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Computing endomorphism rings of supersingular elliptic curves
and connections to path-finding in isogeny graphs

Kirsten Eisentriger, Sean Hallgren, Chris Leonardi, Travis Morrison, and Jennifer Park

Computing endomorphism rings of supersingular elliptic curves is an important problem in computa-
tional number theory, and it is also closely connected to the security of some of the recently proposed
isogeny-based cryptosystems. We give a new algorithm for computing the endomorphism ring of a super-
singular elliptic curve E defined over F > that runs, under certain heuristics, in time O ((log p)*p'/?). The
algorithm works by first finding two cycles of a certain form in the supersingular £-isogeny graph G (p, £),
generating an order A € End(E). Then all maximal orders containing A are computed, extending work
of Voight (2013). The final step is to determine which of these maximal orders is the endomorphism
ring. As part of the cycle-finding algorithm, we give a lower bound on the set of all j-invariants j that
are adjacent to j” in G(p, £), answering a question of Arpin et al. (2019).

We also give a polynomial-time reduction from computing End(FE) to path-finding in the £-isogeny
graph which is simpler in several ways than previous ones. We show that this reduction leads to another
algorithm for computing endomorphism rings which runs in time O (p'/?). This allows us to break the
second preimage resistance of a hash function in the family constructed by Charles, Goren and Lauter.

1. Introduction

Computing the endomorphism ring of an elliptic curve defined over a finite field is a fundamental problem
in computational arithmetic geometry. For ordinary elliptic curves the fastest algorithm is due to Bisson
and Sutherland [5] who gave a subexponential time algorithm to solve this problem. No subexponential
time algorithm is known for general supersingular elliptic curves.

Computing endomorphism rings of supersingular elliptic curves has emerged as a central problem
for isogeny-based cryptography. The first cryptographic application of isogenies between supersingular
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elliptic curves was the hash function in [9]. An efficient algorithm for computing the endomorphism ring
of a supersingular elliptic curve would, under certain assumptions, completely break this hash function
and also SIKE [18; 2]. It would also have a major impact on the security of CSIDH [7].

Computing the endomorphism ring of a supersingular elliptic curve E was first studied by Kohel [20,
Theorem 75], who gave an approach for generating a subring of finite index of the endomorphism ring
End(E). The algorithm was based on finding cycles in the £-isogeny graph of supersingular elliptic
curves in characteristic p, and the running time of the probabilistic algorithm was O(p'**). In this
paper we complete Kohel’s approach by showing how to compute End(E) from a suborder when the
order is Bass. In a different direction, in [14] it is argued that heuristically one expects O(log p)
calls to a cycle-finding algorithm until the cycles generate End(£). An algorithm for computing pow-
ersmooth endomorphisms with complexity O (p'/2) and polynomial storage is given by Delfs and Gal-
braith [11].

One can also compute End(E) using an isogeny ¢ : E — E, where E is an elliptic curve with known
endomorphism ring. McMurdy was the first to compute End(E) via such an approach [24], but did not
determine its complexity. In [14] a polynomial-time reduction from computing End(FE) to finding an
isogeny ¢ of powersmooth degree was given assuming some heuristics, while [10] used an isogeny ¢ of
{-power degree.

In this paper we give a new algorithm for computing the endomorphism ring of a supersingular elliptic
curve E: first we compute two cycles through E in the supersingular £-isogeny graph that generate an
order A in End(E). We show that this order will be a Bass order with constant probability, assuming
that the discriminants of the two cycles are random in a certain way. Then we compute all maximal
orders that contain the Bass order A by first solving the problem locally, showing how to efficiently
compute all maximal superorders of A when A is local and Bass. This extends work of Voight [29,
Theorem 7.14]. The main property of local Bass orders used here is that there are at most ¢ 4+ 1 maximal
orders containing a local Bass order A ® Z,, where e = vy, (discrd(A)) is the valuation of the reduced
discriminant of A (see [6]). To solve the global case, we use the local data and a local-global principle for
quaternionic orders. To bound the running time in this step, we prove that the number of maximal global
orders containing A is O (p®) for any € > 0 when the size of A is polynomial in log p and discrd(A)
is square-free. We conjecture that this bound also holds when discrd(A) is not square-free. Finally, as
we compute each global maximal order, we check if it is isomorphic to End(E). As part of the analysis
of the cycle-finding algorithm, we give a lower bound on the size of the set of all j-invariants j that are
adjacent to j? in G(p, £), answering the lower-bound part of Question 3 in [1].

Our overall algorithm is still exponential: the two cycles are found in time O ((log p)?p'/?), and the
overall algorithm has the same running time, assuming several heuristics. This saves at least a factor of
log p versus the previous approach in [14] that finds cycles in G(p, £) until they generate all of End(E).
This is because with that approach one expects to compute O (log p) cycles, while our algorithm for the
endomorphism ring computes just one pair of cycles and succeeds with constant probability, assuming
that the above heuristic about the discriminants of cycles holds. Also, our cycle-finding algorithm requires
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only polynomial storage, while a generic collision-finding algorithm that relies on the birthday paradox
has the same running time as our algorithm but requires exponential storage.

In the last section of the paper we give a new polynomial-time reduction from computing End(E) to
path-finding in the ¢-isogeny graph which is simpler in several ways than previous ones. For this we
need to assume GRH and the heuristics of [14]. We use this to break the second preimage resistance of
a hash function in the family constructed in [9].

The paper is organized as follows. Section 2 gives some necessary background. In Section 3 we give an
algorithm for computing cycles in the £-isogeny graph G (p, £) so that the corresponding endomorphisms
generate an order in the endomorphism ring of the associated elliptic curve. In Section 4 we show how to
compute all maximal local orders containing a given Z,-order A. In Section 5 we construct global orders
from these local orders and compute End(E). In Section 6 we give a reduction from the endomorphism
ring problem to the problem of computing £-power isogenies in G(p, £) that is then used to attack the
second preimage resistance of the hash function in [9].

2. Background on elliptic curves and quaternion algebras

For the definition of an elliptic curve, its j-invariant, isogenies of elliptic curves, their degrees, and the
dual isogeny see [26].

2A. Endomorphism rings, supersingular curves, {-power isogenies. Let E be an elliptic curve defined
over a finite field ;. Anisogeny of E to itself is called an endomorphism of E. The set of endomorphisms
of E defined over Fq together with the zero map is called the endomorphism ring of E, and is denoted
by End(E).

If the endomorphism ring of E is noncommutative, E is called a supersingular elliptic curve. Other-
wise we call E ordinary. Every supersingular elliptic curve over a field of characteristic p has a model
that is defined over [ ..

Let E, E' be two supersingular elliptic curves defined over [ .. For each prime £ # p, E and E' are
connected by a chain of isogenies of degree £. By [20, Theorem 79], E and E’ can be connected by m
isogenies of degree ¢, where m = O (log p). For £ a prime different from p, the supersingular £-isogeny
graph in characteristic p is the multigraph G (p, £) whose vertex set is

V=V(G(p,0)={jel,:j=j(E) for E supersingular},

and the number of directed edges from j to j’ is equal to the multiplicity of ;" as a root of ®,(J, Y).
Here, given a prime ¢, ®,(X,Y) € Z[X, Y] is the modular polynomial. This polynomial has the property
that ®,(j, j') =0 for j, j' € F, and ¢ = p" if and only if there exist elliptic curves E(j), E(j') defined
over [, with j-invariants j, j such that there is a separable £-isogeny from E(j) to E(j').

2B. Quaternion algebras, orders and sizes of orders. For a,b € Q*, let H(a, b) denote the quaternion
algebra over @ with basis 1,4, j,ij such that i> = a, j> = b and ij = —ji. That is, H(a,b) =
Q+ Qi + Qj + Qij. Any quaternion algebra over Q can be written in this form. There is a canonical
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involution on H (a, b) which sends an element o = a; +azi +azj +a4ij toad :=a; —ari —aszj — asij.
Define the reduced trace of an element o as above to be Trd(«) = o + o = 2a;, and the reduced norm to
be Nrd(«) = aex = a% - aa% — ba% + abaf.

A subset I C H(a, b) is a lattice if I is finitely generated as a Z-module and / ® Q >~ H (a, b). If
I C H(a, b) is a lattice, the reduced norm of I, denoted Nrd(/), is the positive generator of the fractional
Z-ideal generated by {Nrd(«) : @« € I}. An order O of H(a, b) is a subring of H (a, b) which is also a
lattice, and if O is not properly contained in any other order, we call it a maximal order. We call an order
O C H(a, b) g-maximal if O ® Z, is a maximal order in H (a, b) ® Z,.

We define Og(I) :={x € H(a, b) : Ix C I} to be the right order of the lattice I, and we similarly
define its left order Op(I). If O is a maximal order in H(a, b) and I C O is a left ideal of O, then
Og(I) is also a maximal order. Here a left ideal of O is an additive subgroup of O that is closed under
scalar multiplication on the left. In our setting, a lattice or an order is always specified by a basis. The
size of a lattice or an order A specified by a basis 5 in a quaternion algebra B is the number of bits
needed to write down the coefficients of the basis B plus the size of B, which is specified by a basis and
a multiplication table. In the following we write size(A) for simplicity even though the size depends on
the basis chosen to represent A. If {a, a», a3, as} is a basis of A, the Gram matrix of this basis is the
4 x 4 matrix whose ij-th entry is Trd(a;a;). We denote by B, , the unique quaternion algebra over Q
that is ramified exactly at p and oo, and this algebra has a standard basis [25, Proposition 5.1]. The
endomorphism ring of a supersingular elliptic curve is isomorphic to a maximal order in B}, .

2C. Bass, Eichler, and Gorenstein orders in quaternion algebras; discriminants and reduced discrim-
inants. Let B be a quaternion algebra over (). We define the discriminant of B, denoted disc B, to be the
product of primes that ramify in B; then disc B is a squarefree positive integer. If O C B is an order, we
define the discriminant of O to be disc(O) := |det(Trd(x;«)); ;| € Z > 0, where ay, . .., a4 is a Z-basis
for O [28, §15.2].

The discriminant of an order is always a square, and the reduced discriminant discrd(O) is the positive
integer square root so that discrd(©)? = disc(O) [28, §15.4]. The discriminant of an order measures how
far the order is from being a maximal order. The order O is maximal if and only if discrd(O) = disc B [28,
Theorem 23.2.9]. Associated to a quaternion algebra B over Q there is a discriminant form A : B — Q,
defined by A(x) = Trd(«)? — 4 Nrd(), and we refer to A(«) as the discriminant of .. Now let O C B be
a Z-order. We say that O is an Eichler order if O C B is the intersection of two (not necessarily distinct)
maximal orders. The codifferent of an order is defined as codiff(0) = {« € B : Trd(¢O) C Z}. Following
[28, Definition 24.2.1], we say that O is Gorenstein if the lattice codiff(O) is invertible as a lattice as in
[28, Definition 16.5.1]. An order O is Bass if every superorder O’ 2 O is Gorenstein. An order is basic
if it contains a commutative, quadratic subalgebra R such that R is integrally closed in QR [28, §24.5].
Given an order A, its radical idealizer A" is defined as A" = Og(rad A), where rad A is the Jacobson
radical of the ring A. When B is a quaternion algebra over Q, and O is a Z,-order in B, we similarly
define lattices, ideals, and orders in B.
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3. Computing an order in the endomorphism ring of a supersingular elliptic curve

3A. Computing cycles in G(p, ). Fix a supersingular elliptic curve Ey defined over [,» with j-invariant jo.
In this section we describe and analyze an algorithm for computing two cycles through jy in G(p, £)
that generate an order in End(Ep).

We will first show how to construct two distinct paths from jj to jé’ . Given two such paths P and P/,
then first traversing through P and then traversing through P’ in reverse gives a cycle through jy. This
uses the fact that if j is adjacent to j’, then j? is adjacent to (j')?.

Let P; be a path of length k from jj to ji in G(p, £). Denote the not necessarily distinct vertices on
the path by jo, ji, ..., jr and assume that ji is adjacent to j,f in G(p, £). Let

Pl =Lk il 3lys -5 d1 s Jg 1
The concatenation P := P; Plp is a path from jj to jé’ . Such paths were also considered in [9, Section 7].
If jo= j(‘)p , then P is already a cycle. Otherwise, we repeat this process to find another path P’':= P, Pzp
that passes through at least one vertex not in P. Concatenating P and P’ (in reverse order) gives a cycle

starting and ending at jop; this corresponds to an endomorphism of E. We will need the notion of a
path/cycle with no backtracking and trimming a path/cycle to remove backtracking.

Definition 3.1. Suppose e;, e; are edges in G(p, £) that correspond to £-isogenies
¢;E(j)— E(j) and ¢;:E(j") — E())

between curves E(j) and E(j') with j-invariants j, j’. We say that e; is dual to e if up to isomorphism
¢ equals the dual isogeny qAbj of ¢;. Thatis ¢ = anbj, where o € Aut(E(j)). We say that a path or cycle
with a specified start vertex jy, following edges (e, ..., ex) and ending at vertex j has no backtracking
ife;y;isnotdualtoe; fori =1,...,k—1.

In our definition, a cycle has a specified start vertex jy. According to our definition, if the first edge e
and the last edge e in such a cycle are dual to each other, it is not considered backtracking.

Definition 3.2. Given a path (ey, ..., ) from jy to ji (with jo # ji) or a cycle with specified start
vertex jo = ji, define trimming as the process of iteratively removing pairs of adjacent dual edges until
none are left.

One can show that given a path P from jj to ji with jo # ji, or a cycle C with start vertex jo = Jji,
the trimmed versions P or C may result in a smaller set of vertices. The vertices jo and j; will still be
there in P, and the only way that jo and j, may disappear from C is if the whole cycle gets removed.
Definition 3.3. Given a path P in G, ¢ from jj to ji, we define PR to be the path P traversed in reverse
order, from ji to jo, using the dual isogenies.

Let

S?:={j €F,2: j is supersingular and j is adjacent to j” in G(p, £)}.

We can now give the algorithm to find cycle pairs:
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Algorithm 3.4. Find cycle pairs for prime £.
Input: A prime p # £ and a supersingular j-invariant jy € F .
Output: Two cycles in G (p, £) through jp.
(1) Perform N = ©(,/plog ploglog p) random walks of length k = O (log(p*/*(loglog p)'/?)) starting

at jo and select a walk that hits a vertex j; € S?, i.e., such that ji is £-isogenous to j,f ; let Py denote
the path from jj to ji.

(2) Let P/ be the path given by ji, j. ji 1, .-, J§ -

(3) Let P denote the path from jj to j(f' given as the concatenation of P; and Plp . Remove any self-dual
self-loops and trim Py P},

(4) If jo € F, then P P/ is a cycle through jp.

(5) If jo € F,» — [ repeat Steps (1)—(3) again to find another path P = Pszp from jj to j(f ; then
P(P")R is a cycle. Remove any self-dual self-loops and trim the cycle.

(6) Repeat Steps (1)—(5) a second time to get a second cycle.

Remark 3.5. Instead of searching for a vertex j in Step (1) such that j is adjacent to j?, one could also
search for a vertex j € [, i.e., j with j = j?, or a vertex j whose distance from j? in the graph is
bounded by some fixed integer B. Our algorithm that searches for a vertex j such that j is adjacent to j”
was easier to analyze because there were fewer cases to consider.

To analyze the running time of Algorithm 3.4, we will use the mixing properties in the Ramanujan
graph G(p, £). This is captured in the following proposition, which is an extension of [19, Lemma 2.1]
in the case that G(p, £) is not regular or undirected (that is, when p # 1 (mod 12)).

Proposition 3.6. Let p > 3 be prime, and let £ # p also be a prime. Let S be any subset of the vertices
of G(p, £) not containing 0 or 1728. Then a random walk of length at least

r= _log(6‘5}|71“>
B 28]
log(zﬁ )
will land in S with probability at least 6|S]/ p.

One can prove this since the eigenvalues for the adjacency matrix of G(p, £) satisfy the Ramanujan

bound. This allows us to prove the following theorem.

Theorem 3.7. Let €, p be primes such that £ < p/4. Under GRH, Algorithm 3.4 computes two cycles in
G(p, £) through jo that generate an order in the endomorphism ring of Eq in time O(,/p (log P)?), as
long as the two cycles do not pass through the vertices 0 or 1728, with probability 1 — O (log p/p). The
algorithm requires poly(log p) space.
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Remark 3.8. In Section 5 we use this proposition to compute endomorphism rings, and from this point
there is no problem with excluding paths through 0 or 1728. This is because the endomorphism rings
of the curves with j-invariants 0 and 1728 are known, and a path of length log P, starting at jj going
through 0 or 1728 lets us compute End(Ep) via the reduction in Section 6.

Proof. We implement Step (1) by letting j;+; be a random root of ®,(j;, Y). To testif j € S¥ we check
if ®,(j, j¥)=0. Assuming GRH, Theorem 3.9 implies that |S”| = 2(,/p/loglog p) (treating ¢ as a
constant). Proposition 3.6 implies that the endpoint j; of a random path found in Step (1) is in S? with
probability €2(1/(,/ploglog p)). The probability that none of the N + 1 paths land in S? is at most
(1—C/(yPloglog pHN*T! < (1+C/(/Ploglog p))~N+D < e=cloer/C = 0(1/p) if ¢ = C, where C
is from Theorem 3.9 and c is the constant used in the choice of N.

Now we show that with high probability the two cycles Co, C; returned by the algorithm are linearly
independent. We will use Corollary 4.12 of [3]. This corollary states that two cycles Cp and C| with no
self-loops generate an order inside End(E)y) if they

(1) do not go through 0 or 1728,
(2) have no backtracking, and

(3) have the property that one cycle contains a vertex that the other does not contain.

By construction, the cycles Cy and C; returned by our algorithm do not have any self-loops or backtrack-
ing. To prove that condition (3) holds, we first claim that with high probability, the end vertex j; € S? in
the path P; from jp to ji will not get removed when the path P, Plp is trimmed in Step (3). Then we show
it’s also still there in the trimmed cycle after Step (5). Observe that if the path P; were to be trimmed to
obtain a path f’l with no backtracking, then f’l is still a nontrivial path that starts at jy and ends at j; as
long as jo and ji are different which occurs with probability 1 — O(1/p). After concatenating P; with
its corresponding path 151p , the path P, 131p has backtracking only if the last edge of P is dual to the first
edge in ﬁll’ ,1.e., if jr_1 = j,f . If that is the case, remove the last edge from f’l and the first edge from p? s
and call the remaining path Py. The new path Py still has the property that it ends in a vertex j = j,f that
is £-isogenous to its conjugate ( j,f )P = jx. After concatenating Py with its corresponding PP, this still
gives a path from jj to j(‘f . Again, the concatenation of these two paths has no backtracking unless the
last edge in Py is the first edge in P?,ie., if the last edge in Py is an edge from ji to j,f . But this cannot
happen, because otherwise the trimmed path P; would have backtracking because it would go from jj
to j and back to jji, contradicting the definition of a trimmed cycle. (With negligible probability, the
vertex jr has multiple edges, so we exclude this case here.) Hence the trimmed version of Py Plp is ﬁl ﬁlp s
and this path still contains the vertex ji, since ﬁll’ contains the vertex j,. Now we can finish the argument
by considering two cases:

Case 1: jy € [F,. The above argument about trimming shows that if the vertex j; appearing in the second
cycle C; is different from all the vertices appearing in Cy and their conjugates, which happens with
probability 1 — O(log p/p), then that vertex j; will appear in the trimmed cycle Cy, but not in Cy. (This
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is because in this case the trimmed path P, Plp is already a cycle.) Hence by [3, Corollary 4.12], Cy and

C are linearly independent.

Case 2: jp € F,» — F,. Here, with probability 1 — O(log(p)/p), the endpoint jx of P, is a vertex such
that neither it nor its conjugate appear as a vertex in P;. The concatenation of the two paths P = P; Plp
and P' = P, Pzp in reverse is a cycle Cyp through jo. When we trim it, it is still a cycle through jj in
which the endpoint j; from P, appears because neither that jj nor its conjugate appeared in P;. Similarly,
Algorithm 3.4 finds a second cycle C; with probability 1 —log(p)/p that contains a random vertex that
was not on the first cycle Cy. This means that by Corollary 4.12 of [3], C‘o and C 1 and hence Cy and C;
are linearly independent.

The running time is O(,/p (log p)?) because we are considering O(,/p) paths of length O(log p),
going from one vertex to the next takes time polynomial in £ log p, and we are assuming that £ is fixed.
The storage is polynomial in log p because we only have to store the paths P;, P, that land in S?. [J

3B. Determining the size of SP. We will now determine a lower bound for the size of the set
S? :={j €F,2: j is supersingular and j is adjacent to j” in G(p, £)}.

In [9, Section 7], an upper bound is given for S?, but in order to estimate the chance that a path lands in
S? we need a lower bound for this set.

Let £, p be primes such that £ < p/4. Let Ok be the ring of integers of K := Q(,/—€p). We use the
terminology and notation in [13; 4]. Let Embo, (F2) be the collection of pairs (E, f) such that E is an
elliptic curve over F,2 and f : Ox <> End(E) is a normalized embedding, taken up to isomorphism. We
say f: Ok <= End(E) is normalized if each o € Ok induces multiplication by its image in F,> on the
tangent space of E, and (E, f) is isomorphic to (E’, f’) if there exists an isomorphism g : E — E’ such
that f () = gf (a)g~! forall @ € Ok.

Theorem 3.9. Let £ be a prime and assume that £ < p/4. Let
S? ={j € Fy2: jis supersingular and ®,(j, j¥) = 0}.
Under GRH there is a constant C > 0 (depending on {) such that |S?| > C,/p/loglog(p).

Proof. First, if E is a supersingular elliptic curve defined over [ > with j-invariant j and E (P) is a curve
with j-invariant j? and £ < p/4 is also a prime, then E is £-isogenous to EP) if and only if Z[/—€p]
embeds into End(F) [9, Lemma 6].

For any element (E, f) € Embo, (F2), E is supersingular, since p ramifies in Q(/—£p). Moreover
J(E) € S by the above fact. Thus the map p : Embeo, (F,2) — S” that sends (E, f) to p(E, f) = j(E)
is well-defined.

To get a lower bound for S” we will show that for j € S?, the size of p~!(j) is bounded by (£ +1) -6
and that [Emboy (F,2)| > /Ip/loglog(€p). These two facts imply

1 VEp
(£+1)-6 loglog(fp)

|S7] = [Embo, (F,2)|/((€+1) - 6) >
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To get a lower bound for [Embe, (F,2)| we can use [15, Proposition 2.7] to show that Embe, (F,2) is in
bijection with Ellp, (Lsz), where Ly is the algebraic closure of the completion of the ring class field Ho,
at a prime *13 above p, and Ellp, (1233) is the set of isomorphism classes of elliptic curves over igp with
endomorphism ring Ok . Hence [Embo, (F,2)| = [Ello, (iqg) |, whose order equals |CI(Og)|. Class group
estimates from [23] give

ICI(OK)| = h(—£p) > \/tp/loglog(Ep).

It remains to bound the size of p~'(j). We claim that an equivalence class of pairs (E, f) determines
an edge in G(p, £). Let [(E, f)] € Embo, (F,2) be given by some representative curve E. First assume
that j(E) # 0,1728. Then (E, f) >~ (E, g) implies that f = g, since Aut(E) = £1. Thus we may
identify [(E, f)] with the edge in G(p, £) corresponding to the kernel of f(/—£€p). When j(E) =0
or 1728, we may assume that E is defined over [F,. Then let [(E, f)] € Embeo, (F,2) and suppose (E, f)
is equivalent to (E, g). We can factor f(/—€p) =m o¢ and g(/—L€p) = o', where ¢, ¢’ are degree ¢
endomorphisms of E and 7 is the Frobenius endomorphism of E. Additionally, 7¢ = um¢’u~"'. We
claim that u and ¢ commute. If not, then they generate an order A such that the following formula holds
(see [22]):

discrd(A) = L(A ) A(¢) — (Trd(w) Trd(¢) — 2 Trd(u$))?) < FAU)A(). (3-1)

One can show that this contradicts our assumption that p/4 > £. Thus u and ¢ commute, and we see
that f(/—€p) and g(/—£p) have the same kernel and thus determine the same edge in G(p, £).

We now count how many elements of Embo, (F,2) determine the same edge in G(p, ¢). Suppose that
[(E, /)], [(E, g)] € Embe, (F,2) and that ker(f(v/—2p)) =ker(g(x/—£€p)). Writing f(/—lp) =¢om
and g(,/—£p) = ¢’ omr we see that ¢ and ¢’ must have the same kernel. Thus ¢’ = u¢ for some u € Aut(E).
Because p > 4¢ > 3, Aut(E) <6 and we conclude that there are at most 6 classes [(E, f)] determining
the same edge emanating from j(E) in G(p, £). Thus

o~ (I <@+ 1)-6. O

Assuming GRH, this result settles the lower-bound portion of Question 3 in [1]. See Lemma 6 of [9]
for the upper-bound.

4. Enumerating maximal superorders: the local case

Let g be a prime. In this section, we give an algorithm for the following problem:
Problem. Given a Z;-order A € M>(Q),), find all maximal orders containing A.

For general A there might be an exponential number of maximal orders containing it, so the algorithm
for enumerating them would also be exponential time. However, we will show that the above problem
can be solved efficiently when A is Bass. The main property of local Bass orders A we use is that there
are at most e + 1 maximal orders containing A, where e = v, (discrd(A)) [6, Corollaries 2.5, 3.2, 4.3 and
Proposition 3.1].
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We use the Bruhat-Tits tree 7 [28, §23.5] to compute the maximal superorders of A. The vertices
of 7 are in bijection with maximal orders in M>(Q,).
A homothety class of lattices [L] C (I;qu corresponds to a maximal order via

L+ Endz, (L) = {x € My(@)) : xL € L} € My(@,) @-1)

for every choice of L € [L]. Two maximal orders O and O’ are adjacent in 7T if there exist lattices
L and L’ for O and O’ such that gL C L’ C L. Hence the neighbors of O in 7 correspond to the
one-dimensional subspaces of L/gL =F, x [,.

A division quaternion algebra B over (; has only one maximal order, which can be found using the
algorithm in [29]. The split case is solved by Algorithm 4.1, and also relies on the algorithm in [29].

Algorithm 4.1. Enumerate all maximal orders containing a local order.
Input: A Z,-order A € M>(Q,), represented by a Z,-basis.
Output: The maximal orders in M>((Q,) containing A, each specified by a Z,-basis.

(1) Compute a maximal order ® D A with [29, Algorithm 7.10] and a lattice L in Q, x Q, such that
O =Endyg, (L).

(2) Let A={O} and B = {L}.

(3) While B # @:
(a) Remove L from B, and label it as discovered. Set O = Endz, (L).

(b) Compute the set of neighbors My of O that contain A.
(¢) For each O € N not labeled as discovered, add O’ to A and its corresponding lattice to B.

(4) Return A.
Now we show that Algorithm 4.1 is efficient when the input lattice A is Bass.

Proposition 4.2. Let A C M»(Qy) be a Bass Z,-order, and e := v, (discrd(A)). Algorithm 4.1 computes
A:={0 D A : O is maximal}, and |A| < e + 1. The runtime is polynomial in log q - size(A).

Proof. To prove correctness we first show that the maximal orders containing an arbitrary order A’ in
M>(Q,) form a subtree of 7. If O, O’ are two maximal orders containing A’, then the maximal orders
containing O N O’ are precisely the vertices in the path between O and O’ in T [28, §23.5.15]. Each
order on this path also contains A’, so the maximal orders containing A’ form a connected subset of 7.
The above algorithm explores this subtree.

If A is Bass and Eichler, i.e., A = O N O’ for maximal orders O, (', then there are e + 1 maximal
orders containing A [6, Corollary 2.5], and they are exactly the vertices on the path from O to 0. If A is
Bass but not Eichler, then there are either 1 or 2 maximal orders containing A by [6, Proposition 3.1 and
Corollaries 3.2 and 4.3]. Since they form a tree, they must also form a path. In either case, |[A| <e+1,
and the vertices in A form a path.
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As for the running time, in Step (1) we run [29, Algorithm 7.10], which is polynomial in log g - size(A).
Let L be a lattice such that O = Endgz, (L) contains A. The neighbors of O containing A are in bijection
with the lines in L/gL fixed by the action of the image of A in O/qO >~ M,(F,). For each such line,
let v € L/qL be a nonzero vector, and let v be a lift to L. Let w € L be such that {v, w} is a Z,-basis
of L. Then L’ := span{v, qw} is a Z,-lattice such that O’ := Endz, (L") contains A. So we can efficiently
compute the lattices L’ corresponding to the neighbors of O which contain A. Given such an L/, let
x € M>(Q,) be the base change matrix from L to L' If B is a basis for O, then B := xBx~!is a basis
for O'. The size of B’ is c(log g) + size(O) for some constant ¢, so each neighbor of O containing A can
be computed in time polynomial in log g - size(O).

Since the length of the path explored in the algorithm is at most e, where e = v, (discrd(A)) is poly-
nomial in size(A), and the size of the starting order O is polynomial in log g - size(A) we obtain that the
size of any maximal order containing A is polynomial in size(A) -log g. Each step takes time polynomial
in log g - size(A), so the whole algorithm is polynomial in log g - size(A). O

Later we will need to enumerate the g-maximal Z-orders containing a Bass Z-order A. The algorithm
below uses Algorithm 4.1 to accomplish this.

Algorithm 4.3. Enumerate the g-maximal Z-orders O containing A.

Input: A Z-order A, specified by a Z-basis, and prime g such that A ® Z, is Bass.

Output: All Z-orders O 2 A such that O is g-maximal and O @ Z, = A ® Z, for all primes g # ¢’
(1) Compute an embedding f : A ® Q < M>(Q,) such that f(A) € M>(Z,).
(2) Let A be the output of Algorithm 4.1 on input f(A).
(3) Return { f~H(O)+ A : O € A}.

Lemma 4.4. Algorithm 4.3 is correct. The run time is polynomial in log q - size(A).

Proof. Step (1) can be accomplished with Algorithms 3.12, 7.9, and 7.10 in [29], which run in time
polynomial in log g - size A. For each maximal Z,-order O 2 f(A), we then compute a corresponding
Z-lattice O’ 2 A, whose generators are Z[q_l]—linear combinations of generators of A. The denominator
of these coefficients is at most g¢ where e := v, (discrd(A)). By Proposition 4.2, there are at most e + 1
maximal orders containing f(A) if A ® Z, is Bass. It is straightforward to check that the lattice A + O’
is actually a Z-order and has the desired completions. Moreover, these are all such orders by the local-
global principle for orders, [28, Theorem 9.5.1]. (|

Remark 4.5 (global case). Algorithm 4.3 can be used to enumerate all maximal orders O of a quaternion
algebra B over Q that contain a Z-order A which is Bass, given A and the factorization of discrd(A) as
discrd(A) = [/L, ¢/

We run Algorithm 4.3 m times, namely on (A, q1), ..., (A, gn). Let {X1, ..., X;} be the output,
where X; ={O;1, ..., Ojn,}. The global orders containing A are in bijection with [ [, X;, by associating to
(O1jys -+, Omj,) €1 X; the order ) ; O;j,. In particular, the number of such orders is at most [ [, (e; +1).
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The correctness of this follows from the local-global principle for maximal orders [28, Lemma 10.4.2].
The above results show that each order in the enumeration can be computed in time polynomial in the size
of A. However, for an arbitrary order A, there might be an exponential number of orders containing it.

5. Computing End(E)

Now we describe our algorithm to compute the endomorphism ring of E. By computing End(E) we
mean computing a basis for an order O in B, o that is isomorphic to End(E), and that we can evaluate
the basis at all points of E via an isomorphism B, .o — End(E) ® Q. First we give an algorithm
that uses Algorithm 3.4 to generate a Bass suborder of End(E). A heuristic about the distribution of
discriminants of cycles is used to show that just one call to Algorithm 3.4 generates a Bass order with
constant probability. Then we give an algorithm which recovers End(E) from a Bass suborder. The
key property used here is that Bass orders A (whose basis is of size polynomial in log p and whose
discriminant is O (p¥)) only have O (p®) maximal orders containing them for any & > 0. This is proved
in Proposition 5.5 when the reduced discriminant is square-free. Based on our numerical evidence, we
conjecture that this holds for general Bass orders as well.

S5A. Computing a Bass order.

Algorithm 5.1. Compute a Bass suborder A € End(FE).

Input: A supersingular elliptic curve E.

Output: A Bass order A € End(FE) and the factorization of discrd(A), or “false”.
(1) Compute two cycles in G(p, £) through j(E) using Algorithm 3.4.

(2) Let a, B be the endomorphisms corresponding to the cycles from Step (1). Compute the Gram
matrix for {1, o, 8, @B} and from it an abstract representation for A = (1, «, B, af8).

(3) Factor discrd(A) =[]/_, ¢".
(4) If A is Bass return A and the factorization of discrd(A), else return “false”.
To analyze the algorithm we introduce a new heuristic:

Heuristic 5.2. The probability that the discriminants of the two endomorphisms corresponding to the
cycles produced by Algorithm 3.4 are coprime is at least u for some constant i > 0 not depending on p.

This heuristic is based on our numerical experiments. Intuitively, we are assuming that the endomor-
phisms we compute with Algorithm 3.4 have discriminants which are distributed like random integers
that satisfy the congruency conditions to be the discriminant of an order in a quadratic imaginary field in
which p is inert and £ splits. Two random integers are coprime with probability 6/72 We are assuming
that the discriminants of our cycles are coprime with constant probability.

Theorem 5.3. Assume GRH and Heuristic 5.2. Then with probability at least |, Algorithm 5.1 computes
a Bass order A C End(E), and the runtime is O (,/p(log 2)3).
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Proof. In Step (2), the Gram matrix for A, whose entries are the reduced traces of pairwise products
of the basis elements, is computed. This uses a generalization of Schoof’s algorithm (see Theorem A.6
of [3]), which runs in time polynomial in log p and log of the norm of «, 8. Since « and § arise from
cycles of length at most c[log p1, for some constant ¢ which is independent of p, the norms of « and
are at most p°. From the Gram matrix we can efficiently compute discrd(A).

To check that A is Bass, it is enough to check that A is Bass at each ¢ dividing discrd(A) [8, Theo-
rem 1.2]. To check that A is Bass at g it is enough to check that A ® Z, and (A ® Zq)u are Gorenstein
[8, Corollary 1.3]. An order is Gorenstein if and only if its ternary quadratic form is primitive [28,
Corollary 24.2.10], and this can be checked efficiently. Thus, given a factorization of discrd(A), we can
efficiently decide if A is Bass.

Finally, we compute the probability that the order returned by Algorithm 3.4 is Bass. By [8, Theo-
rem 1.2], an order is Bass if and only if it is basic, and being basic is a local property. It follows that
the order A is Bass whenever the conductors of Z[«] and Z[#] are coprime. A sufficient condition for
this is that the discriminants of o and 8 are coprime which will happen with probability at least u by the
above heuristic. This sufficient condition also covers the case when the cycle for « or 8 goes through 0
or 1728 even though Theorem 3.7 does not apply here. U

5B. Computing End(E) from a Bass order. In this section we compute End(E) from a given Bass sub-
order A. For this we enumerate the maximal orders containing A by taking sums of the g-maximal orders
returned by Algorithm 4.3. As we enumerate the orders, we check each one to see if it is isomorphic to
End(E).

Algorithm 5.4. Compute End(E) from a Bass order.
Input: A Bass order A C End(E) with factored reduced discriminant []7_, qf L
Output: A compact representation of End(E), as defined in [12, Section 8.2].

(1) Foreachi =1 to n:

(a) Compute all orders {O; 1, ..., O; n,} Which are maximal at ¢; and equal to A at primes ¢’ # ¢;
by running Algorithm 4.3 with input A and prime g;.
(2) Compute f: A®Q — B .
(3) For each choice of indices (iy, ..., i,) € [mi] x --- X [m,]:
(@) Set O: =01, +---+ O,
(b) Compute E’/ F,> such that End(E "y >~ f(O) along with a compact representation of End(E’).
(c) If j(E")=j(E) or j(E') = j(E)P, return f(O) and the compact representation of End(E").

Proposition 5.5. Fix a positive integer k, and let A be a Bass order whose size is polynomial in log p
and whose reduced discriminant is square-free and of size O(p*). Assume that the factorization of
the reduced discriminant is given. There are O(p®) maximal orders containing A and Algorithm 5.4
terminates in time O(p®) for any € > 0, assuming that the heuristics in [14; 12] hold.
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p | orders | Bass orders | average N(A)

70,001 92 76 122.21
90,001 80 67 322.04
100,003 81 75 337.59

Table 1. Results from computing 100 pairs of cycles in G(p, 2) at random j € [sz —Fp.

Proof. Computing the isomorphism f : A ® Q > B, , requires one call to an algorithm for factoring
integers (and poly(log p) calls to algorithms for factoring polynomials over [, see [17]). Let

m

discrd(A) =p - Hq,-
i=1
with ¢, ..., gn distinct and different from p. By the local-global principle for maximal orders there
is one maximal order corresponding to each collection of g;-maximal orders {O;} with O; 2 A ® Z,.
We loop through these orders in Step (3). The size of the index set in that loop and hence the number
of distinct maximal orders containing A is at most 2¢ (diserd(AD=1 " where w(n) denotes the number of
distinct prime factors of an integer n. Fix & > 0. Since w(n) = O (logn/loglogn) [16, Chapter 22, §10],
for p large enough, the number of maximal orders © 2 A is at most
s _loge:pk c
2" logloge-pf — (c - p*)loglogep*

for some c, ¢’ > 0, which is O (p?).

As we loop through the maximal orders O containing A, we check each one to see if it is isomorphic
to End(E): after constructing such an order in Step (3)(a), we compute in Step (3)(b) a curve E’ whose
endomorphism ring is isomorphic to O. This can be solved efficiently with the algorithms in [14]: one
computes a connecting ideal 7 between O and a special order O’ and then applies Algorithm 2 of [14]
(see also Algorithm 12 of [12]). Then, in Step (3)(c), we compare j-invariants. Checking each order
takes time polynomial in log p (assuming the heuristics in [14; 12]), so the total running time of the
algorithm is O (p*) for any & > 0. U

Our computational data from Section 5C suggests that we will get the same running time when the
reduced discriminant of A is not square-free. This motivates the following conjecture:

Conjecture 5.6. Fix an integer k > 0 and assume that A C End(E) is a Bass order of size polynomial
in log p and with discrd(A) = O (p*). Then for any & > 0, the number of maximal orders containing A
is O(p®).

Theorem 5.7. Assume GRH, Conjecture 5.6, Heuristic 5.2, and the heuristics in [14]. Let E be a super-
singular elliptic curve. Then the algorithm which combines Algorithm 5.1 and Algorithm 5.4 computes
End(E) with probability at least i, in time O ((log p)zﬁ).

Proof. By the proof of Theorem 5.3, the norms of the endomorphisms «, oy computed by Algorithm 3.4
are bounded by p° for some constant ¢ independent of p, so their discriminants satisfy |A(«;)| < 4p°©.
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Hence by (3-1), they generate an order A whose reduced discriminant satisfies discrd(A) = O (p>). This
means we can apply Conjecture 5.6, so the theorem follows from Theorem 5.3. g

5C. Computational data. We implemented a cycle-finding algorithm in Sage along with an algorithm
for computing traces of cycles in G(p, £), which is based on the implementation of Schoof’s algorithm
available in [27]. For each p in Table 1, and for 100 iterations, we computed a pair of cycles in G(p, 2).
We then tested whether they generated a Bass order by testing whether the two quadratic orders had
coprime conductors and computed the discriminant of the order that they generated. We also computed
an upper bound on the number of maximal orders containing A when A was Bass: suppose discrd(A) =
rll qf ', then there are at most N (A) :=[[;(e; + 1) maximal orders containing A. We report how often
the two cycles generated an order, how many of those orders were Bass, and the average value of N(A).
The cycle-finding algorithm we implemented is the variant discussed in Remark 3.5: it searches for
J € [, to construct the cycles using walks of length [log p]. We also did not avoid a second cycle which
may commute with the first since even without that more than 80% of cases were orders. We also only
computed cycles at j € F,» — [, because this is the case of interest as there are no obvious noninteger
endomorphisms.

6. Computing End(FE) via path-finding in the £-isogeny graph

In this section, we give a reduction from the endomorphism ring problem to the problem of computing
£-power isogenies in G (p, £), using ideas from [21], [14], and [12]. This reduction is simpler than the
one in [12], and uses only one call to a path-finding oracle (rather than poly(log p) calls to an oracle
for finding cycles in G(p, £), as in [12]). We apply this reduction in two ways, noting that it gives an
algorithm for computing the endomorphism ring, and that it breaks second preimage resistance of the
variable-length version of the hash function in [9].

6A. Reduction from computing End(E) to path-finding in the (-isogeny graph. We first define the
path-finding problem in G (p, £):

Problem (¢-Powerlsogeny). Given a prime p and supersingular elliptic curves E and E’ over [, output
a chain of ¢-isogenies of length O (log p) from E to E’.

Computing the endomorphism ring of a supersingular elliptic curve via an oracle for £-Powerlsogeny
proceeds as follows. On input p, Algorithm 3 of [12] returns a supersingular elliptic curve E defined
over [, and a maximal order OcC B, o With an explicit Z-basis {x1, ..., x4}. Proposition 3 of [12] gives
an isomorphism g : @ — End(E) such that we can efficiently evaluate g (x;) at points of Eq. From this,
the endomorphism ring of any supersingular elliptic curve E defined over F,» can be computed, given a
path in G(p, £) from E to E, with £ # p a small fixed prime, for example £ = 2 or 3.

The following algorithm gives a polynomial time reduction from computing endomorphism rings to
the path-finding problem, which uses only one call to the path-finding oracle. It assumes the heuristics
of [14] and GRH (to compute E). A similar algorithm appeared in [10].
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Algorithm 6.1. Reduction from computing End(E) to £-Powerlsogeny.
Input: A prime p, and E/F,> supersingular.

Output: A maximal order O ~ End(E), whose elements can be evaluated at any point of E, and a
powersmooth isogeny ¥, : E — E, with E as above.

(1) Compute E, O with Algorithm 3 in [12].

(2) Run the oracle for path-finding on E, E to obtain an ¢-power isogeny ¢ = ¢, 0---o¢; : E — E of
degree ¢°.

(3) Let Jy := 0, Py:=0, Oy:=0.
4) Fork:=1,...,e:

(a) Compute I € Ok_1, the kernel ideal of ¢y.

(b) Compute Jj := Jy—1 1.

(c) Compute Py, an ideal equivalent to J; of powersmooth norm.
(d) Compute an isogeny vy : E — Ey corresponding to Fg.

(e) Set O := Or(Py).

(5) Return Og(Pe), Ve.

Orders and ideals appearing in the above algorithm are represented by a Z-basis, and we can compute
right orders of ideals using linear algebra over Z, as in [12]. The ideal I, which is the ideal of O_,
of norm £ corresponding to ¢y, can be computed efficiently because we can evaluate endomorphisms
efficiently using Proposition 3 of [12]. The algorithm is correct because Or(P,) = Or(J.) = End(E,) =
End(E).

6B. Using Algorithm 6.1 to compute endomorphism rings and break the second preimage of the CGL
hash. Algorithm 6.1 can be used to give an algorithm for computing the endomorphism ring of a super-
singular elliptic curve E by combining it with algorithms from [11; 14; 12]. This yields a O ((log p)?p'/?)
time algorithm with polynomial storage, assuming the relevant heuristics in [14; 12].

We now consider the hash function in [9] constructed from Pizer’s graphs G (p, 2). For each super-
singular elliptic curve E, there is an associated hash function. An input s € {0, 1}* to the hash function
determines a walk in G(p, 2) from E to another curve E, and the output of the hash function is j(E).

The following is an improvement over [12], which gave a collision attack for this specific hash function.

Proposition 6.2. Let E be the elliptic curve computed in Step (1) of Algorithm 6.1. For the hash function
associated to E, Algorithm 6.1 gives a second preimage attack (and hence, also a collision attack) that

runs in time polynomial in log p.

Proof. The attack works as follows: Given a path from E to E, use Algorithm 6.1 to compute End(E).
Then use Algorithm 7 of [12] to compute new paths from E to E. O
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