.1021/acs.jctc.0c00991
J. Chem. Theory Comput. 2020, 16, 7915-7925

https://pubs.acs.org/doi/10.1021/acs.jctc.0c00991?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00991?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00991?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00991?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00991?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00991?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00991?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00991?fig=fig3&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://dx.doi.org/10.1021/acs.jctc.0c00991?ref=pdf

Journal of Chemical Theory and Computation

pubs.acs.org/JCTC

(EnTK)*’ and RADICAL-Pilot (RP).® Ensemble toolkit®”**
provides the ability to create and execute ensemble-based
applications with complex coordination and communication
but without the need for explicit resource management. EnTK
uses RP,%” which provides resource management and task
execution capabilities. In this section, we describe the EXTASY
framework and how it leverages capabilities offered by EnTK
and RP.

2.3.1. EXTASY. ExTASY exposes configuration files to
interface with users and two components: composer and
descriptor.

The composer validates the user input and creates the
resource, execution pattern, simulation, and analysis sub-
components. The resource represents a valid resource
description; execution pattern describes the number of
iterations, number of simulation tasks per iteration, and
number of analysis tasks per iteration; simulation and analysis
describe the parameters to be used for simulation and analysis
tasks.

The descriptor interfaces with ensemble toolkit, the
execution middleware. It consists of two subcomponents:
resource descriptor and application descriptor. The former
converts the resource description to a format as accepted by
the middleware. The latter uses the information from the
execution pattern, simulation, and analysis subcomponents to
describe the complete application to be executed.

Figure 3 presents the integration between EXTASY and the
execution middleware (EnTK). ExTASY translates the
adaptive sampling application into ordered executable tasks
through a series of events: EXTASY parses the configurational
files to determine parameters to be used and creates resource
description (event 1) and the simulation and analysis tasks to
be executed (event 2). EXTASY then uses the EnTK’s interface
to describe the resource and application (events 3 and 4) and
initiate execution on the target resource (events 5 and 6).
EnTK executes all of the simulations and analysis on the
resource (event 7).

ExTASY uses EnTK programming abstractions and the
EnTK’s application programming interface (API). ExTASY
also uses EnTK’s capabilities to support adaptive execution®
by modifying the execution plan depending upon intermediate
results, e.g., add more simulations and analysis tasks. Figure 4
provides pseudocode on how ExTASY implements an adaptive
sampling algorithm using the EnTK APL

2.3.2. Ensemble Toolkit. EnTK simplifies the creation and
execution of applications with complex ensemble coordination
and communication requirements. EnTK decouples the
description of ensemble coordination and communication
from their execution by separating three distinct concerns: (i)
specification of task and resource requirements; (ii) resource
acquisition and management; and (iii) task execution.

EnTK enables the encoding of ensemble applications by
exposing an API with four components: application manager,
pipeline, stage, and task. Users specify their application using
pipelines, stages, and tasks. Users then pass this specification
and description of the target resource to the application
manager. Resource description includes properties like wall-
time, number of nodes, and credentials for resource access.

The task component is used to encapsulate an executable
and its software environment. The stage component contains a
set of tasks without mutual dependencies and that can
therefore be executed concurrently. The pipeline component
is used to describe a sequence of stages. Description of

7918

from radical.entk import Task,
Pipeline

Stage,

p = Pipeline ()
sim_stage = Stage ()
sim_task = Task ()

sim_task.executable = <executable> #
example openmm
sim_task.arguments =
openmm args

<add other task properties>

sim_stage.add_tasks (sim_task)

<args> #example

ana_stage = Stage()
ana_task Task ()
ana_task.executable =
example pyemma
ana_task.arguments =
pyemma args

<add other task properties>

<executable> #

<args> #example

ana_stage.add_tasks (ana_task)

ana_stage.post_exec = {
eval_sims (),
add_sims (),

terminate ()

}

p.-add_stages ([sim_stage, ana_stagel])

Figure 4. Pseudocode describing the adaptive sampling algorithm
using the EnTK APL

ensemble applications in terms of concurrency and sequen-
tiality avoids the need to explicitly specify dependencies
between tasks.

EnTK supports an explicit definition of pre and post
conditions on the execution of tasks, enabling fine-grained
adaptivity.”” Adaptivity allows modifications to the number,
type, and order of tasks to be executed during runtime, based
on intermediate results. Specifically, EnTK supports three
types of adaptivity: (i) adaptivity in the number of tasks; (ii)
adaptivity in the order of tasks; and (iii) adaptivity in the
properties of a task.

EnTK provides a simple programming model, abstracts the
complexities of resource and execution management, and adds
only a small and well-bounded overhead on the execution
0(1000) tasks.”” EnTK uses a runtime system, such as
RADICAL-Pilot, to acquire the resources needed, manage task
execution, as well as provide portability across heterogeneous
HPC resources.

2.3.3. RADICAL-Pilot. Two methods traditionally used to
execute multiple HPC tasks are: (i) each task is scheduled as
an individual job or (ii) use message—passing interface (MPI)
capabilities to execute multiple tasks as part of a single job. The
former method requires each task to be independently
executed; the latter method is suboptimal for heterogeneous
or adaptive execution of tasks. The pilot abstraction®
addresses some of these limitations. The pilot abstraction:
(i) uses a placeholder job without any tasks assigned to it, to
acquire resources; and (ii) decouples the initial resource
acquisition from task-to-resource assignment. Once the pilot is
scheduled, tasks are scheduled within its spatiotemporal
resource boundaries, which allow computational tasks to be

https://dx.doi.org/10.1021/acs.jctc.0c00991
J. Chem. Theory Comput. 2020, 16, 7915-7925

https://pubs.acs.org/doi/10.1021/acs.jctc.0c00991?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00991?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00991?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00991?fig=fig4&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://dx.doi.org/10.1021/acs.jctc.0c00991?ref=pdf

Journal of Chemical Theory and Computation

pubs.acs.org/JCTC

executed directly without being queued. The pilot abstraction
thus supports the requirements of high-throughput and task-
level parallelism while providing flexible execution of tasks.
RADICAL-Pilot®” is an implementation of the pilot
abstraction, engineered to support scalable and efficient
launching of heterogeneous tasks across different platforms.

2.3.4. Scaling. ExTASY provides the seamless capability to
execute thousands of MD tasks on HPC and provides
capabilities to support their interaction. EXTASY does not
require modifications to the MD executables, and thus the
performance of every MD executable remains unchanged.
Adaptive sampling on HPC platforms presents several
performance challenges;é2 however, a careful analysis of scaling
properties is critical. The use of EXTASY for complex workflow
management, task execution, and coordination introduces
some overhead. The exact overhead (€2) depends on scale and
can be measured as a function of either the number of tasks
executed or the number of nodes employed. We use efficiency
to measure and quantify the scalability of EXTASY. Efficiency is
defined as: 1 — /M hours, where M hours is the total runtime
of the scaling workload. We obtained the scaling data by
running additional simulations, using different numbers of
GPUs, each of them for the time of M = 2 h. These simulations
did not run until the folding of the proteins, but only for a
limited time to assess the scaling capability of ExXTASY. The
timing data was analyzed with RADICAL-Analytics. The
overhead numbers reported are the aggregated overhead of
individual RADICAL-Cybertool (EnTK and RADICAL-Pilot)
overhead, as well as the “thin” ExTASY layer. The primary
contribution to the overhead arises from the task coordination,
placement, and execution—functionality provided by RADI-
CAL-Cybertools.

The efficiency is plotted in Figure 5. For every run, all GPUs
but one are set to run molecular dynamics tasks; 1 GPU is

100 Fg=gm==gm========--=-=-=—-——————-

801

601

efficiency [%]

40

20+

1000 1500 2000

GPUs

500

Figure S. Scaling of ExTASY efficiency on Summit. Efficiency was
measured by running on all but one of the GPU molecular dynamics
tasks and on 1 GPU an analysis task, with 6 GPUs per node and a
total length of Summit jobs of 2 h. The asynchronous, concurrent
execution of the individual molecular dynamics and analysis tasks
improves the efficiency of ExTASY compared to the previous
version.””

assigned to run analysis tasks. Overheads increase modestly as
the number of GPUs (nodes) employed increases, which as
shown in Figure 5, resulting in an efficiency that is >90% at
~2000 GPUs on Summit. This efficiency is: (i) agnostic of
specific task executables (e.g,, Gromacs, AMBER, OpenMM,
etc.), (i) not affected by the scalability of the individual tasks

or their runtime duration, and (iii) dependent upon

7919

RADICAL-Cybertool overheads, which are essentially invari-
ant across different HPC platforms.**

2.4. Reference Data. To show the speed up and accuracy
of the adaptive sampling method, we projected the results of
the four small proteins on to preexisting long MD simulations,
obtained on the Anton supercomputer.”® These proteins and
the reference data were investigated before,**” allowing us to
demonstrate here the usefulness and reliability of the EXTASY
workflow. The four proteins are summarized in Table 1; their

Table 1. Adaptively Sampled Proteins in This Study

folding time unfolding time
protein ~ PDB ID residues (,us%()5 (ﬂs%
chignolin SAWL 10 0.6 22
villin 2F4K 35 2.8 0.9
BBA 1FME 28 18 S
A3D 2A3D 73 27 31

sizes are from 10 to 73 residues and have a short folding time
below 40 us. These proteins were chosen due to their folding
time, which is long enough to show the advantages of adaptive
sampling with the ExXTASY framework, but still reachable with
our computational resources. Only the C-a coordinates are
used when comparing the reference data trajectories with the
results from the ExTASY framework in this work. Since
parallelization strongly affects the time to fold, we compare the
results of adaptive sampling with the results of plain MD with
the same number of parallel simulations, starting from the
same starting configuration. Both adaptive sampling and plain
MD were executed with the EXTASY platform.

2.5. Molecular Dynamics Simulation. The MD simu-
lations in this work were performed with OpenMM 7.5%° using
CUDA 9.1 on the Summit supercomputer. To reproduce the
same setup as in ref 65 we used the CHARMM?22*force field*’
and the modified TIP3P water. The stepsize used was S or 2 fs
in case of protein A3D, and the trajectories were strided to
reduce the data volume. Differently from ref 65, we used the
particle mesh Ewald method for long-range electrostatics due
to OpenMM settings. For each protein, the start configuration
is one frame in the reference data set selected randomly from
the 20% of frames with the highest root-mean-square deviation
(RMSD) from the protein crystal structure. A short energy
equilibration (1—2 ns) was then performed in the NPT
ensemble to create initial coordinates for the workflows. No
further a priori information was given to the ExTASY
framework except the unfolded start conformations.

In each iteration, 50 OpenMM trajectories were simulated
on 50 GPUs on Summit with 1 GPU per trajectory. The length
of each trajectory was S0 ns for chignolin and villin, 10 ns for
BBA, and 40 ns for A3D. EXTASY scales up to 1000s of GPUs,
so it can be used to simulate even larger proteins or a larger
number of parallel walkers. Steps 2 and 4 were performed on 1
GPU on Summit utilizing the same job as the MD simulations.
After all of the simulations are finished, the folding times,
speed up, and the accuracy of protein dynamics were
determined by comparing with the Anton MD simulations
starting from the selected start conformation. We illustrate the
abilities of adaptive sampling and the ExTASY framework by
comparing the results with what obtained with plain MD (i.e.,
without adaptive sampling) for the four proteins. The variation
of the time to fold for both adag)tive sampling and plain
molecular dynamics can reach 50%, > caused by stochasticity.

https://dx.doi.org/10.1021/acs.jctc.0c00991
J. Chem. Theory Comput. 2020, 16, 7915-7925

https://pubs.acs.org/doi/10.1021/acs.jctc.0c00991?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00991?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00991?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00991?fig=fig5&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://dx.doi.org/10.1021/acs.jctc.0c00991?ref=pdf

Journal of Chemical Theory and Computation pubs.acs.org/JCTC
(A)s (C)e
9.0 81 - 9.0
71 £

21 7.5 | ’ 7.5
5 : 3 5
X 5 N ; <
. 6.0 - d 8 6.0
<1 5 S 3/ folded “ o
E 455 = ' 455
[] 21 4 0]
Q 1 (9]
o 3.0& 1 5 SRR | 5 3.0&

1.5 o1) 1.5

. 1 & .

1 0.0 21 , , = 0.0

2 -1 0 1
TICA O
(D)e
9.0 81 - 9.0
71 " NG

AR 7.5

7.5] BT .
= 6 tfi”» -7 =
< 54 % e ~
6.0 % - al A 6.0 %
4.5 g S 3 4.5 2
Ce Ll folded Ce
(9} ()
3.0 14 3.0E

,0:{:}90-,» Do
15 2 : IR 15
5 | : : : , 0.0 21 0.0
10 1 2 3 4 5 -1 0 1
TICA O TICA O

Figure 6. Exploration of the protein energy landscape in TICA coordinates. The color background shows the explored free energy landscape by the
reference data set. The black diagonal lines on top show the explored conformations by the adaptive sampling in this work. The overlap of the
explored landscapes in the region between the initial unfolded configurations and the folded states shows that the folding landscape of all four
proteins was well explored. The labels show the location of the folded states. The stars show the initial unfolded states. Individual proteins: (A)

chignolin, (B) villin, (C) BBA, and (D) A3D.

3. RESULTS AND DISCUSSION

To analyze the efficiency of adaptive sampling, we considered
several measures. To show the completeness of the
exploration, we measured the fraction of the explored
population and considered the overlap of the explored areas
with the reference data set. This also allows us to estimate the
speed up time to solution compared to the reference method.
To analyze the accuracy of the simulated protein dynamics, we
compare the relative entropy of the MSM transition matrices,
and the mean first passage time (MFPT) to the folded state, as
detailed below.

3.1. Comparison of Exploration. The whole explored
energy landscape of the protein cannot be visualized due to the
high dimensionality of the raw trajectories, but the explored
landscape in the reduced TICA coordinates is shown in Figure
6. The colored background shows the explored free energy
landscape of the reference data set, and the shaded foreground
shows the region of this landscape explored by the adaptive
sampling. The regions of the energy landscapes between the
initial unfolded configurations and the folded states of the
proteins chignolin, villin, BBA, and A3D were well explored by
ExTASY. As we are employing an adaptive sampling strategy
optimized for folding, we do not expect the simulations to
significantly explore the misfolded regions of the free energy
landscapes. The additional small differences in overlap could
be caused by the differences in the long-range electrostatics

7920

setup and the stochastic nature of the exploration. The case of
protein A3D shows that for larger protein the computational
resources to fully explore the energy landscape rise
significantly. Our computational resources allowed us to fold
A3D with adaptive sampling, but not with plain molecular
dynamics. The plain molecular dynamics simulation did not
fold even when simulating about 7 times longer than the time
to fold with adaptive sampling. To show that adaptive sampling
works with different adaptive sampling strategies, we folded
chignolin and A3D with the cmacro adaptive sampling strategy,
while the cmicro adaptive sampling strategy was used to fold
villin and BBA.

To show how effectively the whole protein landscape is
explored, we use the fraction of the total population explored
as a function of time. Here, we select all of the states which are
explored at a certain time and compare with all possible states
(as obtained from the reference simulations). To represent the
importance of different states, we weight the explored states
with their stationary weight. The population of each microstate
is calculated as the stationary weight of that microstate from
the MSM analysis of the reference data set. Figure 7 reports
the comparison of the explored populations as a function of
time for the reference data set and the EXTASY results. For all
four proteins, adaptive sampling explores the protein energy
landscape slightly faster and folds significantly faster. The
folding speed up of adaptive sampling compared to plain MD
is 170% for chignolin, 20% for villin, 380% for BBA, and more

https://dx.doi.org/10.1021/acs.jctc.0c00991
J. Chem. Theory Comput. 2020, 16, 7915-7925

https://pubs.acs.org/doi/10.1021/acs.jctc.0c00991?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00991?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00991?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00991?fig=fig6&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://dx.doi.org/10.1021/acs.jctc.0c00991?ref=pdf

Journal of Chemical Theory and Computation

pubs.acs.org/JCTC

(A) 100
—— plain MD
—— adaptive
§ 801
C
.0
© 601
3
o
[o]
o
g 401
o
o
x
o 201 //
01— r r r
1073 1072 1071t 100
absolute simulation time [ps]
(B) 100
—— plain MD
—— adaptive
03 80+
C
o 1
& 60 {
3
(o}
o
o
@ 40+
o
S
x
o 20
102 10-1 10° 10!

absolute simulation time [us]

(C) 100
—— plain MD
—— adaptive
§ 80+
C
o
® 601 7
>
Q.
o
o
@ 40
o
a
x
O 20
0
1073 1072 10t 10°
absolute simulation time [ps]
(D) 100
—— plain MD
—— adaptive
§ 80+
C
o
£ 601 %—
3
[oR
o
o
g 40
o
a
x
v 20+
0 T . .
1072 107t 10°

absolute simulation time [us]

Figure 7. Population of explored states evolving with absolute simulation time. Around 1 order of magnitude shorter time to a solution can be
reached with adaptive sampling compared to plain MD simulations. For chignolin and A3D, the cmacro adaptive sampling strategy was used; for
villin and BBA, the cmicro adaptive sampling strategy was used. Both adaptive sampling strategies are described in Section 2.2. The vertical lines
indicate folding events. Individual proteins: (A) chignolin, (B) villin, (C) BBA, and (D) A3D. The plain molecular dynamics simulation of A3D has
not folded despite simulating about 7 times longer than necessary for folding with adaptive sampling. Additional computational resources would

allow to fold protein A3D with plain molecular dynamics too.

than 690% for A3D. The larger speed up for A3D is in line
with the prediction that for larger and more complex proteins,
adaptive sampling achieves a larger speed up.~ The exact
speed up for the protein A3D could not be determined as we
did not observe any folding event with plain MD.

The x-axis in Figures 7—9 reports the absolute simulation
time to show the improvement of time to solution with
ExTASY. The absolute simulation time is the length of one
trajectory in step 1 times the number of iterations. When all of
the trajectories in step 1 are run in parallel, the absolute
simulation time shows the time to solution independent of the
used hardware. The effects of parallelization on the time to
solution for adaptive sampling were explored in previous
work,'” generally parallelization decreases the time to solution.

3.2. Comparison of Protein Dynamics. To track the
convergence of protein dynamics in the adaptive sampling
workflow, one can use the relative entropy’ between the MSM
transition matrix of the reference data, Pj and the MSM
transition matrix of the analyzed data, Q;. A relative entropy
can be calculated between each microstate in the analyzed and
the reference transition probabilities from this state. By
averaging the relative entropy for each state weighted by the
stationary probability over all microstates, we obtain the
relative entropy between the two transition matrices. The
relative entropy D(P||Q) is then given by

7921

D(PIQ) =).

ij

5
sP; In

(1)

where s; is the equilibrium probability of state i. The transition
matrices P; and Q; are obtained using exactly the same
dimension reduction and same clustering. As zero counts in
the transition matrices can cause divergence of the relative
entropy, a pseudocount of 1/N (where N is the length of the
simulation) is added to each element of the count matrices
before normalizing the rows to get the transition matrices.’
The relative entropy for a certain simulation time is obtained
from all of the trajectories up to the specified simulation time.
By definition, the relative entropy of the full reference
trajectory is zero. Figure 8 shows how the relative entropy
decreases with increasing simulation time for both the adaptive
sampling and plain MD simulations. The adaptive sampling
strategy decreases the relative entropy faster at the beginning,
later in the simulation plain MD decreases the relative entropy
faster. While the sample size is small, this confirms that the
chosen sampling strategy is effective at exploring the protein
landscape but not optimized in the later steps of converging
protein kinetics.'> Different adaptive sampling strategies which
are optimized for converging the kinetics could improve the

i

https://dx.doi.org/10.1021/acs.jctc.0c00991
J. Chem. Theory Comput. 2020, 16, 7915-7925

https://pubs.acs.org/doi/10.1021/acs.jctc.0c00991?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00991?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00991?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00991?fig=fig7&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://dx.doi.org/10.1021/acs.jctc.0c00991?ref=pdf

Journal of Chemical Theory and Computation

pubs.acs.org/JCTC

—— plain MD
—— adaptive

NN W W
o U o
: 1 : 1

relative entropy [J/K]
[
5]

=
o
:

o
wn
1

0.0 —— .
107! 10°
absolute simulation time [us]

Figure 8. Relative entropy between the MSM transition matrices
generated during the ExTASY exploration and from the plain MD
comparison run. Results for protein villin. The relative entropy
decreases with an increasing number of adaptive sampling iterations.

behavior of adaptive sampling toward the end of the
simulation.

An additional measure to compare the convergence of the
kinetic behavior of the proteins is the mean first passage time
(MFPT). MFPT measures the mean time to reach for the first

time another state from one state. Here, the two states are the
folded and unfolded states, both defined as an ensemble of
MSM microstates based on the position in the TICA
coordinates’ space. Figure 9 shows how the MFPT from the
folded to the unfolded state converges as a function of
simulation time, for both the adaptive sampling and the plain
MD simulations. The reference MFPT obtained from the
Anton trajectories shows that the results of both plain MD and
adaptive sampling converge to the same order of magnitude of
the reference value. Adaptive sampling shows larger errors in
the case of chignolin, but a smaller error in the case of villin
and BBA compared to plain MD. The small sample size
prevents us to conclude if plain MD or adaptive sampling
converges faster for chignolin, villin, and BBA proteins. For
protein A3D, the convergence of MFPT could not be
compared since the plain MD simulation did not produce
folding events, while the adaptive sampling simulation
converged to a MFPT value close to the reference value.
The adaptive sampling strategies used in this work are not
optimized for convergence of kinetics. The convergence of
MFPT shows that, not surprisingly, the amount of sampling
required to reach accurate kinetic values is longer than the
sampling required to fold a protein. Kinetic values from both
plain MD and adaptive sampling have relatively large

()

—— plain MD
s —— adaptive
10° A
i
=
£ 10t
[T
=
=
5 1071
g
[
=}
1073<
107> T T
1071 10°
absolute simulation time [us]
(B) 10°
—— plain MD
R —— adaptive
10° A
i
=
E 101< \\\\\\\\b————-_~_————s—___——~_\‘\
L
= beeeeee- B ettt
g
5 10714
g
c
=}
10—3<
1073

10°
absolute simulation time [us]

(©)

103<

—— plain MD
—— adaptive

101 - i

10—1<

unfolding MFPT [ps]

1073<

1073

100
absolute simulation time [us]

(D)

—— plain MD
—— adaptive

103<

101<

10—1<

unfolding MFPT [us]

10—3<

107>

6x 1071 100 2 x 10°
absolute simulation time [us]

Figure 9. MEPT from folded to unfolded states evolving as more data is available after more adaptive sampling iterations. The red line corresponds
to the adaptive sampling results, and the blue line corresponds to plain MD with the same parallelization as adaptive sampling. The black dashed
line shows the reference values from the Anton simulation trajectories.65 Individual proteins: (A) chignolin, (B) villin, (C) BBA, (D) A3D. The
MFPT for A3D is available only for adaptive sampling since the plain molecular dynamics simulation did not produce any folding event, even while

simulating for about 7 times longer with adaptive sampling.

https://dx.doi.org/10.1021/acs.jctc.0c00991
J. Chem. Theory Comput. 2020, 16, 7915-7925

https://pubs.acs.org/doi/10.1021/acs.jctc.0c00991?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00991?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00991?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00991?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00991?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00991?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00991?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00991?fig=fig9&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://dx.doi.org/10.1021/acs.jctc.0c00991?ref=pdf

Journal of Chemical Theory and Computation

pubs.acs.org/JCTC

uncertainties. The sizes of the MFPT errors are similar to what
was obtained with the HTMD framework.”

4. CONCLUSIONS

We have shown that the EXTASY framework”” can effectively
perform adaptive sampling, as exemplified by simulations on
four proteins using deep learning in the analysis step. The free
energy landscape of the four proteins was fully sampled. In
comparison to a plain molecular dynamics simulation with the
same parallelization, a statistically significant speed up in the
range of 20—690% could be observed. For the largest of the
protein studied, A3D, folding could be achieved with adaptive
sampling but not with plain MD. The obtained speed ups are
in line with predictions'” corresponding to the size of the
proteins studied. The MFPT times converged for both
adaptive sampling and plain MD to values similar to the
reference values. For protein BBA, the adaptive sampling
converges the MFPT significantly faster than plain MD, but
proteins chignolin and villin show a slower convergence. The
sample size in this paper was limited by computational
resources. Additional adaptive sampling strategies optimized in
recovering the kinetics would improve the results of adaptive
sampling for MFPT convergence. The relative entropy
between the transition matrix of the MSM computed during
the adaptive sampling and the MSM of the plain MD decreases
steadily with the simulation time; the adaptive sampling
decreases here faster than plain MD at the beginning of the
simulation. The differences in speed of convergence are caused
by the choice of adaptive sampling strategy, which are validated
for the exploration of protein energy landscapes, but not
optimized to reach accurate protein kinetics. The modularity of
the ExTASY framework reduces the time spent by domain
experts in executing adaptive sampling in a scalable fashion on
diverse platforms. Scalability up to 2000 GPUs and 2000
simultaneous protein replicas was demonstrated on the
Summit supercomputer. This scalability does not come at
the cost of inflexibility, due to the design and implementation
of the EXTASY framework.”” EXTASY can be easily modified
for different proteins or MD simulation software. EXTASY can
also be easily extended to different adaptive sampling strategies
and platforms. The ExTASY framework is available open
source at https://github.com/ClementiGroup/ExTASY. The
flexibility of ExTASY allowed this framework to be the first
open-source adaptive sampling platform that supports an
analysis step based on deep learning or asynchronous
execution.

B ASSOCIATED CONTENT

© Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00991.

ExTASY workflow parameters and more results for the
four proteins (PDF)

B AUTHOR INFORMATION

Corresponding Author
Cecilia Clementi — Center for Theoretical Biological Physics,
Department of Physics & Astronomy, and Department of
Chemistry, Rice University, Houston, Texas 77005, United
States; Department of Physics, Freie Universitit, 14195
Berlin, Germany; © orcid.org/0000-0001-9221-2358;
Email: cecilia.clementi@fu-berlin.de

7923

Authors

Eugen Hruska — Center for Theoretical Biological Physics and
Department of Physics & Astronomy, Rice University,
Houston, Texas 77005, United States

Vivekanandan Balasubramanian — Department of Electrical
and Computer Engineering, Rutgers University, Piscataway,
New Jersey 08854, United States

Hyungro Lee — Department of Electrical and Computer
Engineering, Rutgers University, Piscataway, New Jersey
08854, United States

Shantenu Jha — Department of Electrical and Computer
Engineering, Rutgers University, Piscataway, New Jersey
08854, United States

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jctc.0c00991

Notes
The authors declare no competing financial interest.

B ACKNOWLEDGMENTS

We thank D.E. Shaw Research for the reference data set of
Molecular Dynamics trajectories. We thank Matteo Turilli,
Andre Merzky, and other members of the RADICAL Team
(http://radical.rutgers.edu) for their support with performance
analysis and RADICAL-Cybertools on Summit. We also thank
John Ossyra (Oak Ridge) for useful discussions. This work is
supported in part by the National Science Foundation (CHE-
1265929, CHE-1740990, CHE-1900374, and PHY-1427654 to
C.C.), the Welch Foundation (C-1570 to C.C.). Super-
computing time was provided by Blue Waters (supported by
the National Science Foundation, awards OCI-0725070 and
ACI-1240993) sustained-petascale computing project via NSF
1713749. Additional Supercomputing time was provided on
Summit, which is a DOE Office of Science User Facility
supported under Contract DE-AC05-000R22725.

B REFERENCES

(1) Shirts, M.; Pande, V. S. COMPUTING: Screen Savers of the
World Unite! Science 2000, 290, 1903.

(2) Buch, L; Harvey, M. J; Giorgino, T.; Anderson, D. P,; De
Fabritiis, G. High-Throughput All-Atom Molecular Dynamics
Simulations Using Distributed Computing. J. Chem. Inf. Model.
2010, 50, 397.

(3) Shaw, D. E.; Grossman, J.; Bank, J. A.; Batson, B.; Butts, J. A,
Chao, J. C; Deneroff, M. M,; Dror, R. O.; Even, A.; Fenton, C. H,;
Forte, A.; Gagliardo, J; Gill, G.; Greskamp, B.; Ho, C. R,; Ierardi, D.
J.; Iserovich, L.; Kuskin, J. S.; Larson, R. H.; Layman, T.; Lee, L.-S;
Lerer, A. K; Li, C.; Killebrew, D.; Mackenzie, K. M.; Mok, S. Y.-H.;
Moraes, M. A.; Mueller, R.; Nociolo, L. J.; Peticolas, J. L.; Quan, T.;
Ramot, D.; Salmon, J. K; Scarpazza, D. P.; Schafer, U. B.; Siddique,
N.; Snyder, C. W.; Spengler, J.; Tang, P. T. P.; Theobald, M.; Toma,
H.; Towles, B.; Vitale, B.; Wang, S. C.; Young, C. In Anton 2: Raising
the Bar for Performance and Programmability in a Special-Purpose
Molecular Dynamics Supercomputer, SC14: International Conference
for High Performance Computing, Networking, Storage and Analysis,
2014.

(4) Singhal, N.; Pande, V. S. Error analysis and efficient sampling in
Markovian state models for molecular dynamics. J. Chem. Phys. 2005,
123, No. 204909.

(5) Bowman, G. R; Ensign, D. L.; Pande, V. S. Enhanced modeling
via network theory: adaptive sampling of Markov state models. J.
Chem. Theory Comput. 2010, 6, 787—794.

(6) Weber, J. K.; Pande, V. S. Characterization and rapid sampling of
protein folding Markov state model topologies. J. Chem. Theory
Comput. 2011, 7, 3405—3411.

https://dx.doi.org/10.1021/acs.jctc.0c00991
J. Chem. Theory Comput. 2020, 16, 7915-7925

https://github.com/ClementiGroup/ExTASY
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00991?goto=supporting-info
http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.0c00991/suppl_file/ct0c00991_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Cecilia+Clementi"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0001-9221-2358
mailto:cecilia.clementi@fu-berlin.de
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Eugen+Hruska"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Vivekanandan+Balasubramanian"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Hyungro+Lee"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Shantenu+Jha"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00991?ref=pdf
http://radical.rutgers.edu
https://dx.doi.org/10.1126/science.290.5498.1903
https://dx.doi.org/10.1126/science.290.5498.1903
https://dx.doi.org/10.1021/ci900455r
https://dx.doi.org/10.1021/ci900455r
https://dx.doi.org/10.1063/1.2116947
https://dx.doi.org/10.1063/1.2116947
https://dx.doi.org/10.1021/ct900620b
https://dx.doi.org/10.1021/ct900620b
https://dx.doi.org/10.1021/ct2004484
https://dx.doi.org/10.1021/ct2004484
pubs.acs.org/JCTC?ref=pdf
https://dx.doi.org/10.1021/acs.jctc.0c00991?ref=pdf

Journal of Chemical Theory and Computation

pubs.acs.org/JCTC

(7) Doerr, S.; De Fabritiis, G. On-the-Fly Learning and Sampling of
Ligand Binding by High-Throughput Molecular Simulations. J. Chem.
Theory Comput. 2014, 10, 2064—2069.

(8) Preto, J.; Clementi, C. Fast recovery of free energy landscapes via
diffusion-map-directed molecular dynamics. Phys. Chem. Chem. Phys.
2014, 16, 19181—19191.

(9) Doerr, S.; Harvey, M.; Noé, F.; De Fabritiis, G. HTMD: high-
throughput molecular dynamics for molecular discovery. J. Chem.
Theory Comput. 2016, 12, 1845—1852.

(10) Lecina, D.; Gilabert, J. F.; Guallar, V. Adaptive simulations,
towards interactive protein-ligand modeling. Sci. Rep. 2017, 7,
No. 8466.

(11) Dickson, A.; Brooks, C. L. WExplore: Hierarchical Exploration
of High-Dimensional Spaces Using the Weighted Ensemble
Algorithm. J. Phys. Chem. B 2014, 118, 3532—3542.

(12) Hruska, E.; Abella, J. R; Niiske, F.; Kavraki, L. E.; Clementi, C.
Quantitative comparison of adaptive sampling methods for protein
dynamics. J. Chem. Phys. 2018, 149, No. 244119.

(13) Guo, A. Z.; Sevgen, E.; Sidky, H.; Whitmer, J. K.; Hubbell, J. A.;
de Pablo, J. J. Adaptive enhanced sampling by force-biasing using
neural networks. J. Chem. Phys. 2018, 148, No. 134108.

(14) Zimmerman, M. L; Porter, J. R.; Sun, X; Silva, R. R.; Bowman,
G. R. Choice of Adaptive Sampling Strategy Impacts State Discovery,
Transition Probabilities, and the Apparent Mechanism of Conforma-
tional Changes. J. Chem. Theory Comput. 2018, 14, 5459—5475.

(15) Shkurti, A.; Styliari, L. D.; Balasubramanian, V.; Bethune, L;
Pedebos, C.; Jha, S.; Laughton, C. A. CoCo-MD: A Simple and
Effective Method for the Enhanced Sampling of Conformational
Space. J. Chem. Theory Comput. 2019, 15, 2587—2596.

(16) Harada, R; Kitao, A. Nontargeted Parallel Cascade Selection
Molecular Dynamics for Enhancing the Conformational Sampling of
Proteins. J. Chem. Theory Comput. 2015, 11, 5493—5502.

(17) Harada, R.; Shigeta, Y. Efficient Conformational Search Based
on Structural Dissimilarity Sampling: Applications for Reproducing
Structural Transitions of Proteins. J. Chem. Theory Comput. 2017, 13,
1411-1423.

(18) Shamsi, Z.; Moffett, A. S.; Shukla, D. Enhanced unbiased
sampling of protein dynamics using evolutionary coupling informa-
tion. Sci. Rep. 2017, 7, No. 12700.

(19) Zimmerman, M. I; Bowman, G. R. FAST Conformational
Searches by Balancing Exploration/Exploitation Trade-Offs. J. Chem.
Theory Comput. 2018, 11, 5747—5757.

(20) Trendelkamp-Schroer, B.; Noé, F. Efficient Estimation of Rare-
Event Kinetics. Phys. Rev. X 2016, 6, No. 011009.

(21) Plattner, N.; Doerr, S.; De Fabritiis, G.; Noé, F. Complete
protein-protein association kinetics in atomic detail revealed by
molecular dynamics simulations and Markov modelling. Nat. Chem.
2017, 9, 1005.

(22) Sidky, H.; Colén, Y. J.; Helfferich, J.; Sikora, B. J.; Bezik, C.;
Chu, W,; Giberti, F.; Guo, A. Z.; Jiang, X.; Lequieu, J.; Li, J.; Moller,
J.; Quevillon, M. J.; Rahimi, M.; Ramezani-Dakhel, H.; Rathee, V. S.;
Reid, D. R.; Sevgen, E.; Thapar, V.; Webb, M. A.; Whitmer, J. K; de
Pablo, J. J. SSAGES: Software Suite for Advanced General Ensemble
Simulations. J. Chem. Phys. 2018, 148, No. 044104.

(23) Lee, H.; Turilli, M.; Jha, S.; Bhowmik, D.; Ma, H.; Ramanathan,
A. In DeepDriveMD: Deep-Learning Driven Adaptive Molecular
Simulations for Protein Folding, 3rd IEEE/ACM Workshop on Deep
Learning on Supercomputers, DLS 2019, 2019; pp 12—19.

(24) Jung, H.; Covino, R.;; Hummer, G. Artificial Intelligence Assists
Discovery of Reaction Coordinates and Mechanisms from Molecular
Dynamics Simulations. 2019, arxiv.org/abs/1901.04595. arXiv.org e-
Print archive. https://arxiv.org/abs/1901.04595.

(25) Ribeiro, J. M. L.; Bravo, P.; Wang, Y.; Tiwary, P. Reweighted
Autoencoded Variational Bayes for Enhanced Sampling (RAVE). J.
Chem. Phys. 2018, 149, No. 072301.

(26) Bonati, L.; Zhang, Y.-Y.; Parrinello, M. Neural Networks-Based
Variationally Enhanced Sampling. Proc. Natl. Acad. Sci. U.S.A. 2019,
116, 17641—17647.

7924

(27) Balasubramanian, V.; Bethune, I; Shkurti, A.; Breitmoser, E.;
Hruska, E.; Clementi, C.; Laughton, C.; Jha, S. In ExTASY: Scalable
and Flexible Coupling of MD Simulations and Advanced Sampling
Techniques, Proceedings of the 2016 IEEE 12th International
Conference on e-Science, 2016; pp 361—370.

(28) Prinz, J.-H.; Wu, H,; Sarich, M.; Keller, B.; Senne, M.; Held,
M.,; Chodera, J. D.; Schiitte, C.; Nog, F. Markov models of molecular
kinetics: Generation and validation. J. Chem. Phys. 2011, 134,
No. 174108S.

(29) Husic, B. E; Pande, V. S. Markov State Models: From an Art to
a Science. J. Am. Chem. Soc. 2018, 140, 2386—2396.

(30) Bowman, G. R; Pande, V,; Nog, F., Eds. An Introduction to
Markov State Models and Their Application to Long Timescale Molecular
Simulation; Advances in Experimental Medicine and Biology;
Springer, 2014; Vol. 797.

(31) Buchete, N.-V.,; Hummer, G. Coarse Master Equations for
Peptide Folding Dynamics. J. Phys. Chem. B 2008, 112, 6057—6069.

(32) Schiitte, C.; Fischer, A.; Huisinga, W.; Deuflhard, P. A Direct
Approach to Conformational Dynamics Based on Hybrid Monte
Carlo. J. Comput. Phys. 1999, 151, 146—168.

(33) Coifman, R. R;; Lafon, S.; Lee, A. B.; Maggioni, M.; Nadler, B.;
Warner, F.; Zucker, S. W. Geometric diffusions as a tool for harmonic
analysis and structure definition of data: Diffusion maps. Proc. Natl.
Acad. Sci. US.A. 2008, 102, 7426—7431.

(34) Rohrdanz, M. A; Zheng, W.; Maggioni, M.; Clementi, C.
Determination of reaction coordinates via locally scaled diffusion
map. J. Chem. Phys. 2011, 134, No. 124116.

(35) Zheng, W.; Qj, B.; Rohrdanz, M. A,; Caflisch, A.; Dinner, A. R;
Clementi, C. Delineation of Folding Pathways of a p-Sheet
Miniprotein. J. Phys. Chem. B 2011, 115, 13065—13074.

(36) Boninsegna, L.; Gobbo, G.; No§, F.; Clementi, C. Investigating
Molecular Kinetics by Variationally Optimized Diffusion Maps. J.
Chem. Theory Comput. 2018, 11, 5947—5960.

(37) Peters, B,; Trout, B. L. Obtaining reaction coordinates by
likelihood maximization. J. Chem. Phys. 2006, 125, No. 054108.

(38) Krivov, S. V.; Karplus, M. Diffusive reaction dynamics on
invariant free energy profiles. Proc. Natl. Acad. Sci. U.S.A. 2008, 105,
13841—13846.

(39) Mardt, A.; Pasquali, L.; Wu, H.; Noé, F. VAMPnets for deep
learning of molecular kinetics. Nat. Commun. 2018, 9, No. 5.

(40) Wehmeyer, C; Noé, F. Time-lagged autoencoders: Deep
learning of slow collective variables for molecular kinetics. J. Chem.
Phys. 2018, 148, No. 241703.

(41) Ribeiro, J. M. L.; Bravo, P.; Wang, Y.; Tiwary, P. Reweighted
Autoencoded Variational Bayes for Enhanced Sampling (RAVE). J.
Chem. Phys. 2018, 149, No. 072301.

(42) Pérez-Hernandez, G.; Paul, F.; Giorgino, T.; De Fabritiis, G.;
Nog¢, F. Identification of slow molecular order parameters for Markov
model construction. J. Chem. Phys. 2013, 139, No. 015102.

(43) Schwantes, C. R.; Pande, V. S. Improvements in Markov state
model construction reveal many non-native interactions in the folding
of NTL9. J. Chem. Theory Comput. 2013, 9, 2000—2009.

(44) Koopman, B. O. Hamiltonian systems and transformation in
Hilbert space. Proc. Natl. Acad. Sci. U.S.A. 1931, 17, 315—318.

(45) Williams, M. O.; Rowley, C. W.; Kevrekidis, . G. A kernel-
based method for data-driven Koopman spectral analysis. J. Comput.
Phys. 2015, 2, 247—265.

(46) Williams, M. O.; Kevrekidis, . G.; Rowley, C. W. A data—
driven approximation of the koopman operator: Extending dynamic
mode decomposition. J. Nonlinear Sci. 2018, 25, 1307—1346.

(47) Li, Q.; Dietrich, F.; Bollt, E. M.; Kevrekidis, I. G. Extended
dynamic mode decomposition with dictionary learning: A data-driven
adaptive spectral decomposition of the Koopman operator. Chaos
2017, 27, No. 103111.

(48) Wu, H,; Niiske, F.; Paul, F; Klus, S,; Koltai, P.; Noé, F.
Variational Koopman models: slow collective variables and molecular
kinetics from short off-equilibrium simulations. J. Chem. Phys. 2017,
146, No. 154104.

https://dx.doi.org/10.1021/acs.jctc.0c00991
J. Chem. Theory Comput. 2020, 16, 7915-7925

https://dx.doi.org/10.1021/ct400919u
https://dx.doi.org/10.1021/ct400919u
https://dx.doi.org/10.1039/C3CP54520B
https://dx.doi.org/10.1039/C3CP54520B
https://dx.doi.org/10.1021/acs.jctc.6b00049
https://dx.doi.org/10.1021/acs.jctc.6b00049
https://dx.doi.org/10.1038/s41598-017-08445-5
https://dx.doi.org/10.1038/s41598-017-08445-5
https://dx.doi.org/10.1021/jp411479c
https://dx.doi.org/10.1021/jp411479c
https://dx.doi.org/10.1021/jp411479c
https://dx.doi.org/10.1063/1.5053582
https://dx.doi.org/10.1063/1.5053582
https://dx.doi.org/10.1063/1.5020733
https://dx.doi.org/10.1063/1.5020733
https://dx.doi.org/10.1021/acs.jctc.8b00500
https://dx.doi.org/10.1021/acs.jctc.8b00500
https://dx.doi.org/10.1021/acs.jctc.8b00500
https://dx.doi.org/10.1021/acs.jctc.8b00657
https://dx.doi.org/10.1021/acs.jctc.8b00657
https://dx.doi.org/10.1021/acs.jctc.8b00657
https://dx.doi.org/10.1021/acs.jctc.5b00723
https://dx.doi.org/10.1021/acs.jctc.5b00723
https://dx.doi.org/10.1021/acs.jctc.5b00723
https://dx.doi.org/10.1021/acs.jctc.6b01112
https://dx.doi.org/10.1021/acs.jctc.6b01112
https://dx.doi.org/10.1021/acs.jctc.6b01112
https://dx.doi.org/10.1038/s41598-017-12874-7
https://dx.doi.org/10.1038/s41598-017-12874-7
https://dx.doi.org/10.1038/s41598-017-12874-7
https://dx.doi.org/10.1021/acs.jctc.5b00737
https://dx.doi.org/10.1021/acs.jctc.5b00737
https://dx.doi.org/10.1103/PhysRevX.6.011009
https://dx.doi.org/10.1103/PhysRevX.6.011009
https://dx.doi.org/10.1038/nchem.2785
https://dx.doi.org/10.1038/nchem.2785
https://dx.doi.org/10.1038/nchem.2785
https://dx.doi.org/10.1063/1.5008853
https://dx.doi.org/10.1063/1.5008853
https://arxiv.org/abs/1901.04595
https://dx.doi.org/10.1063/1.5025487
https://dx.doi.org/10.1063/1.5025487
https://dx.doi.org/10.1073/pnas.1907975116
https://dx.doi.org/10.1073/pnas.1907975116
https://dx.doi.org/10.1063/1.3565032
https://dx.doi.org/10.1063/1.3565032
https://dx.doi.org/10.1021/jacs.7b12191
https://dx.doi.org/10.1021/jacs.7b12191
https://dx.doi.org/10.1021/jp0761665
https://dx.doi.org/10.1021/jp0761665
https://dx.doi.org/10.1006/jcph.1999.6231
https://dx.doi.org/10.1006/jcph.1999.6231
https://dx.doi.org/10.1006/jcph.1999.6231
https://dx.doi.org/10.1073/pnas.0500334102
https://dx.doi.org/10.1073/pnas.0500334102
https://dx.doi.org/10.1063/1.3569857
https://dx.doi.org/10.1063/1.3569857
https://dx.doi.org/10.1021/jp2076935
https://dx.doi.org/10.1021/jp2076935
https://dx.doi.org/10.1021/acs.jctc.5b00749
https://dx.doi.org/10.1021/acs.jctc.5b00749
https://dx.doi.org/10.1063/1.2234477
https://dx.doi.org/10.1063/1.2234477
https://dx.doi.org/10.1073/pnas.0800228105
https://dx.doi.org/10.1073/pnas.0800228105
https://dx.doi.org/10.1038/s41467-017-02388-1
https://dx.doi.org/10.1038/s41467-017-02388-1
https://dx.doi.org/10.1063/1.5011399
https://dx.doi.org/10.1063/1.5011399
https://dx.doi.org/10.1063/1.5025487
https://dx.doi.org/10.1063/1.5025487
https://dx.doi.org/10.1063/1.4811489
https://dx.doi.org/10.1063/1.4811489
https://dx.doi.org/10.1021/ct300878a
https://dx.doi.org/10.1021/ct300878a
https://dx.doi.org/10.1021/ct300878a
https://dx.doi.org/10.1073/pnas.17.5.315
https://dx.doi.org/10.1073/pnas.17.5.315
https://dx.doi.org/10.3934/jcd.2015005
https://dx.doi.org/10.3934/jcd.2015005
https://dx.doi.org/10.1007/s00332-015-9258-5
https://dx.doi.org/10.1007/s00332-015-9258-5
https://dx.doi.org/10.1007/s00332-015-9258-5
https://dx.doi.org/10.1063/1.4993854
https://dx.doi.org/10.1063/1.4993854
https://dx.doi.org/10.1063/1.4993854
https://dx.doi.org/10.1063/1.4979344
https://dx.doi.org/10.1063/1.4979344
pubs.acs.org/JCTC?ref=pdf
https://dx.doi.org/10.1021/acs.jctc.0c00991?ref=pdf

Journal of Chemical Theory and Computation

pubs.acs.org/JCTC

(49) Niiske, F.; Wu, H.; Prinz, J.-H.; Wehmeyer, C.; Clementi, C.;
Noé, F. Markov state models from short non-equilibrium simulations-
Analysis and correction of estimation bias. J. Chem. Phys. 2017, 146,
No. 094104.

(50) Noé, F.; Clementi, C. Kinetic Distance and Kinetic Maps from
Molecular Dynamics Simulation. J. Chem. Theory Comput. 2015, 11,
5002—-5011.

(51) Nog, F.; Banisch, R.; Clementi, C. Commute maps: separating
slowly mixing molecular configurations for kinetic modeling. J. Chem.
Theory Comput. 2016, 12, 5620—5630.

(52) Chen, W.; Sidky, H.; Ferguson, A. L. Nonlinear Discovery of
Slow Molecular Modes Using State-Free Reversible VAMPnets. J.
Chem. Phys. 2019, 150, No. 214114.

(53) No¢, F.; Niiske, F. A Variational Approach to Modeling Slow
Processes in Stochastic Dynamical Systems. Multiscale Model. Simul.
2013, 11, 635—655.

(54) Niiske, F.; Keller, B. G.; Pérez-Hernandez, G.; Mey, A. S.J. S;
No¢, F. Variational Approach to Molecular Kinetics. J. Chem. Theory
Comput. 2014, 10, 1739—1752.

(55) Scherer, M. K; Trendelkamp-Schroer, B.; Paul, F.; Pérez-
Hernandez, G.; Hoffmann, M; Plattner, N.; Wehmeyer, C.; Prinz, J.-
H.; Nog, F. PyEMMA 2: a software package for estimation, validation,
and analysis of Markov models. J. Chem. Theory Comput. 2015, 11,
5525—5542.

(56) Roblitz, S.; Weber, M. Fuzzy spectral clustering by PCCA+:
application to Markov state models and data classification. Adv. Data
Anal. Classif. 2013, 7, 147—179.

(57) Turilli, M.; Balasubramanian, V.; Merzky, A.; Paraskevakos, L;
Jha, S. Middleware Building Blocks for Workflow Systems. Comput.
Sci. Eng. 2019, 21, 62—75.

(58) Turilli, M.; Merzky, A.; Balasubramanian, V.; Jha, S. In Building
Blocks for Workflow System Middleware, 2018 18th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing
(CCGRID), 2018; pp 348—349.

(59) Balasubramanian, V.; Turilli, M.; Hu, W.; Lefebvre, M.; Lei, W.;
Modrak, R.; Cervone, G.; Tromp, J.; Jha, S. In Harnessing the Power of
Many: Extensible Toolkit for Scalable Ensemble Applications, 2018 IEEE
International Parallel and Distributed Processing Symposium
(IPDPS), 2018; pp 536—548.

(60) Merzky, A.; Turilli, M.; Maldonado, M.; Santcroos, M.; Jha, S.
In Using Pilot Systems to Execute Many Task Workloads on
Supercomputers, Workshop on Job Scheduling Strategies for Parallel
Processing, 2018; pp 61—82.

(61) Balasubramanian, V.; Trekalis, A.;; Weidner, O.; Jha, S. In
Ensemble Toolkit: Scalable and Flexible Execution of Ensembles of Tasks,
Proceedings of the 4Sth International Conference on Parallel
Processing (ICPP), 2016.

(62) Balasubramanian, V.; Jensen, T.; Turill, M.; Kasson, P. M,
Shirts, M. R.; Jha, S. Implementing Adaptive Ensemble Biomolecular
Applications at Scale. SN Comput. Sci. 2020, 1, No. 104.

(63) Turilli, M.; Santcroos, M.; Jha, S. A comprehensive perspective
on pilot-job systems. ACM Comput. Surv. 2018, S1, No. 43.

(64) Turilli, M.; Merzky, A.; Naughton, T.; Elwasif, W.; Jha, S. In
Characterizing the Performance of Executing Many-tasks on Summit, 3rd
IEEE/ACM Annual Workshop on Emerging Parallel and Distributed
Runtime Systems and Middleware, IPDRM 2019, 2019; pp 18-25.

(65) Lindorff-Larsen, K.; Piana, S.; Dror, R. O.; Shaw, D. E. How
fast-folding proteins fold. Science 2011, 334, 517—520.

(66) Beauchamp, K. A; McGibbon, R; Lin, Y.-S,; S. Pande, V.
Simple few-state models reveal hidden complexity in protein folding.
Proc. Natl. Acad. Sci. U.S.A. 2012, 109, 17807—17813.

(67) Husic, B. E.; McGibbon, R. T.; Sultan, M. M.; Pande, V. S.
Optimized parameter selection reveals trends in Markov state models
for protein folding. J. Chem. Phys. 2016, 145, No. 194103.

(68) Eastman, P.; Swails, J.; Chodera, J. D.; McGibbon, R. T.; Zhao,
Y.; Beauchamp, K. A.; Wang, L.-P.; Simmonett, A. C.; Harrigan, M.
P.; Stern, C. D.; Wiewiora, R. P.; Brooks, B. R.; Pande, V. S.
OpenMM 7: Rapid Development of High Performance Algorithms
for Molecular Dynamics. PLoS Comput. Biol. 2017, 13, No. e1005659.

7925

(69) Piana, S.; Lindorff-Larsen, K.; E. Shaw, D. How Robust Are
Protein Folding Simulations with Respect to Force Field. Biophys. J.
2011, 100, L47.

https://dx.doi.org/10.1021/acs.jctc.0c00991
J. Chem. Theory Comput. 2020, 16, 7915-7925

https://dx.doi.org/10.1063/1.4976518
https://dx.doi.org/10.1063/1.4976518
https://dx.doi.org/10.1021/acs.jctc.5b00553
https://dx.doi.org/10.1021/acs.jctc.5b00553
https://dx.doi.org/10.1021/acs.jctc.6b00762
https://dx.doi.org/10.1021/acs.jctc.6b00762
https://dx.doi.org/10.1063/1.5092521
https://dx.doi.org/10.1063/1.5092521
https://dx.doi.org/10.1137/110858616
https://dx.doi.org/10.1137/110858616
https://dx.doi.org/10.1021/ct4009156
https://dx.doi.org/10.1021/acs.jctc.5b00743
https://dx.doi.org/10.1021/acs.jctc.5b00743
https://dx.doi.org/10.1007/s11634-013-0134-6
https://dx.doi.org/10.1007/s11634-013-0134-6
https://dx.doi.org/10.1109/MCSE.2019.2920048
https://dx.doi.org/10.1007/s42979-020-0081-1
https://dx.doi.org/10.1007/s42979-020-0081-1
https://dx.doi.org/10.1145/3177851
https://dx.doi.org/10.1145/3177851
https://dx.doi.org/10.1126/science.1208351
https://dx.doi.org/10.1126/science.1208351
https://dx.doi.org/10.1073/pnas.1201810109
https://dx.doi.org/10.1063/1.4967809
https://dx.doi.org/10.1063/1.4967809
https://dx.doi.org/10.1371/journal.pcbi.1005659
https://dx.doi.org/10.1371/journal.pcbi.1005659
https://dx.doi.org/10.1016/j.bpj.2011.03.051
https://dx.doi.org/10.1016/j.bpj.2011.03.051
pubs.acs.org/JCTC?ref=pdf
https://dx.doi.org/10.1021/acs.jctc.0c00991?ref=pdf

