
iCellSpeed: Increasing Cellular Data Speed
with Device-Assisted Cell Selection

Haotian Deng
Purdue University

Qianru Li
UCLA

Jingqi Huang
Purdue University

Chunyi Peng
Purdue University

ABSTRACT

In this paper, we propose iCellSpeed, an on-device solution to in-

crease data access speed by substantiating unrealized performance

potentials. We find that performance potentials are missed in to-

day’s mobile networks, as the data speed a user device gets is much

lower than what the device could get. The issue is rooted in the

current cell selection practice, which misses good candidate cells

that offer faster access speed, thus under-utilizing the available

capabilities in mobile networks. We design iCellSpeed to facilitate

network-controlled cell selection with proactive device-side assis-

tance towards more desirable cells. Our evaluation over AT&T and

Verizon confirms its effectiveness. iCellSpeed increases data access

speed by more than 10 Mbps at 79% of test locations (> 25Mbps at

29% of locations, up to 80.6 Mbps). It doubles access speed at 62.5%

of locations with the gain up to 28.4x. Datasets are available at [7].

CCS CONCEPTS

• Networks→Mobile networks; Network performance eval-

uation; Network control algorithms.

KEYWORDS

4.5G, Downlink Speed, Cell Selection, Device-Assisted, iCellSpeed

ACM Reference Format:

Haotian Deng, Qianru Li, Jingqi Huang, and Chunyi Peng. 2020. iCellSpeed:

Increasing Cellular Data Speed with Device-Assisted Cell Selection. In The

26th Annual International Conference on Mobile Computing and Networking

(MobiCom ’20), September 21ś25, 2020, London, United Kingdom. ACM, New

York, NY, USA, 13 pages. https://doi.org/10.1145/3372224.3419201

1 INTRODUCTION

Increasing user access speed has been a main driver for mobile

network evolution. Operators expect to deliver faster broadband ex-

perience through continuous infrastructure upgrade. They acquire

wider radio spectrum, deploy denser cells, and migrate to advanced

technologies (say, from 4G LTE to 4.5G LTE-Advanced to 5G New

Radio). They enhance raw system capabilities to offer users higher

speed (say, from tens of Mbps to a few Gbps).

In this work, we argue that it is equally important to make full

use of already available capacities, rather than deploy new ones, to

boost data access performance to user devices. Without exploiting

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MobiCom ’20, September 21ś25, 2020, London, United Kingdom

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7085-1/20/09. . . $15.00
https://doi.org/10.1145/3372224.3419201

full performance potentials, we end up with excessive infrastruc-

ture waste, which further drives the operators for infrastructure

upgrade even more aggressively, thus being trapped in a vicious

cycle. Specifically, the data performance would stay poor if those

cells with low access speed are selected to serve a device, despite

many candidate cells which are able to offer faster speed. Eventu-

ally, those cells that offer faster access are not chosen, thus being

wasted. The overall system utilization remains low.

Unfortunately, we discover the above is not rare in reality. We

observe that significant performance gaps emerge in various set-

tings between what a device could get and what it actually gets. For

example, we see that a mobile phone receives 4.6 Mbps on average

by default while 49.3 Mbps is available and 907% speed potential is

missed (Figure 3a); We observe significant performance potentials

missed in our measurement study of all four top-tier US operators

(AT&T, Verizon, T-Mobile and Sprint)1 (Figure 11, ğ5.2). We further

dive into why such low-utilization cases arise. It turns out that, the

state-of-the-practice cell selection2 is held accountable. Without

proper selection of those cells that yield higher access speed, the

current scheme under-utilizes the available infrastructure resources

and misses fast wireless access to user devices.

Fundamentally, the problem is rooted in the network-centric cell

selection scheme, which is designed for seamless connectivity but

not for superior data performance. Note that, dense cell deployment

is the norm, rather than exception, in most US regions. A user device

can be served by multiple candidate cells (up to tens of cells) in

principle. Despite abundant choices, few are considered in practice,

and the poor ones are further chosen not without technical rationale.

The practice favors those cells with good radio signal, but ignores

other non-radio factors (e.g., channel width) that may have bigger

impact on user-perceived data performance. The handoff procedure

states that, as long as the radio quality is not too bad, current

cell would remain effective despite bad data performance. It thus

discourages leaving the current cell. When searching for new cells,

the procedure stops once a candidate cell with acceptable radio

quality is found. It thus often stops at a local sub-optimum out of a

subset of candidates constrained by the current cell. Consequently,

it misses the cells with the best performance out of all choices.

In this work, we propose iCellSpeed to address the identified un-

derutilization issue. iCellSpeed has three design requirements. First,

it seeks to reach the performance-oriented, łglobalž optimum from

all candidates, rather than radio-based, łlocalž optimum. Second, it

is compatible with the 3GPP standards without any infrastructure

change. Third, iCellSpeed is designed as an on-device software

solution to boosting mobile data access speed for the device. In

brief, the design of iCellSpeed transforms a mobile device from a

telecom-based dumb, passive terminal to an intelligent, proactive

1T-Mobile and Sprint run separately during this study despite their pending merger.
2 It is called handoff in 3GPP. We focus on how to select serving cells in this paper.
We use both terms interchangeably.

MobiCom ’20, September 21–25, 2020, London, United Kingdom Haotian Deng, Qianru Li, Jingqi Huang, and Chunyi Peng

machine. Instead of passively following the decision made by the

network, the device learns what is best for itself and supplies its

own favored choices for the final selection made by the network.

There are twomain technical challenges. First, device capabilities

at the software space are quite limited. Even though the device

learns the desired choice, it cannot directly select it. Second, it must

work with the current selection mechanism that makes the final

decision at the infrastructure side.

To tackle both challenges, iCellSpeed takes an approach of the

łdevice-assisted, infrastructure-decidedž selection (ğ4). The device

takes runtime measurements and maintains historical performance

profile to challenge whether it should accept the default decision

made by the network; It performs online learning to infer missed

potentials and determines its corresponding action (device-side

customization). It further monitors the outcome to ensure better

performance than the default choice.

We implement iCellSpeed on commodity smartphones, and con-

firm its effectiveness with large speed gains in both AT&T and

Verizon. It increases access speed by at least 10 Mbps at 79.2% of

locations out of 50 runs per location. It more than doubles the

speed at 62.5% of locations, and achieves the gain up to 8.11x at

one location (up to 28.4x in a single run). We want to highlight

that iCellSpeed has one limitation that it would disrupt ongoing

traffic for about 2 seconds on the application layer. As a result, it

may not benefit mice traffic despite its improvement for bandwidth-

intensive heavy traffic flows like video streaming, conferencing and

file downloading. This limitation is rooted in its implementation

constraint, as the device is incapable of taking action swiftly in the

software space without corresponding support from the chipset. We

note that iCellSpeed is designed to exploit under-utilized potentials,

not to increase raw system potentials. There is no speed benefit on

the network side in case full potentials have been used up by other

devices. In a word, iCellSpeed is not perfect but offers a promising

on-device solution to increase data speed.

In summary, iCellSpeed offers arguably the first on-device, pure

software solution that guides infrastructure-centric cell selection

for higher access speed. We make three main contributions:
(1) We conduct extensive measurements to identify and quan-

tify the missed performance potentials in today’s mobile

networks (Findings F1-F5 in ğ3.1, ğ5.2).
(2) We unveil the limitations of current cell selection for missed

potentials (F6 - F12 in ğ3.2).
(3) We design, implement, and evaluate iCellSpeed on commod-

ity smartphones with instant speed gains (ğ4 and ğ5).

2 RADIO ACCESS PRIMER

We introduce necessary background on radio access in mobile net-

works, as illustrated in Figure 1. We focus on 4.5G and beyond (e.g.,

4.5G LTE-Advanced and 4.75G LTE-Advanced Pro), because all four

major US operators have advanced to 4.5G and beyond.

Cells and frequency channels/carriers. Amobile device’s radio

access is provided by one or more serving cells. A cell is a logical

unit that runs over a contiguous spectrum frequency block (referred

to a frequency channel or a component carrier) to serve devices

within its vicinity ranging from tens of meters to several kilometers.

Each channel has fixed operational frequency and bandwidth (say,

1.4, 3, 5, 10, 15 and 20 MHz, Table 1), as regulated by 3GPP [11].

…

frequency carriers

C1

Cx

cell

(logic unit)

…

di
re

ct
io

n
 i

…

PCell

SCell

PCell: primary serving cell
SCell: secondary serving cell
CCell: candidate cell (dotted line)

PCell SCell PCell SCell1 SCell2

aggregated carriers cell tower

Figure 1: Radio access in 4.5G and beyond.

Send configurations from the old serving cell to the device
Measure serving/candidate cells as configured
Report radio measurement results once triggered
Decide the target serving one and switch if different
Note: - repeated for selecting PCell, Cell or both

Existing procedure

2

3

1

4

1

4

3

2

1

4

3

1 4

Figure 2: State-of-the-practice cell selection procedure.
Band Downlink Width Channel No. Bandwidths (MHz)

2 1930 ś 1990 60 MHz 600 ś 1199 1.4, 3, 5, 10, 15, 20

4 2110 ś 2155 45 MHz 1950 ś 2399 1.4, 3, 5, 10, 15, 20

5 869 ś894 25 MHz 2400 ś 2649 1.4, 3, 5, 10

12 728 ś 746 18 MHz 5010 ś 5179 1.4, 3, 5, 10

30 2350 ś 2360 10 MHz 9770 ś 9869 5, 10

66∗ 2110 ś 2200 90 MHz 66436 ś 67335 1.4, 3, 5, 10, 15, 20

Table 1: Examples of bands and downlink channels [11, 23].
∗ band 66 is a superset of band 4.

It is uniquely identified by the channel number, say, EARFCN for

4G/4.5G and beyond. All channels reside within multiple licensed

bands (e.g., bands 2,4,5,12,29,30,66 for AT&T, bands 2,4,5,13,66 for

Verizon [23]). A cell is operated at a cell tower, which is a physical

entity deployed for a small geographic area, accommodating a num-

ber of logical cells via directional antennas and multiple channels.

Channels are assigned during cell deployment phase.

Carrier aggregation in 4.5G andbeyond. Intuitively, larger band-

width (wider spectrum) promises higher data speed. A key advance

from 4G to 4.5G and beyond is carrier aggregation (CA), which

allows more than one serving cells to offer simultaneous radio

access, thus increasing bandwidth on an aggregated carrier (over

multiple individual carriers with each being used by a cell) . The

set of serving cells consists of a primary cell (PCell) and several

secondary cells (SCells). PCell is mandatory and needed for data

transmission and connection management. SCells are optional and

used for data transmission only. In principle, CA supports up to

100 MHz by aggregating maximum five 20MHz carriers [9]. In our

study, we see at most two SCells in all four major US operators.

Selection of serving cell(s). Serving cells are selected from a num-

ber of candidate cells (dash line in Figure 1). When the device is

active with ongoing traffic, cell selection is realized by the stan-

dard procedure handoff [12]. Figure 2 depicts its operation flow

in four steps: 1 configuration, 2 measurement, 3 reporting, and

4 decision and execution. The first step of configuration defines

criteria and parameters to trigger, decide and execute a handoff,

including whether to invoke measurement, what/when to measure,

whether/what/when to report and how to decide the next cell, and

so on. The followup steps (2 - 4) are invoked when the conditions

pre-configured by the current serving cell (PCell) are met at run-

time. With carrier aggregation, cell selection chooses PCell first.

PCell then determines SCells out of available candidates.

3 MISSED PERFORMANCE POTENTIALS

We use real-world instances to reveal missed potentials for user

access to today’s mobile networks, and analyze their root causes.

iCellSpeed: Increasing Cellular Data Speed
with Device-Assisted Cell Selection MobiCom ’20, September 21–25, 2020, London, United Kingdom

0 20 40 60 80 100 120
0

20

40

60

80

100

Time (second)

T
h
p
u
t
(M

b
p
s) A (default) B (customized)

(a) One instance (4.6 Mbps vs. 49.3 Mbps)

0 10 20 30 40
0

20

40

60

80

100

Experiment run

T
h
p
u
t
(M

b
p
s) A (default) B (customized)

(b) 40 run pairs

∆
(50)

Γ
(50)

min 29.3 351%

25th 35.9 459%

med 42.2 600%

75th 47.3 837%

max 60.6 1506%

(c) Speed gains

Main sets of serving cells (%)

A S19: {2425 (363) - none - none} 100%

B S1: {5145 (16) - 850 (16) - none} 47.3%

S3: {850 (16) - 5145 (16) - none} 39.2%

S4: {2000(103) - 5145(16) - 2175(103)} 10.4%

others 3.1%

(d) Serving cell sets in use. Each set is repre-

sented as {PCell - SCell1 - SCell2}.

Figure 3: An motivating example at one location L1 (AT&T).

3.1 An Motivating Example

We first use an example to illustrate two new findings:

F1. In today’s mobile networks, the device is not always served by

the cells that can offer the highest access speed (Figure 3a);

F2. Higher speed can be achieved when the device takes extra actions

without changes to the current network infrastructure (Figure 3a).

Figure 3a plots the downlink throughput in two paired runs,

where the phone keeps on downloading the same large file (500MB)

at a fixed location using AT&T. The first run (A) is performed under

the default network operations; It starts after the user arrives at

the test location (L1 in Figure 10) along a fixed walking route. The

second run (B) is performed at the same spot right after run A,

while taking the device-side action (disabling band 5). In this case,

the phone obtains 4.6 Mbps on average by default (A), while 49.3

Mbps is available (B). It is clear that the default network operations

fail to select those serving cells that are used in run B and available

in run A, thus miss higher speed (907% miss) (A).

We repeat the above experiment with more runs, and observe

the same finding. Specifically, we repeat the paired runs at different

hours of the day (from 9AM to 22 PM) and at different days of

two weeks (in Dec 2019 and Feb 2020). Each run (B) with device

customization (blocking band 5) immediately follows a default run

(A). Figure 3b compares downlink throughput (0, 25, 50, 75 and 100

percentile) in 40 test pairs. We treat the gap in each pair to be the

what-if speed gain if B’s choice were selected to serve the device

in reality. This is a reasonable estimate because the achievable

potential is no smaller than the achieved one and we run what-if

experiments almost simultaneously (under the same condition). We

make two more observations.

F3. The significant gaps persistently occur; Poor performance in re-

ality can be largely avoided through device-side action (Figure 3b, 3c);

F4. Persistent gaps imply that they are unlikely caused by transient

factors, say, dynamic loads and time-varying radio signal quality.

Instead, they are due to the poor cell selection in the current network

operations (Figure 3d, ğ3.2).

In all our tests, device customization (blocking band 5) brings

significant speed gains. By default, the phone constantly gets poor

performance (medium speed < 8.5 Mbps, maximum <12.4Mbps).

To quantify speed gain, we define two metrics,

∆
(ρ)

k
= ψ

(ρ)

k,B
−ψ

(ρ)

k,A
, Γ

(ρ)

k
= (ψ

(ρ)

k,B
−ψ

(ρ)

k,A
)/ψ

(ρ)

k,A
. (1)

ρ is the percentile from 0 (min) to 100 (max).ψ
(ρ)

k,A
andψ

(ρ)

k,B
are the

ρ-percentile performance (here, throughput) in the default (A) and

customized (B) run at the k-th pair. At this location, we observe

that the median speed increases by at least 29.3 Mbps and up to

60.6 Mbps. In more than 50% tests, the median rate grows by at

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0

20

40

60

80

100

T
h
p
u
t(
M
b
p
s)

30
20
10

1
9
.
4 0
.
1
7

2
2
.
8

0
.
0
1

0
.
2
2

2
7
.
7 1
0
.
7

1
.
2
2

0
.
3
7

0
.
8

0
.
2
8

0
.
2
9

0
.
2
5

0
.
5
8

0
.
2
2

0
.
2
5

0
.
1
8

0
.
3
6

1
3
.
4

R
at
io
(%

)

Figure 4: Performance and occurrence frequency of main serving

cell sets at L1 (AT&T) in a 3-month reality check.

least 42.2 Mbps. In terms of Γ(50), the simple device customization

scheme brings up to 15-fold gain with the minimal growth of 351%.

Data speed fluctuates over a small window of time (Figure 3a

and 3b). Such fluctuations are partly induced by dynamic resource

allocation under changing traffic load and partly caused by varying

radio channels. These transient factors contribute to speed variance

in each run, but not the significant gaps observed in all tests. Instead,

they are primarily attributed to the quality of the serving cells.

We examine the set of serving cells in these 40 tests (Figure 3d).

In the default runs (A), only one serving cell is used (the potential of

CA is wasted). Each cell is represented by its channel number(cell

ID) here, e.g. 2425(363). Channel 2425 is centered at 871.5 MHz on

band 5, with 5MHz channel bandwidth. In the device-customized

runs (B), this poorly-performed cell is filtered out by disabling band

5 at the device. Data speed rises with distinct serving cells. We

see that CA takes effect and more serving cells are being used. It

leads to three main choices and the first two use identical cells.

The occurrence frequency is computed in terms of the observation

duration (but not the number of runs), because more than one

serving cell sets are used in some runs.

The total channel bandwidth does matter. All these new sets

have larger aggregated bandwidth (25/25/20 MHz) than the default

one (5MHz). We will confirm the impact of channel bandwidth

later in ğ3.2. We would like to highlight that the speed variances in

the default runs are relatively small. This implies that such poor

performance is primarily determined by the selected serving cell(s),

despite small variations due to transient factors.

F5. The above case is not rare. Significant potential miss is fre-

quently observed among all four operators (ğ5.2).

We conduct a measurement study across a small city and several

regions of three other cities in the US. We find that significant

potential miss happens frequently in all four US carriers (ğ5.2).

Missed potentials are caused by the poorly-performed cell selection.

3.2 Why Are Significant Potentials Missed?

We next examine why. It turns out that

iCellSpeed: Increasing Cellular Data Speed
with Device-Assisted Cell Selection MobiCom ’20, September 21–25, 2020, London, United Kingdom

inter-measurement is invoked. We want to point out that the cur-

rent serving cell is unaware of this biased choice at runtime when it

decides the next target cell out of a small subset, not out of a whole

set of all candidate cells. This way, there is no escape to better cells

once the current cell gets stuck at a local stable choice. Multiple

stable choices correspond to multiple winners at L1.

We would like to emphasize that we do not intend to blame

the selection practice. It is indeed effective and efficient to ensure

seamless radio coverage while retaining reasonable overhead (e.g.,

avoiding ping-pong effects). It switches to new cells only when the

current ones are about to fail. At the early phase when full coverage

was still a big concern, good radio was highly correlated to good

performance. However, good radio , good performance in today’s

mobile networks with abundant choices at place. We argue that it

is right time to revisit cell selection and solve its underutilization

problem that ends with unnecessarily poor performance.

4 ICELLSPEED DESIGN

We propose iCellSpeed to increase data speed by tackling the un-

derutilization problem that stems from the existing cell selection

scheme. iCellSpeed seeks to achieve higher speed gains by select-

ing better cells that better utilize available capabilities rather than

through enhancing raw capabilities. The ideal and straightforward

solution is to directly implement a clean-state selection scheme for

performance optimality out of all choices (discussed in ğ8). How-

ever, it is not practical (at least in the near future) because of big

changes to network infrastructure. We thus propose iCellSpeed,

a device-side solution which exploits software power available at

commodity smartphones and works in concert with the current

cell selection practice. It is compatible with standard mechanisms

and operational network infrastructure, with no need to change the

network side. If successful, iCellSpeed promises to bring immediate

benefits for the device and by the device.

4.1 Overview of iCellSpeed

Figure 7 depicts iCellSpeed’s main components and operation flows.

The center is to use performance profiling as the main instrument

and enable proactive device-customization atop of the existing

network-centric cell selection procedure (Figure 2). Profiling lever-

ages historical measurements to accumulate global knowledge and

thus offers the ability to challenge and correct the improper de-

cision out of partial information at runtime. The device switches

its role from a dumb, reactive terminal to an intelligent, proactive

one. Instead of simply following the commands from the network

and executing rigid reactions pre-implemented in the chipset, the

device proactively overrides the default reactions to influence the

consequence of cell selection. But the serving cell is still decided

by the network eventually.

Two core enabling modules are iCustomize (2a) and iProfile (0

and 2c). There are two main operation flows.

1. Device-side customization at runtime. iCellSpeed makes

one change at the device side, incorporating with the existing hand-

off procedure (1 ś 4 in Figure 2). It adds the iCustomize step to

break a direct chain between measurement (2) and reporting (3)

which are configured by the network and executed at the device.

Instead of passively following the commands from the network,

iCellSpeed
iConfig

 iCustomize

Customization

Yes

0

2aNo

 iProfile:
 Offline
 Online

next round

1

4*

3

1

3*

2

3

3*

default

controlled

4*

4

1* 2*1* next round

- Same mechanism+same input (default)

Same mechanism+new input

New in iCellSpeed

-*

0

-

2b

2c

Figure 7: iCellSpeed’s overview and main operation flows.

the device is empowered to question and challenge the default se-

lection operations, because the device stays alert of the identified

limitations in ğ3.2 and the resulted potential miss. Intuitively, iCus-

tomize is to compare real-time performance and current choice

with the profiles learned in advance; It then determines whether

better cells are missed at runtime, and which action from device

side is feasible to prompt better cells to be selected. If iCustomize

confirms no need of further device actions, no change will be made

and the default procedure proceeds (see the branch 2 - 2a -No- 3 -

4). Otherwise, it executes device-side customization to override

the default reaction and thus influence the selected cells (see the

branch 2 - 2a -Yes- 2b - 3* - 4*). Note that iCellSpeed does not alter

the existing mechanism or network-side functions (say, 1 , 3 and

4), which are also beyond control. Instead, it leverages just device

power to change the input of these functions so as to indirectly

affect the consequence of selected cells, towards a more desirable

choice. iCellSpeed uses more intelligent device assistance to comply

and complement the cell selection practice, while improving the

chance of selecting cells with better performance.

2. Device-side profiling at runtime and offline. iProfile is to

leverage measurements in the past and accumulate global knowl-

edge regarding performance at every place so as to combat the

limitations of local views used for cell selection at runtime. It gath-

ers what cells are available, how they are selected, and how they

perform in reality. Then it aggregates observed samples into the pro-

files regarding availability of choices (cell deployment), frequency

of choices (cell selection), and performance of choices. It supports

both offline and online modes. The former creates initial profiles

through offline training or crowdsourced measurements. The latter

updates the profiles with measurements over time.

4.2 iCustomize

It is not easy to decide a device-side action because its impact is

not deterministic. As illustrated in Figure 7, the final decision is

still made by the network. Take the example at L1 (Figure 3d) to

illustrate control uncertainty. Blocking band 5 results in three pos-

sible consequences, not a single deterministic one. Fortunately, all

three new choices are positive, offering much higher speed than

the default one (which is the worst set observed at that location).

However, it is not always true. At other places, multiple new pos-

sibilities can be positive and negative. The key of iCustomize is

to predict both gains and risks (negative gains) and tame control

uncertainty to determine the proper device-side action.

Specifically, iCustomize addresses three technical questions:

Q1. Should the device accept the default cell set?

Q2. If no, what action should be taken?

Q3. Should the device accept the previous action?

A naive idea. The straightforward solution is to predict the gain

MobiCom ’20, September 21–25, 2020, London, United Kingdom Haotian Deng, Qianru Li, Jingqi Huang, and Chunyi Peng

associated with each possible action and then maximize the predi-

cated gain to determine whether and how to take actions (Q1 and

Q2). It can be formulated into a classic Expectation-Maximization

(EM) problem [14]. Let us assume that the iProfile module has suf-

ficient samples in the past and thus gathers reliable knowledge

for a given location. Let S be all possible choices at the given lo-

cation, i.e. S = {Su |u = 1, 2, · · · ,U }. XSu is a random variable

for data performance of cell set Su . The resulted performance

upon action π is a weighted sum of multiple random variables

as Xπ =
∑U
u=1 P(Su |π) · XSu , where P(Su |π) is the likelihood of

selecting cell set Su upon action π . Consequently, the decision is

made by maximizing performance expectation,

π∗ = argmax
π ∈Π

E[Xπ]. (2)

No action is taken when E[Xπ∗] is no better than the default one.

Otherwise, π∗ is taken. Q3 is used to address control uncertainty

in case the new action brings a negative gain. To answer it, it

monitors performance under action π∗. If the resulted new cell

set is worse than the default one at the new round, the previous

action is withdrawn and excluded from the action set Π. At next

round, a new action is derived out of the updated action set the Π

to maximize Eq. (2). Otherwise, it stops.

Our practical solution. However, the storage overhead of the

above computation is too huge. We thus work on a practical solu-

tion that approximately predicts the gain and looks for a reasonably

good action (customization) so that we probably boost data speed

in an efficient way. This solution tradeoff is feasible according to

the famous PAC (probably approximately correct) learning the-

ory [?]. In our context, we enable a fuzzy logic that incorporates

non-deterministic profile models and deterministic domain knowl-

edge. Note the consequence of our customization is approximately,

not precisely accurate. Once the previous action is incorrect, we

take just-in-time reinforcement learning and correct our previous

łmistakež with up-to-date feedback.

Figure 8 shows the core logic of iCustomize. At the first level,

it goes to NO-branch when no device customization is performed

previously; Otherwise, it goes to the YES-branch at the next round

to check whether the speed is worse; If no, no more action is needed.

Otherwise, it excludes the previously-used actions and runs iCus-

tomize* (the NO-branch).

iCustomize* uses a two-level decision subtree. To decide whether

to challenge the default choice, it takes the following factors into

account: real-time performance of the current cell set, historical

performance of the current cell set, and potential gains of device-

side actions. On the first level (speed-OK trigger), we examine if

the current speed is satisfactory. We devise intuitive rules such

as current performance no worse than a portion of the best (e.g.,

above 70% of the 50-percentile performance of the best set), or

current performance above a certain percentile (e.g., the midpoint

of the performance range. Note that the used information (e.g.,

the best/worst performance) can be easily learned by iProfile. We

test with several rules in our evaluation (ğ5.3) and shows that

these intuitive rules work robustly to differentiate good runs from

runs with missed potentials. The reason is simple. At places with

significant performance potential miss (see the example of S19 at

L1 in Figure 4), there exists huge room to design speed-OK rules

Stop

iCustomize

= Yes?

Speed OK?

No Yes

YesNo

Poor Sets?

Lower

Speed?

Stop

No Yes

iCustomize*

excluding previous action

No

 Gain prediction + decision

 (Y/N & How)

Yes

Conservative Aggressive

iCustomize*

Figure 8: The core logic of iCustomize.

to differentiate good and poor performance; At places with small

or overlapping performance gaps, low accuracy is tolerable since

the likelihood to realize missed potential is low as well. As a result,

intuitive rules suffice in iCellSpeed. On the next level, we check

if the current cell set is poor based on iProfile (§ 4.3). It decides

whether iCellSpeed takes aggressive or conservative actions.

We next predict the gain and make a decision. We exploit domain

knowledge to approximate Eq. (2) and simplify gain prediction.

We find that device-side actions are very limited. The ideal cus-

tomization is to allow the device to directly lock the target serving

cell(s) which offers desirable performance. However, such explicit

cell locking is not available at almost all commodity phones (the ex-

ceptions [8?] cannot work); Software interfaces such as API [5], AT

commands [1] and secret codes [6] can not lock cells. Constrained

by available software power, three actions are considered:

A1: lock one frequency band;

A2: block one or multiple bands;

A3: reset, particularly via turning off and on mobile data (or the

flight mode);

A1 is one special case of A2, when blocking all the other possible

bands, except the one to be locked. A1 and A2 will rule out all

the cells over certain bands. A3 is to give equal chances to all

candidate cells by clearing the impact of the current choice. We

note that all these actions have one downside in practice. Because

they change frequency bands/channels or reset radio access, these

device-side actions require to disrupt radio resource control (RRC)

and thus suspend data connection for a while. We evaluate the

impact of the disruption time in ğ5.3. It is about two seconds at

the application (APP) layer and several hundreds of milliseconds at

RRC. Note that the disruption at RRC is mandatory but the extra

disruption at the APP layer is avoidable with better mobile OS

support. The disruption time is tolerable for elephant traffic flows

which last long and require huge throughput. We thus consider

bulk file downloading in this work and leave its extension to other

applications as future work.

We exploit the above knowledge to estimate P(Su |π). For A1/A2,

P(Su |π) is zero as long as one cell in set Su is explicitly ruled out.

We further estimate P(Su |π) in proportion to P(Su) only for those

eligible choices allowed by action π . A winner in the default runs

is likely a winner under action π , because of the same network

selection function; In reality, they often have relatively stronger

radio quality. For A3, it is to reset radio access and the likelihood

is the same as P(Su).

Given P(Su |π), we look for the action that maximize E[Xπ]. We

start with blocking one band.We iteratively expand the actions to be

considered. We stop when there is no more chance to find an action

with gain larger than the current maximum. One action’s gain is

iCellSpeed: Increasing Cellular Data Speed
with Device-Assisted Cell Selection MobiCom ’20, September 21–25, 2020, London, United Kingdom

clustering

ρ1

Round Round

ρω

ψ(ρW)

ρW

(0) (100)

ρ1 ρω ρWNew

samples

nk,1

nk,ω

nk,W

+ N [k]=

k − 1 k

ψ(ρW)

ψ(ρ1)

ψ(ρ1)

ψ(ρω)

{ΩSu, Su ∈ S}

ψ(ρω)

exponential smoothing

Poor

Worst

Good

best
N [k − 1] λk · nk

Figure 9: Profiles and online performance profiling.

estimated as the weighted sum of all eligible choices. We also notice

that a big gain change may occur when one action is linked with a

mixture of good and poor sets; So we continue only when the gain

of the good choice is larger than the current maximum. Regarding

performance, we use runtime measurement for the current choice

and profiles for other choices. There is a slight difference when

a good set is in use. Its runtime performance does not match its

profile. We need to remove all high-rank actions which allow the

current set and re-calculate the action with the maximal gain based

on runtime performance measurement. If blocking any band(s) does

not bring performance gain and current performance is way below

the expectation, we can consider A3. Otherwise, no action is feasible.

Its actual calculation is simple because we see that there are only

4-5 popular sets in most cases; Blocking one band is enough at most

cases; We block at most 2 bands in this study.

4.3 iProfile

The iProfile module maintains and updates three types of profiles

to support device-assisted cell selection.

(I) Availability of choices. This records working cell sets at each

location. This provides global knowledge regarding cell deploy-

ment which remains stable for a long period (months or years).

Its update is straightforward. Whenever a new serving cell set or

cell is observed, it is inserted into its set of choices at the given

location. This helps us to efficiently profile abundant choices in

reality. Even given measurements holes at some places, we can infer

these choices based on records in its close vicinity.

(II) Frequency of choices. This records the consequence of cell

selection in reality. P(Su) is the frequency of choice Su in the default

cell selection. We record the count of instances over time. It is

updated as follows. The sum of P(Su) remains invariant (here,
∑
=

1) but its individual value changes accordingly as the count of the

observed choice (say, Sv) increases. When one specific action π is

taken, we take a similar way to update its occurrence frequency.

(III) Performance of choices. This accumulates global knowledge

on performance of choices at this location. Rather than storing

a huge amount of raw samples over time for XSu , we record its

performance statistics over time, which is represented by multi-

ple percentiles, Ω = [ψ (ρ1),ψ (ρ2), · · · ,ψ (ρW)]. W and ρω (ω =

1, 2, · · · ,W) are constants configured at the start. They are ascend-

ing percentiles such that (min) 0 = ρ1 < · · · < ρω < ρω+1 < · · · <

ρW = 100 (max). Offline profiling is simple. Given N [0] samples for

one serving cell set Su at location Li , we calculate its performance

statistical vector.

Online profiling is illustrated in Figure 9. We develop a fast

algorithm to update Ω[k], given the previous profile Ω[k − 1] and

nk performance samples measured at round k . We update the total

amount of effective samples as N [k] = ⌈N [k−1]+λk ·nk ⌉. Here, λk
is a tuning parameter to pace the rate of forgetting historical records.

It is used to balance sample staleness and approximation accuracy.

Without loss of generality, we assume that new samples are sorted in

ascending order; Namely,ϕk,1 ≤ ϕk,2 ≤ . . . ≤ ϕk,nk . We iteratively

update ψ (ρω)[k] when ω increases from 1 to W . Clearly, when

ω = 1,W , we update the minimum and maximum as follows:

ψ (ρ1)[k] = min(ψ (ρ1)[k − 1],ϕk,1), (3)

ψ (ρW)[k] = max(ψ (ρW)[k − 1],ϕk,nk). (4)

We then iteratively update ψ (ρω)[k], 2 ≤ ω ≤ W − 1. The mathe-

matical derivation looks sophisticated, and we present its simple

heuristics first. There is no need to change Ω if new samples per-

fectly match with the existing performance profile. That is,

ϕk,nk,ω ≤ ψ (ρω)[k − 1] ≤ ϕk,nk,ω+1, 2 ≤ ω ≤W − 1. (5)

nk,ω = ⌈nk · ρω/100⌉ is the position of ρω -percentile sample in

the new sample set. Otherwise, the profile should be updated. The

displacement between nk,ω and the sample position corresponding

toψ (ρω)[k−1]marks the potential update scope. The core idea is to

approximate the old sample sets by assuming a uniform distribution

between adjacent percentiles. We omit its mathematical derivation.

The above update is iteratively performedwithmodest computation

overhead. In turn, we will update ψ (ρ1)[k] → ψ (ρ2)[k] (based on

ψ (ρ1)[k] andψ (ρ2)[k −1])→, · · · ,→ ψ (ρω)[k] (based onψ (ρω−1)[k]

andψ (ρx≤ω)[k − 1]), and so on. The above generic-form works for

anyW and {ρω }. In this work, we consider a common setting like

W = 5, {ρω } = {0%, 25%, 50%, 75%, 100%}. We validate that our

performance profiles are accurate enough for iCellSpeed.

To facilitate the iCustomize module (e.g., configure the decision

criteria), we aggregate per-set performance into per-location pro-

file (illustrated by the outer box of Figure 9). We run a clustering

algorithm to learn the top and bottom groups, referred to as good

and poor. Note that the best and worst cell set belong to the good

and poor groups, respectively. In case the performance profiles of

the best and worst sets are similar, iCellSpeed is not needed because

there is no significant performance missed. Otherwise, we are able

to learn good and poor groups and use their performance profiles

to determine thresholds used in iCustomize.

5 IMPLEMENTATION AND EVALUATION

We implement iCellSpeed on rooted Android smartphones. It is con-

ceptually implementable on non-rooted phones but we currently

prototype it on rooted phones for two reasons. First, blocking/lock-

ing a band is unavailable through the existing APIs of commodity

Android OS releases (e.g., class telephony [5]). We use an encap-

sulated library over confidential secret codes. Root is not required

if ROM is customized [4]. Second, we collect raw traces for debug-

ging and evaluation. These traces include packet traces captured by

tcpdump and mobile network signaling messages collected by Mo-

bileInsight [2, 20]. Both work with rooted phones only. The second

feature is not necessary for normal operations of iCellSpeed. We

implement several intuitive rules in the proof-of-concept prototype.

MobiCom ’20, September 21–25, 2020, London, United Kingdom Haotian Deng, Qianru Li, Jingqi Huang, and Chunyi Peng

5.1 Methodology and Datasets

Our evaluation is primarily conducted in a small city,West Lafayette,

IN (4 Km × 4.5 Km), marked as C1 in Figure 10. We also consider

several locations and routes in three other cities ś C2 (Los Angeles,

CA), C3 (Austin, TX) and C4 (Lafayette, IN) ś to validate its effec-

tiveness and wide applicability in diverse real-world circumstances.

We run two types of experiments without (A) and with (B) enabling

iCellSpeed. We perform both static and driving tests. In static tests,

we randomly choose 24 locations, including 17 locations in C1 in

two representative zones: campus (aka, urban) and residence (subur-

ban) and 2-3 locations each in other three cities. In driving tests, we

use 10 fixed routes (Table 2) in four cities. These routes are popular

in the test cities (e.g., routine routes between work and home) and

cover representative types. U/S represents urban/suburban and L/P

represents local (< 35mph) and parkway (45-55 mph).

We assess data performance in terms of downlink speed. We

primarily use heavy traffic load which keeps downloading a large

file (500MB) from our lab server. We monitor the server’s outbound

link rate and ensure that it is not a speed bottleneck in our mobile

network experiments. We later evaluate iCellSpeed while running

some applications like video steaming and conferencing. We mea-

sure all four US operators while AT&T is considered in all the cases,

because the unlimited plan of AT&T only temporarily throttles rate

if the network is busy after using more than 100GB. Sprint has the

smallest dataset (10.8 hours, mainly on 2 routes in C1) due to its

worst rate throttling. We purchase multiple lines to ensure that the

rate is not throttled when we run downloading experiments. For

each operator, one test phone is used at one time to avoid contention

for radio access unless specified. We use eight phones out of three

models: Google Pixel 3/2/2XL. They use Qualcomm Snapdragon

835/845/855 chipsets which all support 4.5G. The results are not

phone-specific. Similar findings are observed in all four operators

unless specified. To evaluate iCellSpeed, we first conduct extensive

real-world measurements (A only) from Sep 2019 to Feb 2020, and

then run A+B experiments together, primarily in Feb, March and

June 2020. Our dataset D1 (Table 3) collects data speed samples for

about 372 hours (static + driving) over 5,953 Km (driving).

To learn real-world cell deployment and characterize abundant

choices available, we perform a wider-area driving experiment in

C1. In addition to six routes, we do a city-scale scan to cover every

road multiple times (main roads: ≥ 30, almost all local roads: ≥ 5)

in C1. We use mice traffic (ping Google every second) to keep radio

connectivity active at all time. We run experiments primarily from

July to Dec 2019 and get dataset D2 over 549 hours and 5,113 Km.

Both datasets are public available at [7].

5.2 Reality Check Without iCellSpeed

Missed potentials in reality.We first present our real-world mea-

surements without enabling iCellSpeed in D1. This helps to better

understand the test locations for iCellSpeed’s evaluation. Our re-

ality check shows that significant performance potential miss is

frequently observed at many places for all four operators (Findings

F1, F4 and F5). At all 24 selected locations (AT&T), we observe

significant performance gaps as we see at L1 (Figure 4). The median

speed gap is at least 10Mbps and up to 74 Mbps. Due to space limit,

we present only the results of the driving tests in C1, which covers a

R1

R2 R3
R4

R6

R5

1km

2 1 4

5
67

8

10 11
13

12

14

15

16

17

9

3

residence

campus

Figure 10: Map@C1.

@ Distance Type

R1 C1 2.9 Km U, L

R2 C1 3.6 Km U+S, L

R3 C1 5.8 Km U+S, L

R4 C1 1.8 Km S, P

R5 C1 4.2 Km S, L

R6 C1 2.4 Km S, P

R7 C2 2.0 Km U, L

R8 C3 2.6 Km U, L

R9 C4 3.2 Km U, L

R10 C4 1.8 Km U, P

Total 30.3 Km

Table 2: Routes.

Time Distance

D1 (A+B, heavy load)

A 247.9 hr 2,561 Km

V 68.6 hr 1,977 Km

T 45.1 hr 1,182 Km

S 10.8 hr 233 Km

D2 (A, light load)

A 111.2 hr 1,221 Km

V 231.6 hr 1,493 Km

T 137.7 hr 1,259 Km

S 68.5 hr 1,140 Km

Total: 921.4 hr 11,066 Km

Table 3: Datasets.

0 20 40 60 80
0

20
40
60
80
100

∆

Γ

∆ (Mbps)

C
D
F
(%

)

∆(25,75)

0 25 50
Γ

(a) AT&T

0 20 40 60 80
∆ (Mbps)

∆(50,50)

0 25 50
Γ

(b) Verizon

0 20 40 60 80
∆ (Mbps)

0 25 50
Γ

Γ(25,75)

(c) T-Mobile

0 20 40 60 80
∆ (Mbps)

0 25 50
Γ

Γ(50,50)

(d) Sprint

Figure 11: CDF of the observed speed gaps across C1.

0 10 20 30 40 50
0

20
40
60
80
100

Number

C
D
F
(%

)

(a) AT&T

0 10 20 30 40 50

Number

(b) Verizon

0 10 20 30 40 50

Number

(c) T-Mobile

0 10 20 30 40 50

Number

PCell

P+SCell

Cell Set

(d) Sprint

Figure 12: CDF of the number of serving cells and sets in C1.

wider area than the static tests. We divide the roads into small grids

(each approximately 55m x 42m) and retrieve missed performance

per grid. We use a pair of metrics ∆(ρ1,ρ2) and Γ
(ρ1,ρ2) to char-

acterize the absolute and relative gaps between the ρ1-percentile

performance of the best set and the ρ2-percentile performance of

theworst set at each grid. We use two pairs: (1) ρ1 = ρ2 = 50, (2)

ρ1 = 25, ρ2 = 75. Clearly, the latter is a more conservative approxi-

mation. Figure 11 plots their CDFs across all the grids with enough

runs and samples. Note that insufficient runs can not capture real-

world diversity on serving cells and insufficient samples can not

capture data speed dynamics. Hence, we only consider grids with >

10 runs and samples > 100 seconds. There are 690, 438, 139 and 66

grids considered for A, V, T, S, respectively. We want to highlight

that the actual gap at each grid can be still underestimated given

our limited measurement scale. Even in a more conservative way,

we see ∆(25,75) > 20 Mbps at more than 55%, 48%, 20% and 74% for

A,V, T, S, respectively. Γ(25,75) is at least 1 (speed doubled) at more

than half of locations for all four operators. A and V have similar

results on significant performance gaps. It is mainly due to their

larger cell diversity than T and S. We notice that in Sprint, the

absolute gap (∆) is larger but the relative gap (Γ) is smaller. This

is because the observed speed is much higher than other carriers,

up to 160 Mbps; The lowest data speed is larger than 20 Mbps at

almost all places, much faster than several Mbps or even hundreds

of Kbps observed for other operators.

Cell deployment in reality. We use a city-scale measurement in

C1 to show that dense deployment is the norm for all four operators

(Finding F7). We see similar or even denser deployment in other

cities, particularly in C2 which is one of top-3 US cities. We combine

our driving tests in D1 and D2 and plot the CDF of the number of

iCellSpeed: Increasing Cellular Data Speed
with Device-Assisted Cell Selection MobiCom ’20, September 21–25, 2020, London, United Kingdom

0 2 4 6 8 10
0
20
40
60
80

100

Mean error rate (%)

C
D
F
(%

)

N [0] = 0

(a) 25th-percentile

0 2 4 6 8 10
0

20
40
60
80
100

Mean error rate (%)

N [0] = 60

N [0] = 120

(b) 50th-percentile

0 2 4 6 8 10
0

20
40
60
80
100

Mean error rate (%)

N [0] = 300

(c) 75th-percentile

Figure 13: CDF of average performance profiling error rate over all

popular cell sets at all the static locations.

serving cells and sets observed across the measured grids in Fig-

ure 12. We exclude grids with insufficient runs and samples in the

same way. We see more than 9 PCells (12 P+SCells) and 18 cell sets

at more than 50% grids in AT&T. T and S have more than 5 PCells

(7 P+SCells) at more than 50% places. We also performed limited

test at several locations in rural areas and find that it is much less

dense for all four operators. We see that the performance gap is not

significant without abundant choices. As a result, we believe that

abundant cell choices are available in the cities.

We also check all the cells used in C1 by four operators. We see

that AT&T deploys 501 unique cells over 19 channels at 6 bands (2,

4, 5, 12, 30, 66). But the use of these channels is quite uneven. The

most popular channels (> 10%,) are 850, 2000, 5145, 2175 and 2425

in descending order. Only three channel bandwidths of 5, 10, 20

MHz are used. We admit that such device-side measurement may

be still incomplete despite our extensive study. We observe similar

results for other three operators and omit them.

5.3 Micro-Benchmark Evaluation

We first use the test results at the static locations to evaluate how

iCellSpeed’s main components work in reality.

iProfile. We compare performance profiling accuracy with differ-

ent parameters. In particular, we test with different numbers of

initial samples, N [0] = 0, 60, 120, 300, and three smoothing weights

λ = 1, 1.1, 1.5. iProfile takes every experiment run by a chronologi-

cal order. Meanwhile, the ground truth is calculated out of all the

samples at this moment. Figure 13 shows the average error rate for

all popular cell sets (sample number > 600) at all static locations

when N [0] varies from 0 to 300. We show 25, 50, 75-th performance

percentiles of cell set, and omit 0 (min) and 100 (max)-th percentiles

because they are updated accurately. Figure 14 uses one instance

to illustrate the impact of smoothing weight over time (samples).

We show performance profile of cell set 1 {5145(16) - 850(16)} at L1

with λ = 1, 1.1, 1.5 and N [0] = 60.

We have three observations. First, iProfile achieves accurate es-

timation, by storing several performance percentiles, not a huge

number of raw samples. Second, the accuracy results are very simi-

lar given various sizes of initial samples (even N [0] = 0). The low-

percentile (25) is more sensitive to the initial sample size because

fewer performance samples are considered for a low percentile.

Third, the estimated profiles are quite accurate regardless of λ. Note

that the smoothing weight of 1.5 induces more fluctuation in Fig-

ure 14, which is consistent with our observations at other locations.

This is because higher weight accelerates the pace of forgetting

historical data. Ideally, the weight should be tuned according to the

elapsed time since last update. Considering most of our evaluation

experiments are heavily conducted within one month (every few

0 1 2 3
20
30
40
50
60

Sample number (·103)T
h
p
u
t
(M

b
p
s) ψ(25) ψ̂(25)

(a) λ = 1

0 1 2 3
20
30
40
50
60

Sample number (·103)

ψ(50) ψ̂(50)

(b) λ = 1.1

0 1 2 3
20
30
40
50
60

Sample number (·103)

ψ(75) ψ̂(75)

(c) λ = 1.5

Figure 14: Profiling accuracy in one example (Set 1 at L1)

days), we set λ = 1.5 ⌊week ⌋ in our implementation. In the following

evaluation, the default parameters are λ = 1 (1.50), N [0] = 60.

iCustomize. We evaluate the impact of the rules of łspeed-not-

OKž, which determines whether iCellSpeed needs further actions.

We define 4 rules accordingly:

Rule I: ψ
(75)
current < 0.8 ·ψ

(25)

best
orψ

(25)

best
− 10;

Rule II: ψ
(75)
current < ψ

(25)

best
;

Rule III:ψ
(50)
current < 0.7 ·ψ

(50)

best
orψ

(50)

best
− 15;

Rule IV:ψ
(50)
current < 0.9 ·ψ

(50)

best
orψ

(50)

best
− 5.

ψ
(p)
current andψ

(p)

best
are ρ-th percentile of performance in the cur-

rent run and in the existing profile. We run the experiment as

follows. Start file downloading on the device and manually disable

iCellSpeed for the first 2 − 3 minutes; That is, iCustomize is run-

ning (monitor performance for decision making), but none of its

decisions is made. Afterwards, as long as any rule above is satisfied,

the device takes action correspondingly. We use the collected traces

to evaluate the rule impact.

Figure 15 presents three showcases at L17 (C1), L15 (C1) and L18

(C2). We use average speed gain to evaluate the impact of the above

four rules. In those plots, red bars represents default performance

before the device action is taken, the stacked bars above red ones

represent performance gains achieved by iCellSpeed with different

rules. There are also default runs with pretty high data speed (none

of rules are satisfied), referring to black bars. We have two main

findings at L17. First, all the rules work well. They detect all runs

with big improvement room and do not bother with good runs

(the last 8 runs). iCellSpeed exploits great potentials at L17 with

speed gains of 20− 70Mbps, up to 27-fold. Second, these rules work

slightly different because Rules I to IV become more aggressive.

There is small difference in not-OK runs detected by four rules at

L17. Because the default performance is too poor in most runs so

even the most conservative rule (Rule I) is met. Rules I - IV miss

potential gains in 4 runs (11, 23, 27, 29), 1 run (11) and 0 runs. Note

the missed gains are relatively small and the only exception is at

run 11, where the default speed is not too bad (∼ 30Mbps) but the

gain empowered by iCellSpeed is extraordinarily large. Generally,

the speed-not-OK rule is a tuning knob to balance speed gains and

the missed rate. The more aggressive rule brings smaller miss rate,

but more likely with smaller gain.

We further apply Rules I and IV to other two locations. At L15,

iCustomize improves poor situations by 8 Mbps and 7 Mbps on

average for I and IV, given a limited achievable gain (median of the

best cell set is 17 Mbps); At L18, iCustomize decides to take action

in all 23 runs. It makes good catch in 19 runs with more than 1×

enhancement. Dynamics in performance provided by the target cell

set accounts for small or negative gain in other runs, especially like

run 23. This implies that more action rounds should be considered.

MobiCom ’20, September 21–25, 2020, London, United Kingdom Haotian Deng, Qianru Li, Jingqi Huang, and Chunyi Peng

10 20 30 37
0

20

40

60

80

Experiment run

∆
(M

b
p
s)

Default Default (speed-ok in any rule)

10 20 30 37
0

20

40

60

80

Experiment run

I I+II I+II+III(IV)

0

10

20

30

Γ

(a) At L17 (C1)

10 20 30 37
0

10

20

30

Experiment run

Default Default (speed-ok in any rule)

10 20 30 37
0

10

20

30

I I+IV

0

2

4

6

8

Γ

(b) At L15 (C1)

10 20-5

20

40

60

Experimennt run

Default I I+IV

-3

10

20

30

Γ

Γ

(c) At L18 (C2)

Figure 15: Showcases of speed gains under different speed-not-ok rules.

1 2 3s0

20

40

60

80

100

RRC

APP

C
D
F
(%

)

lock
block
reset

(a) CDF

RRC

(ms)

Lock 248

Block 340

Reset -

App

Lock 2092

Block 2176

Reset 2694

(b) median

Figure 16: Disruption time.

Case 1: Idle Usage

Phone idle 12%

Google Play 6%

Android System 6%

Mobile Net. 5%

Screen 2%

System UI 1%

iCellSpeed < 1%

Case 2: Active

YouTube 45%

iCellSpeed 5%

Table 4: Battery usage.

Disruption. Due to implementation constraints, iCellSpeed has to

disrupt ongoing traffic while taking actions to influence the default

cell selection. We run experiments to measure the disruption time

at both application (APP) and radio resource control (RRC) layers.

We evaluate several actions of iCellSpeed: blocking one or two

frequency bands, locking one specific band, and resetting mobile

networks. In our test phones, blocking any band automatically

blocks band 66. Figure 16 shows blocking or locking band have

similar disruption time at APP layer, which is slightly less than

resetting mobile network (2,694 ms). Locking disrupts RRC and

APP for 248 ms and 2092 ms (median); Blocking has a little larger

disruption time: 340 ms (RRC) and 2176 ms (APP). This matches

with expectation because locking limits the spectrum bands to scan

and has lower overhead. Resetting mobile network results in the

longest disruption because it has to restart Radio Interface Layer

(RIL) daemon [?]; We cannot measure its RRC disruption because it

powers off the radio directly without releasing RRC connection. We

would like to emphasize that the disruption at RRC is unavoidable as

a solution compatible to the existing mechanism and infrastructure;

The disruption from RRC to APP can be reduced with advances on

mobile phone OSes and chipsets.

5.4 Data Speed Gains by iCellSpeed

Static tests (AT&T). We use two metrics to evaluate iCellSpeed.

Figure 17 presents its speed gains at all test locations in AT&T.

When an device action is taken in one run k , iCellSpeed’s gain is

calculated as ∆k or Γk , for the absolute or relative gap between the

average throughput in the default and customized runs. Note that

the gain can be negative if the customized run is worse. We show

the speed after the first round, without showing the final result after

multiple rounds because iCellSpeed is eventually no worse than

the default one. We clearly see that iCellSpeed significantly boosts

data speed at many locations. It boosts data speed at all locations

in terms of the 25-th percentile absolute gain; The 50-th percentile

Figure 17: Performance gains at all static locations for AT&T.

(median) gain is larger than 10Mbps at 19 out of 24 locations (79.2%).

Note that our test locations are randomly selected and the achieved

gain is bounded by the missed performance potentials which vary

across locations (Figure 11a). This is why the absolute gain is not

significant at all the locations. We see that the 75-th percentile gain

is smaller than 10 Mbps at 4 out of 24 locations (here, 15, 16 in

C1, 19 in C2 and 22 in C3). Hence, we use the relative gain Γ to

deal with variance in the bound of the best achievable performance.

Actually, at 15 out of 24 locations (62.5%), the relative gain is larger

than 100% in more than half of runs, up to 28.4× (at location L17).

The second metric is the error rate at the first round, i.e. the

number of runs with negative gains over all device-customized

runs. 14 out of 24 locations have zero error rate. The error rate

is below 0.1 at 6 out of the rest 10 locations. This indicates that

iCellSpeed reliably tames uncertainty and balances gains and risks

well. iCellSpeed corrects the mistake finally while its intermediate

performance may get hurt.

Other operators.Weevaluate iCellSpeed for Verizon and T-Mobile.

Rate throttlingmakes it hard for us to evaluate Sprint.We see similar

results with significant gains in Verizon (plots omitted). iCellSpeed

increases data speed by more than 30 Mbps at 57% of test locations

(up to 91Mbps). It at least doubles speed at 87% of test locations

(up to 27.3x). We do not often observe expected gains for T-Mobile.

We observe that resetting mobile networks sometimes boosts data

speeds but its impact is random, depending on which cell set being

selected. We find that most missing performance in T-Mobile is

from the use or combined use of band 66. However, our current

implementation automatically disables band 66 when blocking any

bad band. It is the implementation constraint that prevents us from

increasing data speed through iCellSpeed. Gains are possible once

this constraint is released.

Driving tests. Figure 18 demonstrate iCellSpeed’s speed gains

using three examples on driving routes R1, R3 and R6. We use the

left plot (R1) to illustrate how iCellSpeed works. We drive the same

route without (default) and with iCellSpeed. In the default run, the

iCellSpeed: Increasing Cellular Data Speed
with Device-Assisted Cell Selection MobiCom ’20, September 21–25, 2020, London, United Kingdom

0 200 400 600 800 1,000
0

20
40
60
80
100
120

Action

Distance (m)

T
h
p
u
t
(M

b
p
s) Default iCellSpeed

0 200 400 600 800 1,000
0

5

10

15

20

Distance (m)

T
h
p
u
t
(M

b
p
s) Default iCellSpeed

0 200 400 600 800 1,000 1,200 1,400
0

30

60

90

Distance (m)

T
h
p
u
t
(M

b
p
s) Default iCellSpeed

Figure 18: Three examples of iCellSpeed’s speed gains over distinct routes (R1, R3 and R6, from left to right).

VBR/ CBR Zoom Download

Main Stall/Play Delay (ms) Time (s)

Res. 1K 4K Send Recv 25MB 100MB

D 360p 4.5 41.7 210 201 55.1 329.6

iCS 1080p 0 0.84 91 85 17.7 82.4

D/iCS - ∞ 49.6 2.3 2.4 3.1 4.0

(a) Multiple applications at L17 (D: default, iCS: iCellSpeed)

0.4 0.8s0

20

40

60

80

100

C
D
F
(%

)

D-send
D-recv
iCS-s
iCS-r

(b) Zoom at L17

L1 L5 L7 L9 L14 L15 L17 L18
0

2

4

6

S
ta
ll
/P

la
y

Default
iCellSpeed

(c) 4K CBR video streaming

L1 L5 L7 L9 L14 L15 L17 L18
0

20

40

60

80

100

P
er
ce
n
ta
ge

(%
)

360p 480p 720p 1080p 4K

Default iCellSpeed

(d) VBR video streaming

Figure 19: iCellSpeed’s performance gains for test applications at multiple locations (AT&T)

Route R1 R2 R3 R4 R5 R6

Gain (γ) 275% 115% 181% 97% 135% 119%

Table 5: Speed gains by iCellSpeed on 6 driving routes in C1.

device suffers poor performance no more than 15Mbps from the

point of 270 m. It is connected to cell set {2425(363)-None-None}

(270-464 m) and {66911(421)-None-None} (464-1047 m). For a run

with iCellSpeed, it detects poor performance with {2425(363)-None-

None} in the area of 450-480 m. Then iCellSpeed takes the action

of blocking band 5 and 66 and thus moves to a good cell set. The

average performance grows from 13Mbps to 64 Mbps.

We define γ = (ψ̄iCellSpeed − ψ̄default)/ψ̄default to quantify the

speed gain in a driving test, where ψ̄⋆ is the average speed by ⋆

(default or iCellSpeed) over the same route segment after iCellSpeed

is triggered (including 0Mbps during 2-second disruption). Note

that we use the average speed over the same segment (distance),

not over the same duration because the driving time changes at

each run. We see 352% and 120% gains in other two examples (R3

and R6). Table 5 shows the average gain observed on six routes in

C1 where iCellSpeed is in use.

Other applications. We test iCellSpeed with three popular appli-

cations with elephant flows: DASH video streaming, video confer-

encing and file downloading. Note that iCellSpeed is not applicable

to mice flows only because it is not triggered in a short flow lifespan.

Figure 19 plots the results at 8 representative locations (with vari-

ous data speeds and iCellSpeed gains) including 7 locations in C1

and 1 location (L18) in C2 using AT&T. For video streaming, we test

with a demo video at bitmovin [?] with constant bitrate encoding

(CBR) and variable bitrate encoding (VBR). For video conferencing,

we use Zoom to set up a call between a mobile phone and another

device via WiFi with abundant bandwidth. For file downloading,

we consider two sizes: 25MB and 100MB. In this test, we see the

worst data performance at L17 and thus choose L17 as an example

to demonstrate that iCellSpeed has greatly boosted performance

for all test applications in Figure 19a. Specifically, iCellSpeed helps

VBR streaming to increase it dominant bitrate from 360p to 1080p

(1K). It drops the stall/play ratio for CBR video streaming, from 4.5

to 0 for a 1K video (from 41.7 to 0.84 for a 4K video), making at

least 1K video steaming affordable at L17; In Zoom video confer-

encing, it reduces the send/uplink latency by 2.3x (downlink: 2.4x),

from 210ms (201ms) to 91ms (85ms). It accelerates file download-

ing by 3.1x (25MB) and 4x (100MB). Due to space limit, we only

present CBR and VBR streaming results at test locations (Figure 19c

and 19d). We see that iCellSpeed enables 4K video streaming at

5 locations (L1, L5, L7, L14, L18); All these gains are attributed to

increased speeds by iCellSpeed. We notice that 4K CBR is not an

acceptable viewing option in these default runs, which all suffer

from extremely high stall/play rate except at L18. We choose it as a

stress test to see how badly it can be without iCellSpeed. Similar

enhancements are observed in the VBR tests, with more acceptable

viewing experience by default, thanks to lower bitrates in use.

Multiple devices. We next evaluate how iCellSpeed performs

in a multi-device scenario. We use (n,m) test phones where n is

the total number of co-located phones and m is the number of

phones running iCellSpeed (m = 1, · · · ,n − 1). We consider in two

scenarios: (a) all the phones are initially served by poor cells; (b)

only those running iCellSpeed are initially served by poor cells

and others are served by good cells (which actually run iCellSpeed

to move to good cells first and then disable iCellSpeed). The first

setting is to evaluate how iCellSpeed’s effectiveness scales up, and

the second is to evaluate its impact on those devices without iCell-

Speed. Figure 20 plots the results before and after iCellSpeed takes

effects at L5 (AT&T) in both settings. The results at other locations

are similar and omitted. We test with n up to 5 and present the

results when n = 5, as similar results are observed at n = 2, 3, 4. We

have three observations. First, we clearly see that iCellSpeed boosts

performance of those iCellSpeed-enabled phones previously served

by the poor cells in both scenarios. Second, the gain declines asm

grows when all the phones are previously served by the poor cells.

The data speed grows from 2.2Mbps to 87Mbps (39.5x), 47.7Mbps

(21.7x), 29.7 Mbps (13.5x) and 20.9Mbps (9.5x) whenm grows from

1 to 4. Third, this results in the dropped speed for those phones

which are previously served by the good cells. In Figure 20b, the

phone without iCellSpeed gets its speed from 87 Mbps to 17.4Mbps

when four phones switch to the good cells. This is expected be-

cause iCellSpeed is to exploit under-utilized capabilities, but not

to increase raw capabilities. Once more devices move to the good

cell(s), they compete resources and thus the obtained share drops.

We observe significant enhancements in our real-world tests. This

implies that the network capabilities are often under-utilized in

MobiCom ’20, September 21–25, 2020, London, United Kingdom Haotian Deng, Qianru Li, Jingqi Huang, and Chunyi Peng

(5, 1) (5, 2) (5, 3) (5, 4)
0

20

40

60

80

T
h
ro
u
gh

p
u
t
(M

b
p
s)

(a) n phones are poor

(5, 1) (5, 2) (5, 3) (5, 4)
0

20

40

60

80

T
h
ro
u
gh

p
u
t
(M

b
p
s) Default-before

Default-after

iCS-before

iCS-after

(b) m phones are poor

Figure 20: iCellSpeed in (n,m) multi-device tests at L5 (AT&T).

presence of a number of real user phones beyond our control.

Energy overhead. We further assess iCellSpeed’s energy con-

sumption in two scenarios where the device is idle (with iCellSpeed

being in the background but not triggered) or active with heavy

traffic (here, YouTube, with iCellSpeed being triggered). We test it

with a Pixel 2 device (2700 mAh) and Table 4 shows the results. In

the idle setting, we see that extra energy consumed by iCellSpeed

is negligible, compared to built-in services and components run-

ning in the background. In the active setting, we keep playing an

YouTube video and find that iCellSpeed consumes 5% extra energy

when YouTube uses 45% energy. The energy overhead is mainly

used to monitor GPS, cellular signaling messages and system level

throughput, which can be cut with energy-efficient monitoring.

6 RELATEDWORK

There is no prior work to boost data performance through device-

assisted cell selection. We briefly introduce most relevant work

on cell selection/handoff in mobile networks and device-only per-

formance improvement. Our work is inspired by recent handoff

studies [15, 16, 18, 25]. [18] examines how handoff is performed

and whether a handoff decision converges; [16, 25] investigate how

handoff decisions impact performance and show that a handoff

may result in worse performance; [15] is our preliminary study and

unveils the problem of missed performance, by measuring the gap

between the worst and the best choices. Our work differs from all

the above studies, and targets to solve the problem. Device-centric

performance solutions are divided into three categories: higher-

layer APP/TCP optimization (e.g., [17, 21]), cross-layer optimization

that leverages cellular-specific lower-layer information to enhance

higher-layer functions (e.g., [13, 22, 24]), and lower-layer optimiza-

tion (e.g., [19]). Our work also does lower-layer optimization. [19]

enhances multi-operator access in Google Fi and we improve dom-

inant radio access within a single operator. Given distinct causes

for poor data performance, the proposed solution is different.

7 DISCUSSION

We discuss other possibilities and remaining issues.

Are larger gains possible? Absolutely yes. The gain would be

larger when more device power is available, for example, when

the device can directly lock the desired cells instead of blocking

some bands to indirectly influence cell selection. The gain would

be larger if the device supports swift band switching, without the

2-second disruption which is constrained by current practice of

device chipsets and OSes.

Should we do it on-device only? Absolutely no. Instead, we ar-

gue that network is a better place to solve this problem. The gain

is much larger or even reaches its full potential when the changes

are allowed at the network side. For instance, it performs a global

performance-driven optimization, which is not myopia constrained

by partial observations at runtime. In this work, our aim is to offer

a working solution even with modest gains and demonstrate feasi-

bility to increase speed missed by current cell selection practice.

Does it hurt other devices and/or network?Maybe. The oper-

ators may intend to sacrifice user experience with rational, e.g,

load balancing for network-side optimization, or throttling data for

those without premium plans. We do not argue that they have to

select cells that offer the best performance to mobile users. Our

goal is to pursue better data performance which is sometimes un-

necessarily missed in reality. We believe that boosting performance

with no need of changing physical infrastructure is aligned with

the interests of both operators and users in some real-wold cir-

cumstances. If they do not match, the network always holds the

right and final power to decide what to serve the device. We notice

that iCellSpeed may benefit the device but at the cost of perfor-

mance degradation of other devices (Figure 20b). This is because

the default selection is unfair and should take the blame at the first

place. In theory, iCellSpeed may oscillate when a large number of

iCellSpeed-enabled devices are synced to intervene cell selection

and impact each other. It is not observed in practice as iCellSpeed

removes this cell choice once it underperforms. In the worst case,

it conservatively goes back to the default selection.

Will the problem disappear in 5G? It will not go away as 5G

proceeds. The identified issue of missed performance potentials

conceptually exists in 5G that still takes radio signal quality, not the

resulted performance into account [10]. This issue is likely even

worse in 5G with much denser deployment, more spectrum choices,

and bigger performance gaps contributed by advanced technologies

(e.g., 10Gbps vs tens of Mbps). It was reported that the device failed

to get 5G where 5G was available in an early 5G measurement [3].

8 CONCLUSION

In this work, we present the design, implementation and evaluation

of iCellSpeed. Our effort is motivated by the premise that today’s

network-centric cell selection may result in a nonnegligible, sub-

optimal choice of cells for a given device. Consequently, the user

device suffers from large access speed dip from the highest avail-

able one in practice, while the network suffers from significantly

underutilizing the available resources. Our extensive measurements

have confirmed both. The root cause lies in today’s network-centric

cell selection scheme where the device has minimal influence on

decision making. While this might work on the dumb terminals in

the past telecom age, it does not work well with the increasingly

capable and smart devices in the Internet and AI age.

iCellSpeed thus explores a new paradigm of łdevice-assisted,

infrastructure-decidedž design for 4.5G and beyond. As a result, it

is a win-win game for both the device and the infrastructure. The

infrastructure better utilizes its current resources, while the device

gains its desirable, higher access speed. iCellSpeed thus improves

device performance without upgrading the infrastructure, but via

smart decision inputs from users and better utilization for networks.

Acknowledgments. We appreciate our shepherd and reviewers

for their constructive comments. This work was partially supported

by NSF grants: CNS-1749049, CNS-1750953 and CNS-2027650.

iCellSpeed: Increasing Cellular Data Speed
with Device-Assisted Cell Selection MobiCom ’20, September 21–25, 2020, London, United Kingdom

REFERENCES
[1] 2016. AT Command User Guide. http://gamma.spb.ru/images/pdf/L506_AT_

Command_User_Guide_V2.1.pdf. Access: 01/24/2020.
[2] 2019. MobileInsight. http://www.mobileinsight.net,2019.
[3] 2020. 5G Speed Report: Early 5G Experience Provides Mixed Re-

sults. https://www.telecompetitor.com/5g-speed-report-early-5g-experience-
provides-mixed-results/. Access: 03/01/2020.

[4] 2020. Android Open Source Project. https://source.android.com/. Access:
01/19/2020.

[5] 2020. Android.Telephony. http://developer.android.com/reference/android/
telephony/package-summary.html. Access: 01/20/2020.

[6] 2020. Codes Google Pixel. https://www.hardreset.info/devices/google/google-
pixel/codes/. Access: 01/19/2020.

[7] 2020. iCellSpeed Datasets. https://github.com/mssn/iCellSpeed-Dataset.
[8] 2020. Network Signal Guru. https://play.google.com/store/apps/details?id=com.

qtrun.QuickTest. Access: 01/21/2020.
[9] 3GPP. 2013. Carrier Aggregation explained. https://www.3gpp.org/technologies/

keywords-acronyms/101-carrier-aggregation-explained.
[10] 3GPP. 2019. TS23.502: Procedures for the 5G System (5GS). V15.8.0 (Release 15).
[11] 3GPP. 2019. TS36.101: E-UTRA; User Equipment (UE) radio transmission and

reception. V15.6.0 (Release 15).
[12] 3GPP. 2020. TS36.331: E-UTRA; Radio Resource Control (RRC). V15.9.0 (Release

15).
[13] Arjun Balasingam, Manu Bansal, Rakesh Misra, Kanthi Nagaraj, Rahul Tandra,

Sachin Katti, and Aaron Schulman. 2019. Detecting if LTE is the Bottleneck with
BurstTracker. In The 25th Annual International Conference on Mobile Computing
and Networking (MobiCom’19).

[14] Arthur P Dempster, NanM Laird, and Donald B Rubin. 1977. Maximum likelihood
from incomplete data via the EM algorithm. Journal of the Royal Statistical Society:
Series B (Methodological) 39, 1 (1977), 1ś22.

[15] Haotian Deng, Kai Ling, Junpeng Guo, and Chunyi Peng. 2020. Unveiling the
Missed 4.5G Performance In the Wild. In Proceedings of the 21st International
Workshop on Mobile Computing Systems and Applications (Austin, TX, USA)
(HotMobile’20).

[16] Haotian Deng, Chunyi Peng, Ans Fida, Jiayi Meng, and Charlie Hu. 2018. Mobility
Support in Cellular Networks: A Measurement Study on Its Configurations
and Implications. In ACM Internet Measurement Conference (Boston, MA, USA)
(IMC’18).

[17] Prateesh Goyal, Anup Agarwal, Ravi Netravali, Mohammad Alizadeh, and Hari
Balakrishnan. 2020. ABC: A Simple Explicit Congestion Control Protocol for
Wireless Networks. In USENIX Symposium on Networked Systems Design and
Implementation (NSDI’20).

[18] Yuanjie Li, Haotian Deng, Jiayao Li, Chunyi Peng, and Songwu Lu. 2016. Instabil-
ity in Distributed Mobility Management: Revisiting Configuration Management
in 3G/4G Mobile Networks. In ACM International Conference on Measurement and
Modeling of Computer Science (Antibes Juan-Les-Pins, France) (SIGMETRICS’16).

[19] Yuanjie Li, Haotian Deng, Chunyi Peng, Guan-Hua Tu, Jiayao Li, Zengwen Yuan,
and Songwu Lu. 2016. iCellular: Define Your Own Cellular Network Access on
Commodity Smartphones. In USENIX Symposium on Networked Systems Design
and Implementation (Santa Clara, CA, USA) (NSDI’16). 643ś656.

[20] Yuanjie Li, Chunyi Peng, Zengwen Yuan, Jiayao Li, Haotian Deng, and Tao Wang.
2016. MobileInsight: Extracting and Analyzing Cellular Network Information
on Smartphones. In ACM International Conference on Mobile Computing and
Networking (MobiCom’16).

[21] Ashkan Nikravesh, Yihua Guo, Xiao Zhu, Feng Qian, and Z Morley Mao. 2019.
MP-H2: A Client-only Multipath Solution for HTTP/2. In The 25th Annual Inter-
national Conference on Mobile Computing and Networking (MobiCom’19).

[22] Zhaowei Tan, Yuanjie Li, Qianru Li, Zhehui Zhang, Zhehan Li, and Songwu Lu.
2018. Supporting mobile VR in LTE networks: How close are we? Proceedings of
the ACM on Measurement and Analysis of Computing Systems 2, 1 (2018), 1ś31.

[23] Wikipedia. 2017. LTE Frequency bands. https://en.wikipedia.org/wiki/LTE_
frequency_bands.

[24] Xiufeng Xie, Xinyu Zhang, and Shilin Zhu. 2017. Accelerating Mobile Web
Loading Using Cellular Link Information. In Proceedings of the 15th Annual Inter-
national Conference on Mobile Systems, Applications, and Services (MobiSys’17).

[25] Shichang Xu, Ashkan Nikravesh, and Z Morley Mao. 2019. Leveraging Context-
Triggered Measurements to Characterize LTE Handover Performance. In Interna-
tional Conference on Passive and Active Network Measurement (PAM). 3ś17.

	Abstract
	1 Introduction
	2 Radio Access Primer
	3 Missed Performance Potentials
	3.1 An Motivating Example
	3.2 Why Are Significant Potentials Missed?

	4 iCellSpeed Design
	4.1 Overview of iCellSpeed
	4.2 iCustomize
	4.3 iProfile

	5 Implementation and Evaluation
	5.1 Methodology and Datasets
	5.2 Reality Check Without iCellSpeed
	5.3 Micro-Benchmark Evaluation
	5.4 Data Speed Gains by iCellSpeed

	6 Related work
	7 Discussion
	8 Conclusion
	References

