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Abstract

In quantitative genetics, viscosity solutions of Hamilton-Jacobi equations
appear naturally in the asymptotic limit of selection-mutation models when
the population variance vanishes. They have to be solved together with an un-
known function I(t) that arises as the counterpart of a non-negativity constraint
on the solution at each time. Although the uniqueness of viscosity solutions is
known for many variants of Hamilton-Jacobi equations, the uniqueness for this
particular type of constrained problem was not resolved, except in a few partic-
ular cases. Here, we provide a general answer to the uniqueness problem, based
on three main assumptions: convexity of the Hamiltonian function H(I,z,p)
with respect to p, monotonicity of H with respect to I, and BV regularity of
I(t).

1 Introduction

This note is intended to address uniqueness of the viscosity solution of the following
Hamilton-Jacobi equation, under a non-negativity constraint:

Owu(t,z) + H(I(t),x,dyu(t,z)) =0, te(0,T), z € RY,

min u(t,z) =0, t e (0,7), (1.1)
zER?
U(O, CC) = g(l‘) ) T e Rda

where H : R x R? x R? — R is of class C?, and the initial data g € VVlifo(]Rd)

satisfies ming = 0. This problem arises naturally in the analysis of quantitative

genetics model in the asymptotic regime of small variance [10, 19, 5, 20, 6, 17].
The main difficulty, beyond the classical issue of weak solutions in the viscosity

sense, stems from the role played by the scalar quantity I(t) which is subject to no



equation, but is attached to the non-negativity constraint minu(t,-) = 0. Moreover,
its regularity in context is usually low, typically of bounded variation [19, 20, 6].
Interestingly, we shall see that BV seems to be the natural regularity ensuring
uniqueness of the constrained problem. In order to give a sense to problem (1.1)
in such a setting, we use the theory of viscosity solutions for equations with a
measurable dependence in time which was first studied by H. Ishii [12] and then by
P.L. Lions and B. Perthame [15].

1.1 Motivation and previous works

A special case of constrained Hamilton-Jacobi equation (1.1) arises in the asymptotic
limit of the following quantitative genetics model proposed in [5, 20| (see also [19,
6, 17]):

€dne = neR(I(t),z) + EAn., t>0, zeR?, I.(t) = Y(x)ne(t, x) dx,
R4
(1.2)

where n(t,z) is the density of a population structured by a d-dimensional pheno-
typical trait . The reproduction rate R of a given individual depends both on its
trait x, and the environmental impact of the population I.. Individuals may burden
differently, and that burden is weighted by the function v which is bounded below
and above by positive constants. The key point is that I, is a scalar quantity, so that
individuals compete for a single resource. As is natural for biological populations,
the density-dependent feedback is negative, meaning that R(I, z) is decreasing with
respect to I.

The Hopf-Cole transformation u, = —elogn, transforms (1.2) into the following
equation:

Optie + R(I(t), ) + |dpuc|* = eAu,,

which yields formally (1.1) in the vanishing viscosity limit € — 0, with H(I,z,p) =
R(I, ) + |p|?:

O+ R(I(t),x) + |dyul®> =0, te(0,T), z € RY,

min u(t,z) =0, te(0,7), (1.3)
z€Rd
U(O,i‘) = g(l') ) r € RY.

In fact, locally uniform convergence to a viscosity solution was established under
suitable assumptions on R and the initial data, but along subsequences €, — 0
[20, 6, 17]. Therein, compactness of { I } usually follows from a uniform BV estimate.
The constraint minu(¢,-) = 0 can then be derived from natural properties of the
integral I. = [ 1 exp(—uc/€)dz being uniformly positive and bounded in €, as a
consequence of the negative feedback of I. on growth. However, it is not possible to
characterize the limit function I directly from the convergence of u,, — u in the limit
€, — 0, because the relationship between wu. and I, is too singular. Nonetheless, the
constraint min u (¢, -) = 0 must be satisfied at any time. Hence, I(¢) can be viewed as
a Lagrange multiplier in problem (1.1), see [10] for a discussion about this analogy.

The uniqueness of the limiting problem (1.3), if available, guarantees the con-
vergence of the whole family of solutions {u.} as € — 0. It is interesting in the



mathematical as well as biological perspectives, since the limiting problem (1.3)
determines much of the Darwinian evolutionary dynamics of the population model
(1.2). When € is small, the population n. concentrates at the point(s) where the
limit function u reaches its minimum value 0.

The uniqueness was first treated in [20], for the particular case when R(I,z) is
separable in the following sense:

R(I,z) = B(z) — D(z)Q(I), or R(I,z) = B(z)Q(I)— D(x),

with positive functions B, D, and a monotonic function @) such that R is decreasing
with respect to I.

Later on, the uniqueness for (1.3) was treated in [18] under convexity assump-
tions on R(/,x) and the initial condition g, essentially: R decreasing with respect
to I, and concave with respect to x, plus g convex. It was proved that convexity
is propagated forward in time so that the solution u(¢,x) to (1.3) is a solution in
the classical C! sense. Hence, it has always a unique minimum point Z(¢), which
is a smooth function of ¢. As a result, I(t) is necessarily smooth in that setting,
since it can be determined by the implicit relation R(I(t),z(t)) = 0. Biologically
interpreted, their results describe very well the Darwinian dynamics of a monomor-
phic population as it evolves smoothly towards a (global) evolutionary attractor.
Recently, the preprint [14] tackled the uniqueness of (1.3) when the trait space is
one-dimensional, with a mixture of separable and non-separable growth rate R(I, ),
without convexity assumptions. However, the uniqueness result is also restricted to
the case of continuous functions I(t), which is not guaranteed in the absence of
convexity.

1.2 Assumptions and main result

In this paper, we establish uniqueness of solutions to problem (1.1) under mild
conditions. In distinction with previous works, we assume neither (i) separability
of the Hamiltonian H(I,x,p) in any of its variables; nor (ii) convexity in the trait
variable € R?. In particular, we can handle solutions (u, I), allowing possibly:

e x — u(t,x) to possess multiple minimum points {Z;(¢)}; and
e the Lagrange multiplier I(¢) to be discontinuous.

Both of them are natural and attractive features of the solutions of population
genetics models.
We restrict to C? Hamiltonian functions H (I, z,p) which are convex and super-
linear with respect to the third variable p:
H(I,z,p)

(H1):  (V,z,p) d), H(,z,p)>0, (VI,z) lim —" =+o0.
’ |p|—=00 Ip|

Our uniqueness result strongly relies on the following monotonicity assumption:

oH
(Hz): (VI,x,p) W(Ia$7p) <0.



As we are dealing with convex Hamiltonians, it is appropriate to reformulate the
problem using suitable representation formulas: For a given function I(t), we define
the variational solution V (t,z) of (1.1) as follows:

Ve = e [ LU ds tato)) . (1
{ve?t)cz((;t)} 0

for (t,z) € (0,T) x R%. Here AC(0,1) is the space of absolutely continuous functions
on (0,t), and L : R x RY x R? — R is the Lagrangian function, i.e. the Legendre
transform (or convex conjugate) of H defined as:

L(I,z,v) = s;lﬂgl{p-v—H(I,x,p)}. (1.5)

It is such that d,H and d,L are reciprocal functions. In this formulation, the
problem (1.1) becomes the determination of I(t) so that the value function V' (¢, x)
satisfies the constraint: minV'(¢,-) = 0. In the formulation (1.4), the role played
by the scalar quantity I(t) is perhaps more apparent: it is adjusted progressively
so that the following constraint is satisfied at each time, among all v € AC(0,t)
irrespective of the endpoint of ~:

(v) mf){ALU@%%@d@»w+ywm»}=0- (1.6)

~yeAC(0,t

Our methodology relies on the Lagrangian formulation of the constraint (1.6). Due
to the above variational reformulation, it is more appropriate to write the assump-
tions on the Lagrangian function: Assumptions (H1)-(H2) can be recast as:

(L1):  (VI,z,v) d3,L(I,z,0)>0.
(L2):  (VI,z,v) g?([,a:,v) >0.

We need two supplementary conditions, to be satisfied locally in I € (—.J, J) for any
constant J > 0:

(L3): There exists a positive constant Cg and a super-linear function © : Ry — R4
such that

(VI,z,v) € (—J,J)xRIxR?  L(I,z,v) > O(jv])—Ce, lim o)

r—-+00 r

:+OO

(L4): For each K > 0, there exists positive constants ag, Sk such that
(VI,z,v) € (—J,J) x B(0,K) x R |d,L(I,z,v)| < ax + B L(I,z,v),
where B(0, K) = {z ¢ R?: |z| < K}.

Finally, we assume the initial data g to be locally Lipschitz continuous, mini-
mized by 0 and coercive:

(G): ge VVZI’OO(Rd) , ming(x) =0, and lim g(z) = +o0.

o¢ z€R4 |z|—o00



Remark 1. The super-linearity in (L3) holds true pointwise in (I,x) by the very
definition of the Legendre transform (1.5). The main point here is the uniformity
with respect to x.

Theorem 1. Assume (L1)-(L4), and let Iy and I be two BV functions. If the two
associated variational solutions Vi and Vo of (1.4), equipped with the same initial
data g satisfying (G), satisfy the constraints

(Vt,7) min Vi(t,z) =0 (1.7)
zER?

then Iy and Iy coincide almost everywhere, and so do Vi and V5.

To make the connection with viscosity solutions, we state the following auxiliary
result:

Theorem 2. Assume (L1)-(L4). For each I(t) of bounded variation and g satisfying
(G), the variational solution V (t,x) with initial data g, given by (1.4), is the unique
locally Lipschitz viscosity solution of (1.1) over [0,T) x RY.

Our result encompasses the framework of the convergence results in e.g. [20,
Theorem 4.1] and [6, Theorem 1.2] and [17, Theorem 3.1]. The latter established
convergence of subsequences (ue,) towards locally Lipschitz viscosity solutions via
uniform BV estimates on the sequences (Ic). With our uniqueness theorem, it can
be concluded that the whole sequence (u.) converges to the unique solution in each
problem.

The reason for separating the two statements in Theorem 1 and Theorem 2 is
to emphasize the use of the variational formulation in our proof. It would be of
considerable interest to by-pass the variational formulation and derive uniqueness
from PDE arguments only. Uniqueness of unbounded solutions generally requires
stringent conditions on the growth of the solution and the Hamiltonian [4, 7], but
here this issue is mediated by the fact that the Hamiltonian function is convex, and
the solution is non-negative by definition. We could not find a reference containing
precisely Theorem 2, but [8] is close, and we adapt their proof to our context in the
Appendix.

1.3 Examples

First, we apply our result to the special case presented in Section 1.1.

Corollary 3. Consider the problem (1.3) with the initial data g as in (G). Assume
that R € C2(R x RY) satisfies

R
—(,z) <0 and (VI) sup R(I,z)< 40, (1.8)

(VI z)
oI -y

then the solution pair (u,I) to the constrained Hamilton-Jacobi equation (1.3) is
unique, in the class of locally Lipschitz viscosity solutions u, and BV functions I.

The condition (1.8) is natural from the biological viewpoint as the net growth
rate is (i) depends negatively on the population burden I, and (ii) is presumably
bounded from above. Since the three other conditions (L1), (L2) and (L4) are



straightforward, it is sufficient to verify (L3). Indeed, the Lagrangian L is given
by +|v|?> — R(I,z). Moreover, since the range of the BV function I(t) lies in some
bounded interval [—J,J], it is sufficient to restrict R to [~J,J] x R? to address
uniqueness over a bounded time interval (0,77). Since it is immediate from (1.8)
that R is uniformly bounded over [—.J, J] x R%, (L3) follows.

Our result also includes relevant examples that were not covered by the previ-
ous contributions, particularly non-separable Hamiltonian functions H (I, z,p). For
instance, consider the following quantitative genetics model:

€Oy — / ;dK <"“" - “") B(L(), ')ne(t,2') da’ — noD(L(1), ),

€

where I.(t) is the same as in (1.2), and K is a probability distribution function
that encodes the mutational effects after reproduction: if the parent has trait z/,
and gives birth at rate B(I,, '), the trait = of the offspring is distributed following

K(z—2)=LK (x_wl). Assume that K is symmetric, and has finite exponential

_6 c

moments, and denote by K its Laplace transform: K(p) = [ K(z)exp(p-z) dz. Then,
the limiting problem as ¢ — 0 is (1.1) with the following Hamiltonian function [6]:

H(I,z,p) =B(l,x)K(p) — D(I,x). (1.9)

Corollary 4. Consider the problem (1.1) with the Hamiltonian (1.9), and the initial
data g as in (G). Assume that K is the Laplace transform of a symmetric p.d.f. with
finite exponential moments, and that B, D € C*(R x RY) are non-negative functions
which satisfy the following conditions:

(VI,z) B>0 and (VJ>D0) sup B(I,x) < oo,
[—JxJ]xRd

accompanied with the following monotonicity conditions:

0B oD
W(I,x) < O, and W

then the solution pair (u,I) to the constrained Hamilton-Jacobi equation (1.1) is
unique, in the class of locally Lipschitz viscosity solutions u, and BV functions I.

(VI,z) (I,z) >0,

Proof. There are a few items to check in order to apply Theorem 1. Firstly, the
Hamiltonian function H (1.9) clearly verifies (H1) and (H2), hence (L1) and (L2)
follows. Secondly, the Lagrangian function L associated with the Hamiltonian H
(1.9) is

L(I,z,0) = B(I,2)L <B(;’x>> +D(,x),

where L£(v) is the Legendre transform of IC(p). Let Iy, Is be the two functions that

are involved in the uniqueness test. Define Boo := sup[_; jjxre B, where [—J, J] is
a bounded interval in which both I; and I take values. Condition (L3) is clearly

verified with ©(-) = B + BooL (K) > 0, because L is decreasing with respect

to the value B, Bo, < +00 and L satifies (L3) automatically (see Remark 1). The
justification of (L4) requires more work. We begin with the following inequality:

dpyL(v) -v<2(1+ L(v)) . (1.10)



To derive it, consider the following pointwise inequality: for all X € R, cosh X <
1+ %X sinh X, which in turn implies the following one by symmetry of K:

K(p) = /K(z) cosh(p - z)dz

< 1+;/K(z)(p-z)sinh(p~z)dz:1+;/K(z)(p-z)exp(p-z)dz.

By applying this estimate to p = d,L(v) & v = d,K(p) in the dual Legendre
transformation £ <> K, we deduce, by the fact K(p) + L(v) > p - v, that

dyL(v)-v—L(v) <K(p) <1+ %dvﬁ(v) V.

This yields the simple estimate announced in (1.10).
The technical condition (L4) is reformulated in this context as follows, after
division by B > 0:

v

d.(log B)L () = du(log B) (4. ()

E) deD‘

B
1 v D
<ag— —)+=).
<ang+ o (£(5) )
It is indeed guaranteed for a suitable choices of af, Bx. The main arguments besides

(1.10) are: both |d,(log B)| and |d, D/B| are locally uniformly bounded from above,
1/B is locally uniformly bounded from below, and D is non-negative. O

1.4 The Pessimization Principle: /(t) is non-decreasing

The pessimization principle [9] is a concept in adaptive dynamics, which says that
if the environmental feedback is encoded by a scalar quantity I(t) € R at any time,
mutations and natural selection inevitably lead to deterioration/Verelendung. In the
setting of this paper, it can be formulated by claiming that the population burden
I(t) is a non-decreasing function.

In this section, we give an additional assumption that guarantees this claim.

Theorem 5. Under the assumptions (L1) - (L4), let (u,I) be the unique solution
pair to (1.1) such that u is a locally Lipschitz viscosity solution, and I is BV.
Assume, in addition, that

(L5): (VI,z,v) L(I,z,v)> L(I,x,0).
Then I is non-decreasing with respect to time.
Note that (L5) is equivalent to d,L(I,z,0) = 0 by convexity, and thus to

dyH(I,z,0) = 0 by duality. It is clearly verified for the two examples in Section 1.3
by symmetry of the Hamiltonian function with respect to p = 0.

Corollary 6. Under the assumption (1.8), let (u,I) be the unique solution pair to
(1.3), with the initial data g as in (G). Then I is non-decreasing with respect to
time.

Corollary 7. Under the assumptions of Corollary 4, let (u, I) be the unique solution
pair to the problem (1.1) with the Hamiltonian (1.9), and the initial data g as in
(G). Then I is non-decreasing with respect to time.



1.5 Organization

In Section 2, we quantify the BV regularity of minimizing curves. The proof of
the main result (Theorem 1) is given in Section 3. The pessimization principle
(Theorem 5) is proved in Section 4. Finally, the version of variational principle we
need (Theorem 2) is proved in Appendix A.

Acknowledgment. This work was initiated as the first author was visiting Ohio
State University. VC has funding from the European Research Council (ERC) un-
der the European Union’s Horizon 2020 research and innovation programme (grant
agreement No 639638). KYL is partially supported by the National Science Foun-
dation under grant DMS-1853561.

2 Regularity of the minimizing curves

Let (t,x) € (0,T) x R, and let 4** be a minimizing curve in (1.4) for some given
I(t). We take the existence of minimizing curves for granted. It follows from stan-
dard methods in Lagrangian dynamics, see e.g. [11], and the a priori compactness
estimates obtained in Lemma 9 below. The purpose of this section is to establish
BV regularity of the derivative %% provided that I(t) is BV itself. Such regularity
is crucial in our proof of uniqueness.

First, we establish the following consequence of the convexity and the super-
linearity of the Lagrangian:

Lemma 8. Assume (L1) and (L3), then
(VI, x) lim

and the limit is uniform over (I,z) lying in compact subsets of RH1,

Proof. Fix K > 0 and let (I,z) € [-K, K] x B(0,K). Let M > 0 be given, and
choose 1y = ro(K) > 0 large enough so that for all r > ro,

O(r) —Ce — L(I,x,0) > Mr.
Then we have, for r > ry and e € S,
L(I,z,re) — L(I,x,0) > Mr.

By convexity of L in v, we have, for all e € S*! and r > ro,

d L(I —L(I
de(I,:L',Te)-e:f(L(I,x,re))2 ( 7%,7’6) ( 71'70) ZM
dr r
Therefore, for each M there exists r¢ such that d,L(I,z,v) - v > M|v|, provided
that |v| > rog and (I,z) € [-K, K] x B(0, K). O

We will now establish the BV estimate of ¥4* for (t,x) € (0,T) x R%. For the
remainder of this section, we fix 7' > 0 and J so that sup p) /| < J. For ease of
notation, dependence of various constants on T" and J will be suppressed.



Lemma 9. Assume (L1), (L3) and (L4), then for each K, there exists a constant
Ck such that, uniformly for (t,z) € (0,T) x B(0, K), any minimizing curve v €
AC(0,t) associated with (1.4) satisfies

IV w0 = 17" e @) + 117 ll=0.) < Cr, (2.1)

and
5 Bvior < Ck (t+ pvog) - (2.2)

Proof. The proof is divided into three steps, wherein classical arguments are recalled
for the sake of completeness. For the sake of notation, we drop the superscript of
Ab*  assuming that the pair (¢,2) € (0,T) x B(0, K) is fixed throughout the proof.
Step #1: L* bound on . We deduce immediately the following bound from
(L3):

/0 O(7(s)]) ds — Ct + g(v(0)) S/O L(I(s),7(s),7(s)) ds + g(7(0))
§/0 L(I(s),z,0)ds+ g(z), (2.3)

from which we deduce a non-optimal W' estimate

[ Blds < s [ 101().2.0)ds+ g(a) — g2(0)).
0 0

by using the super-linearity of © in a crude way, namely, ©(|v|) > |v| — C. Further-
more, we deduce from g > 0 that % belongs to L'(0,t). Consequently, there exists
a constant C'. such that, uniformly for (¢,z) € (0,7) x B(0, K), we have

I7($)ll 20,6 < Ckc -

Let A = A(g, K) be the (local) Lipschitz bound on g in the ball with radius C'.
By updating the constant C, we can assume that L(I,z,v) > (A+ 1)|v| — C. Back
to (2.3), we deduce that

(A+1)/O 4 (s)] ds<Ct+/0 L(I(s),x,O)ds+A/0 4(s)| ds,

We obtain as a consequence the following updated estimate:

1 t 1 t
75/0 1(s)] dsSC’—}—t/O L(I(s),x,0)ds <", (2.4)

where the bound C” is uniform for (¢,z) € (0,T) x B(0, K), and I(s) taking values
in [—J, J].
Step #2: L*° bound on 4. We deduce from (2.4) that there exists a subset
Stz C (0,t) of positive measure, such that for all § € S; 4, |(8)] < 2C".

Since 7 is a minimizing curve, it satisfies the following Euler-Lagrange condition
in the distributional sense:

d

= 72 (doL(1(s),7(5),7(s))) + dz L(I(s),7(s),7(s)) =0 in (0,2). (2.5)



Let Leb(f) denote the set of Lebesgue points of the function f. Let s1, so € (0,1)
belong to Leb(I) N Leb(%). Let {pn}nen be a family of mollifiers so that p,(- — s;)
is compactly supported in (0,%) for i = 1,2 and n € N. We can test (2.5) against
0(s) := [y (pn(s’ — s2) — pn(s’ — s1) ds’. After integration by parts, we find that:

< / (o L(I(5),4(5), 4(5))] ds

(2.6)
where we have used that the test function 6 satisfies |f(s)| < 1 for s € (0,¢), and
that 6(0) = 6(¢) = 0 holds. Using the definition of the Lebesgue points, we find that

| L6126 A (pals = 52) = (s = s0)

0

lim dyL(I(s),7(s),7(8))pn(s — si)ds = dyL(I(s;),v(s:),¥(s:)) - (2.7)

n—-+o00 0

Then, we can specialize s; € Leb(I) N Leb(¥) N St because the latter has positive
measure. We deduce from (2.6)—(2.7), and the definition of S;, that

o L(I(52), 7(s2), 4(s2))] < C + /O | L(I("), 7(5), 4 (5)| ds,

for all sy € Leb(Z) N Leb(%). Multiplying by the unit vector ggzz;‘, and using (L4),
we find:

dy L(I(s2),7(52),¥(52)) - ¥(s2)
[ (s2)]

< C’—l—/o |do L(I(s"),7(s"),%(s"))| ds'

<cy /0 [k + Brer LUL(), (), ()] s

where K' = [|v||ge(0,). We deduce from the uniform bound of [|v||pe (o, and
the minimizing property of + that the right-hand-side is uniformly bounded for
(t,x,I) € (0,T) x B(0,K) x [—J,J]. Hence,

de(I(S)7’Y(S)7fy(S)> i ’Y(s) <C
[7(s)] B

and the boundedness of 7 is a consequence of Lemma 8. This proves (2.1).
Step #3: BV bound on 4. Back to (2.5), we see that

p(s) = duL(I(s),7(s),7(s))

is Lipschitz continuous as I,v,%4 € L*, and L is C?. By the Fenchel-Legendre
duality, we have

a.e. s € (0,1),

/Y(S) = de(I(S)7 7(8)7p(8))
Therefore, v is BV.
From the chain rule involving BV functions (see [1] and references therein, as
well as [2, Theorem 3.96]), we deduce as a by-product that
(Bvorn < [de]Lip([_JJ]><B((]7||'y‘|oo)><B(0,H;y||oo)) ([P]BV(O,t) + DlBvon + [I]BV(O,t)) .

Both p and ~ are Lipschitz continuous, so there exists a positive constant C' such
that max([p] v (0,), [YlBV(0,)) < Ct. Hence, we have obtained (2.2). O

10



3 Uniqueness of the variational solution (proof of The-
orem 1)

Let I,1o € BV(0,T). There exists a constant J such that I; and I take value in
[—J, J]. Recall the definition of the variational solutions V1, Vs (1.4):

t
Vi(t,z) = inf L(I () d 0
)= it e ) ds g ) ]
t
Va(t,z) = inf L(I io(s))d 0) b .
st = w6060, 329)ds +0a(0) )
Lemma 10. There exists C' > 0 such that for j = 1,2,
Vj(t,xz) > min{m, min g(x’)} - Ct.
2 ilel/2

Proof. By definition of the variational solution and (L3), we have
t
Vi) = [ L(5)0.45°) ds g (70
0

> [ (1 - 0) ds o (4 0)

|2 [>|z|/2

> min{|m|/2, min g(a:')} - Ct

where we used the fact that v%%(¢t) = x and that |z| < |z —~45%(0)| + |v4*(0)], so
that: either |z —45%(0)| > |z|/2 or [45%(0)] > |z|/2. O

On the way to proving Theorem 1, we seek a pair of uniformly positive weights
¢;, j = 1,2, such that p = I — I verifies both [} ¢opds > 0 and [j ¢1pds < 0.

By Lemma 10 and (G), we deduce that « — Vj}(t,z) attains minimum in some
bounded set, say B(0, K), uniformly for ¢ € (0,T).

Let 2! (resp. ) be some minimum point for Vi (¢,-) (resp. Va(t,-)) — this might
not be unique — and let 74 (s) (resp. v4(s)) be an optimal trajectory ending up at
2} (resp. x}). We deduce from Lemma 9 that "yj- lies in BV, uniformly with respect
tot e (0,7):

max | <C. (3.1)

!
J=1,2 ) BV(0,t)

Using the formulation (1.6) for I; with the curve 7%, then the optimality of ~}
for I, we find the following set of inequalities:

0< /0 L(11(5),74(5), 44(s)) ds + g(74(0))
- /0 L(I5(5),44(s), 34(5))ds + g(24(0)) + /0 b1(t,5) (11 (5) — Do(s)) ds,
_ _/0 b1(t,s) (In(s) — I (s)) ds.
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i.e.

t
/0 b1(t,5) (In(s) — I1(s)) ds <0, (3.2)
where the positive weight ¢; is given by
Lor
on(t.s) = [ L (A=00() + 015240 35() B (33)
0

Similarly, by exchanging the roles of the two solutions, we obtain

t
/0 ¢a(t,s) (I2(s) — I1(s)) ds > 0, (3.4)

where the positive weight ¢9 is given by

1
oa(t:5) = [ 57 (1= O(s) + 014 9. (39)

By Assumption (L2) and the uniform boundedness of (I;(s),74(s),35(s)) (by (2.1)
and (3.1)), there exists A > 0 such that:

(Vt,s) min ¢;(t,s) > . (3.6)
7=1,2

Functions of bounded variations have left- and right-limits everywhere. Here, we
focus on the value of the right-limit at the origin. This is expressed in the following
statement.

Lemma 11. Let ¢, ¢2 be defined as in (3.3) and (3.5). Then

tl—i>%1+ {[éﬁl(tv ‘)]BV(O,t) + [02(t, ')]BV(Ovt)} =0

Proof. Our first observation is that BV regularity of {I;};—1 2 implies the following
smallness estimate:

Jim {[B]pyn + Elaven | =0 (3.7)

The important point here is that the left point of the interval is fixed to 0. The same
conclusion would not be true if the interval (0, ¢) would be replaced with (—t,¢) due
to possible jump discontinuity at the origin. To prove (3.7), let us decompose Iy,
say, into a difference of non-decreasing functions Iy = I f —I;. Then,

t —t
[Il]BV(O,t) < If‘0+ + 1 ’0+ t—>—0->- 0, (3.8)

simply because [ fr and I; have right limits at the origin.
By (2.2), we get that this vanishing limit can be extended to "y]t- as well:

58] pyion <€ (t + (1] BV(O,t)) =0 (3.9)

Consequently, we are able to estimate [¢2(t, )] gy as follows. To keep the idea

concise, we will compute the derivative % of the BV function ¢s(t,-) in the sense
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of a finite measure on (0,t), so that [¢2(t, )]sy (0 = f(o " %(t, s)|ds. We shall
adopt this convention for the remainder of the paper.

’%f@,s)‘ </ [t 20 (- 0nte) + 01 () | o

1 1
+ [t L)) ao+ [ L)) as
< C (1)) + 1ha(s)] + B ()] + 3 (9)]) (3.10)
where we have used the shortcut notation I'(s) = ((1—0)I2(s)+011(s), 7 (s), 4 (s)).
We may integrate the latter over the open interval (0,¢) to obtain
[p2(t, )] BV (04 < C ([Il]BV(o,t) + L] By + 1+ [%]BV(Oi))
< C([Ipviog + lBvos + 1)

where we used (3.9). By (3.8), we deduce that tlir0n+[d>2(t, Bv(o,) = 0. The proof
ﬁ

for ¢1 is analogous. O
We are now in position to prove Theorem 1.

Proof of Theorem 1. Let u = I, — I and suppose to the contrary that p # 0 on a
set of positive measure in (0, 7).

We claim that we may assume, without loss of generality, that p # 0 in a set of
positive measure in (0,t), for each ¢ € (0,7). To see this claim, let

to :=sup{t > 0: u(s) =0 ae. in [0,t]}.

If tyg = 0, we are done. If ¢y > 0, then the variational solutions V; (t, ) = Va(t, ) are
identical for (t,z) € [0,%9] x R%. Now, Vj(t,-) has minimum value zero (by (1.7))
and is coercive (by Lemma 10), so the condition (G) is verified. Therefore, we may
re-label the initial time to be ty. In any case, it suffices to derive a contradiction
assuming p # 0 in a set of positive measure in (0, ), for each ¢t € (0,7).

Using fg ¢a(t,s)u(s)ds > 0 (by (3.4)), we may integrate by parts to obtain

oattst=) [ n(r)dr = [, G ([ mar) ass [ it omis) as

> /(O’t) %(t,s) </OSM(T) dT) ds

Taking the negative part, we deduce the following partial estimate,
t s
oatsto) ([ ntsras) < sw | [umyar| ) [ 1002
0 - se(0,t) 1Jo (0,t) Js
Similarly we deduce from (3.2) that
t s t
ontt.t-) [ n(ryar= [ Gk ( | utr dr> s+ [ onttouts)ds
0 o 0Os 0 0

L og
g/ot%‘;l(t,s) </Osu(7')d7'> ds

13
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Taking the positive part, we deduce the following complementary estimate,

ot ) ( / tu(s)ds)+ < (é‘(t%) / () dT> / t

Combining (3.11) and (3.12), together with (3.6), we obtain

t t 0ob; s
/ w(s)ds| < max {/ “(t, s)’ ds} sup / wu(T)dr
0 =12 (Jo | Os se(0,t) 1J0

Next, Lemma 11 ensures that there exists t; > 0 so that
A
5"

t .
sup max{/ 9¢i (t, s)’ ds} <
te(o’tl)ZZI,Q 0 88

Then, taking supremum in (3.13) for 0 < t < t1, we have

t s
Al sup / wu(s)ds| | < A sup / wu(r)dr| ] .
te(0,i1) 1/o 2 \se0,) 1o

This implies fg p(s)ds =0 for all ¢t € [0,t1]. Hence, u(t) = 0 almost everywhere on
(0,%1). This is in contradiction with the assumption that p # 0 on a set of positive
measure in (0,¢1), and we conclude that I — I} = = 0 a.e. Finally Vj = V3 by
virtue of the variational formulation. O

00,
O0s

(¢, s)’ ds (3.12)

) (3.13)

A

Remark 2. We discuss a situation when the montonicity assumption (H2) or (L2)
may not hold globally, but our arguments in Section 4 can still be applied. Sup-
pose (Vi(t,xz), I;(t)) € W/lifo(R x [0,T]) x BV([0,T]) (i =1,2) are two variational
solutions such that V;(0,2) = g(x), and suppose we have reduced to the situation
that, for each t small, the set {t' € (0,t) : I,(t') # I2(t')} has positive measure. By
inspection of the proof of Theorem 1, we need the following conditions:

(U1) L(I,t,z,v) = L(v) — R(I,t,z) is of class C.

(U2) Fori=1,2, Vi(t,x) admit the variational characterization

t

Vi(t,z) = inf /L[Z‘S,S, s),y(s)) ds + 0}

o= it A 06500956 ds + 966(0)
for each (t,x) € [0,T] x RZ.

(U3) Fori=1,2 andt > 0 small, there exists zt € {x : V(t,z) =0} such that

(i) lim zf ewists;
t—0+

.. . o . t .
(ii) 021;51 GIR(t1_1>I(1)rl+[(1 0)I(t) + GIg(t)],O,tgrgl+ xy) < 0;

(iii) lim gup H’yf||Loo(07t) < 400, where v} is the minimizing path corresponding
t—0+

to value of V; at the point (t,zt).

14



The key is to replace inequality (3.6), which may no longer be true, by a weaker
inequality. Indeed, we can follow (3.5) to define

1
¢i(t, 5) :/0 OrL((1 = 0)11(s) + 012(s), 5,75 _4(s), ¥3_(s)) db

1
= —/ OrR((1 — 0)I1(s) + 012(s), 5,75 _;(s)) db. (3.14)
0
By (U3)(iii), we have
sup |'yf(8) — xf| = sup Wf(s) - yf(t)| —0 ast—0+. (3.15)
(0,t) (0,¢)

Hence, we have the following estimate to replace (3.6):

liminf inf ¢;(¢,
I )

1
T . . . t
= hfi}éﬂf Sé&i)/() OrR((1 —0)I1(s) 4+ 012(s), s, v3_;(s)) dO
>\ i= — i — 1 o .

> A= = sup Rl 1= 010+ 0010, Jig af ) >0, (310

where we used (3.14) to obtain the first equality, then used (3.15) to obtain the first
inequality, and then used (U3)(ii) for the final inequality. By invoking (3.16) instead
of (3.6), one can repeat the evact same arguments in the proof of Lemma 11' and
Theorem 1 to derive a contradiction.

4 Proof of the Pessimization Principle

We prove Theorem 5 in this section.

Proof of Theorem 5. We start by choosing the right-continuous representative of
without loss of generality. For each t > 0, let ! be a minimum point of z + u(t, z)
as before, and let 4* be an associated minimizing curve ending up at .

Step #1: L(I(t—),x!,0) <0 for all t. It follows from the non-negativity constraint
and the variational formulation (1.4) that

0 < u(s,'(s)) = /0 CLI(),44(), A1) s’ + g(17(0))  for 0 < s <t,

and the equality holds when s = ¢. Hence, we deduce that L(I(t—),v*(t—),4'(t—)) <
0. Since v!(t—) = 7%(t) = 2t, we may use (L5) to deduce that
L(I(t=),",0) < L(I(t=),7"(t=),4'(t=)) < 0.

Step #2: I(t—) < I(t+) for all t. Fix t > 0, let ' and 7' be as above. We define
71 :[0,t 4+ 1] — R4 by

t
[ Af(s) for0<s<t,
71(s) _{ xt for s > t.

!Under assumption (U1), the term |44 (s)| does not appear on the right hand side of (3.10), as
d1L is independent of 4. For this reason, the estimate [v;"*] gy (0,s) — 0 is not included in (U3)(iii).

15



Then 1 € AC[0,t+ 1] and for all 0 < h < 1,
t+h
0<wu(+hmn(t+h)< / L(I(s"),m(s"),41(s")) ds’ + g(71(0)).
0
Since 0 = u(t,v1(t)) = fg L(I(s"),7(s),71(s))ds" + g(71(0)), we have

t+h t+h
0< /t LU(s'), (), 4 (s')) ds’ < /t LUI(s),25,0)ds'.  (4.1)

Dividing by h, and letting h — 0+, we obtain L(I(t+),z!,0) > 0. Comparing with
L(I(t—),2%0) <0 (by Step #1), we deduce from the monotonicity of L in I (L2)
that I(t—) < I(t+) for all t > 0.

Step #3: Conclusion. Suppose to the contrary that I(t2) < I(t;) for some
t1 < to. Since I is right-continuous, there exists t3 > to such that I(t) < I(t;) for
all t € [ta,t3). Let tog = sup{t € [t1,t3) : [(t) > I(t1)}. Then ty < to < t3, and

I(t) < I(tl) < I(to—) fort € (to,tg). (42)
Now, using Step #1 and (4.1) from Step #2, we have

t3

0< / [L(I(s),2",0) — L(I(ty—),z",0)] ds'.
to

However, this is in contradiction with (4.2), in view of the fact that L is strictly

increasing in I, due to (L2). O

A Variational and viscosity solutions coincide (proof of
Theorem 2)

Given I € BV(0,T), let V(t,z) denote the corresponding variational solution of
(1.4). The purpose of this section is to show that V(¢,x) is the unique locally
Lipschitz viscosity solution of (1.1). This can be achieved by establishing comparison
theorem, i.e. u <V (resp. u > V) for all locally Lipschitz viscosity sub-solution
(resp. super-solution) of (1.1). While there are PDE proofs for such comparison
results among continuous, but not necessarily Lipschitz, super and sub-solutions of
(1.1), they are usually proved under slightly different conditions than (L1) - (L4).
For instance, in [13] (see also [16, Appendix A]), it is assumed that the Hamiltonian
H is uniformly Lipschitz in « € R?. Henceforth, we will adopt techniques in convex
analysis to prove the comparison between the variational solution with Lipschitz
continuous super and sub-solutions of (1.1), under exactly the assumptions (L1) -
(L4).

As the Hamiltonian is convex with respect to p, sub-solutions in the almost
everywhere sense, and viscosity sub-solutions in particular, lie automatically below
the variational solution [4, 11]. We include a proof here for the sake of completeness.

Proposition 12. Assume that u is locally Lipschitz, that u(0,x) < g(x) for all z,
and that the following inequality holds for almost every (t,z) € (0,T) x RY,

Owu(t,x) + H(I(t), z,dyu(t,z)) <0 a.e. (A1)
Then, u <V,
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Proof. The proof is adapted from [11, Section 4.2]. A more direct proof can be
found in [4, Section 9] but the latter assumes time continuity for H, which does not
hold in the present case. A first observation is that (A.1) makes perfect sense as
u is differentiable almost everywhere by Rademacher’s theorem. We shall establish
that .
2
u(ta, y(t2)) — u(ts, v(t1)) S/ L(I(s),7(s),7(s)) ds, (A.2)
t1
for all curves v € W1, Thus, the result will follow immediately by taking the
infimum with respect to 7, since (2.1) of Lemma 9 says that any minimizer is indeed
Whee,
To prove (A.2), we proceed by a density argument. The case of a linear curve
v =2+ (s — t1)v is handled as follows: firstly, we deduce from (A.1) that

Owu(t,x) + dyu(t,z) -v < L(I(t),xz,v) a.e. (A.3)

Secondly, by Fubini’s theorem one can find a sequence x,, — x such that (A.3) holds
almost everywhere in the line {(s,z, + (s — t1)v)} for each n. Therefore, we can
apply the chain rule to u(s, z, + (s — t1)v), so as to obtain:

% (u(s, 2n + (5 — £1)0)) < L(I(S), 2 + (5 — t1)0,0) ace. (A4)
We deduce that (A.2) holds true for all linear curves by integrating (A.4) from t;
to t3 and taking the limit n — +oo.

Consequently, (A.2) holds true for any piecewise linear curve. The conclusion
follows by a density argument of piecewise linear curves in the set of curves having
bounded measurable derivatives. O

It remains to show that viscosity super-solutions lie above the variational so-
lution. For completeness’ sake, we give a definition of super-solution for time-
measurable Hamiltonians. (See [12, 15] for various other equivalent definitions.)

Definition 13 (Viscosity super-solution). Let ¢ € C*(R?) be such that the minima
of u(t,-) — ¢ are reached in a ball of radius R for all t € [0,T]. Let M(t) be the set
of minimum points of u(t,-) — ¢, and m(t) = minu(t,-) — ¢. Then, it is required
that the following inequality holds true in the distributional sense:

m/(t) + :g}}gt)H(I(t), y,dz0(y)) >0 inD'(0,T). (A.5)

Rather than directly invoking Definition 13, we will only use the following two
consequences of it in our proofs.

Remark 3. In case I(t) is continuous, then H(t,z,p) := H(I(t),z,p) defines a
continuous Hamiltonian. In that case, the above definition is consistent with the
usual one for viscosity super-solution based on the notion of sub-differential [4, Def-
inition 8.2]. Namely, u € C((0,T) x RY) is a super-solution of (1.1) if, for each
(t, ),

q+H(t,z,p) >0 forall (¢,p) € D> u(t, z),
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where the set of sub-differential, D>~ u(t,x), is the subset of R x R given by

D*~u(t,z) ={(q,p) : (Vp,v) ul(t, ) —u(t — p,x — sv) < gsp + (p, sv) + o(s)}.

Remark 4. Suppose that u is a viscosity super-solution of (1.1) for some I(t) in
the sense of Definition 13, and that I(t) > I(t) for some continuous I(t), then by
monotonicity of H in I, it can be verified that u is a super-solution of (1.1), with
I(t) replaced by I(t), in the usual sense as in Remark 3. See [15] for details.

Proposition 14. Assume that u is a locally Lipschitz viscosity super-solution, in
the sense of Definition 13, and that uw(0,z) > g(z) for all x. Then, u > V.

Proof. We follow the lines of [8] which is essentially based on convex analysis. We
adapt their proof in our context for the sake of completeness. We will first prove the
proposition in the special case of I € W°(0,T). This assumption will be relaxed
to I € BV(0,T) at the end of the proof.

Step #1: Finding the backward velocity: setting of the problem. The
key is to find, for each (¢, ), a particular direction v(¢,x), such that the following
inequality holds true:

dyu(t,z)(1,v(t,x)) > L(I(t),z,v(t,x)), (A.6)

where diu(t,x)(p,v) is the one-sided directional differentiation in the direction

(1, v):
u(t, ) —u(t — sp,x — sv) ‘

diu(t,x)(pu,v) = limsup
s—0+ S

We can interpret (A.6) as follows: there exists an element which is common to
the partial epigraph of v — L(I(t),x,v):

Eie = B (L(I(D),2,0)) = {(v,0) € R x R : £ > L(I(t),z,) }
and to the hypograph of v — diu(t, z)(1,v):
Hypo,(du(t, z)(1,v)) = {(v,e) ERIXR: (< d+u(t,x)(1,v)} :

For technical reason, we consider the full hypograph H; , = Hypo,, ,,)(d+u(t, z)(p, v)),
taken with respect to variables (u,v) € R x R?. Precisely,

u(t,x) —u(t — sp,x — sv)

Hin = {(,u,v,f) e RxR?Y x R : ¢ < lim sup
s—0+ S

} . (AT

In contrast with Hypo,(dtu(t,z)(1,v)), Hia is a cone because the quantity in
(A.7) is positively homogeneous with respect to (u,v). In fact, it coincides with the
definition of a contingent cone, up to a change of sign. If S C RY is a non-empty
subset, and z € RV, recall that the contingent cone of S at z, denoted by Tg(z), is
defined as follows [3, Definition 3.2.1]:

weTy(z) = liminf SHEFSVS) o

s—0t S
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Figure 1: Tllustration of various shapes of cones as they may appear for a scalar function u
(in opposition to the text where the domain of w is genuinely multi-dimensional). The regions
shaded green correspond to (translated) hypograph (z;,u(z;)) + H.,, whereas the region
shaded orange correspond to the (translated) contingent cones (z;, u(2;))+ Tepiw(2i, u(2i)) =
(zi,u(z;)) — H,,. Note that we have translated the vertices of the cones to the respective
points (z;, u(z;)) for illustrative purposes.

Then, we claim the following equivalence:

Hioe = _TEpiu(t7x’u(ta$)) ’ (AS)

)

where Epiu = {(t,z,¢) : £ > u(t,x)}. For the convenience of readers, the equiv-
alence (A.8) is illustrated in Figure 1 for a scalar function u. Now we show (A.8).
Indeed, (1, v,¢) belongs to —Tgpi(t, z, u(t, z)) if and only if there exist subsequences
$p, — 0+ and (t,, zy, u,) such that:

t — Sppt =tn + 0o(sp)
T — SpU = Ty + 0(8p) and  uy > utn, ).
u(t, ) — spl = up + o(sy)

The latter inequality is inherited from the choice S = Epiu. Reorganizing the
terms, and using the Lipschitz continuity of u, we obtain:

u(t, ) — spl > u(t — spp, x — spv) + o(sy) ,

u(t,x) — u(t — spp, T — Spv)

>/l+o(l).
Sn
The latter is precisely (A.7). i.e. (u,v,¢) € Hi, and this proves (A.8).
Summarizing, we are seeking a vector v € R? so that the element (1, v, L(I(t),z,v))
is common to H;, and to {1} x & .. The latter is a convex set, but the former is
not necessarily convex. Therefore, we are led to consider its convex closure co(H,z)
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in order to use the separation theorem. Next, we shall use the viability theory to
remove the convex closure, exactly as in [8].

Step #2: Finding the backward velocity: the separation theorem. We
wish to avoid separation of the two convex sets €o(H; ) and {1} x & . We argue by
contradiction. If the two sets are separated, then there exists a linear form ¢-+(p, -)
such that (i) ©6(H¢ ) lies below the hyper-plane {(u, v,¢) : £ = qu+ (p,v) }, and (ii)
{1} x &, lies strictly above it [21]. We deduce from the latter condition (ii) that
q+ (p,v) < L(I(t),z,v) — 0 for all v € R? and some § > 0. This can be recast as
g+ H(I(t),z,p) < —0 from the definition of the Legendre transform. On the other
hand, we deduce from condition (i) that

u(t,x) — u(t — sy, x — sv)

lim sup
s—0t S

= diu(t,x)(p,v) < qu+ (p,v),

for all (u,v) € RL. Consequently, (¢,p) belongs to the subdifferential of u at
(t,xz). By applying the usual criterion of viscosity super-solutions for continuous
Hamiltonian functions (see Remark 3), we find that ¢ + H(I(¢),z,p) > 0. This is a
contradiction. Thus, the two convex sets are not separated, i.e.

(Vt,2)  C0(Hia) N ({1} x Ee) # 0. (A.9)

Step #3: Finding the backward velocity: the viability theorem. Note that
(A.9) is equivalent to

(Vt,z) co(—Tepiu(t,z, u(t,z))) N ({1} x Eq) #0. (A.10)
We wish to use the viability theorem [3, p. 85] (see also [8, Theorem 2.3)):

Theorem 15 (Viability). Suppose that G : RY s RN is an upper semi-continuous
set-valued map with compact convex values. Then for each closed set S C RN, the
following statements are equivalent:

(a) (Vze€S) Ts(z)NG(z)#0;
(b)  (Vze€8) (0Ts(z)) NG(z) # 0.

Further compactness estimate is required in order to apply Theorem 15. We
claim that we can restrict (A.9) to a compact set:

(1) O ({1} X E) 0 ({1} x B(O, Ry x [m, M]) # 0,
where for each K > 0, Rx = max{1,rx}, with rx increasing in K such that
@(’I”) > [U]LIP(W)(l + T‘) + Co for all » > rg, (All)

(the choice of rx is possible due to the superlinear growth of ©), and m, M are
respectively m = min L, M = max L where both minimum and maximum are taken
over the set J x {x} x B(0, R|y), where J is a compact set containing the values
{1()}ee(o,1)-

To this end, consider the following two options: either the dual cone (Hz)~ is
empty or non-empty. In the first case, it implies co(H¢ ) = R?, so that any element
of & , is appropriate. In particular,

(1,0, L(I(t), 2,0)) € ©0(Hsx) N ({1} X E2) N ({1} x B(0,1) x [m, M]) . (A.12)
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In the second case, (H; )~ is non-empty. Hence, there exists a linear form ¢-+(p, -)
such that €6(H; ) lies below the linear set {qu + (p,v)} as in Step #2. Therefore,
every common point (1,v,¢) € €6(Hy ) N ({1} x &) (and there is at least one such
point) must satisfy
L(I(t),x,v) <L < g+ (p,v).

By the facts that (i) L grows uniformly super-linearly (by (L3)), and (ii) (¢,p) is
bounded as it belongs to the subdifferential of the locally Lipschitz function u, i.e.
max{|ql,|p|} < [u]Lip(m), we deduce

O(Jv]) = Co < L(I(t),x,v) < £ < [uly oresomy (L + 10)-

By the choice of 7 in (A.11), we must have |v| < ri with K = |z|, that is
e0(Hez) N ({1} x Era) N ({1} x B(0,75) x [m, M]) #0. (A.13)
By (A.12) and (A.13), and our choice of Ry, := max{1,r,}, we find that
0 (~Timpiuy (t; z, u(t, 2))) N (=G(t,x)) =T (Hea) N (Gt 2)) # 0,

where G(t,z) = — ({1} x &) N ({1} x B(0, Ry) x [m, M]) is a continuous set-
valued map with compact convex values. In order to apply the viability theorem to
the closed subset S = Epiu, it remains to check that the statement (b) of Theorem
15, i.e.
o (Tepiu(t,z, U))NG(t,x) # 0

holds for all (¢,z,U) € Epiu, and not only for points (¢, x,u(t,x)) on the graph of
u. This is immediate, as Tigpio}(t, z,U) = R for U > u(t, z).

Finally, all the assumptions of the viability theorem are met. As a consequence,
we can remove the convex closure in (A.10), and thus in (A.9), so as to obtain:

(Vt,2) HiwN ({1} X Era) £ 0.

In particular, for each (¢, x) there exists a vector v(¢,x) such that (A.6) holds true.
Step #4: Building the backward trajectory up to the initial time. Now
that we are able to make a small step backward at each (¢,z), let € > 0 be given,
and start from (¢, z9). There exists (sg,vp) such that

u(to, xo) > soL(t, z,v0) + u(to — So, To — Sovo) — €Sp -

By choosing sg small enough, we can even replace the right-hand-side by:
S0
u(to, zo) > / L(t — s,x0 — svo,v0) ds + u(to — o, xo — Sovo) — 2€s0.  (A.14)
0

In particular, we have

to
u(to, zo) > inf L(s',7(s"),4(s")) ds" + u(to — s0,7(to — s0)) — 250,

v to—so

where the infimum is taken over all v € ACY0,¢] such that v(fy) = z¢. As a result,
the set

Y= {T € (0,to) : u(ty,zo) > inf/
v e

to

LG A1), A4 () ds’ + ulr4(r)) — 2e(to T>} |
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is non-empty, and 7, := inf ¥ € [0,ty — so] is well-defined. We wish to prove that
7. = 0. Suppose, for contradiction, that 7, > 0. Then, the estimates obtained in
Lemma 9 allows to extract a converging sequence {7,} such that =, is defined on
the time span (7,,t), with 7, N\, 7x, and {%,} is uniformly BV [2l. Hence, we can
pass to the limit 4, — 4 a.e. by Helly’s Selection Theorem, and then use Bounded
Convergence Theorem to prove that

u(to, xo) > inf/ ’ L(s',v(s"),7(s") ds" 4+ u(7e, 7(7)) — 2e(to — Ts) -

By applying again the single step backward as in (A.14) at (7x,7(7«)), we can push
our lower estimate to an earlier time 7., € (0, 7,), and obtain thoroughly a contra-
diction. Thus, 7, = 0 and

to
u(to, xo) > inf/ L(s',v(s"),%(s") ds’ + g(7(0)) — 2¢tg = V (tg, o) — 2¢ty.
7 Jo

By letting € — 0, we have established that u > V in the case when ¢t — I(t) is
Lipschitz continuous.

To conclude, it remains to remove the additional continuity assumption on I(t).
Let I € BV(0,T). First of all, we approximate I(t) from below by a sequence of
Lipschitz functions Ij,(t) * I(t) converging pointwise [%!

Ii.(t) = inf (I(s) + k|t — s|) < I(t).
>0
It follows from (H2) and Remark 4 that u is also a super-solution associated with

Ij(t). Hence we have
w>V, in (0,T) x R%, (A.15)

where V}, is the variational solution associated with Ij.

On the other hand, the compactness estimates on minimizing curves obtained
in Lemma 9 combined with Lebesgue’s dominated convergence theorem guarantees
that Vi V. Thus, we may let kK — oo in (A.15) to deduce u > V. This completes
the proof. O
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