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Are two-patch models sufficient?

The evolution of dispersal and topology of river network modules

Hongyan Jiang · King-Yeung Lam · Yuan Lou

We study the dynamics of two competing species in three-patch models and illustrate how the topology
of directed river network modules may affect the evolution of dispersal. Each model assumes that patch
1 is at the upstream end, patch 3 is at the downstream end, but patch 2 could be upstream, or middle
stream, or downstream, depending on the specific topology of the modules. We posit that individuals
are subject to both unbiased dispersal between patches and passive drift from one patch to another,
depending upon the connectivity of patches. When the drift rate is small, we show that for all models,
the mutant species can invade when rare if and only if it is the slower disperser. However, when the drift
rate is large, most models predict that the faster disperser wins, while some predict that there exists
one evolutionarily singular strategy. The intermediate range of drift is much more complex: most models
predict the existence of one singular strategy, but it may or may not be evolutionarily stable, again
depending upon the topology of modules, while one model even predicts that for some intermediate drift
rate, singular strategy does not exist and the faster disperser wins the competition.
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1 Introduction

The dynamics of population models in advective habitats such as rivers have received
increasing attention in recent years. These studies covered a wide range of topics, including
flow reactors [1], persistence [25, 32–34, 38, 45], benthic-drift modeling [17, 19], seasonal environ-
ment [18,20,21], competition models [29,30,43,46,47,53,54], Allee effect [48–50], among others.

Organisms in advective environment are often subject to both unbiased dispersal and passive
drift [42]. These two modes of dispersal focus on different niches. On the one hand, passive drift
pushes individual to a relative downstream habitat, which can sometimes be less desirable. e.g.
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freely between the upstream patch and the downstream patch, with rates d,D, respectively. How-
ever, the two upstream patches are not directly connected. The following ODE system describes
the dynamics of two competing species in this river module:
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ui(0) = ui0, vi(0) = vi0, i = 1, 2, 3.

(I)

Here ui, vi (i = 1, 2, 3) denote the number of individuals of two species in patch i, with dispersal
rates d and D, respectively. The parameter q is the rate of directed movement from one patch
to another. Hence, the movement of organisms in (I) is a combination of unbiased and biased
movement. For i = 1, 2, 3, the parameter ki represents the carrying capacity of patch i. For the
sake of simplicity, the intrinsic growth rates are assumed to be equal to one. All these parameters
are assumed to be positive constants. The initial data of ui and vi, 1 ≤ i ≤ 3, are assumed to be
positive so that ui and vi are positive functions of time for t ≥ 0.

Model (II) assumes that individuals in patch i are transported to patch i+ 1 by drift with
the rate q, and they can also disperse between patches i and i + 1 for i = 1, 2. i.e. Patch 2 is
the stepping stone connecting patches 1 and 3. The dynamics of two competing species in this
module can be described by the ODE system
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(II)

Model (III) described the situation in which both species in patch 1 are transported to
patches 2 and 3 by drift with rate q, that is, patch 1 is at the upstream end, while both patches
2 and 3 are at the downstream end. Similarly, we have the following system for two competing
species:
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(III)

Throughout this paper, we assume that the carrying capacities of three patches satisfy

k1 > k2 > k3. (2)

This serves to facilitate the comparison with Theorem 1, in which a similar condition is assumed.
Biologically, condition (2) means that the upstream patch has larger carrying capacity, rendering
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it more favorable for species to persist. Hence, if we increase the drift rate, more individuals from
the upstream patch will be transported to the downstream, which has less favorable environmen-
tal conditions. Thus it might be more advantageous for the species to increase the dispersal rate
so that individuals have better access to the more favorable upstream patch; i.e. increasing the
drift rate may lead to the selection of larger dispersal rate which can counterbalance the passive
drift. This was partially confirmed for two-patch model (1), but as will be seen next, the results
for 3-patch are much more intricate and have subtle dependence on the topology of network
modules.

We mainly study the stability of the semi-trivial steady state, denoted by

(u∗, 0) := (u∗
1, u

∗
2, u

∗
3, 0, 0, 0).

Biologically, we may envision the species u as the resident species which is assumed to reach the
equilibrium state u∗, while species v is regarded as a mutant with low number of individuals.
The question is whether the species v can invade when rare, i.e. whether (u∗, 0) is unstable.
Mathematically, for each of Models (I), (II) and (III), there exists an invasion fitness function,
denoted by Λi, i = 1, 2, 3, respectively, such that (u∗, 0) is stable when Λi > 0 and unstable when
Λi < 0. Our goal is to determine the sign of Λi in terms of parameters d,D, q, ki, which will in
turn provide insight on the evolution of dispersal in patchy environments. The invasion fitness
function Λi can be characterized as the principal eigenvalue of certain irreducible cooperative
matrix (see Section 3 for details). While Λi generally depends on d,D, q, k1, k2, k3, we sometimes
write Λi as Λi(d,D) to emphasize the dependence of Λi on the strategy parameters d,D.

A well established approach to study the evolution of dispersal is the adaptive dynamics
framework; see [7,11]. A central concept of adaptive dynamics theory is that of an evolutionarily
stable strategy (abbreviated as ESS henceforth), which was first introduced in [35]: A strategy
is said to be an ESS (resp. a local ESS) if the resident species using it cannot be invaded by any
mutant species, when the mutant species is rare and using a different strategy (resp. different but
nearby strategies). Another important concept in adaptive dynamics theory is convergence stable
strategy (abbreviated as CvSS henceforth): A strategy is said to be a CvSS if small changes in
nearby strategies are only favored (i.e., able to invade a resident population) if they are closer
to the convergence stable strategy than the resident strategy. The connection of evolutionary
dynamics and ecological dynamics was investigated in [3] for a broad class of models, including
reaction-diffusion equations and nonlocal diffusion equations. It is shown that frequently a species
adopting an ESS dispersal strategy can displace a competitor adopting a dispersal strategy that
is in a neighborhood of the ESS.

1.2 Slow drift

When there is no drift (q = 0), it is well known that (u∗, 0) is stable for any D > d and
unstable if D < d. That is, the mutant can invade when rare if and only if it is the slower
disperser; see [8, 16]. For slow drift, our following result for Models (I)-(III) yields the same
conclusion: If the drift rate is positive and small, the species v can invade when rare if and only
if D < d.

Theorem 2 Suppose k1 > k2 > k3.

(i) For Model (I), if k2

k3

> 1 + k1

4k2

and q ∈ [0, q−), where

q− :=

k2

k3

−
√

1 + k1

4k2

(1 + k2

k3

)

1 + k2

k3

,
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then for any d > 0,

Λ1(d,D) =

{

+ D > d;

− D < d, D close to d.

(Note that the assumption k2

k3

> 1 + k1

4k2

implies q− > 0.)

(ii) For Model (II), if 0 ≤ q < min{1− k2

k1

, k2

k3

− 1}, then for any d > 0,

Λ2(d,D) =

{

+ D > d;

− D < d, D close to d.

(iii) For Model (III), if 2
k2

> 1
k1

+ 1
k3

and

0 ≤ q ≤
2− k2

k1

− k2

k3

1 + k2

k1

+ k2

k3

,

then for any d > 0,

Λ3(d,D) =

{

+ D > d;

− D < d.

We conjecture that if the patch qualities ki are not all identical, then there exists some
positive constant q∗, which is independent of d,D, such that if q < q∗, then (u∗, 0) is globally
asymptotically stable for all of the Models (I)-(III), provided d < D. We refer to the numerical
computations in Figs. 3(a), 4(a)(d) and 5(a) that confirm, respectively, assertions (i), (ii) and
(iii) of Theorem 2.

1.3 Fast drift

For large drift, more individuals from the upstream patch are washed to the downstream
patch, which has less favorable environmental conditions. Hence, it might be natural to expect
larger dispersal rate will always be selected, as in the two-patch model (1). This is indeed the
case for Models (I) and (II), as shown in the following result:

Theorem 3 Assume k1 > k2 > k3.

(i) For Model (I), further assume 2
k2

< 1
k1

+ 1
k3

. If q ≥ k1−k3

k1+k3

, then

Λ1(d,D) =

{

− D > d;

+ D < d.

(ii) For Model (II), if q > max{1− k2

k1

, k2

k3

− 1}, then

Λ2(d,D) =

{

− D > d;

+ D < d.

Theorem 3 implies that for Models (I)-(II), if the drift rate q is large, the mutant can invade
when rare if and only if it is the faster disperser. This is consistent with Theorem 1 for two-patch
model. We refer to Fig. 3(e) and Fig. 4(c)(f) for related numerical computations in confirmation
of these analytical results.

A bit surprisingly, the result for Model (III) is completely different. We recall that a strategy
d∗ > 0 is evolutionarily singular if ∂Λ3

∂D
(d∗, d∗) = 0, i.e. when there is no selection for faster nor

slower dispersal.
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Theorem 4 For Model (III), assume k1 > k2 > k3. Set

p :=
k22 + k23

(k2 − k3)2
, p :=

(1− u∞

k2

)2 + (1− u∞

k3

)2

u∞

k2

+ u∞

k3

− 2
, where u∞ :=

3
1
k1

+ 1
k2

+ 1
k3

.

Then for q > max{p, p}, we have

∂Λ3

∂D

∣

∣

∣

∣

D=d

=

{

+ 0 ≤ d � 1;

− d � 1.

i.e. d = 0 and d = ∞ are both convergence stable strategies. Furthermore, for q > max{p, p}
there exists d∗ = d∗(q) > 0 such that d∗ is an evolutionarily singular strategy and the following

holds:

∂Λ3

∂D

∣

∣

∣

∣

D=d

=











+ d < d∗, d close to d∗;

0 d = d∗;

− d > d∗, d close to d∗.

We refer to Subsections 2.3 and 2.4 for numerical results and further discussions.

1.4 Intermediate drift

For Models (I) and (II) with intermediate drift, an evolutionarily singular strategy always
exists in the course of transition from small to large drift.

Theorem 5 Assume k1 > k2 > k3.

(i) For Model (I), set

q =
(k21 + k22)(

k2

1
+k2

2

k1+k2

− k3)

k3(k1 + k2)2 +
(k2

1
+k2

2
)2

k1+k2

, q =
(1− u∞

k1

)2 + (1− u∞

k2

)2

2− u∞

k1

− u∞

k2

, u∞ =
3

1
k1

+ 1
k2

+ 1
k3

.

(ii) For Model (II), set

q = 1−
k2
k1

, q =
(1− u∞

k1

)2 + (1− u∞

k3

)2

u∞

k3

− u∞

k1

, u∞ =
3

1
k1

+ 1
k2

+ 1
k3

.

Assume q 6= q. Then for min{q, q} < q < max{q, q}, there is some d∗(q) > 0 such that it is an

evolutionarily singular strategy.

Our numerical results indicate that, depending on q > q or q < q, the evolutionarily singular
strategy found in Theorem 5 may or may not be convergence stable/evolutionarily stable. This
will be further discussed in Subsections 2.1 and 2.2.

The rest of the paper is organized as follows: In Sect. 2, we numerically compute the pairwise
invasibility plots (PIPs) for each of the Models (I)-(III), which indicate the sign of the invasion
fitness function as the resident and invader strategies vary, and compare their evolutionary dy-
namics. The proofs are postponed to Sect. 3-6. In Sect. 3, we present some general stability
results of the semi-trivial equilibrium (u∗, 0). Sect. 4 is devoted to the proof of Theorem 2 for
small drift. In Sect. 5, we consider the large drift and establish Theorems 3 and 4. In Sect. 6 we
prove Theorem 5 for intermediate drift.
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2 Numerical Computations and Discussions

For Models (I) and (II), our analytical results show that the species with slower dispersal
wins when q is small, whereas the species with faster dispersal wins when q is large. However,
there are several different ways for which the transition can take place as q varies from 0 to ∞.

2.1 Numerical Results for Model (I)

The PIP For Model (I) is shown in Fig. 3, where (k1, k2, k3) are set to be (2.02, 2, 0.4),
and q takes different values. For 0 ≤ q ≤ 0.5729, the dispersal strategy d = 0 is both ESS and
convergence stable. However, when q is slightly increased to 0.572955, there are two alternative
ESS, namely, d = 0 and d = ∞. Moreover, both d = 0 and d = ∞ appear to be convergence stable.
In this case, the evolutionary dynamics depends on the dispersal trait of the initial population.
When q is further increased to q = 0.57296, then d = 0 is convergence stable but ceases to be an
ESS. Finally, for q ≥ 0.7, only fast dispersal rate is selected.

In Theorem 5(i), we proved that a singular strategy d∗ exists for Model (I), provided q̄ 6= q
and that q ∈ (min{q̄, q},max{q̄, q}). Our numerical simulations show that d∗ is not an evo-
lutionarily stable strategy; see Fig. 3(b)(c)(f). Take Fig. 3(b) as an example, the vertical line
passing through (d∗, d∗) falls into the white region, where (u∗, 0) is unstable. This implies that
the invading species with strategy different from d∗ can invade when rare, i.e. d∗ is not an ESS.
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(c) q = 0.57296, ~k = (2.02, 2, 0.4)
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(f) q = 0.2519, ~k = (2.02, 2, 1)

Fig. 3: The numerical simulation results of Model (I). The black regions represent the range

of (d,D) for which (u∗, 0) is stable. Here ~k abbreviates (k1, k2, k3) in the captions. Note that

the value of ~k of panel (f) is different. The red spots in (b)(c)(f) at the diagonal correspond to
(d∗, d∗), where the values of singular strategy d∗ are approximately 7.9, 0.71, 0.88, respectively.
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Furthermore, the singular strategy d∗ is not convergence stable in Fig. 3(b)-(c), while it is
convergence stable in Fig. 3(f). Take Fig. 3(b) again as an example. If we choose an resident
strategy du greater than but close to d∗ and envision a mutation happens so that the strategy
of the mutant is given by some dv which is larger than but close to du. Then from Fig. 3(b) we
see that (du, dv) falls into the white region, where (u∗, 0) is unstable, i.e. the mutant with larger
dispersal rate can invade when rare, so that the winning strategy further deviates away from the
singular strategy d∗. This implies that d∗ can not be convergence stable. In contrast, the opposite
phenomenon occurs in Fig. 3(f), where the winning strategy is always the one which is closer to
the singular strategy d∗, which explains why d∗ in Fig. 3(f) is a convergence stable strategy.

It can be verified that q > q in Fig. 3(b)(c), and q < q in Fig. 3(f). (Note that the ki’s take
different values.) We conjecture that the sign of q̄− q determines the convergence stability of d∗

for Model (I).

2.2 Numerical Results for Model (II)

For Model (II), we performed numerical computations for (k1, k2, k3) = (5, 3, 2) (see Fig.
4(a)-(c)) and for (k1, k2, k3) = (100, 1.01, 1) (see Fig. 4(d)-(f)), while varying the drift rate q.
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(a) q = 0.1, ~k = (5, 3, 2)
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(b) q = 0.42, ~k = (5, 3, 2)

0 1 2 3 4 5 6 7 8 9 10

d

0

1

2

3

4

5

6

7

8

9

10

D

q=1,k=5,3,2

(c) q = 1, ~k = (5, 3, 2)
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(d) q = 0.007, ~k = (100, 1.01, 1)
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(e) q = 0.98, ~k = (100, 1.01, 1)
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Fig. 4: The numerical simulation results of Model (II). The black regions represent the range of

(d,D) for which (u∗, 0) is stable. Here ~k abbreviates (k1, k2, k3) in the captions. The red spots
in (b)(e) at the diagonal correspond to (d∗, d∗), where the values of singular strategy d∗ are
approximately 0.33, 0.17, respectively.
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In both cases, slow dispersal is favored when the drift is small, and fast dispersal is favored
when the drift is large. Furthermore, for intermediate drift, there appears to be a unique singular
strategy d∗, in agreement with Theorem 5(ii). However, the singular strategy d∗ is evolution-
arily stable when (k1, k2, k3) = (5, 3, 2) (see Fig. 4(b)) but it is not evolutionarily stable when
(k1, k2, k3) = (100, 1.01, 1) (see Fig. 4(e)). Using the definition of q, q in Theorem 5(ii), it can be
shown that q < q in the first case and q > q in the second case. We conjecture that the sign of
q̄ − q determines the evolutionary stability of d∗ for Model (II).

Observe that the spatial heterogeneity is more pronounced in case (k1, k2, k3) = (100, 1.01, 1)
than in case (k1, k2, k3) = (5, 3, 2). For the first case, accessing the upstream patch (i.e. patch
1) is very important. When the drift q is intermediate, both small and large dispersal allow the
species to access the superior resource in the upstream patch. This can partially account for the
situation when both d = 0 and d = ∞ are evolutionarily stable simultaneously (see Fig. 4(e)).

2.3 Numerical Results for Model (III)

The PIP For Model (III) is shown in Fig. 5, where (k1, k2, k3) are set to be (1, 0.3, 0.2), and
q takes different values. When q varies from 0 to 0.7, the transition in PIP bears similarity with
Model (II) (see Fig. 5(a)-(c)), where there is a unique singular strategy that is both ESS and
convergence stable. The singular strategy increases from zero to infinity as q varies from 0 to 0.7.

However, if we further increase q beyond 0.7, both d = 0 and d = ∞ are convergence
stable strategies, and there exists at least one additional singular strategy d∗ ∈ (0,∞). This
is proved in Theorem 4. (See also Fig. 5(e)-(f).) Intuitively, the large drift confines the two
species to the two downstream patches. The numerical results confirm Theorem 4 concerning
the existence of a singular strategy d∗. Moreover, they indicate that for large q, if d,D ∈ (0, d∗),
then the slower dispsersing species can invade the faster species when rare but not vice versa;
if d,D ∈ (d∗,∞), then the faster dispersing species invades the slower one when rare but not
vice versa. Furthermore, the zero disperser can sometimes coexist stably with extremely fast
disperser. See Fig. 5(e)-(f). Based on the invasibility analysis, we conjecture that, for large q, the
slower dispsersing species can competitively exclude the faster species if d,D ∈ (0, d∗), while the
faster dispersing species excludes the slower one if d,D ∈ (d∗,∞).

2.4 Discussions

We consider three mathematical models for two competing species in three-patch advective
environments, where the two species are identical except for their dispersal rates. Each of these
models represents a river network module with distinct topology. We are interested in studying
how the patch quality (ki, i = 1, 2, 3), the advection rate q and the network topology affect the
evolution of dispersal rate. Our main results can be summarized as follows:

(1) Slow drift: For all three models, the species with slower dispersal wins.

(2) Intermediate drift: There exists at least one singular strategy in Models (I) and (II). How-
ever, for Model (III), singular strategy may not exist; Indeed, for certain range of intermediate
drift rates, the species with faster dispersal wins. (See Fig. 5(c).) The singular strategy, when
it exists, is not evolutionarily stable for Model (I), but it can be evolutionarily stable for
Models (II) and (III).

(3) Fast drift: For Models (I) and (II), there is no singular strategy and the species with faster
dispersal wins. For Model (III), both d = 0 and d = ∞ are convergence stable and there exists
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Fig. 5: The numerical simulation results of Model (III). The black regions represent the range of

(d,D) for which (u∗, 0) is stable. Here ~k abbreviates (k1, k2, k3) in the captions. The red spots
in (b)(e)(f) at the diagonal correspond to (d∗, d∗), where the values of singular strategy d∗ is
approximately 1.72, 0.26, 4.8, respectively.

0 10 20 30 40 50 60 70 80 90 100

d

0

10

20

30

40

50

60

70

80

90

100

D

q=8000,k=1,0.3,0.2

(a) q = 8000, ~k = (1, 0.3, 0.2)

Fig. 6: A numerical simulation result of Model (III). The red spot at the diagonal corresponds
to (d∗, d∗), where the value of singular strategy d∗ is approximately 25.

a singular strategy d∗. Moreover, the numerical result suggests the slower disperser wins if
0 < d,D ≤ d∗, and the faster disperser wins if d,D ≥ d∗.

We focus our discussion on Model (III), since it behaves rather differently comparing with
the other two models. From Theorem 4, there exists an evolutionarily singular strategy for Model
(III) when q is sufficiently large. Our numerical simulations suggest that this singular strategy is
neither evolutionarily stable nor convergence stable, and both d = 0 and d = ∞ are convergence
stable; see Fig. 5(f) and Fig. 6.

While the convergence stability of d = ∞ can also be found in Models (I) and (II), the
convergence stability of d = 0 may seem surprising. One way to understand this phenomenon is
to notice that Model (III) has two instead of one downstream patch. When q is large, a single
species with dispersal rate d close to zero on the upstream patch is confined to the two downstream
patches. Furthermore, the two downstream patches are virtually connected by a random dispersal
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rate of d/2. This is due to the possibility of an individual to travel to the upstream patch, with
rate d, and then be quickly transported by the drift to one of the two downstream patches
with equal likelihood. Hence, when we consider the competition system (III) with dispersal rates
d < D, such that d � q and D � q, the two species can be equivalently viewed as two competing
species that have random dispersal in the two downstream patches with rates d/2 and D/2. (See
Lemma 30 for a result in this direction.) It then follows by Hastings’ prediction [16] that the
species with slower dispersal rate wins by better utilizing the two downstream patches. In fact,
when q = 400 and (k1, k2, k3) = (1, 0.3, 0.2), the species with slower dispersal rate wins whenever
1 < d < D < 5; when q = 8000, then the parameter region for the selection of slower dispersal is
enlarged to [0, 20]. See Figs. 5(f) and 6. This explains the convergence stability of d = 0.

However, notice that Model (III) predicts the selection of slower dispersal only when both
species disperse with rates much smaller than q. Another distinct feature of Model (III) comparing
to Models (I) and (II) can be observed from the interaction of extremely slow disperser and
extremely fast disperser, i.e. species with zero or large dispersal rates. First, we observe from
Theorem 3 that for Models (I) and (II), when q is large, the fast disperser can invade the slow one
but not vice versa. In contrast, for Model (III) the extremely fast and extremely slow dispersers
are sometimes mutually invasible. In such event, they can actually coexist in a stable manner.
The intuitive reason is the availability of more than one downstream patch for the latter model.
This is confirmed by our next result.

Theorem 6 Assume k1 > k2 > k3. Consider Model (III).

(i) For each D > 0, there exist d̂1, q̂1 > 0 such that for q ≥ q̂1, we have

sup
0≤d<d̂1,D≥D

Λ3(d,D) < 0.

(ii) If 2
k2

> 1
k1

+ 1
k3

, then there exists q̂2 > 0 such that for q ≥ q̂2,

inf
d> 1

ε
, D<ε

Λ3(d,D) > 0 for 0 < ε � 1.

(iii) If 2
k2

< 1
k1

+ 1
k3

, then there exists q̂3 > 0 such that for q ≥ q̂3,

sup
d> 1

ε
, D<ε

Λ3(d,D) < 0 for 0 < ε � 1.

In particular, when 2
k2

< 1
k1

+ 1
k3

, then Theorem 6 (i) and (iii) are applicable, so that extremely
slow and extremely fast dispersers are mutually invasible and can coexist in a stable manner.
This is the case, for instance, when (k1, k2, k3) = (1, 0.3, 0.2). Fig. 5(f) (resp. Fig. 6) shows the
mutual invasibility of (d,D) = (0, 10) when q = 400 (resp. (d,D) = (0, 100) when q = 8000).

For Model (III) with intermediate drift rate, our numerical simulations suggest that two
alternatives can happen: (i) An ESS exists; see Fig. 5(b). (ii) There is no singular strategy, and
larger dispersal is favored; see Fig. 5(c)-(d). Thus we see that in contrast to Models (I)-(II), Model
(III) is more complex; e.g. case (ii) does not occur for Models (I) and (II) with intermediate drift
rate.

In summary, we study the dynamics of two competing species in three-patch models and
illustrate how the topology of directed river network modules may affect the evolution of dis-
persal. The model under investigation is of Lotka-Volterra type, which is a simplification of real
systems. In the future, it will be interesting to quantify the effect of travel loss [6], or to relax
the assumption that the maximum growth rate being constant across patches. We also expect
that part of our conclusions can be generalized to consumer-resource models in which resources
on patches can be exploited. See, e.g. the Appendix B of [52] for results in this direction.
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3 Preliminaries of the principal eigenvalues

In this section we present some general results on the stability of the semi-trivial equilibrium
(u∗, 0) for models (I)-(III), which are determined by the sign of the principal eigenvalues to some
eigenvalue problems to be specified later.

We first consider Model (I), i.e. system (I). Recall that u∗ = (u∗
1, u

∗
2, u

∗
3) is the unique positive

solution of the algebraic system










d(u∗
3 − u∗

1)− qu∗
1 + u∗

1(1−
u∗

1

k1

) = 0,

d(u∗
3 − u∗

2)− qu∗
2 + u∗

2(1−
u∗

2

k2

) = 0,

d(u∗
1 + u∗

2 − 2u∗
3) + qu∗

1 + qu∗
2 + u∗

3(1−
u∗

3

k3

) = 0.

(3)

The stability of (u∗, 0) is determined by the sign of the principal eigenvalue of the system

A1





ϕ1

ϕ2

ϕ3



+ Λ





ϕ1

ϕ2

ϕ3



 =





0
0
0



 , (4)

where matrix A1 is given by

A1 =







−D − q + 1−
u∗

1

k1

0 D

0 −D − q + 1−
u∗

2

k2

D

D + q D + q −2D + 1−
u∗

3

k3






.

As the off-diagonal entries of A1 are all non-negative and A1 is irreducible, by Perron-
Frobenius Theorem, A1 has a principal eigenvalue, denoted by Λ1(d,D; q), such that Λ1 is real
and algebraically simple, it has the smallest real part among all eigenvalues of A1. Furthermore,
we may choose the corresponding eigenvector such that ϕi > 0, i = 1, 2, 3. In contrast, the
eigenvectors for other eigenvalues are either complex-valued, or real-valued but sign-changing.
For simplicity, we may abbreviate Λ1(d,D; q) as Λ1 or Λ1(d,D). As Λ1 is a simple eigenvalue
of matrix A1, the analytic dependence of Λ1 on D follows from the analytic dependence of the
spectral radius of A1 on its entries.

It is well known that (u∗, 0) is stable if Λ1 > 0 and unstable when Λ1 < 0. Furthermore,
Λ1(d, d) = 0 holds for any d > 0, with ϕi = u∗

i , 1 ≤ i ≤ 3.

Proposition 1 The derivative of Λ1 with respect to D, at D=d, is given by

∂Λ1

∂D

∣

∣

∣

∣

D=d

= −
(u∗

1 −
d

d+q
u∗
3)(u

∗
3 − u∗

1) + (u∗
2 −

d
d+q

u∗
3)(u

∗
3 − u∗

2)

(u∗
1)

2 + (u∗
2)

2 + d
d+q

(u∗
3)

2
. (5)

Proof Differentiate (4) with respect to D, we get





ϕ3 − ϕ1

ϕ3 − ϕ2

ϕ1 + ϕ2 − 2ϕ3



+A1





ϕ′
1

ϕ′
2

ϕ′
3



+
∂Λ1

∂D





ϕ1

ϕ2

ϕ3



+ Λ1





ϕ′
1

ϕ′
2

ϕ′
3



 =





0
0
0



 , (6)

where ϕ′
i =

∂ϕi

∂D
, i = 1, 2, 3. Note that when D = d,

A1|D=d





u∗
1

u∗
2

u∗
3



 =





0
0
0



 ,
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AT
1

∣

∣

D=d





(d+ q)u∗
1

(d+ q)u∗
2

du∗
3



 =





0
0
0



 , (7)

and when D = d, we may choose




ϕ1

ϕ2

ϕ3



 =





u∗
1

u∗
2

u∗
3



 . (8)

Set D = d in (6) and multiplying it by
(

(d+ q)u∗
1, (d+ q)u∗

2, du
∗
3

)

, using (7), (8) and Λ1(d, d) = 0,
we obtain (5). This completes the proof.

Let |A1| be the determinant of A1. By direct calculations, we have

Proposition 2 Assume
u∗

1

k1

+
u∗

2

k2

+
u∗

3

k3

6= 3. Then |A1| = 0 if and only if either D = d, or

D = F (d), where function F is given by

F (d) :=
(−q + 1−

u∗

1

k1

)(−q + 1−
u∗

2

k2

)(1−
u∗

3

k3

)

d(3−
u∗

1

k1

−
u∗

2

k2

−
u∗

3

k3

)
, d > 0. (9)

Proof The determinant of A1 is given by

|A1| =D2(3−
u∗
1

k1
−

u∗
2

k2
−

u∗
3

k3
)−D[2(−q + 1−

u∗
1

k1
)(−q + 1−

u∗
2

k2
)

+ (−q + 1−
u∗
1

k1
− q + 1−

u∗
2

k2
)(1−

u∗
3

k3
)

+ q(−q + 1−
u∗
1

k1
− q + 1−

u∗
2

k2
)] + (−q + 1−

u∗
1

k1
)(−q + 1−

u∗
2

k2
)(1−

u∗
3

k3
).

Note that

A1|D=d





u∗
1

u∗
2

u∗
3



 =





0
0
0



 ,

which implies that

d2(3−
u∗
1

k1
−
u∗
2

k2
−

u∗
3

k3
)− d[2(−q + 1−

u∗
1

k1
)(−q + 1−

u∗
2

k2
) + (−q + 1−

u∗
1

k1
− q + 1−

u∗
2

k2
)(1−

u∗
3

k3
)

+ q(−q + 1−
u∗
1

k1
− q + 1−

u∗
2

k2
)] + (−q + 1−

u∗
1

k1
)(−q + 1−

u∗
2

k2
)(1−

u∗
3

k3
) = 0.

Multiplying the above two equations by d,D, respectively and subtracting the results, we have

(D − d)

[

Dd

(

3−
u∗
1

k1
−

u∗
2

k2
−

u∗
3

k3

)

− (−q + 1−
u∗
1

k1
)(−q + 1−

u∗
2

k2
)(1−

u∗
3

k3
)

]

= 0.

The proof is complete.

If D = d, then zero is the principal eigenvalue of A1. By Proposition 2, |A1| = 0 at D = F (d)
for all d > 0, i.e. zero is an eigenvalue of A1 when D = F (d). However, 0 may not be the principal
eigenvalue of A1 when D = F (d). As Λ1 is the principal eigenvalue of matrix A1, we see that
Λ1(d, F (d)) ≤ 0. These discussions lead to the following result:

Corollary 1 Assume that F (d) is defined for d > 0. Then Λ1(d, F (d)) ≤ 0.
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For Model (II), i.e. system (II), u∗ = (u∗
1, u

∗
2, u

∗
3) is the unique positive solution of the algebra

system










d(u∗
2 − u∗

1)− qu∗
1 + u∗

1(1−
u∗

1

k1

) = 0,

d(u∗
1 + u∗

3 − 2u∗
2) + qu∗

1 − qu∗
2 + u∗

2(1−
u∗

2

k2

) = 0,

d(u∗
2 − u∗

3) + qu∗
2 + u∗

3(1−
u∗

3

k3

) = 0.

(10)

Similarly, the stability of (u∗, 0) in (II) is determined by the sign of the principal eigenvalue,
denoted by Λ2(d,D; q), of the eigenvalue problem

A2





ϕ1

ϕ2

ϕ3



+ Λ





ϕ1

ϕ2

ϕ3



 =





0
0
0



 , (11)

where matrix A2 is defined by

A2 :=







−D − q + 1−
u∗

1

k1

D 0

D + q −2D − q + 1−
u∗

2

k2

D

0 D + q −D + 1−
u∗

3

k3






.

Similar to the proof of Proposition 1, we have the following result:

Proposition 3 When D = d, the derivative of Λ2 with respect to D satisfies

∂Λ2

∂D

∣

∣

∣

∣

D=d

= −

d+q
d

u∗
1(u

∗
2 − u∗

1) + u∗
2(u

∗
1 + u∗

3 − 2u∗
2) +

d
d+q

u∗
3(u

∗
2 − u∗

3)
d+q
d

(u∗
1)

2 + (u∗
2)

2 + d
d+q

(u∗
3)

2
. (12)

By direct calculations, we can obtain the following same result for (II):

Proposition 4 Assume
u∗

1

k1

+
u∗

2

k2

+
u∗

3

k3

6= 3. Then |A2| = 0 if and only if either D = d, or

D = F (d), where F is given by (9).

For Model (III), i.e. system (III), u∗ is given by











d(u∗
2 + u∗

3 − 2u∗
1)− 2qu∗

1 + u∗
1(1−

u∗

1

k1

) = 0,

d(u∗
1 − u∗

2) + qu∗
1 + u∗

2(1−
u∗

2

k2

) = 0,

d(u∗
1 − u∗

3) + qu∗
1 + u∗

3(1−
u∗

3

k3

) = 0.

(13)

The principal eigenvalue Λ3 is determined by

A3





ϕ1

ϕ2

ϕ3



+ Λ





ϕ1

ϕ2

ϕ3



 =





0
0
0



 , (14)

where matrix A3 is defined by

A3 :=







−2D − 2q + 1−
u∗

1

k1

D D

D + q −D + 1−
u∗

2

k2

0

D + q 0 −D + 1−
u∗

3

k3






.

Similar to the proof of Proposition 1, we have the following result:



16 Hongyan Jiang et al.

Proposition 5 When D = d, the derivative of Λ3 with respect to D satisfies

∂Λ3

∂D

∣

∣

∣

∣

D=d

= −
(u∗

2 −
d+q
d

u∗
1)(u

∗
1 − u∗

2) + (u∗
3 −

d+q
d

u∗
1)(u

∗
1 − u∗

3)
d+q
d

(u∗
1)

2 + (u∗
2)

2 + (u∗
3)

2
. (15)

By direct calculations, we can obtain the following result for (III):

Proposition 6 Assume
u∗

1

k1

+
u∗

2

k2

+
u∗

3

k3

6= 3. Then |A3| = 0 if and only if either D = d, or

D =
(−2q + 1−

u∗

1

k1

)(1−
u∗

2

k2

)(1−
u∗

3

k3

)

d(3−
u∗

1

k1

−
u∗

2

k2

−
u∗

3

k3

)
. (16)

For subsequent applications, we make some comments on the analytic dependence of u∗

and Λi (i = 1, 2, 3) on dispersal and drift rates d > 0, q ≥ 0. Consider i = 1 for instance, the
existence of positive solution u∗ for system (3) follows from the upper and lower solution method.
Using (7) we can show that any positive solution of (3), as an equilibrium of the corresponding
time-dependent system, is linearly stable. In fact, it follows from the theory of strongly monotone
dynamical system that Model (I) has a unique positive solution and it is globally stable among
all positive solutions of (here ′ denotes the time derivative)







u′
1 = d(u3 − u1)− qu1 + u1(1−

u1

k1

),

u′
2 = d(u3 − u2)− qu2 + u2(1−

u2

k2

),

u′
3 = d(u1 + u2 − 2u3) + qu1 + qu2 + u3(1−

u3

k3

),
(17)

which is the time-dependent problem corresponding to (3).
Since the left hand side of (3) depends on parameters d and q analytically, by the linear

stability of u∗ and the implicit function theorem, u∗ also depends on d > 0 and q ≥ 0 analytically.
Note also that Λ1 is a simple eigenvalue of matrix A1, and hence depends analytically on the
entries of A1. As a consequence, Λ1 is a real analytic function of the parameters d, q. The
arguments for i = 2, 3 are similar and thus omitted.

4 The small drift case

The goal of this section is to establish Theorem 2 for the small drift case. We consider three
Models (I)-(III) and establish part (i)-(iii) of Theorem 2 in Subsections 4.1-4.3, respectively.

4.1 Model (I)

In this subsection, we study the sign of the principal eigenvalue Λ1 in Model (I) when q
is small. To this end, we first establish some estimates on solutions of (3). In this subsection
u∗ = (u∗

1, u
∗
2, u

∗
3) denotes the unique positive solution of (3).

Lemma 1 Suppose k1 > k2 > k3. Then u∗
3 > k3 holds for any d > 0 and q ≥ 0.

Proof We first prove u∗
3 > k3 holds for q = 0. We argue by contradiction: If not, assume that

when q = 0, u∗
3 ≤ k3. Adding three equations of (3), we have

u∗
1(1−

u∗
1

k1
) + u∗

2(1−
u∗
2

k2
) + u∗

3(1−
u∗
3

k3
) = 0,
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which implies that

u∗
1(1−

u∗
1

k1
) + u∗

2(1−
u∗
2

k2
) ≤ 0.

Hence, without loss of generality we may assume that 1 − u∗
1/k1 ≤ 0. Therefore, by the first

equation of (3), u∗
3 ≥ u∗

1. This implies that k3 ≥ u∗
3 ≥ u∗

1 ≥ k1, which contradicts assumption
k1 > k3.

Notice that u∗
i = u∗

i (q) is a smooth function of q, so it suffices to prove that u∗
3 6= k3 when

q > 0. Again we argue by contradiction and assume that there exists some q > 0 such that
u∗
3 = k3. By (3), we get

u∗
i =

ki(−d− q + 1) +
√

k2i (−d− q + 1)2 + 4dkik3
2

, i = 1, 2.

By the third equation of (3) and u∗
3 = k3, we know u∗

1 + u∗
2 = 2dk3

d+q
, so we obtain

2dk3
d+ q

=
k1(−d− q + 1) +

√

k21(−d− q + 1)2 + 4dk1k3
2

+
k2(−d− q + 1) +

√

k22(−d− q + 1)2 + 4dk2k3
2

.

For x > 0, set

f(x) =
x(−d− q + 1) +

√

x2(−d− q + 1)2 + 4dk3x

2
.

As f ′(x) > 0 for x > 0, by k1 > k2 > k3 we have

2dk3
d+ q

= f(k1) + f(k2) > 2f(k3) = k3(−d− q + 1) + k3
√

(−d− q + 1)2 + 4d.

Rationalizing the right hand side, we get

2dk3
d+ q

>
4dk3

√

(d+ q − 1)2 + 4d+ d+ q − 1
.

Cancelling 2dk3 on both sides, the above can be further simplified to
√

(d+ q − 1)2 + 4d > d+ q + 1,

which implies that q < 0, a contradiction.

Lemma 2 Assume that k1 > k2 > k3, then
u∗

1

k1

<
u∗

2

k2

holds for any d > 0 and q ≥ 0.

Proof Clearly, we know that
u∗

1

k1

<
u∗

2

k2

holds for sufficiently large d. Thus, as
u∗

1

k1

and
u∗

2

k2

are

continuous functions of d, q, it suffices to prove that
u∗

1

k1

6=
u∗

2

k2

for any d > 0. We assume that

there exists some d > 0 such that
u∗

1

k1

=
u∗

2

k2

. Set a :=
u∗

1

k1

=
u∗

2

k2

. By the first and second equation
of (3), we get

(u∗
2 − u∗

1)(d+ q − 1 + a) = 0.

Due to
u∗

1

k1

=
u∗

2

k2

and k1 > k2, we see that u∗
1 6= u∗

2. Hence, d+ q − 1 + a = 0, i.e.

1−
u∗
1

k1
= d+ q.

By the first equation of (3) we have u∗
3 = 0, which is a contradiction.
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Lemma 3 Assume that k1 > k2 > k3, then u∗
1 > u∗

2 holds for any d > 0 and q ≥ 0.

Proof By the first and second equation of (3), we obtain

(−d− q + 1−
u∗
1

k1
)u∗

1 = (−d− q + 1−
u∗
2

k2
)u∗

2 = −du∗
3 < 0.

By Lemma 2, we have

(−d− q + 1−
u∗
2

k2
)u∗

1 < (−d− q + 1−
u∗
2

k2
)u∗

2 < 0.

Therefore, u∗
1 > u∗

2.

Lemma 4 Assume that k1 > k2 > k3, then u∗
1 < k1 holds for any d > 0, q ≥ 0.

Proof By the third equation of (3) and Lemma 3, we get

2d(u∗
1 − u∗

3) + 2qu∗
1 + u∗

3(1−
u∗

3

k3

) > 0,

which together with the first equation of (3) implies that

2u∗
1(1−

u∗

1

k1

) + u∗
3(1−

u∗

3

k3

) > 0.

Then by Lemma 1, we get u∗
1 < k1.

Lemma 5 Suppose k1 > k2 > k3. If
k2

k3

> 1 + k1

4k2

, then u∗
2 < k2 holds for any q ≥ 0 and d > 0.

Proof Obviously, u∗
2 < k2 when d = 0 and q > 0. Note that u∗

2 is continuous in d and q, it suffices
to show for any d > 0, q ≥ 0, u∗

2 6= k2. If not, we assume that there exist d > 0 and q ≥ 0 such
that u∗

2 = k2. So u∗
3 = d+q

d
k2. Rewrite (3) as

{

d(u∗
3 − u∗

1)− qu∗
1 + u∗

1(1−
u∗

1

k1

) = 0,

d(u∗
1 − u∗

3) + qu∗
1 + u∗

3(1−
u∗

3

k3

) = 0.

Thus

u∗
1(1−

u∗
1

k1
) = u∗

3(
u∗
3

k3
− 1). (18)

We only need to prove there is no positive solution of (18) in the interval (k2, k1). Rewrite (18)

as 1
k1

(u∗
1)

2 − u∗
1 + u∗

3(
u∗

3

k3

− 1) = 0, we know (18) has solution if and only if

1−
4u∗

3

k1
(
u∗
3

k3
− 1) ≥ 0. (19)

By u∗
3 = d+q

d
k2 and assumption k2

k3

> 1 + k1

4k2

, we see that (19) can not hold, i.e. (18) has no
solution, which is a contradiction.

For the rest of this subsection, we define

q− :=

k2

k3

−
√

1 + k1

4k2

(1 + k2

k3

)

1 + k2

k3

.

Lemma 6 Suppose k1 > k2 > k3. If k2

k3

> 1 + k1

4k2

, then u∗
2 > u∗

3 holds for all d > 0 and

q ∈ [0, q−).
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Proof The proof is similar to that of Lemma 5. By Lemma 5, we know that when q = 0, u∗
2 < k2.

By the second equation of (3), u∗
2 > u∗

3 holds for q = 0 and d > 0. Thus we just need to verify
when q ∈ (0, q−), u

∗
2 6= u∗

3 for any d > 0. We argue by contradiction and assume that there
exist some q ∈ (0, q−) and d > 0 such that u∗

2 = u∗
3. By the second equation of (3), we get

u∗
2 = u∗

3 = k2(1− q) and
{

d(u∗
3 − u∗

1)− qu∗
1 + u∗

1(1−
u∗

1

k1

) = 0,

d(u∗
1 − u∗

3) + qu∗
1 + qu∗

3 + u∗
3(1−

u∗

3

k3

) = 0,

so that
1

k1
(u∗

1)
2 − u∗

1 + k2(1− q)[−q − 1 +
k2
k3

(1− q)] = 0,

for which we only need to show there is no positive solution. If not, we must have

1− 4k2(1−q)
k1

[−q − 1 + k2

k3

(1− q)] ≥ 0.

By assumption q < q−, we get 1− 4k2(1−q)
k1

[−q − 1 + k2

k3

(1− q)] < 0, which is a contradiction.

Corollary 2 Assume k1 > k2 > k3. If
k2

k3

> 1 + k1

4k2

, then for q ∈ [0, q−), d > 0, ∂Λ1

∂D

∣

∣

D=d
> 0.

Proof By Lemmas 3 and 6, we have u∗
1 > u∗

2 > u∗
3. In particular, u∗

3 − u∗
1 < 0, u∗

3 − u∗
2 < 0. It

follows from Lemmas 4 and 5 that u∗
1 < k1, u

∗
2 < k2. Then by the first and second equation of

(3), u∗
1 −

d
d+q

u∗
3 > 0, u∗

2 −
d

d+q
u∗
3 > 0. Therefore, the right hand side of (5) is positive.

Lemma 7 Assume k1 > k2 > k3 and k2

k3

> 1 + k1

4k2

. If q ∈ [0, q−) and d > 0, then

3−
u∗
1

k1
−

u∗
2

k2
−

u∗
3

k3
< 0. (20)

Proof We first show that (20) holds when q = 0. For q = 0, dividing the i-th equation of (3) by
ui and adding the results, we have

3−
u∗
1

k1
−

u∗
2

k2
−

u∗
3

k3
= −d(

u∗
1

u∗
3

+
u∗
3

u∗
1

− 2)− d(
u∗
2

u∗
3

+
u∗
3

u∗
2

− 2) < 0,

where the last equality is strict as k1, k2, k3 are not equal to each other.

Note that ui, i = 1, 2, 3, are continuous functions of q, so it suffices to prove 3−
u∗

1

k1

−
u∗

2

k2

−
u∗

3

k3

6=
0 for any q > 0. If not, assume that there exists q > 0 satisfying the assumption such that

3−
u∗
1

k1
−

u∗
2

k2
−

u∗
3

k3
= 0. (21)

Adding the equations in (3), we have

u∗
1(1−

u∗
1

k1
) + u∗

2(1−
u∗
2

k2
) + u∗

3(1−
u∗
3

k3
) = 0,

which together with (21) implies that

(u∗
1 − u∗

2)(1−
u∗
1

k1
) + (u∗

2 − u∗
3)(

u∗
3

k3
− 1) = 0.

By Lemmas 1, 3, 4 and 6, the left side of the above equation is positive. This contradiction
completes the proof.
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Recall that F (d) was defined in (9). By Lemma 7, if q ∈ [0, q−), then F (d) is well defined
for any d > 0. Hence, by Corollary 1 we see that Λ1(d, F (d)) ≤ 0 for d > 0.

Lemma 8 Suppose k1 > k2 > k3,
k2

k3

> 1 + k1

4k2

. If q ∈ [0, q−), then Λ1(d,D) > 0 for all

D > d > 0.

Proof We argue by contradiction and assume that Λ1(d̂, D̂) ≤ 0 for some D̂ > d̂ > 0. By

Corollary 2, Λ1(d,D) > 0 for D > d and D close to d. Hence we may assume that Λ1(d̂, D̂) = 0.

By Proposition 2, D̂ = F (d̂) and F (d̂) > d̂. Clearly, we have F (d) < d as d → +∞. By the
continuity of F , D = F (d) crosses the diagonal line D = d at some d = d∗ > 0. By Corollary 2,
there exists some δ > 0 such that Λ1(d,D) > 0 for d ∈ (d∗ − δ, d∗ + δ) and 0 < D − d < δ. This
contradicts the fact that Λ1(d, F (d)) ≤ 0 for d > 0.

Proof of Theorem 2-(i). It follows from Lemma 8 and Corollary 2.

4.2 Model (II)

In this subsection, we study the sign of the principal eigenvalue Λ2 in Model (II) when q is
small. We first establish a few preliminary estimates on solutions of (10). Let u∗ = (u∗

1, u
∗
2, u

∗
3)

denote the unique positive solution of (10) throughout this subsection.

Lemma 9 Assume k1 > k2 > k3. For any d > 0, q ≥ 0, u∗
1 < k1 always holds.

Proof If not, assume that there exist d > 0, q ≥ 0 such that u∗
1 ≥ k1. By the first equation of

(10),

u∗
2 ≥ d+q

d
u∗
1 ≥ u∗

1 ≥ k1 > k2.

Then by the second equation of (10), u∗
3 > u∗

2 > k2 > k3. Thus u
∗
1(1−

u∗

1

k1

) + u∗
2(1−

u∗

2

k2

) + u∗
3(1−

u∗

3

k3

) < 0. By (10) we have u∗
1(1−

u∗

1

k1

) + u∗
2(1−

u∗

2

k2

) + u∗
3(1−

u∗

3

k3

) = 0, which is a contradiction.

Next, we have

Lemma 10 Assume k1 > k2 > k3. For any d > 0, q ≥ 0, u∗
3 > k3 always holds.

The proof of Lemma 10 is similar to that of Lemma 9 and is thus omitted.

Lemma 11 Suppose k1 > k2 > k3. If 0 ≤ q < min{1− k2

k1

, k2

k3

−1}, then u∗
1 > u∗

2 > u∗
3 for d > 0.

Proof Firstly, we prove u∗
1 > u∗

2. We argue by contradiction and assume that there exists 0 ≤
q < min{1− k2

k1

, k2

k3

− 1} such that u∗
1 ≤ u∗

2. From the first equation of (10), u∗
1 ≥ k1(1− q), and

using q < 1− k2

k1

, we obtain u∗
2 ≥ u∗

1 > k2. By the second equation of (10) and u∗
2 ≥ u∗

1 > k2, we
get u∗

2 < u∗
3. Again using the equation of u∗

3, u
∗
3 < k3(1+ q). Thus k2 < u∗

2 < u∗
3 < k3(1+ q), i.e.,

q > k2

k3

− 1, which contradicts assumption q < k2

k3

− 1.
Next, we prove u∗

2 > u∗
3. When q = 0, u∗

2 > u∗
3 follows from u∗

3 > k3 and the equation of u∗
3.

By the continuous dependence of u∗
i on q, it suffices to show u∗

2 6= u∗
3. Suppose to the contrary

that there is some q satisfying the assumption such that u∗
2 = u∗

3. Using the 3rd equation of (10),
we get u∗

2 = u∗
3 = k3(1 + q). The second equation of (10) is reduced to

d(u∗
1 − u∗

2) + qu∗
1 − qu∗

2 + u∗
2(1−

u∗
2

k2
) = 0.

As we have shown u∗
1 > u∗

2, thus u∗
2 > k2 holds. This together with u∗

2 = k3(1 + q) implies
q > k2

k3

− 1, which is impossible since q ∈ [0, k2

k3

− 1).
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Proposition 7 Suppose k1 > k2 > k3. If 0 ≤ q < min{1− k2

k1

, k2

k3

− 1}, then

∂Λ2

∂D

∣

∣

∣

∣

D=d

> 0 for any d > 0.

Proof By Lemma 11, we have

d+q
d

u∗
1(u

∗
2 − u∗

1) + u∗
2(u

∗
1 + u∗

3 − 2u∗
2) +

d
d+q

u∗
3(u

∗
2 − u∗

3) < −(u∗
1 − u∗

2)
2 − (u∗

2 − u∗
3)

2 < 0.

Thus the right hand side of (12) is positive and the conclusion follows from Proposition 3.

Lemma 12 Assume k1 > k2 > k3. If 0 ≤q < min{1− k2

k1

, k2

k3

− 1}, then

3−
u∗
1

k1
−

u∗
2

k2
−

u∗
3

k3
< 0 for d > 0.

Proof To repeat the proof of Lemma 7, we need

u∗
1 < k1, u∗

3 > k3, and u∗
1 > u∗

2 > u∗
3,

which are already proved in Lemmas 9, 10 and 11.

Recall that F is defined as in (9). By Lemma 12, if 0 ≤ q < min{1− k2

k1

, k2

k3

−1}, then F (d) is
well defined for all d > 0. The rest of the proof for Theorem 2-(ii) is identical to that of Theorem
2-(i) and is thus omitted.

4.3 Model (III)

In this subsection, we study the sign of the principal eigenvalue Λ3 in Model (III) when q
is small. Again, the key is to establish a few preliminary estimates on solutions of (13), denoted
by u∗ = (u∗

1, u
∗
2, u

∗
3) throughout this subsection.

Lemma 13 Suppose that k1 > k2 > k3. Then for all d > 0, q ≥ 0, u∗
1 < k1 holds.

Proof Clearly u∗
1 < k1 holds when q = 0, so it suffices to show that for q > 0, u∗

1 6= k1. If not, we
may assume that there exists some q > 0 such that u∗

1 = k1. Substituting u∗
1 = k1 into the first

equation of (13), we get

u∗
2 + u∗

3 = (2 + 2q/d)k1. (22)

Substituting u∗
1 = k1 into the second and third equation of (13), we obtain

u∗
i =

ki(1− d) +
√

k2i (d− 1)2 + 4k1ki(d+ q)

2
for i = 2, 3.

For x > 0, set

g(x) :=
x(1− d) +

√

x2(d− 1)2 + 4k1(d+ q)x

2
,

and observe that g′(x) > 0 for x > 0. By (22), we have

2(d+ q)

d
k1 = g(k2) + g(k3) < 2g(k1) = k1(1− d) +

√

k21(d− 1)2 + 4k21(d+ q).
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Cancelling k1 on both sides, and multiplying
√

(d− 1)2 + 4(d+ q) + (d − 1) on both sides, we
get

2(d+ q)

d
[
√

(d+ 1)2 + 4q + (d− 1)] =
2(d+ q)

d
[
√

(d− 1)2 + 4(d+ q) + (d− 1)] < 4(d+ q).

Cancelling 2(d+ q) on both sides, the above can be simplified to

√

(d+ 1)2 + 4q < d+ 1,

from which it follows that q < 0, a contradiction.

Lemma 14 Assume k1 > k2 > k3, then
u∗

2

k2

<
u∗

3

k3

for all d > 0 and q ≥ 0.

Proof As d → ∞, u∗
1, u

∗
2, u

∗
3 → 3/( 1

k1

+ 1
k2

+ 1
k3

), so
u∗

2

k2

<
u∗

3

k3

for large d. By virtue of the

continuity of u∗
2, u

∗
3 with respect to d, we just need to prove that

u∗

2

k2

6=
u∗

3

k3

for d > 0. We argue

by contradiction and assume that there exists d > 0 such that a :=
u∗

2

k2

=
u∗

3

k3

. Then by the second
and third equation of (13), we have

(d− 1 + a)(u∗
3 − u∗

2) = 0.

Since u∗
2 = k2

k3

u∗
3 > u∗

3, we have u∗
2 6= u∗

3 and hence a = 1 − d < 1. Next, by adding all three
equations of (13), we get

u∗
1(1−

u∗
1

k1
) + u∗

2(1− a) + u∗
3(1− a) = 0.

But this implies u∗
1 > k1, which is impossible, in view of Lemma 13.

Lemma 15 Assume k1 > k2 > k3, then u∗
2 > u∗

3 holds for all d > 0, q ≥ 0.

Proof From Lemma 14 and (13), we have

{

d(u∗
1 − u∗

3) + qu∗
1 + u∗

3(1−
u∗

2

k2

) > 0,

d(u∗
1 − u∗

2) + qu∗
1 + u∗

2(1−
u∗

2

k∗

2

) = 0.
(23)

Subtracting, we get (u∗
2−u∗

3)(d−1+
u∗

2

k2

) > 0. Now, it is easy to see that d−1+
u∗

2

k2

> 0 (otherwise
the second equation of (23) says u∗

1 ≤ 0). Thus, u∗
2 > u∗

3.

Lemma 16 Assume k1 > k2 > k3, then u∗
3 > k3 for all d > 0, q ≥ 0.

Proof By Lemma 14 and (13), we know

0 = u∗
1(1−

u∗
1

k1
) + u∗

2(1−
u∗
2

k2
) + u∗

3(1−
u∗
3

k3
) > u∗

1(1−
u∗
1

k1
) + (u∗

2 + u∗
3)(1−

u∗
3

k3
).

Now, by noting that u∗
1 > k1 (which is proved in Lemma 13), we have u∗

3 > k3.

Let (u1, u2) denote the unique positive solution of the following two-patch model:

{

d(u2 − u1)− qu1 + u1(1−
u1

k1

) = 0,

d(u1 − u2) + qu1 + u2(1−
u2

k2

) = 0.
(24)

Lemma 17 Assume k1 > k2. Then for any d > 0, q ≥ 0, u2 > k2.
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Proof Assume that there exist some d > 0, q ≥ 0 such that u2 ≤ k2. By the second equation of
(24), we get u1 ≤ u2. Adding the equations of (24), we have

u1(1−
u1

k1

) + u2(1−
u2

k2

) = 0.

Hence, u1 ≥ k1. Therefore, k1 ≤ u1 ≤ u2 ≤ k2, which is a contradiction.

Lemma 18 Assume k1 > k2.

(i) If q < k1−k2

k1+k2

, then u1 > 2k1k2

k1+k2

;

(ii) If q > k1−k2

k1+k2

, then u1 < 2k1k2

k1+k2

.

Proof We first prove that u1 is decreasing with respect to q. Note that

(d+ q − 1 + 2u1

k1

)(d− 1 + 2u2

k2

)− d(d+ q) > 0.

Taking the derivative of two equations with respect to q in (24), we have

{

d(u2)
′ − (d+ q − 1 + 2u1

k1

)(u1)
′ − u1 = 0,

(−d+ 1− 2u2

k2

)(u2)
′ + (d+ q)(u1)

′ + u1 = 0.
(25)

Multiplying the above two equations by (−d+ 1− 2u2

k2

), d and subtracting them, we get

(u1)
′ =

1− 2u2

k2

(d+ q − 1 + 2u1

k1

)(d− 1 + 2u2

k2

)− d(d+ q)
u1.

By Lemma 17, (u1)
′ < 0. Note that when q = k1−k2

k1+k2

, u1 = u2 = 2k1k2

k1+k2

, then the conclusion
follows from the monotonicity of u1 in q.

Lemma 19 Suppose k1 > k2 > k3 and 2
k2

> 1
k1

+ 1
k3

. Then u∗
2 > k2 for d > 0, 0 ≤q ≤ k1−k3

k1+k3

.

Proof For fixed q, by assumption we have u∗
2 > k2 for sufficiently large d. Hence, it suffices to

show that u∗
2 6= k2 for all d > 0. If not, assume that there exists d > 0 such that u∗

2 = k2, so
that the second equation of (13) implies d(u∗

1 − u∗
2) + qu∗

1 = 0, and the first and third equation
of (13) is equivalent to (24). As q ≤ k1−k3

k1+k3

, it follows from Lemma 18 that

u∗
1 ≥

2k1k3
k1 + k3

.

Therefore, by u∗
2 = k2 and the second equation of (13), u∗

1 = d
d+q

u∗
2 ≤ u∗

2. Hence, we obtain
2k1k3

k1+k3

≤ k2, i.e.,
2
k2

≤ 1
k3

+ 1
k1

, which is a contradiction.

For the rest of this subsection, we assume in addition that 2
k2

> 1
k1

+ 1
k3

and define the
positive number q as

q :=
2
k2

− 1
k1

− 1
k3

1
k2

+ 1
k1

+ 1
k3

.

Lemma 20 Suppose k1 > k2 > k3 and 2
k2

> 1
k1

+ 1
k3

. Then

u∗
1 > u∗

2 for d > 0 and 0 ≤ q ≤ q.
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Proof Step 1. q = 0. Note that

q =
2
k2

− 1
k1

− 1
k3

1
k2

+ 1
k1

+ 1
k3

<
k1 − k3
k1 + k3

,

where we used 0 < 1
k1

< 1
k2

< 1
k3

. It follows from Lemma 19 that u∗
1 > u∗

2.
Step 2. 0 < q ≤ q. In this case, we only need to show that u∗

1 6= u∗
2. If not, u

∗
1 = u∗

2. Then (13)
can be reduced to











d(u∗
3 − u∗

1)− 2qu∗
1 + u∗

1(1−
u∗

1

k1

) = 0,

u∗
1 = u∗

2 = k2(1 + q),

d(u∗
1 − u∗

3) + qu∗
1 + u∗

3(1−
u∗

3

k3

) = 0.

(26)

By the first and second equation of (26), we have

u∗
3 =

k2(1 + q)[d+ (2 + k2

k1

)q − (1− k2

k1

)]

d
. (27)

By our assumption on q, we have

q ≤
2
k2

− 1
k1

− 1
k3

1
k2

+ 1
k1

+ 1
k3

<
1
k2

− 1
k1

2
k2

+ 1
k1

=
1− k2

k1

2 + k2

k1

. (28)

Substituting (28) into (27), we deduce that

u∗
3 < k2(1 + q). (29)

Next, deduce from the first and third equation of (26) that

(d+ q)
u∗
1

u∗
3

= d− 1 +
u∗
3

k3
and d

u∗
3

u∗
1

= d+ 2q − 1 +
u∗
1

k1
. (30)

Note that the latter implies that (using u∗
1 = k2(1 + q) and (28))

d > d := −

(

2 +
k2
k1

)

q +

(

1−
k2
k1

)

> 0. (31)

Multiplying the two equations, we obtain

d(d+ q) = (d− d)(d− 1 +
u∗
3

k3
).

Cancelling d2 on both sides, the above can be simplified as

u∗
3 = k3

d(1 + q + d)− d

d− d
. (32)

Since d > d (by (31)), and that the expression on the right hand side of (32) is monotone
decreasing in d ∈ (d,∞), it holds that

u∗
3 > k3(1 + q + d) = k3[(2−

k2
k1

)− (1 +
k2
k1

)q]. (33)

By using the assumption of q, (33) implies

u∗
3 > k3[(2−

k2
k1

)− (1 +
k2
k1

)q] ≥ k2(1 + q), (34)

which is a contradiction to (29).
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Corollary 3 Suppose k1 > k2 > k3 and 2
k2

> 1
k1

+ 1
k3

. Then

∂Λ3

∂D

∣

∣

∣

∣

D=d

> 0 for d > 0 and q ∈ [0, q].

Proof By Lemmas 15 and 20, u∗
1 > u∗

2 > u∗
3. Using u∗

2 > k2 (by Lemma 19) and the second
equation of (13), we have du∗

2 − (d+ q)u∗
1 < 0. Similarly, using u∗

3 > k3 (by Lemma 16) and the
third equation of (13), we get du∗

3 − (d+ q)u∗
1 < 0. Thus the right hand side of (15) is positive.

The conclusion follows from Proposition 5.

Lemma 21 Suppose k1 > k2 > k3 and 2
k2

> 1
k1

+ 1
k3

. Then for d > 0, q ∈ [0, q],

3−
u∗
1

k1
−

u∗
2

k2
−

u∗
3

k3
< 0 for d > 0 and q ∈ [0, q].

Proof To repeat the proof of Lemma 7, we need

u∗
1 < k1, u∗

3 > k3, and u∗
1 > u∗

2 > u∗
3,

which are already proved in Lemmas 13, 16, 15 and 20.

Corollary 4 Suppose k1 > k2 > k3 and 2
k2

> 1
k1

+ 1
k3

. Then for d > 0, q ∈ [0, q], the right hand

side of (16) is strictly negative.

Proof By Lemmas 15, 20 and the first equation of (13), we get −2q + 1 −
u∗

1

k1

> 0. Then by
Lemmas 16, 19 and 21, the right hand side of (16) is strictly negative.

Proof of Theorem 2-(iii). Since the right hand side of (16) is strictly negative (by Corollary 4),
Proposition 6 says that Λ3(d,D) = 0 if and only if D = d. Therefore, by Corollary 3 and the
continuity of Λ3, Λ3(d,D) > 0 holds for D > d > 0 and Λ3(d,D) < 0 holds for 0 < D < d.

5 The large drift case

In this section, our goal is to establish Theorems 3 and 4. We consider three Models (I)-(III)
in Subsections 5.1-5.3, respectively.

5.1 Model (I)

In this subsection, we study the sign of the principal eigenvalue Λ1 in Model (I) when q is
large. In order to prove Theorem 3-(i), we first state some estimates on solutions of (3). In this
subsection u∗ = (u∗

1, u
∗
2, u

∗
3) denotes the unique positive solution of (3).

Lemma 22 Assume k1 > k2 > k3 and 2
k2

< 1
k1

+ 1
k3

. Then for any q ≥ k1−k3

k1+k3

and d > 0,
u∗
2 < k2 always holds.

Proof The proof is similar as that of Lemma 19. For fixed q ≥ 0, we have u∗
2 < k2 for sufficiently

large d by assumption. Since u∗
2 is continuous with respect to d, it is sufficient to prove u∗

2 6= k2 for
all d > 0. We argue by contradiction and assume that there exists d > 0 such that u∗

2 = k2. In such
a case, the second equation of (3) implies d(u∗

3−u∗
2)−qu∗

2 = 0, and the first and third equation of
(3) is equivalent to (24). As q ≥ k1−k3

k1+k3

, it follows from Lemma 18 that u∗
1 ≤ 2k1k3/(k1 + k3). Then

by Lemma 3, we know 2k1k3/(k1 + k3) ≥ u∗
1 > u∗

2 = k2, which is impossible since 2
k2

< 1
k1

+ 1
k3

.
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Lemma 23 Assume k1 > k2 > k3 and 2
k2

< 1
k1

+ 1
k3

. Then for d > 0 and q ≥ k1−k3

k1+k3

, u∗
3 > u∗

1

holds.

Proof First, we consider the case q ≥ 1. By the first equation of (3), we have

d(u∗
3 − u∗

1) = u∗
1

(

q − 1 +
u∗
1

k1

)

> 0.

In view of the continuous dependence of u∗
i (i = 1, 2, 3) on q, we only need to show u∗

1 6= u∗
3 for

k1−k3

k1+k3

≤ q < 1. If not, then there exists k1−k3

k1+k3

≤ q < 1 such that u∗
1 = u∗

3. Adding the second
and third equation of (3) and using u∗

1 = u∗
3, we have

u∗
2(1−

u∗
2

k2
) + u∗

3(q + 1−
u∗
3

k3
) = 0,

which together with Lemma 22 implies that u∗
3 > k3(1 + q). However, by setting u∗

1 = u∗
3 in the

first equation of (3), we get u∗
3 = k1(1− q). Thus k1(1− q) > k3(1 + q), i.e. q < k1−k3

k1+k3

, which is
a contradiction.

Corollary 5 Assume k1 > k2 > k3. If
2
k2

< 1
k1

+ 1
k3

, then for q ≥ k1−k3

k1+k3

and d > 0, ∂Λ1

∂D

∣

∣

D=d
< 0.

Proof By Lemmas 3 and 23, we get u∗
3 > u∗

1 > u∗
2. Thus u∗

3 − u∗
1 > 0 and u∗

3 − u∗
2 > 0. Using,

respectively, u∗
1 < k1 (by Lemma 4) and u∗

2 < k2 (by Lemma 22) in the first and second equation
of (3), we deduce that

u∗
1 −

d

d+ q
u∗
3 > 0 and u∗

2 −
d

d+ q
u∗
3 > 0.

Therefore, it follows from (5) that ∂Λ1

∂D

∣

∣

D=d
< 0.

Lemma 24 Assume k1 > k2 > k3 and 2
k2

< 1
k1

+ 1
k3

. If q ≥ k1−k3

k1+k3

, then for d > 0, 3 −
u∗

1

k1

−
u∗

2

k2

−
u∗

3

k3

> 0.

Proof Adding the equations of (3), we have

u∗
1(1−

u∗
1

k1
) + u∗

2(1−
u∗
2

k2
) + u∗

3(1−
u∗
3

k3
) = 0. (35)

From 1−
u∗

1

k1

> 0 (Lemma 4), 1−
u∗

2

k2

> 0 (Lemma 22), and u∗
3 > u∗

1 > u∗
2 (Lemmas 3 and 23), we

obtain

u∗
3(1−

u∗
1

k1
) > u∗

1(1−
u∗
1

k1
) and u∗

3(1−
u∗
2

k2
) > u∗

2(1−
u∗
2

k2
).

Substituting the above into (35), we obtain

u∗
3(1−

u∗
1

k1
) + u∗

3(1−
u∗
2

k2
) + u∗

3(1−
u∗
3

k3
) > 0,

which, upon cancelling u∗
3, implies the conclusion.

Lemma 25 Assume k1 > k2 > k3,
2
k2

< 1
k1

+ 1
k3

. Then for q ≥ k1−k3

k1+k3

and d > 0, we have

−q + 1−
u∗
1

k1
< 0 and − q + 1−

u∗
2

k2
< 0.



Are two-patch models sufficient? 27

Proof By Lemmas 3 and 23, we have u∗
3 > u∗

1 > u∗
2. Hence, by the first and second equation of

(3), we get

(−q + 1−
u∗
i

ki
)u∗

i = d(u∗
i − u∗

3) < 0, i = 1, 2.

This completes the proof.

Corollary 6 Assume k1 > k2 > k3,
2
k2

< 1
k1

+ 1
k3

. If q ≥ k1−k3

k1+k3

, then for d > 0, the right hand

side of (9) is strictly negative.

Proof The conclusion follows from Lemmas 1, 24 and 25.

Proof of Theorem 3-(i). Since the right hand side of (9) is strictly negative (by Corollary 6),
Proposition 2 says that Λ1(d,D) = 0 if and only if D = d. Therefore, by Corollary 5 and the
continuity of Λ1, Λ1(d,D) < 0 holds for D > d > 0 and Λ1(d,D) > 0 holds for 0 < D < d.

5.2 Model (II)

In this subsection, we study the sign of the principal eigenvalue Λ2 in Model (II) when q is
large. We first establish a few estimates on solutions of (10). Let u∗ = (u∗

1, u
∗
2, u

∗
3) denote the

unique positive solution of (10) throughout this subsection.

Lemma 26 Suppose k1 > k2 > k3. If q > max{1− k2

k1

, k2

k3

− 1}, then u∗
1 < u∗

2 < u∗
3 for d > 0.

Proof We first prove that u∗
1 < u∗

2. If not, there exists some q > max{1− k2

k1

, k2

k3

− 1} such that

u∗
1 ≥ u∗

2. By the first equation of (10), u∗
1 ≤ k1(1−q), and using q > 1− k2

k1

, we have k2 > u∗
1 ≥ u∗

2.
Combining this with the equation of u∗

2 in (10), we get

d(u∗
3 − u∗

2) = (d+ q)(u∗
2 − u∗

1) + u∗
2(
u∗
2

k2
− 1) < 0,

and obtain u∗
2 > u∗

3. Hence, u∗
1 ≥ u∗

2 > u∗
3. By the third equation of (10), we have u∗

3 > k3(1+ q).
This, together with k2 > u∗

2 > u∗
3, implies q < k2

k3

− 1, which is impossible.
Next, we prove u∗

2 < u∗
3. We argue by contradiction and assume that there exists some

q > max{1− k2

k1

, k2

k3

− 1} such that u∗
2 ≥ u∗

3. By the third equation of (10), we have

(q + 1−
u∗

3

k3

)u∗
3 ≤ qu∗

2 + u∗
3(1−

u∗

3

k3

) = d(u∗
3 − u∗

2) ≤ 0,

thus u∗
3 ≥ k3(1 + q). By q > k2

k3

− 1, we have u∗
2 ≥ u∗

3 > k2, which together with the second
equation of (10) implies that

(d+ q)(u∗
1 − u∗

2) ≥ d(u∗
1 + u∗

3 − 2u∗
2) + qu∗

1 − qu∗
2 = u∗

2(
u∗

2

k2

− 1) > 0.

Therefore, we have u∗
1 > u∗

2 ≥ u∗
3. By the first equation of (10), we have u∗

1 < k1(1 − q). This
together with u∗

1 > u∗
2 ≥ u∗

3 > k2 implies that q < 1− k2

k1

, which is a contradiction.

Lemma 27 Assume k1 > k2 > k3, then
d+q
d

u∗
1 > u∗

2 > d
d+q

u∗
3 holds for d > 0 and q ≥ 0.

Proof By the first equation of (10) and u∗
1 < k1 (Lemma 9), we have du∗

2 < (d+ q)u∗
1. Similarly,

by the third equation of (10) and u∗
3 > k3 (Lemma 10), we have (d+ q)u∗

2 > du∗
3.

Corollary 7 Suppose k1 > k2 > k3. If q > max{1− k2

k1

, k2

k3

− 1}, then ∂Λ2

∂D

∣

∣

D=d
< 0 for d > 0.
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Proof By Lemma 26, we have u∗
1 < u∗

2 < u∗
3. Note that

d+ q

d
u∗
1(u

∗
2 − u∗

1) + u∗
2(u

∗
1 + u∗

3 − 2u∗
2) +

d

d+ q
u∗
3(u

∗
2 − u∗

3)

= (u∗
2 − u∗

1)(
d+ q

d
u∗
1 − u∗

2) + (u∗
3 − u∗

2)(u
∗
2 −

d

d+ q
u∗
3),

and we can then conclude by Lemma 27, i.e., the right hand side of (12) is negative.

Lemma 28 Assume k1 > k2 > k3. If q > max{1− k2

k1

, k2

k3

− 1}, then 3−
u∗

1

k1

−
u∗

2

k2

−
u∗

3

k3

> 0 for

d > 0.

Proof Adding the equations of (10), we have

u∗
1(1−

u∗
1

k1
) + u∗

2(1−
u∗
2

k2
) + u∗

3(1−
u∗
3

k3
) = 0. (36)

From 1−
u∗

1

k1

> 0 (Lemma 9), 1−
u∗

3

k3

< 0 (Lemma 10), and u∗
1 < u∗

2 < u∗
3 (Lemma 26), we obtain

u∗
2(1−

u∗
1

k1
) > u∗

1(1−
u∗
1

k1
) and u∗

2(1−
u∗
3

k3
) > u∗

3(1−
u∗
3

k3
).

Substituting the above into (36), we obtain

u∗
2(1−

u∗
1

k1
) + u∗

2(1−
u∗
2

k2
) + u∗

2(1−
u∗
3

k3
) > 0,

which, upon cancelling u∗
2, implies the conclusion.

Lemma 29 Assume k1 > k2 > k3. If q > max{1− k2

k1

, k2

k3

− 1}, then −q + 1−
u∗

2

k2

< 0 holds for

any d > 0.

Proof When q ≥ 1, the conclusion holds trivially. We only need to consider the case max{1 −
k2

k1

, k2

k3

− 1} < q < 1. By the first equation of (10) and u∗
2 > u∗

1 (Lemma 26), we have u∗
2 >

u∗
1 > k1(1 − q). Since k1 > k2 and 1 − q > 0, we have u∗

2 > k2(1 − q), which is the same as

−q + 1−
u∗

2

k2

< 0.

Corollary 8 Assume k1 > k2 > k3. If q > max{1− k2

k1

, k2

k3

− 1}, then the right hand side of (9)
is strictly negative.

Proof By Lemma 26, u∗
2 > u∗

1, which together with the first equation of (10) implies that

−q + 1 −
u∗

1

k1

< 0. This together with Lemmas 10, 28 and 29 shows that the right hand side
of (9) is negative.

Proof of Theorem 3-(ii). Since the right hand side of (9) is strictly negative (by Corollary 8),
Proposition 4 says that Λ2(d,D) = 0 if and only if D = d. Therefore, by Corollary 7 and the
continuity of Λ2, Λ2(d,D) < 0 holds for D > d > 0 and Λ2(d,D) > 0 holds for 0 < D < d.
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5.3 Model (III)

In this subsection, we mainly prove Theorem 4.

Proof of Theorem 4. Step 1. We show that if q > 1
2 , then for sufficiently small d > 0,

∂Λ3

∂D

∣

∣

∣

∣

D=d

= −

1
2(2q−1) (k2 + k3)

2 − 1
2 (k2 − k3)

2

o(1) + k22 + k33
. (37)

In particular, if q > p, then ∂Λ3

∂D

∣

∣

D=d
> 0 holds for sufficiently small d.

Fix q > 0 and let d → 0, we have (u∗
1, u

∗
2, u

∗
3) → (u1, u2, u3), for some ūi ≥ 0, i = 1, 2, 3. In

fact, ūi can be determined by u1 = k1(1− 2q)+ and

k1q(1− 2q)+ + ui(1−
ui

ki
) = 0 for i = 2, 3. (38)

Hence, if q > 1/2 and d → 0, we have u∗
1 → 0 and u∗

i → ki for i = 2, 3. Since the first equation
of (13) can be written as d(k2 + k3 + o(1)) = u∗

1(2q − 1 + o(1)), we get

u∗
1 =

k2 + k3
2q − 1

d+ o(d) as d → 0.

Similarly, by the second and third equation of (13) we have

u∗

2

k2

= 1− d+ q
2q−1 (1 +

k3

k2

)d+ o(d),
u∗

3

k3

= 1− d+ q
2q−1 (1 +

k2

k3

)d+ o(d).

So as d → 0, by (15) we have

∂Λ3

∂D

∣

∣

∣

∣

D=d

= −
[k2 −

q
2q−1 (k2 + k3) + o(1)](o(1)− k2) + [k3 −

q
2q−1 (k2 + k3) + o(1)](o(1)− k3)

o(1) + k22 + k33

= −

q
2q−1 (k2 + k3)

2 − k22 − k33 + o(1)

o(1) + k22 + k33

= −

1
2(2q−1) (k2 + k3)

2 − 1
2 (k2 − k3)

2

o(1) + k22 + k33
.

In particular, we need to take p := 1
2

(

k2+k3

k2−k3

)2

+ 1
2 =

k2

2
+k2

3

(k2−k3)2
. This proves (37) and completes

Step 1.

Step 2. We claim that lim
d→∞

∂Λ3

∂D

∣

∣

∣

∣

D=d

< 0 when q > p.

Fix q > 0 and let d → +∞, we have u∗
1, u

∗
2, u

∗
3 → u∞ = 3/( 1

k1

+ 1
k2

+ 1
k3

). By (13) and (15),
we have

lim
d→∞

d2
∂Λ3

∂D

∣

∣

∣

∣

D=d

=
1

3

[

q(2−
u∞

k2
−

u∞

k3
) + (1−

u∞

k2
)2 + (1−

u∞

k3
)2
]

.

This completes Step 2.
Step 3. From Steps 1 and 2 we can conclude that when q > max{p, p},

∂Λ3

∂D

∣

∣

D=d
=

{

+ 0 < d � 1;

− d � 1.
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Therefore, by the analytic dependence of Λ3 on parameter d (see end of Sect. 3), there exists at
least one d∗ = d∗(q) > 0 such that

∂Λ3

∂D

∣

∣

D=d
=











+ d < d∗, d close to d∗;

0 d = d∗;

− d > d∗, d close to d∗.

This completes the proof of Theorem 4.

Next, we show that under large advection, a species with dispersal rate d behaves approxi-
mately as a random disperser in the two downstream patches with dispersal rate d/2.

Lemma 30 Let (u∗
1, u

∗
2, u

∗
3) be the unique steady state of (13) for some fixed d ≥ 0. Then

lim
q→∞

(u∗
1, u

∗
2, u

∗
3) = (0, ũ2, ũ3),

where (ũ2, ũ3) is the unique positive solution of the following two-patch system with dispersal rate

d/2 and zero drift:






d
2 (ũ3 − ũ2) + ũ2

(

1− ũ2

k2

)

= 0,

d
2 (ũ2 − ũ3) + ũ3

(

1− ũ3

k3

)

= 0.
(39)

Proof From the first equation of (13), we see that for q > 1/2,

u∗
1 =

d(u∗
2 + u∗

3)

2q − 1 +
u∗

1

k1

=
d+ o(1)

2q
(u∗

2 + u∗
3).

Substitute the above into the second equation of (13), we have

d (o(1)− u∗
2) +

d+ o(1)

2
(u∗

2 + u∗
3) + u∗

2

(

1−
u∗
2

k2

)

= 0.

Thus we obtain the first equation of (39) upon letting q → ∞. The second equation of (39) can
be similarly proved.

Next, we prove Theorem 6.

Proof of Theorem 6. First, we show assertion (i). First, let Λ̃3 be the principal eigenvalue of

Ã3 :=





−2D − 2q + 1 D D
D + q −D 0
D + q 0 −D



 ,

with a positive eigenvector Φ̃ = (ϕ̃1, ϕ̃2, ϕ̃3)
T . Then by adding the rows of Ã3Φ̃ + Λ̃3Φ̃ = 0, we

can show that ϕ̃1+ Λ̃3

∑3
i=1 ϕ̃i = 0, i.e. Λ̃3 < 0 for any D > 0. Moreover, as D → ∞, ϕ̃i/ϕ̃j → 1,

so that Λ̃3 → −1/3. Hence, we deduce that for each D > 0, supD>D Λ̃3 < 0.
To prove assertion (i) of Theorem 6, we take d ≥ 0, and let (u∗

1, u
∗
2, u

∗
3) be the unique steady

state of (13). By Lemma 30,

lim
d→0,q→∞

(u∗
1, u

∗
2, u

∗
3) = (0, k2, k3).

Hence, lim
d→0,q→∞

A3 = Ã3. Thus for each D > 0, there exist d̂1, q̂1 > 0 such that

sup
D>D

Λ3(d,D) < 0 whenever 0 ≤ d < d̂1 and q ≥ q̂1.
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This proves assertion (i).

Next, we prove assertions (ii) and (iii). Now, for each fixed q,

lim
d→∞

(u∗
1, u

∗
2, u

∗
3) = (u∞, u∞, u∞), where u∞ =

3
1
k1

+ 1
k2

+ 1
k3

.

Hence, it suffices to show that the principal eigenvalue Λ̂3 of

Â3 :=





−2D − 2q + 1− u∞

k1

D D

D + q −D + 1− u∞

k2

0

D + q 0 −D + 1− u∞

k3





satisfies lim
D→0

Λ̂3 > 0. Now, by continuous dependence of Λ̂3 on D ≥ 0, for large q we have

lim
D→0

Λ̂3 = Λ̂3

∣

∣

∣

D=0
=

u∞

k2
− 1.

On the one hand, if 2
k2

> 1
k1

+ 1
k3

, then for q large,

lim
d→∞,D→0

Λ3(d,D) = lim
D→0

Λ̂3 =
u∞

k2
− 1 > 0. (40)

This proves assertion (ii). On the other hand, if 2
k2

< 1
k1

+ 1
k3

, then the last inequality in (40) is
reversed. This proves assertion (iii).

6 The intermediate drift

In this section, we mainly study Models (I) and (II) for q in some intermediate range.

Proof of Theorem 5. We first establish Theorem 5-(i). Set

Ω := (u∗
1 −

d

d+ q
u∗
3)(u

∗
3 − u∗

1) + (u∗
2 −

d

d+ q
u∗
3)(u

∗
3 − u∗

2). (41)

By (3) we can rewrite Ω as

Ω =
1

d(d+ q)
[(u∗

1)
2(
u∗
1

k1
− 1 + q)(1−

u∗
1

k1
) + (u∗

2)
2(
u∗
2

k2
− 1 + q)(1−

u∗
2

k2
)]. (42)

Note that u∗
1, u

∗
2, u

∗
3 → u∞ as d → +∞. Therefore, as d → ∞,

d(d+ q)Ω → u2
∞[q(2−

u∞

k1
−

u∞

k2
)− (1−

u∞

k1
)2 − (1−

u∞

k2
)2]. (43)

Hence, by Proposition 1 we have, for sufficiently large d,

∂Λ1

∂D
|D=d =

{

+ q < q,

− q > q,
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where q is as given by Theorem 5-(i).
When d → 0, we have u∗

i → ki(1− q)+ for i = 1, 2, and u∗
3 → u3, where u3 is determined by

u3(
u3

k3
− 1) = q(1− q)+(k1 + k2). (44)

Hence, by applying (41) we have

lim
d→0

Ω = u3(k1 + k2)(1− q)+ − (k21 + k22)(1− q)2+. (45)

Therefore, solving (44) and substituting the result into (45) we find that for small d,

∂Λ1

∂D

∣

∣

D=d
=

{

+ q < q,

− q < q < 1,

where q is as given by Theorem 5-(i).
If q < q, since Λ1 is analytic in d, there exists some d∗ = d∗(q) such that for q ∈ (q, q),

∂Λ1

∂D

∣

∣

D=d
=











− d < d∗, d close to d∗;

0 d = d∗;

+ d > d∗, d close to d∗.

The case q > q can be similarly treated.
The proof of Theorem 5-(ii) is similar and we omit the details.
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