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ENTIRE SOLUTIONS OF DIFFUSIVE LOTKA-VOLTERRA SYSTEM

KING-YEUNG LAM!, RACHIDI B. SALAKO!, AND QILIANG WU?

ABSTRACT. This work is concerned with the existence of entire solutions of the diffusive Lotka-Volterra
competition system

0.1) {ut = Uzz + u(l —u — av), rz€eR

vt = dvgg + rv(l — v — bu), zeR

where d,r,a, and b are positive constants with a # 1 and b # 1. We prove the existence of some entire
solutions (u(t,z),v(¢t,z)) of (0.1) corresponding to (®.(£),0) at ¢ = —oo (where £ = = — ct and P, is
a traveling wave solution of the scalar Fisher-KPP defined by the first equation of (0.1) when a = 0).
Moreover, we also describe the asymptotic behavior of these entire solutions as t — +o00. We prove existence
of new entire solutions for both the weak and strong competition case. In the weak competition case, we
prove the existence of a class of entire solutions that forms a 4-dimensional manifold.
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1. INTRODUCTION

The Lotka-Voltera competition systems are frequently used to describe the population dynamics of several
competing species in their spatial domain. In this work we consider the following diffusive Lotka-Volterra
competition system of two species in the unbounded domain R:

U = U u(l —u—av),
(1.1) = Usa + ul )

vy = dvgy + (1 — bu — v),

where a, b, d, and r > 0 are positive constants. The solutions u(t,z) and v(t,z) of (1.1) represent respectively
the densities of the two competing species at time ¢ and location x € R. Since densities must be nonnegative,
only nonnegative solutions of (1.1) will be of interest in this paper. It is well known that the asymptotic
dynamics of solutions to (1.1) depends delicately on the choice of the initial distribution (ug(z),vo(x)) and
the range of the parameters a and b. Consider, for instance, the kinetic ODE system of (1.1), that is,
(12) U =U(1-U-aV), for t > 0,

’ Vi=rV(1—-bU -V), for t > 0,

with arbitrary positive initial conditions Uy > 0 and Vj > 0, the following results are well known.
(1) If 0 < a,b < 1, then every solution of (1.2) converges to the positive equilibrium e, := (f_‘(fb, f_‘:b).
(2) If a,b > 1, then the behavior of solution of (1.2) depends on the choice of initial data (ug,vo).
(3) If 0 < a < 1 < b, then every solution of (1.2) converges to e; := (1,0).

(4) If 0 < b < 1 < a, then every solution of (1.2) converges to e; := (0,1).

Since case (4) can be handled similarly to (3), we shall henceforth consider only cases (1) to (3).
Two basic questions concerning the dynamics of (1.1) are the characterization of spreading speeds of

solutions and the existence of nontrivial entire solutions. By an entire solution we mean a classical solution
1
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(u(t,x),v(t,z)) that satisfies (1.1) for (t,z) € R2. Traveling waves solutions, i.e. translational invariant
solutions of the form (u(t, z),v(t,x)) = (¢(x — ct), ¥ (x — ct)) with some appropriate boundary conditions on
(p, 1) at +oo, is an important class of entire solutions.

Recently, Liu et al [24], Carrére [2], and Gerardin and Lam [10] studied spreading speeds of solutions of
the Cauchy problem (1.1) in cases (1), (2), and (3) respectively. Among others, in case (3), Girardin and
Lam [10] showed that “if the weaker competitor is also the faster one, then it is able to evade the stronger
and slower competitor by invading first into unoccupied territories. The pair of speeds depends on the initial
values. If these are null in a right half-line, then the first speed is the KPP speed of the fastest competitor
and the second speed is given by an exact formula depending on the first speed and on the minimal speed of
traveling waves connecting the two semi-extinct equilibria. ” Similar results were also established by Carrere
[2] in case (2), Lam et. al [24] in case (1).

From a dynamical point of view, large time behaviors of solutions have a strong connection with the
existence of entire solutions. It is the aim of this paper to establish the existence of some entire solutions
of (1.1) which, when ¢ — oo, behaves similarly as those solutions to Cauchy problems studied in [2, 10, 24].
In a sense, the entire solutions established in this paper are attractors to which the solutions to the Cauchy
problems studied in [2, 10, 24].

Statement of Main Results. In this subsection we state our main results on the existence of entire
solutions of (1.1). We first recall some known results from related literature.

When a = 0, the system (1.1) is decoupled and its first equation reduces to
(1.3) U = Uge +u(l —u), z€R,

which is referred to as the Fisher-KPP equation [8, 22]. Among important solutions of (1.3) are traveling
wave solutions connecting the constant solutions 1 and 0. In fact, for each ¢ > 2 the equation (1.3) admits
traveling wave solutions u(t,z) = ®.(x — ct) connecting 1 and 0, where ®.(£) denote the unique (up to

translation) solution to

w4 {—ccb’:@“+<1>(1—<1>) £ER,

B(—c0) =1, ®(c0) =0,

and has no such traveling wave solutions of slower speed ¢ < 2; see [8, 22, 33] for more details. Moreover, the
stability of these traveling wave solutions of (1.3) connecting 1 and 0 has also been studied; see [1, 6, 29, 31]
and references therein.

Specifically, let 7. := (c — V2 —4) and 7, := 3(V/¢2+4—c). For ¢ > 2, the profile @, is decreasing and
can be chosen so that for every 7 € (7., min{27., 1}), there exist M. > 1 and x. > 0 such that

(1.5) 0<e ™™ — M.e ™ < P.(x) <e ™7 for x > x,.

Note also that the wave profile ®5 is decreasing and for every ¢ > 2 there is K. > 1 and Z. > 0 such that
(1.6) Dy(zr) < K.Po(x) Vo>

Furthermore, for every ¢ > 2, there is MC > 0 such that

(1.7) O (x)=1- M. + o(e™%) as x — —o0,
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where we recall 7, = 1(v/c2 + 4 —c). Observe also that for every ¢ > 2v/dr, the profile ¥,(z) = ® ﬁ( nT)

is the unique (up to translation) solution to

—c¥' =dU" +r¥(1-¥), zeR,
U(—o0)=1, T(c0)=0.

(1.8)

There are also many works on traveling wave solutions of the system (1.1). We refer our readers to
[7, 11, 12, 17, 18, 19, 20, 25, 30] and the references therein for details. For appropriate choice of ¢ € R, we
abuse the notation slightly and say that (¢.,%.) : R — [0, 1]? is a traveling wave solution to (1.1) with speed
¢, provided it satisfies
19) {0 ol + el + el — e — ath),

0 =dipd + ety + 1e(1 — the — bye).
Moreover, we introduce notations of the minimal speeds of traveling waves of the system (1.9), depending
on the range of parameters and boundary conditions at infinity.
-If0<a<1<b, we denote C; > 24/1 — a the minimal speed of solutions of (1.9) with boundary
conditions
(pe,Pe)(—00) = €1 and  (pc, ¥e)(00) = €.
- If a,b > 1, we denote Cy, € R the unique speed of solutions of (1.9) with boundary conditions

(Puvs Yuv)(—00) = €2 and  (Puv, Yus)(00) = e1.
- If0<a,b <1, we denote C; > 24/dr(1 — b) the minimal speed of solutions of (1.9) with boundary

conditions

(e, Ye)(—o0) = €. and (e, ¥c)(00) = es.
-If 0 < a,b < 1, we denote C5 > 24/1 — a the minimal speed of solutions of (1.9) with boundary

conditions
(Pese)(—00) = e and (e, Pe)(00) = er.
Minimal speed | Range of a,b Boundary conditions at infity
C, 0<a<1<b| (pete)(—0)=e1, (pec,1e)(00)=es
Cuw a,b>1 (QOC, wc)(_oo) = €2, (SOCa ’(/JC)(OO) =€
Cik 0<ab<1 (QDc,’(/)c)(—OO) = €, (<p67w0)(oo) = €2
Cy 0<a,b<1 [ (pe,1e)(=00) = e, (pe,%e)(00) = e

There are very few works on entire solutions of (1.1); see [13, 27]. Morita and Tachibana in [27] established
the existence of some entire solutions of (1.1) of merging fronts type under the cases (2) and (3), where as
t — —oo the solution looks like two traveling waves connecting e; and es coming towards each other, and
as t — 400 the solution converges to either e; or es uniformly in z € R. In [13], the authors treated the
bistable case (2), and showed the existence of traveling fronts that is a combination of three or four merging
traveling fronts. In this paper, we will construct three new types of entire solutions, which are different from
those established in [13, 27]. More specifically, all of these new entire solutions originate from the traveling
front ®.(z —ct) := (P.(x —ct),0) as t — —o0, and, as t — o0, evolve to distinctive diverging fronts, whose
profiles rely heavily on the competency of each species; that is, case (1) — (3) results in different long time
dynamics of these entire solutions. In particular, for the weak competition case (1), it is shown that the set

of new entire solutions form a 4-dimensional manifold, with a limiting case discussed in Theorem 1.3. The
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general structure of entire solution of (1.1) remains an interesting and challenging research direction. We
refer, however, to [14, 15] for progress on the Fisher-KPP equation.

To state our main results, we first define, for every d, ¢, > 0, the auxiliary function g4 ., as follows
2
4d
A — dA? — A+

gacr 0, 55) — [r— 7]

(1.10)
For given A € Agerp :={A € (0,55) : gdcr(A) >7rmax{0,1 —b}}, we introduce the speed

r
v = dA+ —.
c +/\

For 0 <a <1 and c> 2, we set Nace = % (cv — /(e —270)% + 4a) and

¢ — XGCC + (1 - a)xr;clca Xacc < m,
e 21 —a, otherwise,

and introduce various speeds

Cu1 = max{C],Coec} fb<1 and ¢y 2 :=max{C1,Chc} ifb> 1.

In addition, if 0 < b < 1, we set A := min{ T(ld_b), = [\/02 +4d(gg,cr(A) +r(b—1)) — c] } and introduce
the speed

Gy = max{C},dX +r(1 —b)A"'}
Denoting the L>-norm of a function u(z) = (u(z),v(z)) : R — R? as ||u s := super{|u(z)],|v(z)|} and
the L'-norm of a vector u = (u,v) as |ul; := |u| + |v|, we state our main results on the existence of entire
solutions of (1.1).

Theorem 1.1 (Divergent type). Given a,b,d,r > 0 and ¢ > 2, the Lotka-Volterra system (1.1) admits the
traveling wave solution
®.(x—ct) := (P(z — ct),0),
from which “originates” a family of entire solutions uy, parametrized by X € (0, +/r/d) such that gqcr(\) >
rmax{l — b,0}, denoted as
uy(t,z) = (ur(t,2),va(t,2)) € CV3(R x R? R?),
in the sense that
i us(t,) — @l — )l = 0.
Moreover, the “destiny”—long time dynamics as t — 4+oco—of these entire solutions depends essentially on the
“competency” of each species; that is, the range of a and b. More specifically, we have the following cases.

(1) If 0 < a,b < 1, then we have

(1.11a) limsup sup |ur(t,z) —e1]1 =0, V0<e<k1,
t—oo x<—(Cy+te)t
(1.11b) lim sup sup lur(t,z) —es1 =0, V0<exk1,
=00 —(¢y—e)t<z<(cu,1—¢)t
(1.11c) lim sup sup [ur(t,z) —ez)1 =0, V0<e<xl1,
t—=00  (cy1+e)t<a<(c,—e)t
(1.114d) limsup sup |up(t,z)]1 =0, Ve>0.

=00 z>(cyte)t
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=t t=+4o t=+o t=+o
=-C, N
- X u,l e; X Cuvt e; X u,2t
e; e, o e, X=C,t e, X=C,t
0 0 0
e * e * e, X
0 0 0
x=ct Xx=ct X=ct
‘ t=-o t=-o t=-o
O<a,b<1 a,b>1 O<a<l<b

FIGURE 1. Schematic plots of entire solutions in Theorem 1.1.

In fact, denoting ¥, (&) := (0,U., (§)), there exists hg € R such that (1.11c) and (1.11d) can be

improved to

(1.12) limsup sup |up(t,x) — ¥, (z — ¢yt — ho)|1 = 0.

v
t—=00  x>(cqy,1tE)t

(2) If a,b > 1, then there exists hg, h1 € R such that
limsup sup |up(t,z) — (Quo(x — Cupt — h1), min{y, (x — Cupt — h1), Yo, (@ — eyt — ho)})|1 = 0,

t—oo  x<(cy,—e)t

where (Puy, Yuy) 15 the traveling wave solution connecting e; at —oo to ey at +00, with speed Cyy.
In particular, we have convergence to homogeneous states in coordinates moving at speed that is

different from C.., and c,, i.e.

(1.13a) limsup sup |ua(t,z) —eq]s =0, Ve >0,
t—o0 z<(Cyy—e)t
(1.13b) lim sup sup |ux(t,z) —eq2|1 =0, V0<e<xk1,
t=00  (Cypte)t<e<(c, —e)t
(1.13c¢) limsup sup |ux(t,2)[1 =0, Ve>0.

t—=oo  x>(cy+e)t

(3) If0<a<1<b, then

(1.14a) limsup sup  |up(t,z) —er|1 =0, Ve >0,
t—=00 x<(cy,2—€)t
(1.14b) lim sup sup lux(t,x) —eq|; =0, VO0<e<kl,
1500 (cypte)t<a<(cy—e)t
(1.14c) limsup sup |ur(t,z)]1 =0, Ve >O0.

t—00  x>(cyte)t

In fact, (1.14b) and (1.14c) can be improved to

(1.15) limsup sup  |ux(t,x) — O, (x —cpt — hg))]1 =0,  for some hy.

1—=00  x>(cy,1+e)t

Remark 1.2. For A € (0,4/r/d) and ¢ > 2+/dr min{b, 1},

_ /2
gder(A) >rmax{l —b,0} iff 0<A< Ve

— 4dr min{b, 1}
2d '
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By Theorem 1.1 (1), one observes that for each ¢ > 2 and A € (0,+/r/d), the entire solution u, is
approximately equal to e, in the region
Q. ={t,2): =t <z <cyat, and t>1}.

It is worth pointing out that, both ¢, and ¢, are increasing in terms of A. ie. €, is increasing in A.

The following can be viewed as a limiting case of Theorem 1.1(1), when ¢, = oco. This happens whenever

¢ > 2max{1,Vdrb} and A\ = (c — v/c2 — 4drb)/(2d).

Theorem 1.3 (Limiting divergent type). Let d,r,> 0, 0 < a,b < 1, and ¢ > 2max{1,Vdrb} be given, then

the Lotka-Volterra system (1.1) admits the traveling wave solution

®.(t,z) = (DP.(x — ct),0),
from which “originates” an entire solution u(t,z) := (u(t,z),v(t, z)), t,z € R; that is,
(116) i [[u(t, ) - ®e(t. ) = 0.

Moreover, there exists hg € R such that the “destiny”—long time dynamics ast — +o0o— of this entire solution

satisfies the following properties.

(1.17a) lim  sup Ju(t,z) —ei1 =0, V0<e<1,
t—oo z<(cu,1—€)t
(1.17Db) lim sup |u(t,z)— ¥, ,(r—cpst—ho)1 =0, Ve>0,
t—oo z>(cy,14€)t '
where
— V2 —4drb
(1.18) Cosi=dhs+rA3  with Ay =Y "0 CQd " e (0, \/D

and that ¢, 1 = max{CY, Cacc}-

Theorem 1.4 (Merging type). Givend > 0, r > 0,0 < a <1 < b and ¢, > 2max{vrd,/a}, then the
Lotka-Volterra system (1.1) admits an entire solution up, (t,x) := (um (¢, x), vy (¢, x)) connecting the following

two traveling wave solutions
W, (r—ct) = (0,¥. (v —ct)) and q)cu,.x (z — Cu,St) = (écu.ﬁ (v — Cu,Bt)a 0)
that is, there exists hg € R such that

(1.19a) lim sup|un(t,z) — ¥, (x — cpt)|1 =0,

t——o0 zeR

(1.19b) m sup W, (t,z) — ®., ,(r — cy 3t — ho)|1 = 0,

li
t—00 z€ER
where
1
(1.20) Cy3 = A1+ )\Zl, with Ay := 3 (cv — /2 - 4a> .

We note that \y < 1 due to the fact that ¢, > 2v/a. In addition, ¢, 3 — ¢, = 12;‘1 (cy + /2 —4a) > 0.

Remark 1.5. Traveling wave solutions W, (x —cyt) and ®(x — ¢y 3t) can be viewed as equilibria in moving
frames with distinctive speeds c,, and c, 3 respectively. Given that, the above entire solution can be regarded

as a “generalized” heteroclinic orbit connecting these two equilibria ¥ and ®.



ENTIRE SOLUTIONS OF DIFFUSIVE LOTKA-VOLTERRA SYSTEM 7

t=+4+o t=+4wx
XL, 1t
ex i e,
X=Cy X=Cy 3t
°2—0 0
Ea x e, x
0 0
x=ct X=C,t
t=-00 t=-o
O<a,b<1, c=2max{1,v(drb)} O<a<l<b,c,=2max{V(rd),va}

FIGURE 2. Schematic plots of entire solutions in Theorem 1.3 (Left) and Theorem 1.4(Right).

The rest of the paper is organized as follows. In section 2, we study the eigenvalue problem associated to
the linearized system of (1.1) at (®.,0). We then exploit the results from Section 2 to establish the existence
of entire solutions in section 3. The asymptotic behavior of diverging-type entire solutions are presented in

section 4. The proof of Theorem 1.4 and Theorem 1.3 are respectively presented in section 5 and Section 6.

2. STUDY OF AN EIGENVALUE-PROBLEM

This section is devoted to the study of an eigenvalue problem of (1.1) linearized at (®.,0). The result of
this section will be useful in the subsequent sections to construct a pair of super-solution and sub-solution
of (1.1). Next, we show that (1.1) has a unique entire solution sandwiched between these super-solution and

sub-solution. Introducing new notations

W= Gder(A), dy = 2_1d [\/02 +4d(p+rb-1)) — c} ,

our main results of this section read as follow.

Lemma 2.1. For each ¢ > 2 and and 0 < A < min{\/%, 5} such that gg.c,(A) > rmax{0,1 —b}. There
ezists a unique solution ®. := (p,1) € C%(R) to

HP = Pgg + o + (1 — 20.(2))p — aPth), z €R,
pp = dipay + ey +7(1 = ble(2))Y), z€R,

p(+00) = (0,0), ¢ <0<,

limsupe %%y(z) < +0o0, and  lim e y(z) = 1.

T——00 T—00

(2.1)

Moreover, there is a positive constant Y such that

(2.2) lim e %%y(z) =T,

T——00

where §,, > 0.
Lemma 2.2. Giwvenc>2 and X\ € (0, %), we have the following results.
(a) There exists a unique solution ¢ € C2(R) to
ph = dpzg + cpy + (1 = b@c(2))h,  for x €R,

(2.3) ¥ >0, for z €R,
limsupe %y (z) < +oo, and  lim e y(z) = 1.

T——00 T—00
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(b) There exists D > 0 such that
e M De‘xx <(x) < e T, for x> 1.
(c) The function x + e~ %% (z) is decreasing, and there exists ¥ > 0 such that

lim e %%y(z) = T.
r——00
(d) In particular, if ga.cr(A) = (1 =), then 6, = 0, the function ¢ (x) is decreasing and there exists
T > 0 such that

lim ¢(z)="7.

r——00
Proof. First, we prove the uniqueness part of (a). Let 1y (z),12(z) be two solutions to (2.3). Let ¢(z) =
¥1(2) e shall show that 1(z) = 1. By setting h(z) = e® and k(z) = @ (r(1 = bv®.(z)) — ), both ¥ (x)

tha(w)*
and 1o (x) satisfies

(h(x)t (@) + k()i (x) = 0.
By Lagrange identity, it holds that for ¢ # j, i, € {1, 2},

(h(z) (Wi — W) = 0.

As a result, there is a constant ¢;; € R such that

h(z) (Vi — Vi) = ¢y, Va €R,

equivalently,

wi)/ Cij

— ) (2) = ———F—, VzeR.
(5) @ - e
Integrating both sides yields

(Z)(y):(ﬁ)(x)ju/:mczs, Vy<zeR.

Letting y — oo in this equation and exploiting that lirf e h;(x) = 1 for i = 1,2, we obtain
Tr—r+00

i * 1
4 == ” ————ds, VyeR,
24 = () @ve [t e
which, due to the fact that 1 (z), ¥ (x) > 0 for every € R, yields
o 1

Observe, however, that for s -+ —oo,

lim sup h(s)[1;(s)]* = limsup eXp((E +28,)8) [exp(—8,5)1;(s)]> < 1,

S§——00 S§——00 d

since 6, > —%. Hence, we deduce that

| s,
—————ds = o0,
—oo N(8)[1h;(s)]?
which, together with (2.5), shows that
(2.6) Cij S 0.
Combining (2.4) and (2.6), we deduce that 1;(z) > ¢;(z) for x € R. Since i # j are arbitrary chosen in
{1,2}, we conclude that 1 (x) = ¢a(x) for every x € R, which proves the uniqueness part of (a).
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For existence, we now construct a pair of super- and sub-solutions. First, define

e — De=™  for x> (A—X)"llog D,

AN D) = 0,67 — De~A} = 3
Y, (z ) := max{0, e e "} {0 for 2 < (A — A\)~'log D,

where \ € (A, A + 7¢) is chosen close enough to A so that gd,c’r(X) < Gd,e,r(A), thanks to the fact that
9h.cr(A) = 2dX — ¢ < 0. Recall that 7. = 1(c— V> —4) > 0. We claim that ¥, is a weak sub-solution of
e—Ax _ l)e—Xz7

2.3) for D >> 1. Indeed, introducing the notations £ := d0? +cd, +r(1 —b®.) and ¢, ~ _ :=
x ZAXD

we have
L, 5 p) + 5 = PBR)e T 4 D [(gar () = gaer (V) = 160 (2)] €N

(1.5) _ Y Ty X X
< rbe” 7% — D(gd,er(A) — Gder(N)e” T — Drodg(x)e™

< T’bei()\+‘rc)z - D(gd,c,ro\) - .gcl,c,r(f)\v))ei)\z
= (Tbe—(Tc+>\_X)x - D(gd,c,r()\) - gd,c,r(}\'))) e—;\x

< (76 = D(gaer(N) = gaer V) e <0,

provided D > (rb)/(gae.r(A) = ga,e.r(V))-
Next, we construct a super-solution ;. Let g3 € (0,7.) where 7, = $(v/¢> +4 — ¢) and 3 < —1 in the
sense of x2 < 0 and |x2| sufficiently large. We define

Koe‘s“”(l —e®2%)  for x < xo,

El(l‘;é‘v,EQ,)\,l‘g) = {GAI

for x > xo,

e—kwg
e2®), and thus Koe?*®(1 — e27), is a super-solution for < —1. Indeed, noting that

where Kg := Since e~** is obviously a super-solution in R, it remains to show that e?*(1 —
dé? 4 cby +1r(1 —b) — p =0,
— L% 4 pe®® 4 rb(1 — Bp)ed® =0,
we have, for z < —1,
— L ) 4 (T (1 - )
=0T [4(5, + £2)% + (8, + 2) + (r(1 = b) — 1) — 7b(1 — De(z))e =27 (1 — e°27)]
= e(Ovtez)z [de2(26, 4 €2) + cea — 1b(1 — Po(x))e =" (1 — €27
(L7

> 0t [dey (26, + 5+ e3) — O(el7e7%2)7)]

> 0,
where the last inequality follows from the facts that §, > —c¢/2d and 7. — €2 > 0, so that the term in the
square bracket is positive for z < —1. Hence, we have proved that ¢, is a super-solution of (2.3). Now, fix
g2 € (0,7;), then ¥ (z) < 9, (x) in R provided D > 1 and 2o < —1. It follows from standard method of
super- and sub-solutions that (2.3) has a solution v satisfying 1 (x) < () < ¢y(z) in R. This proves (a)
and (b). We observe in addition that

(2.7) Y(x) <y < Kped®  for o < —1.
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Next, we prove that (c¢) holds. Indeed, let 4, denotes the negative root of
0=dé*+cd+r(l —b)+ pu.
Using the fact that dd,0, = 7(1 — b) — p and d(8 4 6,) = —¢, we obtain

b (W(év) - 6v¢(x))e—sm) e

dr 7 (dy" (z) + ' () + (r(1 = b) — p)p(x)) = %b@b(:c)@c(x)—l)e—gﬂ <.

That is the function z — (¢'(x) 76,11/)(:17))6*5’)“" is strictly decreasing. Since 1) € C? .(R), standard Hanack’s
inequalities for elliptic equations imply that ¢/ € C?_..(R), and hence lim,_, oo (¢’ (z) — 5vw(1‘))e—5“z = 0.
Thus (¢'(z) — 61,1#(3:))6_5” < 0 for every z € R. Which implies that £ (e=%%¢)(z)) < 0 for every z € R.
This together with (2.7) complete the proof of (c).
Finally, since (d) follows from (c), the proof of the lemma is complete.
(|

Remark 2.3. If, in addition, we assume that §, > 0, and given zo < —1, we have Ky(1—e®2%) < e~ Atz

for any x < x9, yielding
Dy (z) = e min{Ko(1 — e52%), e~ A7} — min{ Kpe %% (1 — e7%2%), 7%}, Va < xy.

Remark 2.4. We can prove a more general result using dynamical systems and functional analysis argument;

see the appendiz for details.

Next we present the proof of Lemma 2.1.

Proof of Lemma 2.1 (i). Fix A € Agcrp, and let ¢(z) be given by Lemma 2.2. It follows from (2.3) that
(x) is a positive eigenfunction corresponding to p = gq.cr(A) for the linear operator £ arising from the
second equation of the elliptic system (2.1). Moreover, Lemma 2.2 (a)-(c) say that 1 (z) satisfies the desired
asymptotic behaviors at = o0, including (2.2), as stated in Lemma 2.1. Since the uniqueness of ¢ has
also been proved in Lemma 2.2(a), it remains to determine ¢ by solving the first equation of (2.1).

Note that ¢ solves the first equation in (2.1) if and only if the function ¢ = - satisfies

/

(2.8) po = ¢" + (23;0 + c) ¢ — P — ar).

Let Cy(R) denotes the Banach space
Co(R) :=={ue C(R) | lim wu(z)=0}

r—too

endowed with the sup-norm |u|c,®) := ||ulloc. Note that, since ®.(x) > 0 for every x € R, the linear

operator
/

P
Lo, (9) :=¢" + (2(; + c) s
generates an analytic semigroup of contractions on Co(R). Hence, the Hille-Yosida Theorem implies that for
every ;> 0 (and p = gg4.cr(A) in particular), one can solve (2.8) for a unique solution ¢ € Co(R). Moreover,
since —a(x) < 0 for every z € R, the maximum principle implies that gg(x) < 0 for every x € R. Therefore,

taking ¢ = ¢®., it holds that (1), ) solves (2.1). O
Remark 2.5. We note from the proof of Lemma 2.1 that £~ € Co(R), that is,

() © _ b
| = d — +(R).
\x|1£>noo @c(x) 0 an (I)c € Cunlf( )
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3. EXISTENCE OF ENTIRE SOLUTIONS

In this section we construct entire solutions of (1.1). Thanks to Lemma 2.1, we are able to construct
a pair of super-solutions and sub-solution of (1.1) which implies the existence of a unique entire solution
sandwiched between them. The asymptotic behavior of these entire solution at ¢ = —oo can then be inferred

from the behaviors of the pair of super-sub-solutions.

3.1. Existence of entire solutions of Theorem 1.1. Through this subsection we fix ¢ > 2, A € Ag ¢ rp,
let gq.cr(A) = p and (p,7) be the solution of (2.1) given by Lemma 2.1. We introduce the co-moving frame
& =z — ct and rewrite (1.1) as
(3.1) u; = Ac(u)
where u = (u,v) and

Ac(u) = (A1 c(u), Az (1)) := (uge + cug + u(l —u — av), dvge + cve +rv(1 — v — bu)).
We note that (u(t,&),v(t,€)) is an entire solution of (3.1) if and only if (u(t,z — ct),v(t,z — ct)) is entire

solution of (1.1). Hence in the following we only need to prove the existence of entire solution of (3.1).

For the convenience of stating the main results of this section, we first introduce the following lemma.

Lemma 3.1. Given M >0 and 0 < € < 47, both components of the solution, p(t) and q(t), to the system

o, =1 )

(3.2)
G=p—eMet™®. ¢(0) = —log (1 + %) .

are increasing functions which satisfy

(3.3a) i p(t) — pt] = lim |q(t) — pt] =0,
(3.3b) p(t) >q(t), Vt<0,

im e?® — _F
(3.3¢) t_lginoo e M

Proof. Solve explicitly, we have

(3.4) p(t) = pt — log (1 - W) = —log (52/[ + exp(,ut)> , fort <o,

and

(3.5) q(t) = pt — log <1 + 51\49XP(W)> = —log (824 + exp(—ut)) , teR.

It follows that p(t) and ¢(t) are increasing and satisfies (3.3) O

We remark that the functions p(t) and ¢(t) have also been used in [9] to prove similar results for the

Allen-Cahn equation to our main results here. We also introduce the following definitions.
Definition 3.2. Let u; = (u1,v1),u9 = (ug,v0) € R?, and u(t,€) = (u(t,€),v(t,£)) be a piecewise smooth
function on I x R, where I C R is an open interval.

(i) We say that ug <g uy if up < uy and vy > vy.

(ii) The function u(t,§) = (u(t,&),v(t,§)) is a sub-solution of (3.1) on I x R if

u; <g A.(u), in the weak sense for (t,&) € I x R.
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(i) The function u(t, &) = (u(t,§),v(t,§)) is a super-solution of (3.1) on I x R if
A (u) <g w, in the weak sense for (t,z) € I x R.
For more precise definition of weak super-sub-solutions, we refer to [10, Sect. 2.1].

The following result is well known.

Proposition 3.3 (Comparison principle for (3.1)). Suppose that
B(t,€) = (u(t,£),0(t,€)), B(t€) := (u(t,€),v(t,§)) € C([to, to + T) x R) N CH?((to, to + T) X R)

are respectively sub-solution and super-solution of (3.1) on (to,to+T) x R. If ®(to,&) <k ®(to,&) for every
& €R, then

D(to+t,8) <k ®(to +1,£)), YO<t<T, (€R.

We now set
(3.6a) D, (t,6) = (w,(t,),0.(1,€)) i= Be(§) + 2P DB (€), <0, EER,
(3.6b) B, (1,6) = (@ (1,6),0,(4,6)) i= Bo€) + 2T (€), (1€) ERXR,
where ®, = (¢, 1)) is the solution of (2.1) given by Lemma 2.1 (i), p(t) and ¢(¢) are given by Lemma 3.1,

and state our main result in this section.

Theorem 3.4. Let ¢ > 2 and A € (0,/r/d) be given such that ggc.(A) > 0 and ggcr(A) > r(1 —b).
Let M > max{|l¢ + a)||oo, 7||bo + Y|} and 0 < e < {7. There is a unique entire solution ®,(t,&) :=
(us(t, €),v.(t,€)) of (3.1) satisfying for (t,€) € (—o0,0] x R that

Equivalently, we have the following for (1.1).

Corollary 3.5. Let ¢ > 2 and A € (0,+/r/d) be given such that gqc,(A) > 0 and ggcr(A) > r(1 —b). Let
M > max{]|¢ + ap)|| oo, r||b + Voo } and 0 < e < 47. There is a unique entire solution

uy(t,x) = (ua(t, z),va(t,x)) := (us(t, x — ct), v (t,x — ct))

of (1.1) satisfying for (t,z) € (—o0,0] X R that

(3.8) D, (t,x —ct) <k up(t,z) <k ®.(t,z — ct).

Remark 3.6. From (3.8) we can observe that uy(0,—oc0) = (1,0) and ux(0,00) = (0,0). Next, we utilize
(1.5) and Remark 2.5 to derive that

0, ) . .
S GET St e n®n =1 el 0.0 =1
where 7, = £(c — V2 — 4).

Remark 3.7. We point out that the entire solution ®.(t,&) of (3.1) provided by Theorem 3./ depends on £

for each fized € < {7 and its time translations form a class of entire solutions.
Remark 3.8. Note by Remark 2.5 that we may choose ¢ sufficient small so that for any t <0 and £ € R,
u, (t,€) = De(&) +ep(€)e’ > 0, T(t,€) = ep(§)e”™ < 1.
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Lemma 3.9. Let ¢ > 2 and A € (0,4/r/d) be given such that gg.cr(X) > 0 and gg.cr(A) > r(1 —b). Let
M > max{[|¢ + at)||oo, r||bp + Y[|sc} and 0 < e < 47. Then we have

(i) @, (resp. ®, ) is a sub-solution (resp. super-solution) of (1.1) on (—00,0] x R (resp. R x R).

(i) ®,(t, &) <k ®.(t,&) for every (t,£) € (—o0,0] x R.
Proof. To prove (i), observe from (1.4) and Lemma 2.1

Al c(u,,T,) = [0 4 c®!, + . (1 — D,)] + eeP® [@55 + cpe + (1 — 20.) — a®tp — e (p + arp) PV

—epe?® |1 — e (o + ay) 6”(”} ,
which, together with ¢(x) < 0 from (3.2), yields
O, — Ay o(u,,7,) = epeP® [p —pute(p+ay) ep(t)} = 20e?® [M + (¢ + ay))] < 0.
Similarly, it also follows from Lemma 2.1 that
g o(,,5,) =2 [ty + c, +10(1 = bD) = ety (b + 1) 7V
—=cepeP®) {,u —re (bp + ) ep(t)} ,
which, together with ¢(z) < 0 from (3.2), yields
01, = Ap,o(1,, ) = e ™ [ — it er (b + 1) ¥ | = e [M + 7 (b + 1)) > 0.

As aresult, ®, is a sub-solution of (1.1) on (—oo, 0] xR. Similarly we can also show that ®, is a super-solution
of (1.1) on R2.

Finally, (ii) follows from Lemma 3.1 along with the fact that ¢(z) < 0 < ¢(x) for every =z € R. O
Remark 3.10. Observe that

3
eM
1+u

lee?@| o = [V|loc =+ 0 ase— 0T,

For every (€) = (u(€), v0(€)) € Clyp(R) x C0,e(R) and g € R, let
u(t7§;t05u0) = (u(tvf;t()au0)7v(t7§;t07u0))7 tZth § GR,

denote the classical solution of
u; = A.(u), t>ty, {ER,
{U(tmf) =u(¢), R
Throughout the rest of this work we fix M and e such that the assumptions of Lemma 3.9 are satisfied. For
every n € ZT, £ € R and t € [—n, 0], we introduce

®,(1,6) = (w,(t,6),0n(1,€)) :

B,,(t,&) = (Wn(t, ), v, (t,6)) :
We then have the following result.

ll(t7 5; —-n, Q*(—n, ))7
u(t’ g; -n, 6*(_7% ))

Lemma 3.11. For everyn € Z, t € [-n,0] and £ € R, it holds that

(3.9) D (1,8) <k B,,(t,&) <k B, 1(t,§) <k Bpi1(t,€) <k Pn(t,§) <k B.(t.€).
In particular,

(3.10) ®,(0,¢) <k ®,(0,8) <g ®,(0,8) <k 8,(0,§), VEER, VneZt.
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Proof. Observe that
follows from Lemmas 3.3 and 3.9, and in turn yields (3.10) by taking ¢ = 0. Finally,

gn(tag) <k 2n+1(ta€) <k $n+l(t,§) <k 6“(7575)7

follows from (3.11) by taking ¢t = n — 1 and comparison principle for competitive systems. O

Hence the following functions are well defined

(3.12) @, (t,8) = (u.(t,6),7.(1,€)) := lim @,,(2,€)
(3'13) 3, (t7 §) = (ﬂ* (t’ 5)72* (t’ 6)) = nh—>Holo 6’ﬂ(t’ £)

Moreover, using estimate for parabolic equations, we have that ®,, (¢, &) and ®,,(¢,£) converge respectively to
@ (t,&) and @, (t,&) locally uniformly in Cllo’f((—oo,O) x R). In addition, ®,(t,&) and @, (¢, &) are classical
solution of (3.1) on (—o0,0] x R.

We define

—1 2e M
r(t) == —1In (1 + 66’”) , VteR,
u u

and will use the following lemma about r(¢) to prove uniqueness of entire solution of (3.1) satisfying (3.7).

Lemma 3.12. The function r(t) holds the following properties.

lim r(t) =0 and Pt ®) =i v i<,

t——o0

Proof. Tt is clear that tii{n r(t) = 0. Straightforward calculation based on (3.4) and (3.5) shows that

—1 —1 —1
epltr(t) _ (emewm _ EM) _ [em (1 L =M 6m> &M } _ <6m LM ) _ )
p u p u

Now, we give the proof of Theorem 3.4.

Proof of Theorem 3.4. First, we show the existence. It is clear that ®, defined in (3.12) (resp. ®. defined
in(3.13)) gives a solution of (1.1) for (¢,€) € (—o0,0] x R. Moreover, it follows from Lemma 3.11 that these
functions satisfy the inequality (3.7). Furthermore, it is standard to extend both of them into entire solutions
by solving forward in time with initial data ®,(0,&) (resp. ®.(0,&)).

Next, we show uniqueness by showing that the pair of super-sub-solutions is deterministic via translation;
see [3, Definition 1] for details. Let @, ;(t,&) = (us;(t,€),vs:(¢,8)), i = 1,2, be entire solutions of (3.1)
satisfying (3.7). Let (¢,€) € R x R be given. For every n > [t|, and ¢ = 1,2, we have

¢*7Z‘(t7 5) = Ll(t, 5; —n, q)*,i(_n7 ))
By Theorem 3.4 and Lemma 3.12 , it holds that for any n € Z* and £ € R,

2,(-n,8) <k ®u(-n,§) <k 2, (-n+7(-n),§).
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Thus, for ¢,j € {1,2}, using Lemma 3.12, we have
®.i(t,6) = ut,&—n, B.i(-n, ")) <k ult,&—n, Bu(—n, "))
= ut,§—n, 2, (-n+r(-n),))
<gu(t,&—n, @, ;(—n+1r(—n),-))
= &, ;(t+r(—n),&).
Letting n — 0o, we conclude from Lemma 3.12 that
B, (t,6) < B, ;(t,8), V() eR? andi,j=1,2,
which naturally yields that ®., 1(¢,£) = ®.2(t,€), for every (¢,&) € R2. O
3.2. Exponential decay estimates at x = +oo. In this subsection, we adapt the simplified notation

u = (u,v) for the entire solution given by Corollary 3.5, originally denoted uy = (uy,vy), by erasing the

sub-index. We aim to determine the exact exponential decay of u at +o0o and v at = +o0.

Proposition 3.13. Let ¢ > 2 and A € (0,+/r/d) such that gqcr(A) > 0 and gaqcr(A) > r(1 —b). Let
0 <e <1 be fized such that u = (u,v) are given by Corollary 3.5. We then have

: T (z—ct) _
(3.14) xEIJIrloo e u(t,z) =1  for each t <0,
(3.15) Erf A=yt ) =¢,  for eacht € R.

where ¢, = d\ + 5. If, in addition, b € (0,1), then

(3.16) lim e % @iyt o) =&Y,  for each t € R,

r—+400

where we recall that 6, = o [\/02 +4d(p+rb-1)) — c}, and Y is given by Lemma 2.2(c) or (d).
Proof. By (3.8), we have

(317) Doz —ct) +ep(z — ct)ePV) < u(t,z) < D (z — ct) + ep(x — ct)e?®  for (t,z) € (—o0,0] X R,
and

(3.18) e(x + (cy — e)t)e!® < w(t,z + cyt) < (x4 (cy — e)t)ePD  for (t,x) € (—o0,0] X R,
where 1 is given by Lemma 2.2, and

(3.19) i (Jp(t) — ] + [q(t) — put) = 0.

It then follows from (1.5), (3.17) and Remark 2.5 that (3.14) holds.
We proceed to prove (3.15), and note that (3.16) follows in a similar fashion.

Claim 1. If there ewists to € R and g9 > 0 such that v(ty,r + cytg) < o™ for x € R, then
v(t,x + cyt) < ege” ™ for (t,x) € [to, 00) x R.

To prove this claim, it suffices to observe that v (¢, z+c,t) and gge~** form a pair of sub and super-solutions

of the equation vy = dU,, + ¢, U, + 70 in the domain [tg, 00) X R.
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Claim 2. If there exists to € R, X € (A, min{7e + X, ¢/(2d), 2\, Ao}) and Dy, o > 0 such that
v(to, T + cytg) > G Doe_xx) forx e R,

then there exists Dy € (Dg,00) such that

v(t, x4 cot) > go(e™™ — Die ™) for (t,z) € [tg,00) x R.

First, observe that v(t,z + ¢,t) is a super-solution of

(3.20) Uy = AUy + CoTp + (1 — bmin{1, e 7@ =L _ Fygy

This follows from the second equation of (1.1) and that u(t, x+c,t) < ®.(x+(c,—c)t) < min{l, e Te(@H(ce=)t)1
It remains to show that the function max{0,eq(e™** — Dle_XI)} is a sub-solution of (3.20), provided
Dy > Dy. Since this is similar to the proof of Lemma 2.2(a), we omit the details.

By Lemma 2.2(b) and (3.18), there exists Dy > 0 such that for each (¢,z) € R~ x R, we have

g(e MNrtleo=at) _ pie=AMatleo=aD)ep(D) < (T, x + ¢,f) < ee~AFH o= ga(®)
By Claims 1 and 2, we deduce that for each ¢ < 0 there exists D; such that
s(e*’\("’”(%*c)ﬂ — Dge*X(“/’*(c“*c)ﬂ)ep(f) <otz + cpt) < ge Matleo—a) ga(®)  for ¢ > t, z € R.
Using the fact that p = d\?> — cA 4+ 17 = A(¢, — ¢), the above can be rewritten as
(e ArmrEtp(t) _ Dge*X(IHC“*Cm”@) < u(t, @+ cpt) <ee AR for g > F oz e R

—Az

Dividing by e and letting x — oo, we have

ce M+ < Jiminf e”v(t, x + ¢yt) < limsup e”v(t, T+ cpt) < ce HtHa®)  for ¢ > 7.
T—00 T—00

Finally, we can take £ — —oo (recalling (3.19)) to deduce lim,_, o e**v(t, z +c,t) = ¢ for each t € R, which
is equivalent to (3.15).

Arguing similar for  — —oo, we can prove (3.16). This completes the proof of the proposition. (I

4. ASYMPTOTIC BEHAVIOR OF ENTIRE SOLUTIONS.

4.1. Asymptotic behavior of entire solutions of Theorem 1.1. In this section, we discuss the asymp-
totic behavior of the entire solution constructed in the previous section and complete the proof of our main

results. We first note that the super-solution

6*(75"’5) = (ﬂ*(t,x),y*(t,x)) = ((130(1’) + 580(x)6qu)’5w(x)eq(t))’ (tvx) €eRxR.

introduced in (3.6b) is defined for every (t,z) € R x R.
Throughout this section, we fix A € Ag ¢, and € > 0 so that ®,(¢,£) = (u.(t,£),v4(t,€)) and u(t,z) =

(u(t,z),v(t,x)) are, respectively, entire solutions given by Theorem 3.4 and Corollary 3.5, i.e.
(4.1) u(t,z) = ®.(t,z — ct), (t,x) e R xR,

where we again suppressed the sub-index A for the entire solution given by Corollary 3.5.
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4.2. Asymptotic behavior at t = —oo. The following holds.

Lemma 4.1. It holds that
JJim_[Ju(t, ) — ®c( — ef)]lc = 0

Proof. The result follows easily from (3.8). O
4.3. Asymptotic behavior at ¢t = +o0.

Lemma 4.2. Let ¢, = %, it holds that

(4.2) lim sup wu(t,z)+ sup o(t,z)| =0, Ve>0.
E200 | 4> (o)t #>(co+E)

In particular, (1.11d) holds.

Proof. Observe that the upper bound in (3.8) holds for all ¢ € R, so that
(4.3) (u(t, ), v(t,z)) < (Pc(x — ct) + ep(x — ct)e?® ep(x — ct)e?®), VazeRteR.

Hence for each £ > 0,

(4.4) sup  u(t,z) < P (et) >0 ast— oo.
x> (c+e)t
Since exp(—A(z — ¢,)t) and v(t,x) form a pair of super-sub-solutions (where ¢, = %) of the scalar

Fisher-KPP equation
vy = dvg, + ro(l —v),
there is a constant K > 1 such that
v(0,z) < e(z)eP?) < Ke™* ¥V z € R,
where the second inequality holds due to the fact that e**y(x) — 1 as x — oo. It then follows from the

comparison principle for parabolic equations that

(4.5) v(t,z) < Ke M@=t vt >0 zeR.
As a result, the lemma follows from (4.4) and (4.5). O
Lemma 4.3. Letc, = %, it holds that
(4.6) lim sup sup lu(t,z) —ez)1 =0, VO<E< Qo
t—=00  (ctE)t<az<(cy—E)t
Proof. 1t follows from Lemma 4.2 that for each & > 0,
limsup sup w(t,z)=0.

t—00  x>(ct+é)t
Furthermore, by (4.3), it holds that

liminf sup v(t,z) > 0.

t—o0 r>cyt
Thus, it is not hard to construct a sub-solution to show that
lim inf inf v(t,z) >0, VO<é1

t—00 (c+&)t<z<(c,—E&)t
Therefore the equation of v can be regarded as an uncoupled equation of KPP-type, and the problem reduces

to showing that 1 is the only entire solution of the KPP equation that is bounded below by a positive constant.
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Since the proof of Lemma 4.3 follows from an almost same argument as the one in [10, Proposition
3.1],which in turn follows from the arguments by Ducrot, Giletti and Matano in [5], we omit the proof here

and refer interested readers to [10, 5] for details. O

Lemma 4.4. Suppose gq.cr(A) > rmax{1—0b,0} and e be fized such that (u,v) is the entire solution specified
by Corollary 3.5. There exists hg € R such that for any € > 0,

(4.7) lim sup |v(t,x) — P, (x — ¢t — ho)| = 0.
E=00 g (e )t

In fact, we deduce from (3.15) that hg = —% loge.

Proof. First, observe that sup, - (.4.); u(t,z) — 0 exponentially as t — +o00. Based on the exact exponential

decay of v(0,z) at © = +00; see Proposition 3.13, we apply [31, Theorem 8.2 or 9.3] to yield (4.7). O

4.3.1. Monostable case. Now, we present the proof of Theorem 1.1 by establishing the large time behavior

of the entire solutions in the monostable cases:

(1) 0<a,b<1l, and (3) 0<a<1l<b.

Proof of Theorem 1.1 for cases (1) and (3). Recall the exponential decay estimates of (u,v)(0,z) at z =
+0o as described in Remark 3.6 and Proposition 3.13. For case (1) we apply [24, Theorem 1.3] to prove
(1.11a) - (1.11d), whereas for case (2) we utilize either [24, Theorem 6.1] or [10, Theorem 1.3] to yield (1.14a)
- (1.14c). In the latter case, it suffices to observe that for ¢ > 0, our solution (u,v) can be controlled by the
pair of super-sub-solutions constructed in [10, Propositions 1.4 and 1.6]. Finally, (1.12) and (1.15) follows

from Lemma 4.4. O

4.3.2. Bistable case. In this subsection we complete the proof of Theorem 1.1 by establishing the large time

behavior of the entire solutions in the bistable case
(2) a,b>1.

We note that Lemma 4.3 provides an upper bound for the spreading speed of the species wu(t,z), and
Lemmas 4.2 and 4.3 show that the faster but weaker competitor v(¢, ) spread at the speed c¢,t.
As mentioned above, to complete the proof of Theorem 1.1 in case 2, we follow the techniques developed

in [2] and [28]. More specifically, we first introduce some useful functions
(4.8) () = &e™ ', P(t)=Poe™®™",  and  Q(t) = Qoe ",
where 01, Py, Qo > 0 and & < 0 are constants.

Lemma 4.5. For each 61 > 0 sufficiently small, there exist Py, Qo > 0 and { < 0 such that (u(t, x),v(t,z))
on RT x R given by

v(t,x) == min{1, Yy, (€ — Cuut — £(t)) + P(t)}

where @44, := (Yuw, Yuv) s the traveling wave solution to (1.9) with speed C.,, satisfies

{Al,cw (@ )6, 2) 2 0
u

{U(t, 33') = maX{07 ‘puv(m — Cupt — S(t)) - Q(t)}

in the weak sense for (t,z) € RT x R.
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Proof. Define
S(6) = Lou (V) and  F(E) = b (V)
then (S, R) satisfies

R'—cgyR +R(1-R—B.S) =0

{505// - QSREI + E(Q -5- ZOR) =0
Fo=

where

5 1 Cu'u
= C = )
20 Td SR T‘\/&

And we may argue exactly the same as in [2, Lemma 7]

1 a
a=_, Tp=, an By=r
7|.

O

Proof of Theorem 1.1 for case (2). Firstly, the proof of (1.13c) are exactly the same as in case (1). Now,

by Lemma 4.3 we have

(4.9) lim sup |u—eszl; =0, for each &> 0,
t=00 (cqe)t<a<(c,—B)t

which shows that part of (1.13b) holds. It remains to prove (1.13a) and the rest of (1.13b).

Consider the solution 1 = (4%, ) of (1.1) in the domain (¢,2) € RT x R with initial data (4o, 09) such that
g is compactly supported with 0 < 4g(z) < u(x,0), and 99 = 1. By [28, Theorem 1], there exists hy € R
such that

(4.10) lim sup |a(t, z) — @y (@ — Cyuut — ha)l1 = 0.

t—00 >0
Note that we have
(4.11) u(t,z) <g u(t,z) for (t,z) e RT xR.
In particular, for each ¢~, ¢t such that ¢~ < ¢t < Cy,, we have

(4.12) lim  inf w(t,z)>1 and lim sup o(t,x)=0.

t—o0 c—t<z<ctt 1=00 (—y ottt

Furthermore, exploiting (4.9), we can repeat the proof of [28, Lemmas 4.6 and 4.7] to show that, for each
¢ € (¢, ¢y), there exists C1, 61,71 such that

(4.13) u(t,ét) < Cre 21 w(t,ét) >1— Cre 2t fort > T.

By using (4.12) and possibly enlarging §; and 77, it is not difficult to show that for each c* € (—o0, Cyy),
(4.14) u(t,céft) <1, w(t,cft) > Cre 21t for t > T,

the latter follows from a sub-solution v, for the equation of v of the form

oy (1) = L5¢ T cos(M@ =), o —cit] <m/(2X),
R & — ctt] > 7/ (2)),

where 01 € (r(b—1),00), and A = 55+/[cf[> — 4d(6 + r — rb). Taking advantage of the estimates (4.13) and
(4.14), one can then apply the comparison principle to prove that

(4.15) u <y (wv), forcdt<z<ét t>T,
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where (@, v) are given in Lemma 4.5. Passing to a sequence t,, — 0o, we may assume u, (¢, z) := u(t +t,,x —
Cutn) converges in C2(R?) to some Ue (t, @) 1= (oo (t, ), Voo (t, ). By (4.10), (4.11) and (4.15), there
exists hg > 0 such that

(4.16) pup(r+h3) < uco(t,r) < uy(z—h3) and Py (z—h3) < veo(t, ) < Yuu(z+hs)  for (t,7) € R?.

We may then argue similarly as in the proof of [28,; Section 3.2] to obtain (1.13a). We omit the details. O

5. PROOF OF THEOREM 1.4

In this section we outline the proof of Theorem 1.4. Suppose that d > 0, 7 > 0, 0 < a < 1 < b and
¢y > 2max{vrd,+/a}. Denote

1 1
Ay 1= 3 (cu — /- 4rd> , A= 5 (cv — V- 4a) and  @x(z) :=e N, zcR.

Then define
(5.1) we=g1,e1(A) =r(1—a)>0.

By similar arguments to the proof of Lemma 2.1 where g1,.1(A) = (1 —a) > 0, we can prove the following

result.

Lemma 5.1. Suppose thatd > 0, r > 0,0 < a <1 < b and ¢, > 2max{vrd,/a}. Then there uniquely
exists ($,1) € C2(R) such that for all z € R

~

(1 - a)@ = @wz + cv(ﬁa: + (1 - a‘llcu (.’L‘)) )
(1 —a)p = dipge + cothe + (1 — 29, (z))y — bW, p,

(5:2) 12(:&00) =0, and 1Z <0,
lim Z’_(fz =1, supp<-+oo, and @ >0.
r—00 z€ER

where A = % (cv — 4/ - 4a). Moreover, there exists T > 0 such that . lim ¢(z)="T.
——o00
Using this result, we can again proceed as in Section 3 and establish the following result.

Theorem 5.2. Suppose thatd >0, r>0,0<a <1<b and ¢, > 2max{Vrd,/a}. Let o= (@, 121\) be the
solution of (5.2) given by Lemma 5.1. Then the following statements hold.

(a) For each 0 < e < 1, there is a unique entire solution u(t,z) := (u(t,z),v(t,z)) of (1.1) satisfying
(5.3) W, (1 — cpt) + e®(z — cpt)ePD < u(t,z) <g ¥, (z— cot) +e®(x — cyt)el™,
for (t,z) € (—o00,0] x R, where
i [5() — (1—a)t| = lim_[g(t) - (1— a)t| = 0.
(b) Furthermore,
: Az —cy,3t) _
(5.4) Igrfoo e u(t,x) =€, for eacht € R.

where ¢y 3 > ¢, and X € (0,1) are given by (1.20).

Remark 5.3. The function p(t) is defined for all time t € R, strictly increasing and bounded, and first
inequality of (5.3) holds in fact for all t € R.
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To complete the proof of Theorem 1.4, it remains to show that the the entire solution u(¢, ) provided by
Theorem 5.2 satisfies the desired asymptotic behaviors at ¢ ~ +oo.
It is clear from (5.3) that (1.19a) holds. Note also from (5.3) that v(0,2) < ®., () for all x, so that by

comparison, we have

v(t,z) < @, (v —cyt) for (t,x) € RT x R.

Hence,

(5.5) limsup sup o(t,z) <limsup sup &, (et)=0, VO<ex 1.
t—=00  x>(c,+E)t t—=00  z>(cy+E)t

Since

(5.6) Up > Ugy +u(l —a—u)

and liminf,_, o u(0,z) > 0, which is due to (5.3) and that lim @(z) > 0, we then conclude from spreading
T—r—00
speed properties for Fisher-KPP equations that
(5.7) lim inf inf u(t,z) >1—a, VO<exLl
t—=00 z<(2v/I—a—8)t
Next, observe from Theorem 5.2(b) that

(5.8) lim e*u(0,2) =& > 0,

r—00

and ¢ = A+ % =cCy + PT“ > ¢y, where 0 < A < 1. Now, since v — 0 in the moving coordinate with speed
greater than ¢, by (5.5), and that u spreads in the absense of v at speed ¢ = A+ %, we argue as in the proof
of Lemma 4.3 to show that

(5.9) lim sup lu(t,z) —1] =0, VO0<e<K1,
E200 (¢ +E)t<z<(c—B)t

which, combined with (5.7) and comparison principle for scalar parabolic equations, yields that

(5.10) liminf inf w(t,z)>1-a.

t—oo x<(c—&)t

By (5.10), and using b > 1 > a, we can use the classification of entire solution of (1.1); see [23, Lemma 2.3],
to show that

(5.11) lim inf |u(t,z)—e1]1 =0, VO<exk 1.
t—00 z<(c—&)t

Hence limy_,oo SUp, g [v(f,2)] = 0 in an exponential manner follows from (5.5) and (5.11), so that the
equation u reduces to the KPP equation (with exponentially small in ¢ error terms) as t — +oo. Finally,
note that u(0, z) satisfies (5.8) and (5.10), so we can apply [31, Theorem 8.2 or 9.3] to yield (1.19b). This
completes the proof of Theorem 1.4.

6. PROOF OF THEOREM 1.3

In this section we outline the proof of Theorem 1.3. Let d > 0, r > 0, 0 < a,b < 1 and ¢ > 2 be given
such that (1.18) holds.
Therefore, appying Lemma 2.1 for the case g = gg.c(A) = r(1 —b) > 0, we have the following result.
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Lemma 6.1. Suppose that d >0, r >0, 0 < a,b <1, and ¢ > 2max{1,Vdrb} are given. Set

N4 and A= — (c— Ve - 4drb) .

2d
Then there uniquely ezists ® := (p,v) € C**(R) satisfying

(1 =0)¢ = @ux + cpr + (1 —20.(2))p — a1, in R,
(6 1) 7‘(1 - b)d} = dvpz + oz + T(l - bq)c(l'))ﬂ), n R,
' p <0<y, in R

o(£00) =0, and e AT — De e < P(x) < e Mo for x> 1.

Moreover, there exists T > 0 such that lim (zx) =7T.
Tr—r—00

Using this result, we can again proceed as in Section 3 and establish the following result.

Theorem 6.2. Suppose that d > 0, 0 < a,b < 1, and ¢ > 2max{1l,Vdrb} be given. Let ® be the solution
of (5.2) given by Lemma 6.1. Then for each 0 < & < 1, there is a unique entire solution u(t,x) =

(u(t,z),v(t,x)) of (1.1) satisfying
(6.2) . (x—ct) +e®(x — ct)e?V < u(t,z) <g Po(z—ct) +e®(x — ct)e!®,
for everyt <0, x € R, where 0 < e <1 and

lim |p(t) —r(1—=0b)t|= lim |q(t) —r(1—0b)t|=0.

t——o0 t——o0

Moreover, q(t) is defined for all time t € R, strictly increasing and bounded, and second inequality of (6.2)
holds for t > 0 as well.

Proof of Theorem 1.3. To complete the proof of Theorem 1.3, it remains to show that the entire solution
(u(t,z),v(t,x)) provided by Theorem 6.2 satisfies the desired asymptotic behaviors at ¢ &~ +oo.

It is clear from (6.2) that (1.16) holds. Note also from (6.2) that
(6.3) inf min{u(0,z),v(0,2)} >0, VzyeR.

<z

Furthermore, By Proposition 3.13, we have

(6.4) wlgr;o e u(0,x) =1,
where 7. = 1 (¢ — V¢ —4) and
(6.5) Il;rgo eMT(0,x) = > 0,

where A\, = % (c—\/c2 —4rb). We note that ¢, = A\, + § > )\U+§—b :c:Tc—&—%.
Hence, we can deduce the (rightwards) spreading speed ¢, 1 of e. by the results in [24], this establishes
(1.17a), and that

lim sup |u(t,z) — ea]; = 0.
=90 (¢, 1 +E)t<B< (Co,5—E)E

Then, we can apply [31, Theorem 8.2 or 9.3] to yield (1.17b). We omit the details. O



Appendices

A. ALTERNATIVE PROOF OF LEMMA 2.2

In this section, we give an alternative proof of Lemma 2.2. In fact, the result we prove here is more
general. We first introduce the operator
L: H*R) — L?(R)
v —  duge + cve +r(1 — b0 )v
and then the results in Lemma 2.2 are now spectral properties of the linear operator L. More specifically,

we have the following lemma.

Lemma A.1. Given ¢ > 2 and u € R, the eigenvalue-eigenfunction problem
(A1) (L= ) =0,
admits the following properties.
o If € (r(1—0b),7), up to scalar multiplication, there exists a unique solution to (A.1) in H?*(R?).

Furthermore, if pn € (max{r(1—b),r — Z—Z},r), then the solution to (A.1), ¢(&) € H2(R)NC?(R), is

nonzero everywhere (thus can be chosen to be positive) and admits the following asymptotic property,
be c— /2 —4d(r — p)

li — = —\:=

where X € (0, 55) solves ju = d\* — X+
o If p€ (—o0o,r(1—0b))U(r,+00), there is no solution to (A.1) in H*(R).

o Ifu=r(1-0)>r— g, then up to scalar multiplication, there exists a unique solution ¢ to (A.1)
in C*(R) such that

lim —= = =), 5hm o="7, for someY €R.
——00

Proof. We study the more general case p € C and introduce the vector ® := (¢, ¢¢). The equation (A.1)

can be written as

(A.2) e = A, )P = (;[M - 1«8 — b®)] i) "

where the matrix A(§, 1) approaches constant matrices as & — £oo; that is,

. 0 1 . 0 1
A= m e =(a,"y 5)e A= imaen =y, oy 5)

It is well known that the operator L — p, where p € C, is Fredholm if and only if both Ay and A_ are

hyperbolic; see [21, Theorem 3.1.11] for more details. Introducing the characteristic polynomial
(A.3) PN €) = dN2 + eh+ (1 — bd(€)),
and noting that A4 are hyperbolic if and only if

peTo|Jro, where Ty := {Py(ik) | k € R} and T_ := {P_(ik) | k € R},

where P (\) = ) lilll P\ &) =d\2+ch+rand P_(\) = ) lim P()\;€) = d\2 +c)+ (1 —b), we conclude
—+4o00 ——00
that L — p is Fredholm if and only if p ¢ T'y |JT . The Fredholm boundaries, 'y |JT—, divide the complex
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FIGURE 3. A depiction of the sets {€2;}3_; separated by the Fredholm boundaries I'y (red,
solid) and I"_ (red, dashed).

plane into 3 simply connected regions,

B

Cc

B

2 2
O :={a+if|a>—d ( ) +r,B €R}, Qo :={a+if | a< —d (Z) +r(1-0),8 € R}, Q3 := C\Qy UQy;

see Figure 3 for an illustration. Furthermore, the Morse indice of AL, that is, the dimension of unstable

space associated to A ,respectively denoted as i1 (p), takes distinctive values in €;’s, i = 1,2, 3; that is,

. ]-7 EQ, . ]-a gQ—v
l+(u)={0 Zgg_i, z_m):{o Zea_

which yields that the Fredholm index of L — i, denoted as ind(L — p), takes the following values.

0, pe Ql,
ind(L — p) =i (n) =iy () =q1, peQs,
0, pe.

According to the exponential dichotomy theory in [4], in the case when u € Qg, we conclude from i4 (1) =0

that there is no solution @ to (A.2) in H!(IR?). As a result, there is no solution ¢ to (A.1) in H2(R). Similarly,

in the case when p € Q3, we conclude from i (1) = 0 and i (p) = 1 that, up to scalar multiplication, there

exist a unique solution ¢ to (A.2) in H2(R). Moreover, for any u € Q3, the polynomial P_(\) = y, that is,
AN+ eA+r(1—b) —pu=0,

admits two distinctive roots

~ —ct4/c2—4d(r —rb—p)
Ap = ,
2d
which, when p € (max{r(1 —b),r — Z—Z},r), admits A_ < 0 < A;. Moreover, the solution ¢ to (A.1) as

& — —oo satisfies

(A.4) lim 26 = Ay

Similarly, the polynomial P, (\) = u, that is, dA\?> 4+ e\ +r — = 0, admits two distinctive roots

—cE /2 —4d(r —p)

Ag =
+ 2d )
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which, when p € (max{r(1—">b),r — %}, r), admits A_ < Ay < 0. To show that ¢ is nonzero everywhere and

lim %5 = A4, we introduce the polar coordinates (r,0) € [0, +00) X Ta, satisfying

§——+o0
(¢ _ [rcosf
®= <q§5 ~ \rsinf )’
and rewrite (A.2) in the polar coordinates as

(A5) re=r{[1+%4—2%(1—bP.)| cos — <sinf}sin6,
b = F(0,€) := —1 (P(tan6; ) — p) cos? 6.

Noting that for any £ € R,

b®,
F(r/2,€) = —sin®(n/2) = =1 <0,  F(arctan™'(\4),6) = dmf% >0,
it is straightforward to see that the interval (arctan~!(\.),7/2) is forward-invariant for . Recalling the

limiting behavior of ¢ as £ — —o0, (A.4), we conclude

M E()‘+7OO)7 V§€R7

P(¢)

which shows that ¢ is nonzero everywhere. Furthermore, we also note that the interval
1(€) := {0 € (arctan™ (A\y.), 7/2) | F(6:€) < 0},

becomes the whole interval (arctan=1 (A} ), 7/2) as £ — +o0, from which we can conclude by a straightforward

proof-by-contradiction argument that

E—+too @
If o > 7, then Ay > 0, which, together with the fact that the interval (arctan=t(\, ), 7/2) is forward-invariant
for 0, shows that there is no solution to (A.1) in H?(R).

fpu=r(1-5)>r— %, then Ay =0 > A_ = —c. The asymptotic matrix A_ is not hyperbolic but, thanks

to the fact that the eigenvalue Ay = 0 is geometrically simple, there still is an ordinary, but not exponential,
dichotomy for the system (A.2) on & € (—o0,0]; see [4] for details. In addition, the fact that p € (r — Z—Z, T)
implies that the asymptotic matrix A, is hyperbolic with two distinctive negative eigenvalues, yielding an
exponential dichotomy with trivial unstable subspace for (A.2) on £ € [0, +00). Moreover, the analysis based
on the polar coordinates still holds. As a result, we conclude that up to scalar multiplication, there exists a
unique solution ¢ to (A.1) in C?(R) such that

S

lim

= -, lim ¢=7, forsomeT eR.
E—too @ §——o0
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