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C O R O N A V I R U S

Differential effects of intervention timing on COVID-19 
spread in the United States
Sen Pei, Sasikiran Kandula, Jeffrey Shaman*

Assessing the effects of early nonpharmaceutical interventions on coronavirus disease 2019 (COVID-19) spread is 
crucial for understanding and planning future control measures to combat the pandemic. We use observations of 
reported infections and deaths, human mobility data, and a metapopulation transmission model to quantify 
changes in disease transmission rates in U.S. counties from 15 March to 3 May 2020. We find that marked, asyn-
chronous reductions of the basic reproductive number occurred throughout the United States in association with 
social distancing and other control measures. Counterfactual simulations indicate that, had these same measures 
been implemented 1 to 2 weeks earlier, substantial cases and deaths could have been averted and that delayed 
responses to future increased incidence will facilitate a stronger rebound of infections and death. Our findings 
underscore the importance of early intervention and aggressive control in combatting the COVID-19 pandemic.

INTRODUCTION
The ongoing coronavirus disease 2019 (COVID-19) pandemic has 
caused millions of infections and hundreds of thousands of deaths 
worldwide (1, 2). In the United States, the first imported case of 
COVID-19 was reported on 20 January 2020 (3). In subsequent 
weeks, community transmission was established, and the causative 
pathogen, severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), quickly spread throughout the entire country (2). As of 
22 June 2020, more than 2.3 million infections and 120,000 deaths 
had been confirmed nationwide, making the United States the 
hardest-hit country in the world to date (4).

In an effort to slow the spread of COVID-19, control measures 
enforcing social distancing and restricting individual contact were 
implemented across the United States beginning in mid-March. 
In other countries, these nonpharmaceutical interventions (NPIs) 
have successfully limited the spread of COVID-19 (5–12); however, 
in the United States, the effectiveness of these control measures has 
been less pronounced. It is therefore important that changes in 
virus transmissibility within the United States, due to NPIs, be 
quantified, so that the effects of earlier interventions on cases and 
deaths can be evaluated.

RESULTS
Inference of COVID-19 transmission dynamics  
in the United States
In this study, we adapted and applied a dynamic metapopulation 
model (13, 14) informed by human mobility data (15, 16) (fig. S1) 
and representing SARS-CoV-2 transmission in 3142 U.S. counties 
(see Materials and Methods). During the study period, 21 February 
2020 to 3 May 2020, measures to control the virus were actively, but 
heterogeneously, implemented throughout the United States. We 
explicitly simulated documented and undocumented infections 
(17), for which separate transmission rates,  and  ( < 1), respec-
tively, are defined. Here,  is the relative transmissibility of undoc-
umented infections. To reflect heterogeneity in transmission rates 

across the United States while avoiding a large number of model 
parameters, we defined a separate i for counties with greater than 
400 cumulative confirmed cases as of 3 May 2020 (n = 311) (fig. S1). 
The remaining 2831 counties were apportioned among 16 additional 
transmission rate parameters depending on cumulative case levels 
and population density (see Materials and Methods). Other param-
eters in the model include the ascertainment rate, , which rep-
resents the fraction of infections documented as confirmed cases; 
the average latency period, Z; the average duration of infectious-
ness, D; and a travel multiplicative factor, .

The metapopulation model explicitly simulates intercounty mo-
bility using observed rates of intercounty visits to points of interest 
(POI) (e.g., restaurants, stores, etc.) on a county-by-county basis. 
Intracounty mobility is not represented as the relationship between 
mobility and disease transmission is unknown. Instead, we inferred 
changing transmission rates within counties using time series 
records of COVID-19 activity. This parameter estimation was per-
formed using the ensemble adjustment Kalman filter (EAKF) (18) 
in conjunction with county-level observations of both daily reported 
cases and deaths in the United States (see Materials and Methods 
and Supplementary Materials) (19). We focus on the national fit-
ting, as well as major metropolitan areas with large populations and 
abundant data, for which parameter estimates are well informed. Fur-
ther, as many states reopened portions of their economies in early May, 
the study period was limited to 21 February 2020 to 3 May 2020 when 
active control efforts were in place.

Daily cases and deaths in the United States and the New York 
metropolitan area are well fit by the transmission model (Fig.  1, 
A to D). Model estimates for counties with large number of cases 
and deaths (fig. S2) yield low discrepancy from observations (table 
S1). The inferred basic reproductive numbers, Rt ≡ D[ + (1 − )] 
(17, 20), for six metropolitan areas—New York, New Orleans, Los 
Angeles, Chicago, Boston, and Miami—on five dates (15 March, 
29 March, 12 April, 26 April, and 3 May) are shown in Table 1 (see 
Materials and Methods). After 15 March, Rt in all six metropolitan 
areas decreases substantially in association with the implementa-
tion of social distancing policies and practices (fig. S3). The estimat-
ed effective reproductive numbers, Re ≡ D[ + (1 − )]S/N, for 
these six metropolitan areas also decrease after 15 March 2020 
(Fig. 1E). In three of the six metropolitan areas, Re is well below 1 as 
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of 3 May 2020. For Chicago, Los Angeles, and Miami, where daily 
confirmed cases and deaths were still increasing or becoming stable 
(fig. S1), Re is close to 1. In the New York metropolitan area, Re 
dropped below 1 on 4 April and continued decreasing since then. 
The estimated nationwide ascertainment rate declined from 0.20 
around 16 March, a time of rapid COVID-19 spread and then stabi-
lized around 0.1 after 5 April (Fig. 1F). Note that this finding indi-
cates that, before 5 April, although testing capacity had increased 
substantially, daily new infections increased faster, yielding a de-
clining ascertainment rate.

Estimated cumulative infections (both reported and unreported) 
for the New York metropolitan area on 15 March 2020 are one 

order of magnitude higher than for the other five metropolitan 
areas (Fig. 1G). Thus, although the estimated Re in New York from 
15 March to 3 May 2020 was comparable to or lower than these 
other areas, the attack rate in New York remains roughly an order 
of magnitude higher through 3 May 2020. We also overlaid the in-
ferred Rt for the six metropolitan areas with the dates on which local 
social distancing orders were announced (fig. S3) (21). In general, 
Rt decreases as more interventions are implemented; however, there 
are no abrupt changes of Rt associated with the timing of the local 
interventions, possibly due to a more gradual adjustment of indi-
vidual human behaviors. The estimated effective reproductive 
numbers on five dates (15 March, 29 March, 12 April, 26 April, and 
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Fig. 1. Model fit and parameter inference. Posterior fitting to daily cases and deaths in the United States (A and B) and the New York metropolitan area (C and D). Orange 
dots represent observations. Blue and gray lines are the median estimate and 95% CIs, respectively. The estimated effective reproductive number, Re, in six metropolitan 
areas are shown in (E). The black dotted line indicates Re = 1. (F) The estimated ascertainment rate over time. The blue line and gray dashed lines are the median estimates 
and 95% CIs, respectively. (G) The estimated cumulative infections (both reported and unreported) in six metropolitan areas. We compare the reported seroprevalence 
(%) in nine locations on different dates with the inferred percentage cumulative infections on those dates in (H). Whiskers show 95% CIs. Details on the serological survey 
are provided in Materials and Methods.
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3 May) for 311 counties with cumulative cases ≥400 as of 3 May are 
available online (22). Sensitivity analysis indicates that the inference 
results are robust to the duration of daytime and nighttime trans-
mission imposed in the model (fig. S4).

Asynchronous transmission reduction in the United States
We observe an asynchronous reduction of Re among counties with 
400 or more cases by 3 May, and across all 3142 counties, the 
estimated effective reproductive numbers exhibit considerable 
variability (fig. S5). To visualize the speed at which local transmission 
rates were reduced, we show the first dates when Re dropped below 
certain threshold values (1.5, 1.25, 1, and 0.75) and stayed below 
those thresholds until 3 May (Fig. 2). Some metropolitan areas such 
as San Francisco, New York City, and New Orleans reduced Re 

below 1 during April and kept it below 1 through 3 May. Less popu-
lous counties in the mountain region of the United States also have 
low effective reproductive numbers, possibly due to lower popula-
tion density supporting fewer opportunities for sustained transmis-
sion. At the same time, a large number of counties still have Re 
above 1 as of 3 May, indicating that local transmission had not yet 
been effectively curbed. The asynchronous reduction of transmis-
sion rates, partly due to different timelines of local control orders, 
differing compliance to social distancing rules, and differing start-
ing values of Re, complicates containment and control of COVID-19. 
Locations with sustained transmission can reintroduce infections to 
locations where transmission is well suppressed, once control 
measures are relaxed or lifted, possibly increasing opportunities for 
local transmission and case growth.

Table 1. Estimated basic reproductive numbers. Estimated basic reproductive numbers (Rt) for the New York, New Orleans, Los Angeles, Chicago, Boston, and 
Miami metropolitan areas on 15 March, 29 March, 12 April, 26 April, and 3 May. Mean estimate (95% CIs) are presented. 

15 March 29 March 12 April 26 April 3 May

New York 3.10 (2.76, 3.45) 1.63 (1.41, 1.88) 0.60 (0.52, 0.66) 0.38 (0.32, 0.43) 0.34 (0.30, 0.40)

New Orleans 2.50 (2.11, 2.89) 1.91 (1.65, 2.27) 0.44 (0.34, 0.55) 0.29 (0.22, 0.36) 0.27 (0.21, 0.34)

Los Angeles 3.12 (2.56, 3.72) 1.35 (1.06, 1.71) 1.16 (0.89, 1.38) 1.17 (0.89, 1.44) 1.18 (0.91, 1.44)

Chicago 2.84 (2.41, 3.34) 2.04 (1.74, 2.36) 1.11 (0.92, 1.29) 1.39 (1.14, 1.66) 1.13 (0.92, 1.34)

Boston 3.86 (3.28, 4.47) 2.19 (1.73, 2.57) 0.95 (0.77, 1.08) 0.41 (0.32, 0.54) 0.33 (0.26,0.40)

Miami 2.96 (2.56, 3.45) 1.38 (1.12, 1.68) 0.78 (0.60, 0.96) 0.76 (0.57, 0.88) 1.32 (1.07, 1.52)

A B

C D

Re = 1.5 Re = 1.25

Re = 1 Re = 0.75

1 March 2020 15 March 2020 1 April 2020 1 May 202015 April 2020

Fig. 2. Asynchronous reduction of effective reproductive numbers. For each county, we show the date when the local effective reproductive number dropped below 
1.5 (A), 1.25 (B), 1 (C), and 0.75 (D) and stayed below that threshold until 3 May. Counties in gray are those that either never reached the threshold or failed to remain 
below the threshold.
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The model inference system enables estimation of the evolution 
of susceptibility in county populations during the pandemic. 
Nationwide, 95.4% (93.8 to 96.6%) of the U.S. population remained 
susceptible as of 3 May, with notable differences in key metropolitan 
areas (fig. S6). Specifically, the estimated susceptible population 
percentage in the New York metropolitan area was 75.5% (70.5 to 
79.4%), which roughly agrees with the 21% seroprevalence reported 
for New York City on 23 April (23). Further, the estimated cumula-
tive percentage of infected individuals also generally agrees with the 
reported seroprevalence rates obtained from an independent large-
scale serological study (24, 25) for a variety of locations and dates 
(Fig. 1H). On 3 May, even those counties with a large number of 
confirmed cases still had high population susceptibility, revealing 
an absence of herd immunity and continued risk of additional 
COVID-19 waves. The estimated susceptible population on 3 May 
in the 100 counties with the most reported cases is available at (22). 
Additional validations of the estimates of Rt and initial prevalence 
in the United States against other independent studies are provided 
in Materials and Methods.

Counterfactual simulations of COVID-19 spread
The inference results indicate that the NPIs varyingly adopted 
in the United States after 15 March reduced rates of COVID-19 
transmission. During the initial growth of a pandemic, infections 
increase exponentially. As a consequence, early intervention and 
rapid response are critical for limiting morbidity and mortality. To 
quantify the effects of earlier interventions on COVID-19 outcomes 
in the United States, we performed two counterfactual simulations 
in which the sequence of transmission rates and ascertainment rate 
inferred for 15 March to 3 May 2020 were shifted back 1 and 
2 weeks, i.e., to 8 March and 1 March 2020, respectively. Specifically, 
we ran the inference from 21 February to 8 or 1 March to constrain 
the initial model state and then applied the daily posterior param-
eters, i.e.,  and s, as estimated beginning 15 March. The simula-
tions were generated until 3 May 2020. For the last 1 to 2 weeks 
without inferred parameters due to the shift in the time window, we 
applied the final parameter estimates of 3 May 2020, the last day of 
inference. This approach shifts the asynchronous control timelines 
for different counties back 1 or 2 weeks, something that a local 
or aggregate transmission model representing a single geography 
cannot represent. Further, the metapopulation model construct 
enables incorporation of the intercounty dynamical interaction 
of disease transmission, which is crucial for the spatial expansion of 
COVID-19 during the early stage of the pandemic.

The counterfactual simulations indicate that had observed con-
trol measures been adopted 1 week earlier, then the United States 
would have avoided 601,667 [95% credible interval (CI): 464,381 
to 722,880] [52.6% (40.6 to 63.1%)] confirmed cases and 32,335 
(23,600 to 40,573) [49.4% (36.1 to 62.0%)] deaths nationwide as of 
3 May 2020 (Fig. 3, A and B). In the New York metropolitan area, 
the epicenter of COVID-19 in the United States at that time, 191,356 
(155,726 to 210,593) [72.9% (59.3 to 80.0%)] confirmed cases and 
16,950 (14,258 to 18,595) [77.9% (65.5 to 85.5%)] deaths would 
have been avoided if the same sequence of interventions had been 
applied one week earlier (Fig. 3, C and D). A more pronounced 
control effect would have been achieved had the sequence of con-
trol measures occurred 2 weeks earlier: A reduction of 1,041,261 
(996,933 to 1,076,703) [91.0% (87.1 to 94.0%)] cases and 59,351 
(56,238 to 61,789) [90.8% (86.0 to 94.5%)] deaths in the United 

States (Fig. 3, E and F) and 254,087 (246,134 to 257,738) [96.8% 
(93.7 to 98.2%)] cases and 21,175 (20,427 to 21,553) [97.3% (93.9 to 
99.0%)] deaths in the New York metropolitan area (Fig. 3, G and H). 
These marked reductions in morbidity and mortality due to more 
timely deployment of control measures highlight the critical need 
for aggressive, early response to the COVID-19 pandemic.

Simulation of control relaxation and delayed response
Now that COVID-19 is established as a global pandemic, rapid 
response remains essential to avoid large-scale resurgences of infec-
tions and deaths in locations with reopening plans. We quantify the 
effect of response time on the timing and magnitude of rebound 
outbreaks in the United States through further simulations. Specif-
ically, we assume that control measures are relaxed beginning 
4 May 2020 in all U.S. counties, resulting in a weekly 5% increase in 
the local transmission rate, , in each county. If weekly confirmed 
case numbers increase for 2 or 3 consecutive weeks in a county after 
relaxation, then a reactive 25% weekly reduction of transmission 
rates, equivalent to the average transmission rate reduction before 
4 May 2020 (fig. S3), is imposed in this county and maintained until 
local weekly case numbers decline.

For both scenarios, a decline of daily confirmed cases continues 
for almost 2 weeks after easing of control measures (Fig. 4, A and B). 
This decreasing trend, caused by the NPIs in place before 4 May 2020, 
coupled with the lag between infection acquisition and case confir-
mation, conveys a false signal that the pandemic is well under 
control. Unfortunately, because of high remaining population sus-
ceptibility, a large resurgence of cases follows, peaking in early- and 
mid-June, despite the resumption of NPI measures. For the 2-week 
response, increased mortality is less obvious due to a longer lag that 
disperses deaths over a longer time span (Fig. 4C and fig. S7); however, 
a 1-week further delay in  local response to the resumption of 
control measures results in a marked resurgence in national deaths 
(Fig. 4D). Another scenario assuming a one-time 5% increase of 
transmission rates after control relaxation yielded similar results.

Aggregating case and death numbers to national scale could 
mask marked differences in local transmission. We inspected the 
relaxation simulations in six counties within the focus metropolitan areas 
(fig. S8). For counties that have Re well below 1 (viz New York County 
NY, Orleans Parish LA, and Suffolk County MA), relaxing control 
measures does not lead to increased cases and deaths, as the increased 
effective reproductive numbers remain below 1. In contrast, reopenings 
in counties with Re close to 1 (viz Los Angeles County CA, Cook 
County IL, and Palm Beach County FL) do produce case growth.

To further highlight the effect of heterogeneous timelines of 
reopening among different locations, we also ran a simulation in 
which Florida reopens on 4 May 2020, resulting in a 20% increase 
in  local transmission rates, but control measures in other states 
remain in place. We examined the daily cases and deaths in the 
following 30 days in Georgia and Alabama, the two states adjacent 
to Florida, and compared these outcomes with a baseline scenario 
in which no state reopens. The results indicate that reopening in 
Florida leads to increased numbers of cases and deaths in Georgia 
and Alabama (fig. S9); this increase manifests with a 1-week lag.

DISCUSSION
Unlike a local model describing the transmission dynamics within a 
single, independent site, the metapopulation model developed here 
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allows study of the effect of asynchronous interventions across 
different locations. The transmission of SARS-CoV-2 in the United 
States is a complex dynamical process with rapid spatial progres-
sion modulated by local control efforts. In particular, interventions 
in one location affect transmission in other places by altering the 
external force of infection via importations. Without spatial struc-
ture, the inference system cannot properly capture the dynamical 
coupling of disease transmission across locations.

The counterfactual experiments presented here (Fig. 3) are based 
on idealized assumptions. In practice, initiating and implementing 
interventions earlier during an outbreak are complicated by factors 
such as general uncertainty, economic concerns, logistics, and the 
administrative decision process. Public compliance with social dis-
tancing rules may also lag due to suboptimal awareness of infection 
risk. We acknowledge that our counterfactual experiments have 
simplified these processes; however, we note that by the end of 
February 2020, a number of other countries, including South Korea 
and Italy, were already aggressively responding to the virus (26). 
Our findings indicate that had control measures and reductions of 
Re in the United States been implemented at a similar time, just 1 to 
2 weeks earlier, substantially fewer cases and deaths would have 
occurred before 3 May. Further, given that more effective control of 
COVID-19 has been maintained to date in countries such as South 
Korea, New Zealand, Vietnam, and Iceland, these cases and deaths 
could have been averted, not merely postponed.

Our model experiments also indicate that rapid detection of 
increasing case numbers and fast reimplementation of control 

measures are needed to control rebound outbreaks of COVID-19 
(Fig. 4). In these experiments, we assume the ability to reimplement 
a 25% weekly reduction of transmission rates nationwide. Because 
of general public fatigue toward NPIs and inconsistent compliance 
with control measures, this assumed reduction may be overly 
optimistic.

In this study, we have quantified the sensitivity of COVID-19 
cases and deaths to the timing of control measures. Our results 
demonstrate the marked impact that earlier interventions could 
have had on the COVID-19 pandemic in the United States. Looking 
forward, the findings underscore the need for continued vigilance 
when control measures are relaxed. We recognize the burdens 
imposed by protracted shutdowns; however, it is vital to balance the 
dual ambitions of renewing social and economic activity and avoid-
ing a recrudescence.

Countries such as South Korea, Vietnam, New Zealand, and 
Germany have shown that such a balance may be achievable; the 
strategies adopted in these countries could be used to guide policies 
in the United States and elsewhere. Specifically, broader testing and 
contact tracing capacity (27) are crucial to detect a rebound of 
COVID-19 before it is well underway (28). Susceptibility to SARS-
CoV-2 infection remains high throughout the United States (fig. 
S6) and can readily support an exponential growth of cases and 
deaths (29). In addition, potential short-lived immunity against 
SARS-CoV-2 could replenish the susceptible population (30). 
Given this situation, economic reopening and loosening of NPI 
measures would be more safely effected in localities in which Re is 
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Fig. 3. Counterfactual simulations with control interventions beginning in early March, 1 and 2 weeks earlier than implemented. Daily cases and deaths in the 
United States (A, B, E, and F) and the New York metropolitan area (C, D, G, and H) under early interventions are compared with the observations (orange crosses). The top and 
bottom rows present counterfactuals with interventions implemented on 8 and 1 March, respectively. The black lines and surrounding bands show the median estimate, 
interquartile, and 95% CIs.
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well below 1, daily confirmed cases are low, and abundant testing 
and contact tracing are available to aid isolation and quarantine 
measures.

Since the initial submission of this paper at the end of May, 
following a relaxation of intervention measures, the United States 
has experienced a massive resurgence of infections primarily driven 
by activity in southern states. In addition, some of the countries that 
managed to better limit COVID-19 transmission through July 2020 
also saw rebounds of infections in August and September. These 
experiences underscore the necessity of maintaining control mea-
sures until sound public health targets are achieved, so that gains in 
outbreak control are preserved and the cumulative case burden over 
the entire course of the pandemic is substantially lower than what 
would result with no NPIs in place.

MATERIALS AND METHODS
The metapopulation model
We use a metapopulation susceptible-exposed-infectious-recovered 
(SEIR) model to simulate the transmission of COVID-19 among 
3142 U.S. counties. In this model, we consider two types of move-
ment: daily work commuting and random movement. Information 
on county-to-county work commuting is publicly available from the 
U.S. Census Bureau (15). We further assume that the number of 

random visitors between two counties is proportional to the average 
number of commuters between them (13). As the population present 
in each county is different during daytime and nighttime, we model 
the transmission dynamics of COVID-19 separately for these two 
time periods.

We formulate the transmission as a discrete Markov process 
during both day and night times. Daytime transmission lasts for dt1 
days and the nighttime transmission dt2 days (dt1 + dt2 = 1). Here, 
we assume that daytime transmission lasts for 8 hours, and night-
time transmission lasts for 16 hours, i.e., dt1 = 1/3 day and dt2 = 2/3 
day. A model with daytime and nighttime transmission each lasting 
for 12 hours (dt1 = 1/2 day and dt2 = 1/2 day) yielded similar results 
(fig. S4). The transmission dynamics are depicted by eqs. S1 to 
S10 in the Supplementary Materials. In these equations, we define 
Sij, Eij, ​​I​ij​ r ​​, ​​I​ij​ u​​, and Nij as the susceptible, exposed, reported infected, 
unreported infected, and total population in the subpopulation 
commuting from county j to county i (i ← j). We also introduce the 
following model parameters:  is the transmission rate of reported 
infections,  is the relative transmissibility of unreported infections, 
Z is the average latency period (from infection to contagiousness), 
D is the average duration of contagiousness,  is the fraction of 
documented infections, and  is a multiplicative factor adjusting 
random movement. Note that, in this model, we assume a separate 
transmission rate, , for undocumented infections, many of whom 
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Fig. 4. Effects of response time after control measures are relaxed. We assume a control relaxation (a weekly 5% increase of the transmission rate) starting on 4 May 
in all U.S. counties. If the local weekly case number in a county increases for 2 or 3 consecutive weeks, a weekly 25% reduction of the transmission rate is imposed for that 
county. Daily cases and deaths in the United States for a response time of 2 weeks (A and C) and 3 weeks (B and D) are compared. The black lines and bands show the 
median estimate, interquartile, and 95% CIs.
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may experience few or no symptoms. Our previous study in China 
indicates that the undocumented infections are less contagious than 
documented infections (17). In addition, we assume a nationwide 
uniform ascertainment rate , given that per capita test numbers 
across different states are generally the same order of magnitude 
(fig. S7). We integrated eqs. S1 to S10 using a Poisson process to 
represent the stochasticity of the transmission process.

The transmission model generates daily confirmed cases and 
deaths for each county. To map infections to deaths, we used an 
age-stratified infection fatality rate (IFR) and computed the IFR for 
each county as a weighted average using demographic information 
on local age structure (31). To account for reporting delays, we 
mapped simulated documented infections to confirmed cases using 
a separate observational delay model. In this delay model, we ac-
count for the time interval between a person transitioning from 
latent to contagious (i.e., E → ​​I​i​ 

r​​) and observational confirmation of 
that individual infection. To estimate this delay period, Td, we 
examined a U.S. line list data record consisting of 2.67 million con-
firmed cases (32). Before 3 May 2020, the time-to-event distribution 
of the interval (in days) from symptom onset to case confirmation 
is well fit by a gamma distribution (a = 2.6, b = 4.9, mean=12.9 days; 
fig. S7). Consequently, we adopted a gamma distribution to model 
Td but added another 2.5 days to the mean periods (ab), as symp-
tom onset is estimated to lag the onset of contagiousness (17). 
Recent studies on viral dynamics also indicate that presymptomatic 
infection is common, and infected people can become contagious 
2 days before symptom onset (33). As a result, we adopted Td = 15.4 days 
(a = 2.6, b = 5.9) in this study. On the basis of daily incidence and 
death data in the United States, the national death curve has a 7-day 
lag compared with the incidence curve (fig. S7). As a result, we used 
a gamma distribution with a mean of 22.4 days (a = 2.6, b = 8.6) 
to represent the delay between a person transitioning from latent to 
contagious and death.

To represent variability in transmission rates through space and 
time, we introduced separate estimates for  in the 311 U.S. counties 
with 400 or more cumulative cases as of 3 May 2020. The remaining 
counties were classified into 16 groups (evenly distributed into a 
four-by-four grouping based on cumulative cases and population 
density), for which separate transmission rates were defined. In to-
tal, 327 transmission rates (i) were estimated in the transmission 
model. Using the next-generation matrix approach, we derived the 
local basic reproductive number, Rt = D[ + (1 − )]. The effec-
tive reproductive number in each metropolitan area is the popula-
tion weighted average of Re in constituent counties.

Data
We used the 2011–2015 5-Year American Commuting Survey (ACS) 
Commuting Flows data from the U.S. census survey to prescribe the inter-
county movement in the transmission model before 15 March 2020 
before broad control measures were announced. The county-to-
county commuting data are publicly available from the U.S. Census 
Bureau (15). We visualize the intercounty commuting in fig. S1. 
After 15 March, the census survey data are no longer representative 
due to changes of mobility behavior in response to control measures. 
Therefore, after 15 March 2020, we use estimates of the reduction of 
intercounty visitors to POI (e.g., restaurants, stores, etc.) to inform 
the decline of intercounty movement on a county-by-county basis 
(16). For instance, if the number of intercounty visitors was reduced 
by 30% in a county on a given day relative to baseline estimates on 

15 March 2020, then the size of subpopulations traveling to this county 
would be reduced by 30% accordingly. These real-time mobility data 
are available between 1 March 2020 and 7 June 2020. For dates beyond 
7 June 2020, we maintained the last known level of intercounty movement.

County-level daily confirmed cases and deaths were compiled by 
USAFacts (19). Daily cases and deaths in the six metropolitan areas 
are shown in fig. S1.

Model calibration
To derive an estimate of model parameters, we calibrated the trans-
mission model against county-level incidence data reported from 
21 February 2020 to 12 May 2020 and death data reported from 
21 February 2020 to 19 May 2020. Specifically, we estimated model 
parameters using a sequential data assimilation technique. The 
metapopulation model is a high-dimensional system with 60,232 
subpopulations. We therefore applied an efficient data assimilation 
algorithm—the EAKF (18), which is applicable to high-dimensional 
model structures, to infer model parameters. The EAKF has been 
successfully used to infer parameters for seasonal and pandemic 
influenza and other infectious diseases (34–40).

To improve the identifiability of this high-dimensional model, 
we further reduced the number of unknown parameters by fixing 
disease-related parameters (Z, D, and ) and the mobility factor (). 
These parameters were estimated using the posterior distributions 
inferred from case data through 13 March 2020 (14). Specifically, 
we randomly drew these parameters from the posterior ensemble 
members: Z = 3.59 (95% CI: 3.28 to 3.99), D = 3.56 (3.21 to 3.83), 
 = 0.64 (0.56 to 0.70), and  = 0.15 (0.12 to 0.17).

From 21 February 2020 to 3 May 2020, we performed EAKF 
inference each day using both case and death data to estimate the 
ascertainment rate  and transmission rates i. The prior for the 
ascertainment rate was drawn from a distribution with a median 
value  = 0.080 (95% CI: 0.069 to 0.093), estimated in a previous 
study. The prior transmission rates were scaled on the basis 
of  the  local population density using the following relation: 
​​​ i​​  = ​   0.8 × ​log​ 10​​(P ​D​ i​​) ____________  median(​log​ 10​​(PD ) )​ × ​​ 0​​.​ Here, PDi is the population density in 

county i, median(log10(PD)) is the median value of log-transformed 
population density among all counties, and  is the transmission 
rate estimated before 13 March 2020 (0 = 0.95, 95% CI: 0.84 to 
1.06). For  shared by multiple counties, population density PDi is 
averaged over those counties. To account for reporting delays of 
confirmed cases and deaths, at each daily model update, we integrated 
the model forward for 14 days using the prior model state and used 
incidence 10 days ahead and deaths 14 days ahead to constrain 
current model variables and parameters (i.e., the modes of gamma 
distributions for delays). Given the large number of parameters in 
the model, the inference system may not be fully identifiable. To 
alleviate this issue, we imposed a ±30% limit on the daily change of 
parameters  and i. This smoothing constraint is reasonable considering 
the continuity of human behavioral change. Sensitivity tests obtained 
similar results with ±25 and ±35% smoothing constraints. A full list 
of settings for model parameters and variables is presented in Table 2.

In total, we performed 20 independent inference runs. The in-
ference results reported in Fig. 1 were obtained from all posterior 
ensemble members. Implementation details and system initializa-
tion are reported in the next section.

We evaluate the goodness of fit at county level using percentage 
absolute error (PAE) and percentage error (PE). Specifically, we 
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define PAE = t∣fitt − obst∣/tobst and PE = t(fitt − obst)/tobst, 
where fitt is the mean posterior fitting to case or death number and 
obst is the reported case or death number on day t. The PAE and PE 
values for cases and deaths in 100 counties are reported in table S1.

System initialization
To initialize the model, we seeded exposed individuals (E) and 
unreported infections (Iu) in counties with at least one confirmed 
case before 14 March 2020. Unlike the situation in China, where the 
outbreak originated from a single city, importation to multiple loca-
tions in the United States likely initiated community transmission. 
To reflect this potential ongoing community transmission before 
the reporting of the first local infection, for each county with con-
firmed cases before 14 March, we randomly drew E and Iu from 
uniform distributions [0,20C] and [0,18C] 9 days before the report-
ing date (T0) of the first case. Here, C is the total number of reported 
cases between day T0 and T0 + 4.

The rationale for this seeding strategy is as follows. If an average 
reporting delay of 9 days is assumed, then we can estimate Ir on day 
T0 − 9 as ​​C _ 5 ​ × D​, where ​​C _ 5 ​​ is the average number of daily cases during 
the first 5 days with reported cases (T0 to T0 + 4). If we use the upper 
bound of 5 days for D, then Ir is estimated as C, which is also an 
upper bound. We assume the mean Iu on day T0 − 9 is 9C, implying 
a reporting rate of 1/10 = 10%. Drawing Iu from [0,18C] leads to a 
broader prior range of the reporting rate. As both Ir and Iu were 
evolved from the exposed population E, we draw E from the range 
[0,20C]. This crude calculation provides a seeding range for U.S. 
counties. During inference, this seeding can be adjusted up or down 
by the filter. The posterior model fittings capture observed out-
comes well (table S1).

Metropolitan areas
In this study, we report the transmission dynamics in six metropolitan 
areas with dense populations and abundant observations: New York, 

New Orleans, Los Angeles, Chicago, Boston, and Miami. The coun-
ties in these metropolitan areas are the following: 1)New York: 
Kings County NY, Queens County NY, New York County NY, 
Bronx County NY, Richmond County NY, Westchester County 
NY, Bergen County NJ, Hudson County NJ, Passaic County NJ, 
Putnam County NY, and Rockland County NY 2)New Orleans: 
Jefferson Parish LA, Orleans Parish LA, St. John the Baptist Parish 
LA, and St. Tammany Parish LA 3)Los Angeles: Los Angeles County 
CA and Orange County CA 4)Chicago: Cook County IL, DuPage 
County IL, Kane County IL, McHenry County IL, and Will County 
IL 5)Boston: Norfolk County MA, Plymouth County MA, and 
Suffolk County MA 6)Miami: Miami-Dade County FL, Broward 
County FL, and Palm Beach County FL.

Seroprevalence surveys
The seroprevalence of antibodies to SARS-CoV-2 in several loca-
tions in the United States is available from the U.S. Centers for 
Disease Control and Prevention website (24, 25). Here, we used 
seroprevalence data available for dates before 3 May 2020. Those 
sites are as follows: (i) NYC: Manhattan, Bronx, Queens, Kings, and 
Nassau. (ii) WA: King, Snohomish, Pierce, Kitsap, and Grays Harbor. 
(iii) LA: state wide. (iv) SFL (south Florida): Miami-Dade, Broward, 
Palm Beach, and Martin. (v) PA: Bucks, Chester, Cumberland, 
Delaware, Lancaster, Montgomery, and Philadelphia. (vi) MO: 
statewide. (vii) SF (San Francisco): Martin, Contra Costa, Alameda, 
Santa Clara, San Mateo, and San Francisco. (viii) UT: statewide. (ix) 
CT: statewide.

Further validation of inference results
We compared our inferred Rt values at the state level with estimated 
Rt values reported at https://rt.live/. The Pearson correlation coeffi-
cient is 0.76, indicating a general agreement in trend. A recent study 
estimated that 108,689 (95% CI: 1023 to 14,182,310) infections 
occurred in the United States before 12 March 2020 (41). Our infer-
ence estimated 236,207 (95% CI: 193,855 to 298,937) total infec-
tions in the United States by that date, which is within the CI and in 
line with the magnitude of the best estimate from that study.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/sciadv.abd6370/DC1

View/request a protocol for this paper from Bio-protocol.
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