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We heartily thank the Editors, Professors Regina Liu and Hongyu Zhao, for featuring

this paper and organizing stimulating discussions. We are grateful for the feedback on our

work from the three distinguished discussants: Professors Jianqing Fan, Po-Ling Loh and Ali

Shaojie. The discussants provide novel methods for inference, o�er new applications such as

graphical models and factor models, and highlight the possible impact of robust procedures

in new domains. Their discussions have pushed forward robust high-dimensional statistics in

disparate directions. These in-depth discussions with new contributions would easily qualify

on their own as independent papers in the �eld of robust high-dimensional statistics. We

sincerely thank the discussants for their time and e�ort in providing insightful comments and

for their generosity in sharing their new �ndings. In the following, we organize our rejoinder

around the major themes in the discussions.

1 Tuning parameter selection

We �rst brie�y review the complete pivotal property of Rank Lasso, which enables the use

of a simulated tuning parameter. Recall that the rank loss function is Qn(β) =
[
n(n −

1)
]−1∑∑

i6=j

∣∣(Yi − xT
i β) − (Yj − xT

j β)
∣∣. The subgradient of Qn(β), evaluated at the true
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parameter value β0, is

Sn =
∂Qn(β)

∂β

∣∣
β=β0

= −2
[
n(n− 1)

]−1 n∑
j=1

xj

( n∑
i=1,i6=j

sign(εj − εi)
)
.

where sign(t) = 1 if t > 0, = −1 if t < 0, and = 0 if t = 0. Observe that ξj =∑n
i=1,i6=j sign(εj−εi) = 2rank(εj)−(n+1), where rank(εj) is the rank of εj among {ε1, . . . , εn}.

Since (rank(ε1), . . . , rank(εn))
T follows uniform distribution on the set of permutations of

integers {1, 2, . . . , n}, the distribution of Sn depends on neither β0 nor ε. Speci�cally,

if we denote with ξ = (ξ1, . . . , ξn)
T , then given X, the conditional distribution of Sn =

−2
[
n(n − 1)

]−1
XTξ, is both a completely known distribution and is independent of the

random error distribution.

The above complete pivotal property enables us to select tuning parameter without need-

ing to pre-estimate any unknown population quantity (such as β0) and automatically adjusts

to both the random error distribution and the design matrix correlation structure. For any

given c and α0, we take λ equal to

λ∗ = cG−1||Sn||∞(1− α0)

where G−1||Sn||∞(1 − α0) denotes the (1 − α0)-quantile of the distribution of ||Sn||∞ (see Al-

gorithm 1). In contrast, square-root Lasso has a partial pivotal property. This can be

seen by observing that the gradient of its loss function, evaluated at β0, has the form(∑n
i=1 ε

2
i

)−1/2∑n
i=1 xiεi, which itself does not depend on the standard deviation σ, of the

random error ε, but still depends on the other aspects of the error distribution (such are

higher moments, for example). The method of Sun and Zhang (2012) is based on the normal

error assumption of ε.
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Algorithm 1 Simulated λ (X, α = 0.1, c = 1.01, times= 1000)

1: for k in 1:times do
2: Generate random perturbation for 1 : n, denoted as τ .
3: ε = 2 ∗ τ − (n+ 1).

4: S[k] = c ∗
∣∣∣∣∣∣ −2

n(n−1)
∑n

i=1 εixi

∣∣∣∣∣∣
∞
.

5: end for

6: Output λ = Quantile(S, 1− α).

In their discussions, Fan, Ma and Wang (FMW hereafter) propose a tuning parameter

selector by using the asymptotic distribution of

Sn = − 2√
3

n+ 1√
n(n− 1)

1√
n
S(y −Xβ)

at β = β0. They further suggest a multiplier bootstrap appraoch to estimating the tuning

parameter, which also precludes the dependence on β0 and the distribution of ε. Observe that

the suggested approach necessitates asymptotic distributional approximations. Therefore

some extra conditions may be needed to ensure the validity of the asymptotic approximation.

In contrast, our approach does not rely on any asymptotic approximation and directly obtains

the �nite sample distribution of Sn for any n and p. Our simulations (Figure R.1) suggests

that the tuning parameter based on asymptotic theory tends to be larger than the one based

on �nite-sample simulation of Algorithm 1 proposed in our paper.

2 Subsampling Calculations of Rank Lasso

We agree with FMW that as the rank loss function has the form of U-statistics, the com-

putation of Rank Lasso may not be scalable due to its complexity of O(n2). They further

proposed a subsampled version of the Rank Lasso estimator and named it ANOPE (Average

Non-Overlapping Pairwise di�erence Estimator). ANOPE with a small (m = 5) is sug-

gested to provide a satisfactory tradeo� between the computational cost and the estimation

accuracy of the resulting estimate.

3



0.40 0.42 0.44 0.46 0.48 0.50

0.
40

0.
42

0.
44

0.
46

0.
48

0.
50

Our Proposed lambda

Fa
n 

et
 a

l's
 la

m
bd

a

Figure R.1: Comparison of tuning parameters

Algorithm 2 Incomplete U-statistics algorithm (X, y, m)

1: Compute simulated λ given X.
2: Compute (xi − xj, yi − yj) for 1 ≤ i < j ≤ n.
3: Generate random subsample S ⊆ {(i, j) : 1 ≤ i < j ≤ n} with |S| = mn.
4: Compute the Rank Lasso estimator:

β̂ = argmin
β

1

mn

{ ∑
(i,j)∈S

|(yi − yj)− (xi − xj)
Tβ|+ λ||β||1

}
.

5: Output β̂.

In our paper, we have focused on the on large p small n setting. For large n, we suggested

using sub-sampling strategy (Algorithm 2). Our strategy shares the similarity with ANOPE

that both algorithms are based on (mn)-pairs of the data {(i, j) : 1 ≤ i < j ≤ n}, albeit

somewhat di�erent random mechanisms are applied to select those pairs. A caveat is that

the selection of the tuning parameter λ plays an important role in the performance of both

algorithms.

We investigated the same simulation example as described in Section 2 of FMW. Fig-

ure R.2 compares Rank Lasso based on the incomplete U-statistics algorithm (Algorithm 2),

ANOPE and the estimator based on the full sample, where the simulated λ (as proposed
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Figure R.2: Comparison of the U-statistic approximation: Full sample denotes a Rank-Loss
computation based o� of a complete sample, ANOPE is as proposed in Fan, Ma and Wang
and Rank Lasso is as in Algorithm 2

.

in our paper) is applied to all three Algorithms. We report both estimation losses, through

l1 and l2 estimation error, as well as variable selection performance, through False Positive

(FP) and False Negative (FN) measures. We observe that when m = 10 or larger both

the incomplete U-statistics algorithm and ANOPE perform similarly as the estimator based

on the full sample. When m is smaller, both estimators perform notably suboptimal when

compared with the full-sample estimator. Based on our observations, we would suggest to

use either algorithm based on 10n or more pairs of the original data.
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3 High-dimensional inference based on Rank Lasso

Statistical inference in high dimension is a very important and challenging problem. Both

FMW and Li and Shojaie (LS hereafter) proposed new methods, although coming from two

di�erent perspectives, for high-dimensional robust inference by building o� of Rank Lasso.

FMW provided a heuristic derivation of the debiased estimator of the Rank Lasso, based

on the idea of inverting the �rst-order condition and extending the approach in Van de Geer

et al. (2014). They also empirically demonstrated the validity of the debiased estimator.

LS empirically investigated and compared two alternative methods for the inference.

They �rst considered a Wald-type inference procedure using a re�tted approach. They pro-

pose to re�t, without any penalty, the rank-based model consisting of only variables selected

by rank SCAD; see Zhao et al. (2017). LS then studied a de-correlated score approach (one-

step approach), motivated by Ning et al. (2017). An interesting �nding of their simulation

experiments is that for the re�tted procedure, using Rank SCAD performs better than Rank

Lasso; for the one-step procedure, using Rank SCAD as the initial estimator also leads to

improved performance when compared with Rank Lasso as the initial estimator. This can

perhaps be explained by a smaller �nite-sample bias of the SCAD penalty.

We commend the e�orts of FMW and LS in exploring this important research direc-

tion. Robust high-dimensional inference has not been discussed much at all in the current

literature. Even in Gaussian models debiased inference su�ers from tuning parameter se-

lection, especially for the estimation of Cov−1(x). We are happy to see their preliminary

results suggest promising performance of inference based on Rank LASSO/SCAD in the

high-dimensional setting.

This topic without doubt deserves a deeper study. Establishing a rigorous theory for any

of the above three reference procedures is highly nontrivial due to the nonsmoothness of the

rank loss function. To obtain CIs for βj's: both methods require estimation of the scale

parameter
∫
f 2(u) du, where f(u) denotes the error density function. This is challenging in

6



the high-dimensional settings. Currently, both FMW and LS took this quantity as known in

their numerical studies. Can we estimate the density of the random error without imposing

restrictive modeling assumptions on the high-dimensional regression model? It is worth

pointing out that, beyond the estimation of an error density at zero, it is unclear how to

proceed with the estimation of the above functional.

4 Comparisons with other robust procedures

Both FMW and Loh brought historical perspectives into their discussions. Loh, in particular,

raised several important new insights on connecting traditional robust statistics with modern

high-dimensional data analysis.

As Loh pointed out, the proposed Rank Lasso can be understood as �nding a regression

parameter in high dimension that minimizes an L-estimate of the scale of the residuals.

Thus, it is possible to extend other known robust measures in the classical robust statistics

literature for the same purpose. This raises an interesting and important question whether

certain estimator would be optimal among a class of estimators.

To answer this question, it is essential to �rst come up with appropriate measures of

desirable statistical properties of a robust estimator in high dimensional setting. In the

classical setting, properties such as estimation e�ciency, high breakdown properties have

played important roles. Meaningful extension of these classical concepts to high dimensional

setting is not entirely straightforward. Loh asked whether optimality results could be proved

in terms of the variance of the estimators in �nite samples. Any new theory in this direction

would be important since �nite-sample error bounds have been the focus in the current

high-dimensional regression literature.

It is worth emphasizing that robust estimation in high dimension necessitates an evalua-

tion of its performance from multiple aspects. Despite other choices of robust loss function,

we believe rank loss (based on Wilcoxon scores) has the unique advantage of achieving an
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appealing trade-o� among robustness, estimation e�ciency and computational convenience.

We view this new approach as a useful complement to Lasso, and not as a replacement.

5 Extensions and future research directions

All three discussants have discussed interesting areas to which Rank Lasso can be extended.

FMW considered a useful extension to a factor-adjusted regression model to account for

strongly dependent covariates, and provided promising numerical results. They also sug-

gested the importance of extension to heteroscedastic regression and beyond linear models.

We would like to add that their extension could provide some new insight into causal infer-

ence where factor models are often a powerful tool for removing the confounding e�ects.

LS provided a valuable and detailed analysis of application of Rank Lasso and Rank

SCAD to graphical modeling. In their numerical studies, it was observed that the tuning

parameter selection can be quite di�cult (more so than for linear regression models). For

popular existing approaches such as glasso and npn, BIC for example often gives an empty

graph. In contrast, rank Lasso and rank SCAD provided promising results even when the

linear model is misspeci�ed, suggesting that tuning-free rank Lasso has broader applications.

We consider robust graphical modeling and robust precision matrix estimation to be very

important research areas. There has been a recent stream of interesting work on robust

estimation of high-dimensional precision matrices, see Avella-Medina et al. (2018), Loh and

Tan (2018), Goes et al. (2020), among others. Related to that is a study of the model

misspeci�cation and the possible stability property of rank Lasso type methods.

Loh suggested analyzing estimators that are robust to adversarial perturbations, a topic

that is of particular interest to the computer science area, see Duchi and Namkoong (2020);

Carmon et al. (2019), among others. We have performed a small Monte-Carlo experiment

to examine the performance of rank-based methods at the presence of contamination in

the predictors and random error. We generate X and β0 as in Example 3 of the main
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Table R.1: Performance of di�erent methods with perturbed X

Method L1 error L2 error ME FP FN
Lasso 1.97 (0.07) 0.82 (0.03) 0.92 (0.05) 8.66 (0.38) 0 (0)

Lasso-1se 2.71 (0.08) 1.55 (0.04) 4.24 (0.20) 0 (0) 0 (0)√
Lasso 1.65 (0.06) 0.80 (0.03) 0.98 (0.05) 4.11 (0.18) 0 (0)

SCAD 1.42 (0.06) 0.84 (0.04) 0.77 (0.06) 0 (0) 0 (0)
Huber Lasso 1.83 (0.03) 1.03 (0.02) 1.85 (0.07) 0 (0) 0 (0)
Rank Lasso 0.39 (0.01) 0.22 (0.01) 0.07 (0.00) 0 (0) 0 (0)
Rank SCAD 0.26 (0.01) 0.19 (0.01) 0.04 (0.00) 0 (0) 0 (0)

Note: Lasso uses λ corresponding to the minimum of the cross-validation error, Lasso-1se is the cross-

validated Lasso with λ selected using the one standard error rule.

paper, where X has an AR(1) correlation matrix with auto-correlation coe�cient 0.5, and

ε ∼ 0.95N(0, 1) + 0.05N(0, 102). Let X be contaminated by the small error: Z = X +W,

where W = (wij) ∈ Rn×p, wij ∼ Unif(−0.1, 0.1) are i.i.d. random variables. Then we

estimate β0 based on (Z,y). We observe that Rank Lasso performs signi�cantly better than

Lasso. Rank SCAD is observed to have the best overall performance.

It is worth mentioning that Loh (2017) studied a class of generalized M-estimators using

Mallows, Hill�Ryan and Schweppe type weight functions. She established a rigorous theory

in the high dimensional setting and numerically demonstrated robust performance of this

class of estimators to contamination in the predictors and/or the response variables. Rank

Lasso and Rank SCAD proposed in this paper is not speci�cally adversarial perturbations

of the covariates. A possible generalization is to incorporate similar weights as those in Loh

(2017).

As seen above, there are ample opportunities to explore contrasting and overarching ro-

bustness properties of the proposed method. All have demonstrated broad practical relevance

and deserve further in-depth studies. It is unclear how to quantify the tradeo�s between ro-

bustness and e�ciency among all or some of the above discussed robustness quanti�cations.

All discussants called for more methodological developments in addressing a number of ro-

bustness questions. We wholeheartedly agree with our discussants and hope that this article
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and its discussions would stimulate further growth in that direction.
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