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Abstract

In quantitative genetics, viscosity solutions of Hamilton-Jacobi equations
appear naturally in the asymptotic limit of selection-mutation models when
the population variance vanishes. They have to be solved together with an un-
known function I(t) that arises as the counterpart of a non-negativity constraint
on the solution at each time. Although the uniqueness of viscosity solutions is
known for many variants of Hamilton-Jacobi equations, the uniqueness for this
particular type of constrained problem was not resolved, except in a few partic-
ular cases. Here, we provide a general answer to the uniqueness problem, based
on three main assumptions: convexity of the Hamiltonian function H(I, x, p)
with respect to p, monotonicity of H with respect to I, and BV regularity of
I(t).

1 Introduction

This note is intended to address uniqueness of the viscosity solution of the following
Hamilton-Jacobi equation, under a non-negativity constraint:



















∂tu(t, x) +H(I(t), x, dxu(t, x)) = 0 , t ∈ (0, T ) , x ∈ R
d,

min
x∈Rd

u(t, x) = 0 , t ∈ (0, T ),

u(0, x) = g(x) , x ∈ R
d,

(1.1)

where H : R × R
d × R

d → R is of class C2, and the initial data g ∈ W 1,∞
loc (Rd)

satisfies min g = 0. This problem arises naturally in the analysis of quantitative
genetics model in the asymptotic regime of small variance [10, 19, 5, 20, 6, 17].

The main difficulty, beyond the classical issue of weak solutions in the viscosity
sense, stems from the role played by the scalar quantity I(t) which is subject to no



equation, but is attached to the non-negativity constraint minu(t, ·) = 0. Moreover,
its regularity in context is usually low, typically of bounded variation [19, 20, 6].
Interestingly, we shall see that BV seems to be the natural regularity ensuring
uniqueness of the constrained problem. In order to give a sense to problem (1.1)
in such a setting, we use the theory of viscosity solutions for equations with a
measurable dependence in time which was first studied by H. Ishii [12] and then by
P.L. Lions and B. Perthame [15].

1.1 Motivation and previous works

A special case of constrained Hamilton-Jacobi equation (1.1) arises in the asymptotic
limit of the following quantitative genetics model proposed in [5, 20] (see also [19,
6, 17]):

ε∂tnε = nεR(Iε(t), x) + ε2∆nε , t > 0 , x ∈ R
d , Iε(t) =

∫

Rd

ψ(x)nε(t, x) dx,

(1.2)

where nε(t, x) is the density of a population structured by a d-dimensional pheno-
typical trait x. The reproduction rate R of a given individual depends both on its
trait x, and the environmental impact of the population Iε. Individuals may burden
differently, and that burden is weighted by the function ψ which is bounded below
and above by positive constants. The key point is that Iε is a scalar quantity, so that
individuals compete for a single resource. As is natural for biological populations,
the density-dependent feedback is negative, meaning that R(I, x) is decreasing with
respect to I.

The Hopf-Cole transformation uε = −ε log nε transforms (1.2) into the following
equation:

∂tuε +R(Iε(t), x) + |dxuε|
2 = ε∆uε,

which yields formally (1.1) in the vanishing viscosity limit ε→ 0, with H(I, x, p) =
R(I, x) + |p|2:



















∂tu+R(I(t), x) + |dxu|
2 = 0 , t ∈ (0, T ) , x ∈ R

d,

min
x∈Rd

u(t, x) = 0 , t ∈ (0, T ),

u(0, x) = g(x) , x ∈ R
d.

(1.3)

In fact, locally uniform convergence to a viscosity solution was established under
suitable assumptions on R and the initial data, but along subsequences εn → 0
[20, 6, 17]. Therein, compactness of {Iε} usually follows from a uniformBV estimate.
The constraint minu(t, ·) = 0 can then be derived from natural properties of the
integral Iε =

∫

ψ exp(−uε/ε) dx being uniformly positive and bounded in ε, as a
consequence of the negative feedback of Iε on growth. However, it is not possible to
characterize the limit function I directly from the convergence of uεn → u in the limit
εn → 0, because the relationship between uε and Iε is too singular. Nonetheless, the
constraint minu(t, ·) = 0 must be satisfied at any time. Hence, I(t) can be viewed as
a Lagrange multiplier in problem (1.1), see [10] for a discussion about this analogy.

The uniqueness of the limiting problem (1.3), if available, guarantees the con-
vergence of the whole family of solutions {uε} as ε → 0. It is interesting in the
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mathematical as well as biological perspectives, since the limiting problem (1.3)
determines much of the Darwinian evolutionary dynamics of the population model
(1.2). When ε is small, the population nε concentrates at the point(s) where the
limit function u reaches its minimum value 0.

The uniqueness was first treated in [20], for the particular case when R(I, x) is
separable in the following sense:

R(I, x) = B(x)−D(x)Q(I), or R(I, x) = B(x)Q(I)−D(x),

with positive functions B,D, and a monotonic function Q such that R is decreasing
with respect to I.

Later on, the uniqueness for (1.3) was treated in [18] under convexity assump-
tions on R(I, x) and the initial condition g, essentially: R decreasing with respect
to I, and concave with respect to x, plus g convex. It was proved that convexity
is propagated forward in time so that the solution u(t, x) to (1.3) is a solution in
the classical C1 sense. Hence, it has always a unique minimum point x(t), which
is a smooth function of t. As a result, I(t) is necessarily smooth in that setting,
since it can be determined by the implicit relation R(I(t), x(t)) = 0. Biologically
interpreted, their results describe very well the Darwinian dynamics of a monomor-
phic population as it evolves smoothly towards a (global) evolutionary attractor.
Recently, the preprint [14] tackled the uniqueness of (1.3) when the trait space is
one-dimensional, with a mixture of separable and non-separable growth rate R(I, x),
without convexity assumptions. However, the uniqueness result is also restricted to
the case of continuous functions I(t), which is not guaranteed in the absence of
convexity.

1.2 Assumptions and main result

In this paper, we establish uniqueness of solutions to problem (1.1) under mild
conditions. In distinction with previous works, we assume neither (i) separability
of the Hamiltonian H(I, x, p) in any of its variables; nor (ii) convexity in the trait
variable x ∈ R

d. In particular, we can handle solutions (u, I), allowing possibly:

• x 7→ u(t, x) to possess multiple minimum points {xi(t)}; and

• the Lagrange multiplier I(t) to be discontinuous.

Both of them are natural and attractive features of the solutions of population
genetics models.

We restrict to C2 Hamiltonian functions H(I, x, p) which are convex and super-
linear with respect to the third variable p:

(H1): (∀I, x, p) d2p,pH(I, x, p) > 0 , (∀I, x) lim
|p|→+∞

H(I, x, p)

|p|
= +∞ .

Our uniqueness result strongly relies on the following monotonicity assumption:

(H2): (∀I, x, p)
∂H

∂I
(I, x, p) < 0 .
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As we are dealing with convex Hamiltonians, it is appropriate to reformulate the
problem using suitable representation formulas: For a given function I(t), we define
the variational solution V (t, x) of (1.1) as follows:

V (t, x) = inf
{

γ∈AC(0,t)
γ(t)=x

}

{
∫ t

0
L(I(s), γ(s), γ̇(s)) ds+ g(γ(0))

}

, (1.4)

for (t, x) ∈ (0, T )×R
d. Here AC(0, t) is the space of absolutely continuous functions

on (0, t), and L : R × R
d × R

d → R is the Lagrangian function, i.e. the Legendre
transform (or convex conjugate) of H defined as:

L(I, x, v) = sup
p∈Rd

{

p · v −H(I, x, p)
}

. (1.5)

It is such that dpH and dvL are reciprocal functions. In this formulation, the
problem (1.1) becomes the determination of I(t) so that the value function V (t, x)
satisfies the constraint: minV (t, ·) = 0. In the formulation (1.4), the role played
by the scalar quantity I(t) is perhaps more apparent: it is adjusted progressively
so that the following constraint is satisfied at each time, among all γ ∈ AC(0, t)
irrespective of the endpoint of γ:

(∀t) inf
γ∈AC(0,t)

{
∫ t

0
L(I(s), γ(s), γ̇(s)) ds+ g(γ(0))

}

= 0 . (1.6)

Our methodology relies on the Lagrangian formulation of the constraint (1.6). Due
to the above variational reformulation, it is more appropriate to write the assump-
tions on the Lagrangian function: Assumptions (H1)-(H2) can be recast as:

(L1): (∀I, x, v) d2v,vL(I, x, v) > 0 .

(L2): (∀I, x, v)
∂L

∂I
(I, x, v) > 0 .

We need two supplementary conditions, to be satisfied locally in I ∈ (−J, J) for any
constant J > 0:

(L3): There exists a positive constant CΘ and a super-linear function Θ : R+ → R+

such that

(∀I, x, v) ∈ (−J, J)×R
d×R

d L(I, x, v) ≥ Θ(|v|)−CΘ , lim
r→+∞

Θ(r)

r
= +∞ .

(L4): For each K > 0, there exists positive constants αK , βK such that

(∀I, x, v) ∈ (−J, J)×B(0,K)× R
d |dxL(I, x, v)| ≤ αK + βKL(I, x, v) ,

where B(0,K) = {x ∈ R
d : |x| < K}.

Finally, we assume the initial data g to be locally Lipschitz continuous, mini-
mized by 0 and coercive:

(G): g ∈W 1,∞
loc (Rd) , min

x∈Rd
g(x) = 0 , and lim

|x|→∞
g(x) = +∞.
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Remark 1. The super-linearity in (L3) holds true pointwise in (I, x) by the very
definition of the Legendre transform (1.5). The main point here is the uniformity
with respect to x.

Theorem 1. Assume (L1)-(L4), and let I1 and I2 be two BV functions. If the two
associated variational solutions V1 and V2 of (1.4), equipped with the same initial
data g satisfying (G), satisfy the constraints

(∀t, i) min
x∈Rd

Vi(t, x) = 0 (1.7)

then I1 and I2 coincide almost everywhere, and so do V1 and V2.

To make the connection with viscosity solutions, we state the following auxiliary
result:

Theorem 2. Assume (L1)-(L4). For each I(t) of bounded variation and g satisfying
(G), the variational solution V (t, x) with initial data g, given by (1.4), is the unique
locally Lipschitz viscosity solution of (1.1) over [0, T )× R

d.

Our result encompasses the framework of the convergence results in e.g. [20,
Theorem 4.1] and [6, Theorem 1.2] and [17, Theorem 3.1]. The latter established
convergence of subsequences (uεn) towards locally Lipschitz viscosity solutions via
uniform BV estimates on the sequences (Iε). With our uniqueness theorem, it can
be concluded that the whole sequence (uε) converges to the unique solution in each
problem.

The reason for separating the two statements in Theorem 1 and Theorem 2 is
to emphasize the use of the variational formulation in our proof. It would be of
considerable interest to by-pass the variational formulation and derive uniqueness
from PDE arguments only. Uniqueness of unbounded solutions generally requires
stringent conditions on the growth of the solution and the Hamiltonian [4, 7], but
here this issue is mediated by the fact that the Hamiltonian function is convex, and
the solution is non-negative by definition. We could not find a reference containing
precisely Theorem 2, but [8] is close, and we adapt their proof to our context in the
Appendix.

1.3 Examples

First, we apply our result to the special case presented in Section 1.1.

Corollary 3. Consider the problem (1.3) with the initial data g as in (G). Assume
that R ∈ C2(R× R

d) satisfies

(∀I, x)
∂R

∂I
(I, x) < 0 and (∀I) sup

x∈Rd

R(I, x) < +∞ , (1.8)

then the solution pair (u, I) to the constrained Hamilton-Jacobi equation (1.3) is
unique, in the class of locally Lipschitz viscosity solutions u, and BV functions I.

The condition (1.8) is natural from the biological viewpoint as the net growth
rate is (i) depends negatively on the population burden I, and (ii) is presumably
bounded from above. Since the three other conditions (L1), (L2) and (L4) are
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straightforward, it is sufficient to verify (L3). Indeed, the Lagrangian L is given
by 1

4 |v|
2 − R(I, x). Moreover, since the range of the BV function I(t) lies in some

bounded interval [−J, J ], it is sufficient to restrict R to [−J, J ] × R
d to address

uniqueness over a bounded time interval (0, T ). Since it is immediate from (1.8)
that R is uniformly bounded over [−J, J ]× R

d, (L3) follows.
Our result also includes relevant examples that were not covered by the previ-

ous contributions, particularly non-separable Hamiltonian functions H(I, x, p). For
instance, consider the following quantitative genetics model:

ε∂tnε =

∫

1

εd
K

(

x− x′

ε

)

B(Iε(t), x
′)nε(t, x

′) dx′ − nεD(Iε(t), x),

where Iε(t) is the same as in (1.2), and K is a probability distribution function
that encodes the mutational effects after reproduction: if the parent has trait x′,
and gives birth at rate B(Iε, x

′), the trait x of the offspring is distributed following

Kε(x− x′) = 1
εd
K
(

x−x′

ε

)

. Assume that K is symmetric, and has finite exponential

moments, and denote by K its Laplace transform: K(p) =
∫

K(z) exp(p·z) dz. Then,
the limiting problem as ε→ 0 is (1.1) with the following Hamiltonian function [6]:

H(I, x, p) = B(I, x)K(p)−D(I, x) . (1.9)

Corollary 4. Consider the problem (1.1) with the Hamiltonian (1.9), and the initial
data g as in (G). Assume that K is the Laplace transform of a symmetric p.d.f. with
finite exponential moments, and that B,D ∈ C2(R×R

d) are non-negative functions
which satisfy the following conditions:

(∀I, x) B > 0 and (∀J > 0) sup
[−J×J ]×Rd

B(I, x) <∞,

accompanied with the following monotonicity conditions:

(∀I, x)
∂B

∂I
(I, x) < 0, and

∂D

∂I
(I, x) > 0 ,

then the solution pair (u, I) to the constrained Hamilton-Jacobi equation (1.1) is
unique, in the class of locally Lipschitz viscosity solutions u, and BV functions I.

Proof. There are a few items to check in order to apply Theorem 1. Firstly, the
Hamiltonian function H (1.9) clearly verifies (H1) and (H2), hence (L1) and (L2)
follows. Secondly, the Lagrangian function L associated with the Hamiltonian H
(1.9) is

L(I, x, v) = B(I, x)L

(

v

B(I, x)

)

+D(I, x) ,

where L(v) is the Legendre transform of K(p). Let I1, I2 be the two functions that
are involved in the uniqueness test. Define B∞ := sup[−J,J ]×Rd B, where [−J, J ] is
a bounded interval in which both I1 and I2 take values. Condition (L3) is clearly

verified with Θ(·) = B∞ +B∞L
(

·
B∞

)

≥ 0, because L is decreasing with respect

to the value B, B∞ < +∞ and L satifies (L3) automatically (see Remark 1). The
justification of (L4) requires more work. We begin with the following inequality:

dvL(v) · v ≤ 2 (1 + L(v)) . (1.10)
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To derive it, consider the following pointwise inequality: for all X ∈ R, coshX ≤
1 + 1

2X sinhX, which in turn implies the following one by symmetry of K:

K(p) =

∫

K(z) cosh(p · z) dz

≤ 1 +
1

2

∫

K(z)(p · z) sinh(p · z) dz = 1 +
1

2

∫

K(z)(p · z) exp(p · z) dz .

By applying this estimate to p = dvL(v) ⇔ v = dpK(p) in the dual Legendre
transformation L ↔ K, we deduce, by the fact K(p) + L(v) ≥ p · v, that

dvL(v) · v − L(v) ≤ K(p) ≤ 1 +
1

2
dvL(v) · v .

This yields the simple estimate announced in (1.10).
The technical condition (L4) is reformulated in this context as follows, after

division by B > 0:
∣

∣

∣

∣

dx(logB)L
( v

B

)

− dx(logB)
(

dvL
( v

B

)

·
v

B

)

+
dxD

B

∣

∣

∣

∣

≤ αK
1

B
+ βK

(

L
( v

B

)

+
D

B

)

.

It is indeed guaranteed for a suitable choices of αK , βK . The main arguments besides
(1.10) are: both |dx(logB)| and |dxD/B| are locally uniformly bounded from above,
1/B is locally uniformly bounded from below, and D is non-negative.

1.4 The Pessimization Principle: I(t) is non-decreasing

The pessimization principle [9] is a concept in adaptive dynamics, which says that
if the environmental feedback is encoded by a scalar quantity I(t) ∈ R at any time,
mutations and natural selection inevitably lead to deterioration/Verelendung. In the
setting of this paper, it can be formulated by claiming that the population burden
I(t) is a non-decreasing function.

In this section, we give an additional assumption that guarantees this claim.

Theorem 5. Under the assumptions (L1) - (L4), let (u, I) be the unique solution
pair to (1.1) such that u is a locally Lipschitz viscosity solution, and I is BV .
Assume, in addition, that

(L5): (∀I, x, v) L(I, x, v) ≥ L(I, x, 0).

Then I is non-decreasing with respect to time.

Note that (L5) is equivalent to dvL(I, x, 0) = 0 by convexity, and thus to
dpH(I, x, 0) = 0 by duality. It is clearly verified for the two examples in Section 1.3
by symmetry of the Hamiltonian function with respect to p = 0.

Corollary 6. Under the assumption (1.8), let (u, I) be the unique solution pair to
(1.3), with the initial data g as in (G). Then I is non-decreasing with respect to
time.

Corollary 7. Under the assumptions of Corollary 4, let (u, I) be the unique solution
pair to the problem (1.1) with the Hamiltonian (1.9), and the initial data g as in
(G). Then I is non-decreasing with respect to time.
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1.5 Organization

In Section 2, we quantify the BV regularity of minimizing curves. The proof of
the main result (Theorem 1) is given in Section 3. The pessimization principle
(Theorem 5) is proved in Section 4. Finally, the version of variational principle we
need (Theorem 2) is proved in Appendix A.

Acknowledgment. This work was initiated as the first author was visiting Ohio
State University. VC has funding from the European Research Council (ERC) un-
der the European Union’s Horizon 2020 research and innovation programme (grant
agreement No 639638). KYL is partially supported by the National Science Foun-
dation under grant DMS-1853561.

2 Regularity of the minimizing curves

Let (t, x) ∈ (0, T ) × R
d, and let γt,x be a minimizing curve in (1.4) for some given

I(t). We take the existence of minimizing curves for granted. It follows from stan-
dard methods in Lagrangian dynamics, see e.g. [11], and the a priori compactness
estimates obtained in Lemma 9 below. The purpose of this section is to establish
BV regularity of the derivative γ̇t,x, provided that I(t) is BV itself. Such regularity
is crucial in our proof of uniqueness.

First, we establish the following consequence of the convexity and the super-
linearity of the Lagrangian:

Lemma 8. Assume (L1) and (L3), then

(∀I, x) lim
|v|→+∞

dvL(I, x, v) · v

|v|
= +∞ ,

and the limit is uniform over (I, x) lying in compact subsets of Rd+1.

Proof. Fix K > 0 and let (I, x) ∈ [−K,K] × B(0,K). Let M > 0 be given, and
choose r0 = r0(K) > 0 large enough so that for all r ≥ r0,

Θ(r)− CΘ − L(I, x, 0) ≥Mr .

Then we have, for r ≥ r0 and e ∈ S
d−1,

L(I, x, re)− L(I, x, 0) ≥Mr .

By convexity of L in v, we have, for all e ∈ S
d−1 and r ≥ r0,

dvL(I, x, re) · e =
d

dr

(

L(I, x, re)
)

≥
L(I, x, re)− L(I, x, 0)

r
≥M .

Therefore, for each M there exists r0 such that dvL(I, x, v) · v ≥ M |v|, provided
that |v| ≥ r0 and (I, x) ∈ [−K,K]×B(0,K).

We will now establish the BV estimate of γ̇t,x for (t, x) ∈ (0, T ) × R
d. For the

remainder of this section, we fix T > 0 and J so that sup(0,T ) |I| ≤ J . For ease of
notation, dependence of various constants on T and J will be suppressed.
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Lemma 9. Assume (L1), (L3) and (L4), then for each K, there exists a constant
CK such that, uniformly for (t, x) ∈ (0, T )× B(0,K), any minimizing curve γt,x ∈
AC(0, t) associated with (1.4) satisfies

‖γt,x‖W 1,∞(0,t) = ‖γt,x‖L∞(0,t) + ‖γ̇t,x‖L∞(0,t) ≤ CK , (2.1)

and
[γ̇t,x]BV (0,t) ≤ CK

(

t+ [I]BV (0,t)

)

. (2.2)

Proof. The proof is divided into three steps, wherein classical arguments are recalled
for the sake of completeness. For the sake of notation, we drop the superscript of
γt,x, assuming that the pair (t, x) ∈ (0, T )×B(0,K) is fixed throughout the proof.
Step #1: L∞ bound on γ. We deduce immediately the following bound from
(L3):

∫ t

0
Θ(|γ̇(s)|) ds− Ct+ g(γ(0)) ≤

∫ t

0
L(I(s), γ(s), γ̇(s)) ds+ g(γ(0))

≤

∫ t

0
L(I(s), x, 0) ds+ g(x) , (2.3)

from which we deduce a non-optimal W 1,1 estimate

∫ t

0
|γ̇(s)| ds ≤ Ct+

∫ t

0
L(I(s), x, 0) ds+ g(x)− g(γ(0)) .

by using the super-linearity of Θ in a crude way, namely, Θ(|v|) ≥ |v| −C. Further-
more, we deduce from g ≥ 0 that γ̇ belongs to L1(0, t). Consequently, there exists
a constant C ′

K such that, uniformly for (t, x) ∈ (0, T )×B(0,K), we have

‖γ(s)‖L∞(0,t) ≤ C ′
K .

Let A = A(g,K) be the (local) Lipschitz bound on g in the ball with radius C ′
K .

By updating the constant C, we can assume that L(I, x, v) ≥ (A+ 1)|v| −C. Back
to (2.3), we deduce that

(A+ 1)

∫ t

0
|γ̇(s)| ds ≤ Ct+

∫ t

0
L(I(s), x, 0) ds+A

∫ t

0
|γ̇(s)| ds ,

We obtain as a consequence the following updated estimate:

1

t

∫ t

0
|γ̇(s)| ds ≤ C +

1

t

∫ t

0
L(I(s), x, 0) ds ≤ C ′ , (2.4)

where the bound C ′ is uniform for (t, x) ∈ (0, T )×B(0,K), and I(s) taking values
in [−J, J ].
Step #2: L∞ bound on γ̇. We deduce from (2.4) that there exists a subset
St,x ⊂ (0, t) of positive measure, such that for all ŝ ∈ St,x, |γ̇(ŝ)| ≤ 2C ′.

Since γ is a minimizing curve, it satisfies the following Euler-Lagrange condition
in the distributional sense:

−
d

ds
(dvL(I(s), γ(s), γ̇(s))) + dxL(I(s), γ(s), γ̇(s)) = 0 in (0, t). (2.5)
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Let Leb(f) denote the set of Lebesgue points of the function f . Let s1, s2 ∈ (0, t)
belong to Leb(I) ∩ Leb(γ̇). Let {ρn}n∈N be a family of mollifiers so that ρn(· − si)
is compactly supported in (0, t) for i = 1, 2 and n ∈ N. We can test (2.5) against
θ(s) :=

∫ s
0 (ρn(s

′ − s2)− ρn(s
′ − s1) ds

′. After integration by parts, we find that:

∣

∣

∣

∣

∫ t

0
dvL(I(s), γ(s), γ̇(s)) (ρn(s− s2)− ρn(s− s1)) ds

∣

∣

∣

∣

≤

∫ t

0
|dxL(I(s), γ(s), γ̇(s))| ds ,

(2.6)
where we have used that the test function θ satisfies |θ(s)| ≤ 1 for s ∈ (0, t), and
that θ(0) = θ(t) = 0 holds. Using the definition of the Lebesgue points, we find that

lim
n→+∞

∫ t

0
dvL(I(s), γ(s), γ̇(s))ρn(s− si) ds = dvL(I(si), γ(si), γ̇(si)) . (2.7)

Then, we can specialize s1 ∈ Leb(I) ∩ Leb(γ̇) ∩ St,x because the latter has positive
measure. We deduce from (2.6)–(2.7), and the definition of St,x that

|dvL(I(s2), γ(s2), γ̇(s2))| ≤ C +

∫ t

0

∣

∣dxL(I(s
′), γ(s′), γ̇(s′))

∣

∣ ds′ ,

for all s2 ∈ Leb(I) ∩ Leb(γ̇). Multiplying by the unit vector γ̇(s2)
|γ̇(s2)|

, and using (L4),
we find:

dvL(I(s2), γ(s2), γ̇(s2)) · γ̇(s2)

|γ̇(s2)|
≤ C +

∫ t

0

∣

∣dxL(I(s
′), γ(s′), γ̇(s′))

∣

∣ ds′

≤ C +

∫ t

0

[

αK′ + βK′L(I(s′), γ(s′), γ̇(s′))
]

ds′ ,

where K ′ = ‖γ‖L∞(0,t). We deduce from the uniform bound of ‖γ‖L∞(0,t), and
the minimizing property of γ that the right-hand-side is uniformly bounded for
(t, x, I) ∈ (0, T )×B(0,K)× [−J, J ]. Hence,

dvL(I(s), γ(s), γ̇(s)) · γ̇(s)

|γ̇(s)|
≤ C a.e. s ∈ (0, t),

and the boundedness of γ̇ is a consequence of Lemma 8. This proves (2.1).
Step #3: BV bound on γ̇. Back to (2.5), we see that

p(s) = dvL(I(s), γ(s), γ̇(s))

is Lipschitz continuous as I, γ, γ̇ ∈ L∞, and L is C2. By the Fenchel-Legendre
duality, we have

γ̇(s) = dpH(I(s), γ(s), p(s)).

Therefore, γ̇ is BV .
From the chain rule involving BV functions (see [1] and references therein, as

well as [2, Theorem 3.96]), we deduce as a by-product that

[γ̇]BV (0,t) ≤ [dpH]Lip([−J,J ]×B(0,‖γ‖∞)×B(0,‖γ̇‖∞))

(

[p]BV (0,t) + [γ]BV (0,t) + [I]BV (0,t)

)

.

Both p and γ are Lipschitz continuous, so there exists a positive constant C such
that max([p]BV (0,t), [γ]BV (0,t)) ≤ Ct. Hence, we have obtained (2.2).
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3 Uniqueness of the variational solution (proof of The-
orem 1)

Let I1, I2 ∈ BV (0, T ). There exists a constant J such that I1 and I2 take value in
[−J, J ]. Recall the definition of the variational solutions V1, V2 (1.4):



















V1(t, x) = inf
γ1∈AC(0,t):γ1(t)=x

{
∫ t

0
L(I1(s), γ1(s), γ̇1(s)) ds+ g(γ1(0))

}

,

V2(t, x) = inf
γ2∈AC(0,t):γ2(t)=x

{
∫ t

0
L(I2(s), γ2(s), γ̇2(s))ds+ g(γ2(0))

}

.

Lemma 10. There exists C > 0 such that for j = 1, 2,

Vj(t, x) ≥ min

{

|x|

2
, min
|x′|≥|x|/2

g(x′)

}

− Ct .

Proof. By definition of the variational solution and (L3), we have

Vj(t, x) =

∫ t

0
L
(

Ij(s), γ
t,x
j (s), γ̇t,xj (s)

)

ds+ g
(

γt,xj (0)
)

≥

∫ t

0

(

|γ̇t,xj (s)| − C
)

ds+ g
(

γt,xj (0)
)

≥
∣

∣

∣
x− γt,xj (0)

∣

∣

∣
− Ct+ g

(

γt,xj (0)
)

≥ min

{

|x|/2, min
|x′|≥|x|/2

g(x′)

}

− Ct

where we used the fact that γt,x(t) = x and that |x| ≤ |x − γt,x(0)| + |γt,x(0)|, so
that: either |x− γt,x(0)| ≥ |x|/2 or |γt,x(0)| ≥ |x|/2.

On the way to proving Theorem 1, we seek a pair of uniformly positive weights
φj , j = 1, 2, such that µ = I2 − I1 verifies both

∫ t
0 φ2µds ≥ 0 and

∫ t
0 φ1µds ≤ 0.

By Lemma 10 and (G), we deduce that x 7→ Vj(t, x) attains minimum in some
bounded set, say B(0,K), uniformly for t ∈ (0, T ).

Let xt1 (resp. xt2) be some minimum point for V1(t, ·) (resp. V2(t, ·)) – this might
not be unique – and let γt1(s) (resp. γt2(s)) be an optimal trajectory ending up at
xt1 (resp. xt2). We deduce from Lemma 9 that γ̇tj lies in BV , uniformly with respect
to t ∈ (0, T ):

max
j=1,2

[

γ̇tj
]

BV (0,t)
≤ C . (3.1)

Using the formulation (1.6) for I1 with the curve γt2, then the optimality of γt2
for I2, we find the following set of inequalities:

0 ≤

∫ t

0
L(I1(s), γ

t
2(s), γ̇

t
2(s)) ds+ g(γt2(0))

=

∫ t

0
L(I2(s), γ

t
2(s), γ̇

t
2(s))ds+ g(γt2(0)) +

∫ t

0
φ1(t, s) (I1(s)− I2(s)) ds ,

= −

∫ t

0
φ1(t, s) (I2(s)− I1(s)) ds .
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i.e.
∫ t

0
φ1(t, s) (I2(s)− I1(s)) ds ≤ 0 , (3.2)

where the positive weight φ1 is given by

φ1(t, s) =

∫ 1

0

∂L

∂I

(

(1− θ)I1(s) + θI2(s), γ
t
2(s), γ̇

t
2(s)

)

dθ . (3.3)

Similarly, by exchanging the roles of the two solutions, we obtain

∫ t

0
φ2(t, s) (I2(s)− I1(s)) ds ≥ 0 , (3.4)

where the positive weight φ2 is given by

φ2(t, s) =

∫ 1

0

∂L

∂I

(

(1− θ)I2(s) + θI1(s), γ
t
1(s), γ̇

t
1(s)

)

dθ . (3.5)

By Assumption (L2) and the uniform boundedness of (Ij(s), γ
t
j(s), γ̇

t
j(s)) (by (2.1)

and (3.1)), there exists λ > 0 such that:

(∀t, s) min
j=1,2

φj(t, s) ≥ λ . (3.6)

Functions of bounded variations have left- and right-limits everywhere. Here, we
focus on the value of the right-limit at the origin. This is expressed in the following
statement.

Lemma 11. Let φ1, φ2 be defined as in (3.3) and (3.5). Then

lim
t→0+

{

[φ1(t, ·)]BV (0,t) + [φ2(t, ·)]BV (0,t)

}

= 0.

Proof. Our first observation is that BV regularity of {Ij}j=1,2 implies the following
smallness estimate:

lim
t→0+

{

[I1]BV (0,t) + [I2]BV (0,t)

}

= 0. (3.7)

The important point here is that the left point of the interval is fixed to 0. The same
conclusion would not be true if the interval (0, t) would be replaced with (−t, t) due
to possible jump discontinuity at the origin. To prove (3.7), let us decompose I1,
say, into a difference of non-decreasing functions I1 = I+1 − I−1 . Then,

[I1]BV (0,t) ≤ I+1
∣

∣

t

0+
+ I−1

∣

∣

t

0+
−→
t→0+

0 , (3.8)

simply because I+1 and I−1 have right limits at the origin.
By (2.2), we get that this vanishing limit can be extended to γ̇tj as well:

[

γ̇tj
]

BV (0,t)
≤ C

(

t+ [Ij ]BV (0,t)

)

−→
t→0+

0. (3.9)

Consequently, we are able to estimate [φ2(t, ·)]BV (0,t) as follows. To keep the idea

concise, we will compute the derivative ∂φ2

∂s of the BV function φ2(t, ·) in the sense

12



of a finite measure on (0, t), so that [φ2(t, ·)]BV (0,t) =
∫

(0,t) |
∂φ2

∂s (t, s)| ds. We shall
adopt this convention for the remainder of the paper.

∣

∣

∣

∣

∂φ2
∂s

(t, s)

∣

∣

∣

∣

≤

∫ 1

0

∣

∣

∣
d2I,IL(Γ(s))

(

(1− θ)İ2(s) + θİ1(s)
)
∣

∣

∣
dθ

+

∫ 1

0

∣

∣d2I,xL(Γ(s))γ̇
t
1(s)

∣

∣ dθ +

∫ 1

0

∣

∣d2I,vL(Γ(s))γ̈
t
1(s)

∣

∣ dθ

≤ C
(

|İ1(s)|+ |İ2(s)|+ |γ̇t1(s)|+ |γ̈t1(s)|
)

, (3.10)

where we have used the shortcut notation Γ(s) = ((1−θ)I2(s)+θI1(s), γ
t
1(s), γ̇

t
1(s)).

We may integrate the latter over the open interval (0, t) to obtain

[φ2(t, ·)]BV (0,t) ≤ C
(

[I1]BV (0,t) + [I2]BV (0,t) + t+
[

γ̇t1
]

BV (0,t)

)

≤ C
(

[I1]BV (0,t) + [I2]BV (0,t) + t
)

where we used (3.9). By (3.8), we deduce that lim
t→0+

[φ2(t, ·)]BV (0,t) = 0. The proof

for φ1 is analogous.

We are now in position to prove Theorem 1.

Proof of Theorem 1. Let µ = I2 − I1 and suppose to the contrary that µ 6= 0 on a
set of positive measure in (0, T ).

We claim that we may assume, without loss of generality, that µ 6= 0 in a set of
positive measure in (0, t), for each t ∈ (0, T ). To see this claim, let

t0 := sup{t ≥ 0 : µ(s) = 0 a.e. in [0, t]}.

If t0 = 0, we are done. If t0 > 0, then the variational solutions V1(t, x) ≡ V2(t, x) are
identical for (t, x) ∈ [0, t0] × R

d. Now, Vj(t0, ·) has minimum value zero (by (1.7))
and is coercive (by Lemma 10), so the condition (G) is verified. Therefore, we may
re-label the initial time to be t0. In any case, it suffices to derive a contradiction
assuming µ 6= 0 in a set of positive measure in (0, t), for each t ∈ (0, T ).

Using
∫ t
0 φ2(t, s)µ(s) ds ≥ 0 (by (3.4)), we may integrate by parts to obtain

φ2(t, t−)

∫ t

0
µ(τ) dτ =

∫

(0,t)

∂φ2
∂s

(t, s)

(
∫ s

0
µ(τ) dτ

)

ds+

∫ t

0
φ2(t, s)µ(s) ds

≥

∫

(0,t)

∂φ2
∂s

(t, s)

(
∫ s

0
µ(τ) dτ

)

ds

Taking the negative part, we deduce the following partial estimate,

φ2(t, t−)

(
∫ t

0
µ(s) ds

)

−

≤

(

sup
s∈(0,t)

∣

∣

∣

∣

∫ s

0
µ(τ) dτ

∣

∣

∣

∣

)

∫

(0,t)

∣

∣

∣

∣

∂φ2
∂s

(t, s)

∣

∣

∣

∣

ds (3.11)

Similarly we deduce from (3.2) that

φ1(t, t−)

∫ t

0
µ(τ) dτ =

∫ t

0

∂φ1
∂s

(t, s)

(
∫ s

0
µ(τ) dτ

)

ds+

∫ t

0
φ1(t, s)µ(s) ds

≤

∫ t

0

∂φ1
∂s

(t, s)

(
∫ s

0
µ(τ) dτ

)

ds
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Taking the positive part, we deduce the following complementary estimate,

φ1(t, t−)

(
∫ t

0
µ(s) ds

)

+

≤

(

sup
s∈(0,t)

∣

∣

∣

∣

∫ s

0
µ(τ) dτ

∣

∣

∣

∣

)

∫ t

0

∣

∣

∣

∣

∂φ1
∂s

(t, s)

∣

∣

∣

∣

ds (3.12)

Combining (3.11) and (3.12), together with (3.6), we obtain

λ

∣

∣

∣

∣

∫ t

0
µ(s) ds

∣

∣

∣

∣

≤ max
i=1,2

{
∫ t

0

∣

∣

∣

∣

∂φi
∂s

(t, s)

∣

∣

∣

∣

ds

}

(

sup
s∈(0,t)

∣

∣

∣

∣

∫ s

0
µ(τ) dτ

∣

∣

∣

∣

)

(3.13)

Next, Lemma 11 ensures that there exists t1 > 0 so that

sup
t∈(0,t1)

max
i=1,2

{
∫ t

0

∣

∣

∣

∣

∂φi
∂s

(t, s)

∣

∣

∣

∣

ds

}

≤
λ

2
.

Then, taking supremum in (3.13) for 0 < t < t1, we have

λ

(

sup
t∈(0,t1)

∣

∣

∣

∣

∫ t

0
µ(s) ds

∣

∣

∣

∣

)

≤
λ

2

(

sup
s∈(0,t1)

∣

∣

∣

∣

∫ s

0
µ(τ) dτ

∣

∣

∣

∣

)

.

This implies
∫ t
0 µ(s) ds = 0 for all t ∈ [0, t1]. Hence, µ(t) = 0 almost everywhere on

(0, t1). This is in contradiction with the assumption that µ 6= 0 on a set of positive
measure in (0, t1), and we conclude that I2 − I1 = µ = 0 a.e. Finally V1 ≡ V2 by
virtue of the variational formulation.

Remark 2. We discuss a situation when the montonicity assumption (H2) or (L2)
may not hold globally, but our arguments in Section 4 can still be applied. Sup-
pose (Vi(t, x), Ii(t)) ∈ W 1,∞

loc (R × [0, T ]) × BV ([0, T ]) (i = 1, 2) are two variational
solutions such that Vi(0, x) = g(x), and suppose we have reduced to the situation
that, for each t small, the set {t′ ∈ (0, t) : I1(t

′) 6= I2(t
′)} has positive measure. By

inspection of the proof of Theorem 1, we need the following conditions:

(U1) L(I, t, x, v) = L(v)−R(I, t, x) is of class C2.

(U2) For i = 1, 2, Vi(t, x) admit the variational characterization

Vi(t, x) = inf
γ∈AC(0,t):γ(t)=x

{
∫ t

0
L(Ii(s), s, γ(s), γ̇(s)) ds+ g(γ(0))

}

for each (t, x) ∈ [0, T ]× R
d.

(U3) For i = 1, 2 and t > 0 small, there exists xti ∈ {x : V (t, x) = 0} such that

(i) lim
t→0+

xti exists;

(ii) sup
0<θ<1

∂IR( lim
t→0+

[(1− θ)I1(t) + θI2(t)], 0, lim
t→0+

xti) < 0;

(iii) lim sup
t→0+

‖γ̇ti‖L∞(0,t) < +∞, where γti is the minimizing path corresponding

to value of Vi at the point (t, xti).
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The key is to replace inequality (3.6), which may no longer be true, by a weaker
inequality. Indeed, we can follow (3.5) to define

φi(t, s) =

∫ 1

0
∂IL((1− θ)I1(s) + θI2(s), s, γ

t
3−i(s), γ̇

t
3−i(s)) dθ

= −

∫ 1

0
∂IR((1− θ)I1(s) + θI2(s), s, γ

t
3−i(s)) dθ. (3.14)

By (U3)(iii), we have

sup
(0,t)

|γti (s)− xti| = sup
(0,t)

|γti (s)− γti (t)| → 0 as t→ 0 + . (3.15)

Hence, we have the following estimate to replace (3.6):

lim inf
t→0+

inf
s∈(0,t)

φi(t, s)

= lim inf
t→0+

inf
s∈(0,t)

∫ 1

0
−∂IR((1− θ)I1(s) + θI2(s), s, γ

t
3−i(s)) dθ

≥ λ := − sup
0<θ<1

∂IR( lim
t→0+

[(1− θ)I1(t) + θI2(t)], 0, lim
t→0+

xt3−i) > 0, (3.16)

where we used (3.14) to obtain the first equality, then used (3.15) to obtain the first
inequality, and then used (U3)(ii) for the final inequality. By invoking (3.16) instead
of (3.6), one can repeat the exact same arguments in the proof of Lemma 111 and
Theorem 1 to derive a contradiction.

4 Proof of the Pessimization Principle

We prove Theorem 5 in this section.

Proof of Theorem 5. We start by choosing the right-continuous representative of I
without loss of generality. For each t > 0, let xt be a minimum point of x 7→ u(t, x)
as before, and let γt be an associated minimizing curve ending up at xt.
Step #1: L(I(t−), xt, 0) ≤ 0 for all t. It follows from the non-negativity constraint
and the variational formulation (1.4) that

0 ≤ u(s, γt(s)) =

∫ s

0
L(I(s′), γt(s′), γ̇t(s′)) ds′ + g(γt(0)) for 0 < s < t,

and the equality holds when s = t. Hence, we deduce that L(I(t−), γt(t−), γ̇t(t−)) ≤
0. Since γt(t−) = γt(t) = xt, we may use (L5) to deduce that

L(I(t−), xt, 0) ≤ L(I(t−), γt(t−), γ̇t(t−)) ≤ 0.

Step #2: I(t−) ≤ I(t+) for all t. Fix t > 0, let xt and γt be as above. We define
γ1 : [0, t+ 1] → R

d by

γ1(s) =

{

γt(s) for 0 ≤ s ≤ t,
xt for s > t.

1Under assumption (U1), the term |γ̈t
1(s)| does not appear on the right hand side of (3.10), as

∂IL is independent of γ̇t
1. For this reason, the estimate [γt,x

i ]BV (0,t) → 0 is not included in (U3)(iii).
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Then γ1 ∈ AC[0, t+ 1] and for all 0 < h < 1,

0 ≤ u(t+ h, γ1(t+ h)) ≤

∫ t+h

0
L(I(s′), γ1(s

′), γ̇1(s
′)) ds′ + g(γ1(0)).

Since 0 = u(t, γ1(t)) =
∫ t
0 L(I(s

′), γ1(s
′), γ̇1(s

′)) ds′ + g(γ1(0)), we have

0 ≤

∫ t+h

t
L(I(s′), γ1(s

′), γ̇1(s
′)) ds′ ≤

∫ t+h

t
L(I(s′), xt, 0) ds′. (4.1)

Dividing by h, and letting h→ 0+, we obtain L(I(t+), xt, 0) ≥ 0. Comparing with
L(I(t−), xt, 0) ≤ 0 (by Step #1), we deduce from the monotonicity of L in I (L2)
that I(t−) ≤ I(t+) for all t > 0.
Step #3: Conclusion. Suppose to the contrary that I(t2) < I(t1) for some
t1 < t2. Since I is right-continuous, there exists t3 > t2 such that I(t) < I(t1) for
all t ∈ [t2, t3). Let t0 = sup{t ∈ [t1, t3) : I(t) ≥ I(t1)}. Then t0 ≤ t2 < t3, and

I(t) < I(t1) ≤ I(t0−) for t ∈ (t0, t3). (4.2)

Now, using Step #1 and (4.1) from Step #2, we have

0 ≤

∫ t3

t0

[

L(I(s′), xt0 , 0)− L(I(t0−), xt0 , 0)
]

ds′.

However, this is in contradiction with (4.2), in view of the fact that L is strictly
increasing in I, due to (L2).

A Variational and viscosity solutions coincide (proof of
Theorem 2)

Given I ∈ BV (0, T ), let V (t, x) denote the corresponding variational solution of
(1.4). The purpose of this section is to show that V (t, x) is the unique locally
Lipschitz viscosity solution of (1.1). This can be achieved by establishing comparison
theorem, i.e. u ≤ V (resp. u ≥ V ) for all locally Lipschitz viscosity sub-solution
(resp. super-solution) of (1.1). While there are PDE proofs for such comparison
results among continuous, but not necessarily Lipschitz, super and sub-solutions of
(1.1), they are usually proved under slightly different conditions than (L1) - (L4).
For instance, in [13] (see also [16, Appendix A]), it is assumed that the Hamiltonian
H is uniformly Lipschitz in x ∈ R

d. Henceforth, we will adopt techniques in convex
analysis to prove the comparison between the variational solution with Lipschitz
continuous super and sub-solutions of (1.1), under exactly the assumptions (L1) -
(L4).

As the Hamiltonian is convex with respect to p, sub-solutions in the almost
everywhere sense, and viscosity sub-solutions in particular, lie automatically below
the variational solution [4, 11]. We include a proof here for the sake of completeness.

Proposition 12. Assume that u is locally Lipschitz, that u(0, x) ≤ g(x) for all x,
and that the following inequality holds for almost every (t, x) ∈ (0, T )× R

d,

∂tu(t, x) +H(I(t), x, dxu(t, x)) ≤ 0 a.e. (A.1)

Then, u ≤ V .
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Proof. The proof is adapted from [11, Section 4.2]. A more direct proof can be
found in [4, Section 9] but the latter assumes time continuity for H, which does not
hold in the present case. A first observation is that (A.1) makes perfect sense as
u is differentiable almost everywhere by Rademacher’s theorem. We shall establish
that

u(t2, γ(t2))− u(t1, γ(t1)) ≤

∫ t2

t1

L(I(s), γ(s), γ̇(s)) ds , (A.2)

for all curves γ ∈ W 1,∞. Thus, the result will follow immediately by taking the
infimum with respect to γ, since (2.1) of Lemma 9 says that any minimizer is indeed
W 1,∞.

To prove (A.2), we proceed by a density argument. The case of a linear curve
γ = x+ (s− t1)v is handled as follows: firstly, we deduce from (A.1) that

∂tu(t, x) + dxu(t, x) · v ≤ L(I(t), x, v) a.e. (A.3)

Secondly, by Fubini’s theorem one can find a sequence xn → x such that (A.3) holds
almost everywhere in the line {(s, xn + (s − t1)v)} for each n. Therefore, we can
apply the chain rule to u(s, xn + (s− t1)v), so as to obtain:

d

ds
(u(s, xn + (s− t1)v)) ≤ L(I(s), xn + (s− t1)v, v) a.e. (A.4)

We deduce that (A.2) holds true for all linear curves by integrating (A.4) from t1
to t2 and taking the limit n→ +∞.

Consequently, (A.2) holds true for any piecewise linear curve. The conclusion
follows by a density argument of piecewise linear curves in the set of curves having
bounded measurable derivatives.

It remains to show that viscosity super-solutions lie above the variational so-
lution. For completeness’ sake, we give a definition of super-solution for time-
measurable Hamiltonians. (See [12, 15] for various other equivalent definitions.)

Definition 13 (Viscosity super-solution). Let φ ∈ C1(Rd) be such that the minima
of u(t, ·)− φ are reached in a ball of radius R for all t ∈ [0, T ]. Let M(t) be the set
of minimum points of u(t, ·) − φ, and m(t) = minu(t, ·) − φ. Then, it is required
that the following inequality holds true in the distributional sense:

m′(t) + sup
y∈M(t)

H(I(t), y, dxφ(y)) ≥ 0 in D′(0, T ) . (A.5)

Rather than directly invoking Definition 13, we will only use the following two
consequences of it in our proofs.

Remark 3. In case I(t) is continuous, then Ĥ(t, x, p) := H(I(t), x, p) defines a
continuous Hamiltonian. In that case, the above definition is consistent with the
usual one for viscosity super-solution based on the notion of sub-differential [4, Def-
inition 3.2]. Namely, u ∈ C((0, T ) × R

d) is a super-solution of (1.1) if, for each
(t, x),

q + Ĥ(t, x, p) ≥ 0 for all (q, p) ∈ D2,−u(t, x),

17



where the set of sub-differential, D2,−u(t, x), is the subset of R× R
d given by

D2,−u(t, x) = {(q, p) : (∀µ, v) u(t, x)− u(t− µ, x− sv) ≤ qsµ+ 〈p, sv〉+ o(s)}.

Remark 4. Suppose that u is a viscosity super-solution of (1.1) for some I(t) in
the sense of Definition 13, and that I(t) ≥ Î(t) for some continuous Î(t), then by
monotonicity of H in I, it can be verified that u is a super-solution of (1.1), with
I(t) replaced by Î(t), in the usual sense as in Remark 3. See [15] for details.

Proposition 14. Assume that u is a locally Lipschitz viscosity super-solution, in
the sense of Definition 13, and that u(0, x) ≥ g(x) for all x. Then, u ≥ V .

Proof. We follow the lines of [8] which is essentially based on convex analysis. We
adapt their proof in our context for the sake of completeness. We will first prove the
proposition in the special case of I ∈ W 1,∞(0, T ). This assumption will be relaxed
to I ∈ BV (0, T ) at the end of the proof.
Step #1: Finding the backward velocity: setting of the problem. The
key is to find, for each (t, x), a particular direction v(t, x), such that the following
inequality holds true:

d+u(t, x)(1,v(t, x)) ≥ L(I(t), x,v(t, x)) , (A.6)

where d+u(t, x)(µ, v) is the one-sided directional differentiation in the direction
(µ, v):

d+u(t, x)(µ, v) = lim sup
s→0+

u(t, x)− u(t− sµ, x− sv)

s
.

We can interpret (A.6) as follows: there exists an element which is common to
the partial epigraph of v 7→ L(I(t), x, v):

Et,x = Epiv(L(I(t), x, v)) =
{

(v, `) ∈ R
d × R : ` ≥ L(I(t), x, v)

}

,

and to the hypograph of v 7→ d+u(t, x)(1, v):

Hypov(d+u(t, x)(1, v)) =
{

(v, `) ∈ R
d × R : ` ≤ d+u(t, x)(1, v)

}

.

For technical reason, we consider the full hypographHt,x = Hypo(µ,v)(d+u(t, x)(µ, v)),

taken with respect to variables (µ, v) ∈ R× R
d. Precisely,

Ht,x =

{

(µ, v, `) ∈ R×R
d × R : ` ≤ lim sup

s→0+

u(t, x)− u(t− sµ, x− sv)

s

}

. (A.7)

In contrast with Hypov(d+u(t, x)(1, v)), Ht,x is a cone because the quantity in
(A.7) is positively homogeneous with respect to (µ, v). In fact, it coincides with the
definition of a contingent cone, up to a change of sign. If S ⊂ R

N is a non-empty
subset, and z ∈ R

N , recall that the contingent cone of S at z, denoted by TS(z), is
defined as follows [3, Definition 3.2.1]:

w ∈ TS(z) ⇐⇒ lim inf
s→0+

dist(z + sw, S)

s
= 0 .
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Hz0

Hz1

Hz2

u(z)

Figure 1: Illustration of various shapes of cones as they may appear for a scalar function u
(in opposition to the text where the domain of u is genuinely multi-dimensional). The regions
shaded green correspond to (translated) hypograph (zi, u(zi)) + Hzi

, whereas the region
shaded orange correspond to the (translated) contingent cones (zi, u(zi))+TEpiu(zi, u(zi)) =
(zi, u(zi)) − Hzi

. Note that we have translated the vertices of the cones to the respective
points (zi, u(zi)) for illustrative purposes.

Then, we claim the following equivalence:

Ht,x = −TEpiu(t, x, u(t, x)) , (A.8)

where Epiu = {(t, x, `) : ` ≥ u(t, x)}. For the convenience of readers, the equiv-
alence (A.8) is illustrated in Figure 1 for a scalar function u. Now we show (A.8).
Indeed, (µ, v, `) belongs to−TEpiu(t, x, u(t, x)) if and only if there exist subsequences
sn → 0+ and (tn, xn, un) such that:











t− snµ = tn + o(sn)

x− snv = xn + o(sn)

u(t, x)− sn` = un + o(sn)

and un ≥ u(tn, xn) .

The latter inequality is inherited from the choice S = Epiu. Reorganizing the
terms, and using the Lipschitz continuity of u, we obtain:

u(t, x)− sn` ≥ u(t− snµ, x− snv) + o(sn) ,

u(t, x)− u(t− snµ, x− snv)

sn
≥ `+ o(1) .

The latter is precisely (A.7). i.e. (µ, v, `) ∈ Ht,x and this proves (A.8).
Summarizing, we are seeking a vector v ∈ R

d so that the element (1, v, L(I(t), x, v))
is common to Ht,x and to {1} × Et,x. The latter is a convex set, but the former is
not necessarily convex. Therefore, we are led to consider its convex closure co(Ht,x)
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in order to use the separation theorem. Next, we shall use the viability theory to
remove the convex closure, exactly as in [8].
Step #2: Finding the backward velocity: the separation theorem. We
wish to avoid separation of the two convex sets co(Ht,x) and {1}×Et,x. We argue by
contradiction. If the two sets are separated, then there exists a linear form q ·+〈p, ·〉
such that (i) co(Ht,x) lies below the hyper-plane {(µ, v, `) : ` = qµ+ 〈p, v〉}, and (ii)
{1} × Et,x lies strictly above it [21]. We deduce from the latter condition (ii) that
q + 〈p, v〉 ≤ L(I(t), x, v) − δ for all v ∈ R

d and some δ > 0. This can be recast as
q +H(I(t), x, p) ≤ −δ from the definition of the Legendre transform. On the other
hand, we deduce from condition (i) that

lim sup
s→0+

u(t, x)− u(t− sµ, x− sv)

s
= d+u(t, x)(µ, v) ≤ qµ+ 〈p, v〉 ,

for all (µ, v) ∈ R
d+1. Consequently, (q, p) belongs to the subdifferential of u at

(t, x). By applying the usual criterion of viscosity super-solutions for continuous
Hamiltonian functions (see Remark 3), we find that q +H(I(t), x, p) ≥ 0. This is a
contradiction. Thus, the two convex sets are not separated, i.e.

(∀t, x) co(Ht,x) ∩ ({1} × Et,x) 6= ∅ . (A.9)

Step #3: Finding the backward velocity: the viability theorem. Note that
(A.9) is equivalent to

(∀t, x) co(−TEpiu(t, x, u(t, x))) ∩ ({1} × Et,x) 6= ∅ . (A.10)

We wish to use the viability theorem [3, p. 85] (see also [8, Theorem 2.3]):

Theorem 15 (Viability). Suppose that G : RN
 R

N is an upper semi-continuous
set-valued map with compact convex values. Then for each closed set S ⊂ R

N , the
following statements are equivalent:

(a) (∀z ∈ S) TS(z) ∩G(z) 6= ∅;

(b) (∀z ∈ S) (co TS(z)) ∩G(z) 6= ∅.

Further compactness estimate is required in order to apply Theorem 15. We
claim that we can restrict (A.9) to a compact set:

co(Ht,x) ∩ ({1} × Et,x) ∩
(

{1} ×B(0, R|x|)× [m,M ]
)

6= ∅ ,

where for each K > 0, RK = max{1, rK}, with rK increasing in K such that

Θ(r) > [u]
Lip([0,T ]×B(0,K))

(1 + r) + CΘ for all r ≥ rK , (A.11)

(the choice of rK is possible due to the superlinear growth of Θ), and m,M are
respectively m = minL, M = maxL where both minimum and maximum are taken
over the set J × {x} × B(0, R|x|), where J is a compact set containing the values
{I(t)}t∈(0,T ).

To this end, consider the following two options: either the dual cone (Ht,x)
− is

empty or non-empty. In the first case, it implies co(Ht,x) = R
d, so that any element

of Et,x is appropriate. In particular,

(1, 0, L(I(t), x, 0)) ∈ co(Ht,x) ∩ ({1} × Et,x) ∩ ({1} ×B(0, 1)× [m,M ]) . (A.12)
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In the second case, (Ht,x)
− is non-empty. Hence, there exists a linear form q ·+〈p, ·〉

such that co(Ht,x) lies below the linear set {qµ + 〈p, v〉} as in Step #2. Therefore,
every common point (1, v, `) ∈ co(Ht,x)∩ ({1}×Et,x) (and there is at least one such
point) must satisfy

L(I(t), x, v) ≤ ` ≤ q + 〈p, v〉.

By the facts that (i) L grows uniformly super-linearly (by (L3)), and (ii) (q, p) is
bounded as it belongs to the subdifferential of the locally Lipschitz function u, i.e.
max{|q|, |p|} ≤ [u]

Lip((0,T )×B(0,|x|))
, we deduce

Θ(|v|)− CΘ ≤ L(I(t), x, v) ≤ ` ≤ [u]
Lip((0,T )×B(0,|x|))

(1 + |v|).

By the choice of rK in (A.11), we must have |v| < rK with K = |x|, that is

co(Ht,x) ∩ ({1} × Et,x) ∩
(

{1} ×B(0, r|x|)× [m,M ]
)

6= ∅ . (A.13)

By (A.12) and (A.13), and our choice of R|x| := max{1, r|x|}, we find that

co
(

−T{Epiu}(t, x, u(t, x))
)

∩ (−G(t, x)) = co (Ht,x) ∩ (−G(t, x)) 6= ∅ ,

where G(t, x) = − ({1} × Et,x) ∩
(

{1} ×B(0, R|x|)× [m,M ]
)

is a continuous set-
valued map with compact convex values. In order to apply the viability theorem to
the closed subset S = Epiu, it remains to check that the statement (b) of Theorem
15, i.e.

co (TEpiu(t, x, U)) ∩G(t, x) 6= ∅

holds for all (t, x, U) ∈ Epiu, and not only for points (t, x, u(t, x)) on the graph of
u. This is immediate, as T{Epiu}(t, x, U) = R

d+2 for U > u(t, x).
Finally, all the assumptions of the viability theorem are met. As a consequence,

we can remove the convex closure in (A.10), and thus in (A.9), so as to obtain:

(∀t, x) Ht,x ∩ ({1} × Et,x) 6= ∅ .

In particular, for each (t, x) there exists a vector v(t, x) such that (A.6) holds true.
Step #4: Building the backward trajectory up to the initial time. Now
that we are able to make a small step backward at each (t, x), let ε > 0 be given,
and start from (t0, x0). There exists (s0, v0) such that

u(t0, x0) ≥ s0L(t, x, v0) + u(t0 − s0, x0 − s0v0)− εs0 .

By choosing s0 small enough, we can even replace the right-hand-side by:

u(t0, x0) ≥

∫ s0

0
L(t− s, x0 − sv0, v0) ds+ u(t0 − s0, x0 − s0v0)− 2εs0 . (A.14)

In particular, we have

u(t0, x0) ≥ inf
γ

∫ t0

t0−s0

L(s′, γ(s′), γ̇(s′)) ds′ + u(t0 − s0, γ(t0 − s0))− 2εs0 ,

where the infimum is taken over all γ ∈ AC[0, t] such that γ(t0) = x0. As a result,
the set

Σ =

{

τ ∈ (0, t0) : u(t0, x0) ≥ inf
γ

∫ t0

τ
L(s′, γ(s′), γ̇(s′)) ds′ + u(τ, γ(τ))− 2ε(t0 − τ)

}

.
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is non-empty, and τ∗ := inf Σ ∈ [0, t0 − s0] is well-defined. We wish to prove that
τ∗ = 0. Suppose, for contradiction, that τ∗ > 0. Then, the estimates obtained in
Lemma 9 allows to extract a converging sequence {γn} such that γn is defined on
the time span (τn, t), with τn ↘ τ∗, and {γ̇n} is uniformly BV [2]. Hence, we can
pass to the limit γ̇n → γ̇ a.e. by Helly’s Selection Theorem, and then use Bounded
Convergence Theorem to prove that

u(t0, x0) ≥ inf

∫ t0

τ∗

L(s′, γ(s′), γ̇(s′)) ds′ + u(τ∗, γ(τ∗))− 2ε(t0 − τ∗) .

By applying again the single step backward as in (A.14) at (τ∗, γ(τ∗)), we can push
our lower estimate to an earlier time τ∗∗ ∈ (0, τ∗), and obtain thoroughly a contra-
diction. Thus, τ∗ = 0 and

u(t0, x0) ≥ inf
γ

∫ t0

0
L(s′, γ(s′), γ̇(s′)) ds′ + g(γ(0))− 2εt0 = V (t0, x0)− 2εt0.

By letting ε → 0, we have established that u ≥ V in the case when t 7→ I(t) is
Lipschitz continuous.

To conclude, it remains to remove the additional continuity assumption on I(t).
Let I ∈ BV (0, T ). First of all, we approximate I(t) from below by a sequence of
Lipschitz functions Ik(t) ↗ I(t) converging pointwise [3]:

Ik(t) = inf
s>0

(I(s) + k|t− s|) ≤ I(t) .

It follows from (H2) and Remark 4 that u is also a super-solution associated with
Ik(t). Hence we have

u ≥ Vk in (0, T )× R
d, (A.15)

where Vk is the variational solution associated with Ik.
On the other hand, the compactness estimates on minimizing curves obtained

in Lemma 9 combined with Lebesgue’s dominated convergence theorem guarantees
that Vk ↗ V . Thus, we may let k → ∞ in (A.15) to deduce u ≥ V . This completes
the proof.
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2The family {γ̇n} is even uniformly Lipschitz as I is assumed to be Lipschitz here, see the proof
of Lemma 9.

3Here, we choose the lower semi-continuous representative of I without loss of generality. Note
that the criterion (A.5) is insensitive to the choice of the representative.

22



[4] G. Barles, An introduction to the theory of viscosity solutions for first-order
Hamilton-Jacobi equations and applications, in Hamilton-Jacobi equations:
approximations, numerical analysis and applications, Lecture Notes in Math-
ematics 2074, 2013.

[5] G. Barles, B. Perthame, Concentrations and constrained Hamilton-Jacobi
equations arising in adaptive dynamics, Contemporary Mathematics 439,
57–68, 2007.

[6] G. Barles, S. Mirrahimi, B. Perthame, Concentration in Lotka-Volterra
parabolic or integral equations: a general convergence result, Methods and
Applications of Analysis 16, 321–340, 2009.

[7] M.G. Crandall, P.-L. Lions, Remarks on the existence and uniqueness of un-
bounded viscosity solutions of Hamilton-Jacobi equations, Illinois J. Math.
31, 665–688, 1987.

[8] G. Dal Maso, H. Frankowska, Value functions for Bolza problems with dis-
continuous Lagrangians and Hamilton-Jacobi inequalities, ESAIM: Control,
Optimisation and Calculus of Variations 5, 369–393, 2000.

[9] O. Diekmann, A beginners guide to adaptive dynamics, Banach Center Pub-
lications 63, 47–86, 2003.

[10] O. Diekmann, P.-E. Jabin, S. Mischler, B. Perthame, The dynamics of adap-
tation: an illuminating example and a Hamilton-Jacobi approach, Theor.
Pop. Biol. 67, 257–271, 2005.

[11] A. Fathi, Weak KAM theorem in Lagrangian dynamics, preliminary version
number 10, 2008.

[12] H. Ishii, Hamilton-Jacobi equations with discontinuous Hamiltonians on ar-
bitrary open sets, Bull. Fac. Sci. Engnrg Chuo Univ. 28, 33–77, 1985.

[13] H. Ishii, Comparison results for Hamilton-Jacobi equations without growth
condition on solutions from above, Appl. Anal. 67 (1997) 357-372. https:
//doi.org/10.1080/00036819708840617

[14] Y. Kim, On the uniqueness for one-dimensional constrained Hamilton-Jacobi
equations, preprint arXiv:1807.03432, 2018.

[15] P.-L. Lions, B. Perthame, Remarks on Hamilton-Jacobi equations with mea-
surable time-dependent Hamiltonians, Non-linear Analysis TMA 11, 613–
621, 1987.

[16] Q. Liu, S. Liu and K.-Y. Lam, Asymptotic spreading of interacting
species with multiple fronts II: Exponentially decaying initial data, 50pp.
arXiv:1908.05026 [math.AP]

[17] A. Lorz, S. Mirrahimi, B Perthame, Dirac mass dynamics in a multidimen-
sional nonlocal parabolic equation, Communications in Partial Differential
Equations 36, 1071–1098, 2011.

23



[18] S. Mirrahimi, J.-M. Roquejoffre, A class of Hamilton-Jacobi equations with
constraint: uniqueness and constructive approach, J. Differential Equations,
260, 4717–4738, 2016.

[19] B. Perthame, Transport equations in biology, Birkhäuser, 2007.
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