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Statistics of individual eigenchannels 
of diffusive random medium 
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Abstract: We measure correlations between individual transmission eigenchannels in a unique on-
chip photonic platform that allows both selective coupling of light into a single eigenchannel and 
direct probe of its spatial structure inside the random medium.  
OCIS codes: (030.1670) Coherent optical effects; (290.4210) Multiple scattering; (290.1990) Diffusion 

1. Eigenchannels of scattering media
Transmission eigenchannels (TEs) are building blocks of wave propagation in scattering media and mesoscopic
physics, they “quantize” transport of classical and quantum waves through a system. Such intrinsic eigenchannels and
the corresponding eigenvalues can be found by a singular value decomposition of the transmission matrix relating the
input and output waves, 𝒕 = 𝑼𝚲𝑽 = ∑𝒖𝒏𝝀𝒏𝒗𝒏, where 𝒗𝒏 and 𝒖𝒏 are orthonormal incoming and outgoing singular
vectors, the singular values 𝝀𝒏 are the square root of the transmission eigenvalues 𝝉𝒏. Eigenchannels have been widely
used to interpret such hallmark mesoscopic effects as conductance fluctuations and sub-Poissonian shot noise. Because
it is impossible to prescribe incident wavefunction in the electronic systems, direct experimental demonstration of TEs
is not feasible there. In contrast, analogy between coherent electron transport and photon transport and recent
technological advances in spatial light modulators (SLM) have offered an exciting opportunity to study experimentally
TEs with light, leading to total transmission enhancement, focusing and imaging applications in opaque media. In this
work, we consider a planar waveguide filled with scattering medium [1] we directly probe the eigenchannels inside
the 2D system from the third dimension in order to study their spatial structures and statistical properties as well the
cross-correlations between them.

Figure 1. (a) Scanning electron microscope image of the disordered waveguide. Superimposed are schematic depictions of different transmission 
matrices. (b,c) depict measured intensity distribution of an open eigenchannel and its reconstructed phase. (d) Schematic depiction of the 
experimental setup. 

2. Excitation of individual transmission eigenchannels
In our prior work [2] on controlling wave propagation on-chip with wavefront shaping was based on the feedback
mechanism, which allowed us to maximize or minimize the overall transmission through the system by enhancing or
suppressing contributions of open channels. This method, however, is not suitable for accessing the individual
eigenchannels of the system. We overcame this major experimental obstacle by applying the interferometric
measurement technique on-chip, Fig. 1. By measuring the complex transmission matrices from SLM to a weakly
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scattering region in front of the disordered medium 𝒕𝑺𝑳𝑴→𝒃𝒖𝒇𝒇 and at the end of the sample 𝒕𝑺𝑳𝑴→𝒆𝒏𝒅, we were able to 
reconstruct the field transmission matrix 𝒕𝒃𝒖𝒇𝒇→𝒆𝒏𝒅 = 𝒕𝑺𝑳𝑴→𝒆𝒏𝒅 ∙ 𝒕𝑺𝑳𝑴→𝒃𝒖𝒇𝒇

ퟏ  of the disordered waveguide. Singular 
value decomposition of the matrix gave us information about the input wavefronts for individual TEs. After injecting 
light into a specific channel, we probed its intensity inside the disordered waveguide by collecting the light scattered 
out of plane by the air holes with an objective lens and projecting onto a camera. We recorded the 2D intensity 
distribution at different positions (𝑦, 𝑧) inside the disordered waveguide for each eigenchannel 𝜶 and computed the 
normalized cross-section averaged intensity profiles 𝑰𝜶(𝒛). 

3.  Correlations between transmission eigenchannels 
Although the wavefunctions of TEs are orthogonal to each other in any given system, their intensity fluctuations are 
correlated. To compare with experiment, we developed numerical model (see Refs. [1-4]) and computed intensity of 
TEs under experimental relevant conditions. We specifically focused on intensity correlations between eigenchannels 
as defined by 〈𝐶 (𝑧, 𝑧)〉 ≡ 𝐼 (𝑧)𝐼 (𝑧) − 𝐼 (𝑧) ∙ 𝐼 (𝑧) , where … denotes statistical average and 〈… 〉  is average 
over the longitudinal coordinate. The results of experiment and the simulation reveal that different TEs are correlated 
and the degree of correlation depends on eigenchannel, Fig. 2(a-c). The diagonal elements correspond to the 
fluctuation of intensity of individual eigenchannels, c.f. Fig. 2(d). We find that open eigenchannels have smaller 
fluctuations and are less correlated with other eigenchannels, that is extremely promising from the point of view of 
practical applications. Finally, we compared contributions of the diagonal and off-diagonal terms in 〈𝐶 (𝑧, 𝑧)〉 . 
Remarkably, the overall contribution from the off-diagonal terms is larger than from the diagonal ones. 

 
Figure 2. Correlations between different eigenchannels 〈𝐶 (𝑧, 𝑧)〉  computed based on the transmission matrix 𝑡 and on 𝑡 →  (a,b). Panel 
(c) shows the experimentally measured correlations of TEs. The diagonal elements from (a-c) are compared in (d). 

4. Conclusions 
Compared to electronic systems, robustness of coherence effects for photons at room temperature makes optical 

systems ideal for the in-depth fundamental studies of coherent wave transport. Our work sheds light on the long-
standing questions regarding the nature and statistical properties of individual transmission eigenchannels and the role 
they play in wave transport is complex media. The above results together with our recent discoveries of the transverse 
localization of transmission eigenchannels [3] and enhanced memory effect of high-transmission eigenchannels in a 
diffusive system of open slab geometry provide the first glimpse of a wealth of undiscovered physics in wave transport 
in scattering media. The results obtained in our study of TEs in complex photonic media are also applicable to the 
propagation of other wave, e.g. microwaves and acoustic waves, informing their applications in wireless (microwave) 
and underwater (acoustic) communications. 
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