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We heartily thank the Editors, Professors Regina Liu and Hongyu Zhao, for featuring
this paper and organizing stimulating discussions. We are grateful for the feedback on our
work from the three distinguished discussants: Professors Jianqing Fan, Po-Ling Loh and Ali
Shaojie. The discussants provide novel methods for inference, offer new applications such as
graphical models and factor models, and highlight the possible impact of robust procedures
in new domains. Their discussions have pushed forward robust high-dimensional statistics in
disparate directions. These in-depth discussions with new contributions would easily qualify
on their own as independent papers in the field of robust high-dimensional statistics. We
sincerely thank the discussants for their time and effort in providing insightful comments and
for their generosity in sharing their new findings. In the following, we organize our rejoinder

around the major themes in the discussions.

1 Tuning parameter selection

We first briefly review the complete pivotal property of Rank Lasso, which enables the use
of a simulated tuning parameter. Recall that the rank loss function is Q,(8) = [n(n —

1)}_1 >3, |(Yi = x'B) — (Y; —xTB)|. The subgradient of @,(8), evaluated at the true



parameter value 3, is
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where sign(t) = 1 if ¢t > 0, = —1if ¢t < 0, and = 0 if ¢ = 0. Observe that § =
> i1,z Sign(ej—€;) = 2rank(e;) — (n+1), where rank(e;) is the rank of ¢; among {ey, ..., €.}
Since (rank(e;),...,rank(e,))” follows uniform distribution on the set of permutations of
integers {1,2,...,n}, the distribution of S,, depends on neither B, nor €. Specifically,
if we denote with € = (&,...,&,)7, then given X, the conditional distribution of S, =
—2[n(n — 1)]_1XT£, is both a completely known distribution and is independent of the
random error distribution.

The above complete pivotal property enables us to select tuning parameter without need-
ing to pre-estimate any unknown population quantity (such as 3,) and automatically adjusts
to both the random error distribution and the design matrix correlation structure. For any

given ¢ and g, we take A equal to
* —1
A =cGg 1. (1 — ao)

where G d

Su]o (1 = a0) denotes the (1 — ap)-quantile of the distribution of [|S,|[s (see Al-

gorithm 1). In contrast, square-root Lasso has a partial pivotal property. This can be
seen by observing that the gradient of its loss function, evaluated at B3,, has the form
(>r, 63)71/2 > i, Xi€;, which itself does not depend on the standard deviation o, of the
random error €, but still depends on the other aspects of the error distribution (such are

higher moments, for example). The method of Sun and Zhang (2012) is based on the normal

error assumption of e.



Algorithm 1 Simulated A (X, a = 0.1, ¢ = 1.01, times= 1000)

1: for k£ in 1:times do
2 Generate random perturbation for 1 : n, denoted as 7.
33 e=2x1—(n+1).

4. S[k] =cx n(;—fl) S €Xi N
5

6

: end for
: Output A = Quantile(S, 1 — «).

In their discussions, Fan, Ma and Wang (FMW hereafter) propose a tuning parameter

selector by using the asymptotic distribution of

2 n+1 1

= B Va 1) Vi

S(y — XB)

at 3 = B,. They further suggest a multiplier bootstrap appraoch to estimating the tuning
parameter, which also precludes the dependence on 3, and the distribution of e. Observe that
the suggested approach necessitates asymptotic distributional approximations. Therefore
some extra conditions may be needed to ensure the validity of the asymptotic approximation.
In contrast, our approach does not rely on any asymptotic approximation and directly obtains
the finite sample distribution of S,, for any n and p. Our simulations (Figure R.1) suggests
that the tuning parameter based on asymptotic theory tends to be larger than the one based

on finite-sample simulation of Algorithm 1 proposed in our paper.

2 Subsampling Calculations of Rank Lasso

We agree with FMW that as the rank loss function has the form of U-statistics, the com-
putation of Rank Lasso may not be scalable due to its complexity of O(n?). They further
proposed a subsampled version of the Rank Lasso estimator and named it ANOPE (Average
Non-Overlapping Pairwise difference Estimator). ANOPE with a small (m = 5) is sug-
gested to provide a satisfactory tradeoff between the computational cost and the estimation

accuracy of the resulting estimate.
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Figure R.1: Comparison of tuning parameters

Algorithm 2 Incomplete U-statistics algorithm (X, y, m)
1: Compute simulated \ given X.
2: Compute (x; — x;,y; —y;) for 1 <i < j<n.
3: Generate random subsample S C {(¢,j) : 1 <4 < j < n} with [S| = mn.
4: Compute the Rank Lasso estimator:

B=argmin —{ S |5~ 3) ~ (x— )78 + MBI}

'8 mn (3,5)eS

5: Output ,B’ .

In our paper, we have focused on the on large p small n setting. For large n, we suggested
using sub-sampling strategy (Algorithm 2). Our strategy shares the similarity with ANOPE
that both algorithms are based on (mn)-pairs of the data {(i,7) : 1 < i < j < n}, albeit
somewhat different random mechanisms are applied to select those pairs. A caveat is that
the selection of the tuning parameter A\ plays an important role in the performance of both
algorithms.

We investigated the same simulation example as described in Section 2 of FMW. Fig-
ure R.2 compares Rank Lasso based on the incomplete U-statistics algorithm (Algorithm 2),

ANOPE and the estimator based on the full sample, where the simulated A (as proposed
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Figure R.2: Comparison of the U-statistic approximation: Full sample denotes a Rank-Loss
computation based off of a complete sample, ANOPE is as proposed in Fan, Ma and Wang
and Rank Lasso is as in Algorithm 2

in our paper) is applied to all three Algorithms. We report both estimation losses, through
[y and [y estimation error, as well as variable selection performance, through False Positive
(FP) and False Negative (FN) measures. We observe that when m = 10 or larger both
the incomplete U-statistics algorithm and ANOPE perform similarly as the estimator based
on the full sample. When m is smaller, both estimators perform notably suboptimal when
compared with the full-sample estimator. Based on our observations, we would suggest to

use either algorithm based on 10n or more pairs of the original data.



3 High-dimensional inference based on Rank Lasso

Statistical inference in high dimension is a very important and challenging problem. Both
FMW and Li and Shojaie (LS hereafter) proposed new methods, although coming from two
different perspectives, for high-dimensional robust inference by building off of Rank Lasso.

FMW provided a heuristic derivation of the debiased estimator of the Rank Lasso, based
on the idea of inverting the first-order condition and extending the approach in Van de Geer
et al. (2014). They also empirically demonstrated the validity of the debiased estimator.

LS empirically investigated and compared two alternative methods for the inference.
They first considered a Wald-type inference procedure using a refitted approach. They pro-
pose to refit, without any penalty, the rank-based model consisting of only variables selected
by rank SCAD; see Zhao et al. (2017). LS then studied a de-correlated score approach (one-
step approach), motivated by Ning et al. (2017). An interesting finding of their simulation
experiments is that for the refitted procedure, using Rank SCAD performs better than Rank
Lasso; for the one-step procedure, using Rank SCAD as the initial estimator also leads to
improved performance when compared with Rank Lasso as the initial estimator. This can
perhaps be explained by a smaller finite-sample bias of the SCAD penalty.

We commend the efforts of FMW and LS in exploring this important research direc-
tion. Robust high-dimensional inference has not been discussed much at all in the current
literature. Even in Gaussian models debiased inference suffers from tuning parameter se-
lection, especially for the estimation of Cov™'(x). We are happy to see their preliminary
results suggest promising performance of inference based on Rank LASSO/SCAD in the
high-dimensional setting.

This topic without doubt deserves a deeper study. Establishing a rigorous theory for any
of the above three reference procedures is highly nontrivial due to the nonsmoothness of the
rank loss function. To obtain CIs for 3;’s: both methods require estimation of the scale

parameter [ f?(u)du, where f(u) denotes the error density function. This is challenging in



the high-dimensional settings. Currently, both FMW and LS took this quantity as known in
their numerical studies. Can we estimate the density of the random error without imposing
restrictive modeling assumptions on the high-dimensional regression model? It is worth
pointing out that, beyond the estimation of an error density at zero, it is unclear how to

proceed with the estimation of the above functional.

4 Comparisons with other robust procedures

Both FMW and Loh brought historical perspectives into their discussions. Loh, in particular,
raised several important new insights on connecting traditional robust statistics with modern
high-dimensional data analysis.

As Loh pointed out, the proposed Rank Lasso can be understood as finding a regression
parameter in high dimension that minimizes an L-estimate of the scale of the residuals.
Thus, it is possible to extend other known robust measures in the classical robust statistics
literature for the same purpose. This raises an interesting and important question whether
certain estimator would be optimal among a class of estimators.

To answer this question, it is essential to first come up with appropriate measures of
desirable statistical properties of a robust estimator in high dimensional setting. In the
classical setting, properties such as estimation efficiency, high breakdown properties have
played important roles. Meaningful extension of these classical concepts to high dimensional
setting is not entirely straightforward. Loh asked whether optimality results could be proved
in terms of the variance of the estimators in finite samples. Any new theory in this direction
would be important since finite-sample error bounds have been the focus in the current
high-dimensional regression literature.

It is worth emphasizing that robust estimation in high dimension necessitates an evalua-
tion of its performance from multiple aspects. Despite other choices of robust loss function,

we believe rank loss (based on Wilcoxon scores) has the unique advantage of achieving an



appealing trade-off among robustness, estimation efficiency and computational convenience.

We view this new approach as a useful complement to Lasso, and not as a replacement.

5 Extensions and future research directions

All three discussants have discussed interesting areas to which Rank Lasso can be extended.
FMW considered a useful extension to a factor-adjusted regression model to account for
strongly dependent covariates, and provided promising numerical results. They also sug-
gested the importance of extension to heteroscedastic regression and beyond linear models.
We would like to add that their extension could provide some new insight into causal infer-
ence where factor models are often a powerful tool for removing the confounding effects.

LS provided a valuable and detailed analysis of application of Rank Lasso and Rank
SCAD to graphical modeling. In their numerical studies, it was observed that the tuning
parameter selection can be quite difficult (more so than for linear regression models). For
popular existing approaches such as glasso and npn, BIC for example often gives an empty
graph. In contrast, rank Lasso and rank SCAD provided promising results even when the
linear model is misspecified, suggesting that tuning-free rank Lasso has broader applications.
We consider robust graphical modeling and robust precision matrix estimation to be very
important research areas. There has been a recent stream of interesting work on robust
estimation of high-dimensional precision matrices, see Avella-Medina et al. (2018), Loh and
Tan (2018), Goes et al. (2020), among others. Related to that is a study of the model
misspecification and the possible stability property of rank Lasso type methods.

Loh suggested analyzing estimators that are robust to adversarial perturbations, a topic
that is of particular interest to the computer science area, see Duchi and Namkoong (2020);
Carmon et al. (2019), among others. We have performed a small Monte-Carlo experiment
to examine the performance of rank-based methods at the presence of contamination in

the predictors and random error. We generate X and 3, as in Example 3 of the main



Table R.1: Performance of different methods with perturbed X

Method L1 error L2 error ME FP FN
Lasso 1.97 (0.07) | 0.82 (0.03) 0.92 (0.05) 8.66 (0.38) 0 (0)
Lasso-1se 2.71 (0.08) | 1.55 (0.04) 4.24 (0.20) 0 (0) 0 (0)
v/ Lasso 1.65 (0.06) | 0.80 (0.03) 0.98 (0.05) 4.11 (0.18) 0 (0)
SCAD 1.42 (0.06) | 0.84 (0.04) 0.77 (0.06) 0 (0) 0 (0)
Huber Lasso | 1.83 (0.03) | 1.03 (0.02) 1.85 (0.07) 0 (0) 0 (0)
Rank Lasso | 0.39 (0.01) | 0.22 (0.01) 0.07 (0.00) 0 (0) 0 (0)
Rank SCAD | 0.26 (0.01) | 0.19 (0.01) 0.04 (0.00) 0 (0) 0 (0)

Note: Lasso uses A corresponding to the minimum of the cross-validation error, Lasso-1se is the cross-
validated Lasso with A selected using the one standard error rule.

paper, where X has an AR(1) correlation matrix with auto-correlation coefficient 0.5, and
€ ~ 0.95N(0,1) + 0.05N(0,10?). Let X be contaminated by the small error: Z = X + W,
where W = (w;;) € R™P, w;; ~ Unif(—0.1,0.1) are i.i.d. random variables. Then we
estimate (3, based on (Z,y). We observe that Rank Lasso performs significantly better than
Lasso. Rank SCAD is observed to have the best overall performance.

It is worth mentioning that Loh (2017) studied a class of generalized M-estimators using
Mallows, Hill-Ryan and Schweppe type weight functions. She established a rigorous theory
in the high dimensional setting and numerically demonstrated robust performance of this
class of estimators to contamination in the predictors and/or the response variables. Rank
Lasso and Rank SCAD proposed in this paper is not specifically adversarial perturbations
of the covariates. A possible generalization is to incorporate similar weights as those in Loh
(2017).

As seen above, there are ample opportunities to explore contrasting and overarching ro-
bustness properties of the proposed method. All have demonstrated broad practical relevance
and deserve further in-depth studies. It is unclear how to quantify the tradeoffs between ro-
bustness and efficiency among all or some of the above discussed robustness quantifications.
All discussants called for more methodological developments in addressing a number of ro-

bustness questions. We wholeheartedly agree with our discussants and hope that this article



and its discussions would stimulate further growth in that direction.
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