iCellSpeed: Increasing Cellular Data Speed
with Device-Assisted Cell Selection

Haotian Deng Qianru Li
Purdue University UCLA
ABSTRACT

In this paper, we propose iCellSpeed, an on-device solution to in-
crease data access speed by substantiating unrealized performance
potentials. We find that performance potentials are missed in to-
day’s mobile networks, as the data speed a user device gets is much
lower than what the device could get. The issue is rooted in the
current cell selection practice, which misses good candidate cells
that offer faster access speed, thus under-utilizing the available
capabilities in mobile networks. We design iCellSpeed to facilitate
network-controlled cell selection with proactive device-side assis-
tance towards more desirable cells. Our evaluation over AT&T and
Verizon confirms its effectiveness. iCellSpeed increases data access
speed by more than 10 Mbps at 79% of test locations (> 25Mbps at
29% of locations, up to 80.6 Mbps). It doubles access speed at 62.5%
of locations with the gain up to 28.4x. Datasets are available at [7].

CCS CONCEPTS

« Networks — Mobile networks; Network performance eval-
uation; Network control algorithms.

KEYWORDS
4.5G, Downlink Speed, Cell Selection, Device-Assisted, iCellSpeed

ACM Reference Format:

Haotian Deng, Qianru Li, Jingqi Huang, and Chunyi Peng. 2020. iCellSpeed:
Increasing Cellular Data Speed with Device-Assisted Cell Selection. In The
26th Annual International Conference on Mobile Computing and Networking
(MobiCom ’20), September 21-25, 2020, London, United Kingdom. ACM, New
York, NY, USA, 13 pages. https://doi.org/10.1145/3372224.3419201

1 INTRODUCTION

Increasing user access speed has been a main driver for mobile
network evolution. Operators expect to deliver faster broadband ex-
perience through continuous infrastructure upgrade. They acquire
wider radio spectrum, deploy denser cells, and migrate to advanced
technologies (say, from 4G LTE to 4.5G LTE-Advanced to 5G New
Radio). They enhance raw system capabilities to offer users higher
speed (say, from tens of Mbps to a few Gbps).

In this work, we argue that it is equally important to make full
use of already available capacities, rather than deploy new ones, to
boost data access performance to user devices. Without exploiting

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MobiCom 20, September 21-25, 2020, London, United Kingdom

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7085-1/20/09...$15.00
https://doi.org/10.1145/3372224.3419201

Chunyi Peng

Purdue University

Jingqi Huang

Purdue University

full performance potentials, we end up with excessive infrastruc-
ture waste, which further drives the operators for infrastructure
upgrade even more aggressively, thus being trapped in a vicious
cycle. Specifically, the data performance would stay poor if those
cells with low access speed are selected to serve a device, despite
many candidate cells which are able to offer faster speed. Eventu-
ally, those cells that offer faster access are not chosen, thus being
wasted. The overall system utilization remains low.

Unfortunately, we discover the above is not rare in reality. We
observe that significant performance gaps emerge in various set-
tings between what a device could get and what it actually gets. For
example, we see that a mobile phone receives 4.6 Mbps on average
by default while 49.3 Mbps is available and 907% speed potential is
missed (Figure 3a); We observe significant performance potentials
missed in our measurement study of all four top-tier US operators
(AT&T, Verizon, T-Mobile and Sprint)! (Figure 11, §5.2). We further
dive into why such low-utilization cases arise. It turns out that, the
state-of-the-practice cell selection? is held accountable. Without
proper selection of those cells that yield higher access speed, the
current scheme under-utilizes the available infrastructure resources
and misses fast wireless access to user devices.

Fundamentally, the problem is rooted in the network-centric cell
selection scheme, which is designed for seamless connectivity but
not for superior data performance. Note that, dense cell deployment
is the norm, rather than exception, in most US regions. A user device
can be served by multiple candidate cells (up to tens of cells) in
principle. Despite abundant choices, few are considered in practice,
and the poor ones are further chosen not without technical rationale.
The practice favors those cells with good radio signal, but ignores
other non-radio factors (e.g., channel width) that may have bigger
impact on user-perceived data performance. The handoff procedure
states that, as long as the radio quality is not too bad, current
cell would remain effective despite bad data performance. It thus
discourages leaving the current cell. When searching for new cells,
the procedure stops once a candidate cell with acceptable radio
quality is found. It thus often stops at a local sub-optimum out of a
subset of candidates constrained by the current cell. Consequently,
it misses the cells with the best performance out of all choices.

In this work, we propose iCellSpeed to address the identified un-
derutilization issue. iCellSpeed has three design requirements. First,
it seeks to reach the performance-oriented, “global” optimum from
all candidates, rather than radio-based, “local” optimum. Second, it
is compatible with the 3GPP standards without any infrastructure
change. Third, iCellSpeed is designed as an on-device software
solution to boosting mobile data access speed for the device. In
brief, the design of iCellSpeed transforms a mobile device from a
telecom-based dumb, passive terminal to an intelligent, proactive

IT-Mobile and Sprint run separately during this study despite their pending merger.
2 It is called handoff in 3GPP. We focus on how to select serving cells in this paper.
We use both terms interchangeably.

MobiCom °20, September 21-25, 2020, London, United Kingdom

machine. Instead of passively following the decision made by the
network, the device learns what is best for itself and supplies its
own favored choices for the final selection made by the network.

There are two main technical challenges. First, device capabilities
at the software space are quite limited. Even though the device
learns the desired choice, it cannot directly select it. Second, it must
work with the current selection mechanism that makes the final
decision at the infrastructure side.

To tackle both challenges, iCellSpeed takes an approach of the
“device-assisted, infrastructure-decided” selection (§4). The device
takes runtime measurements and maintains historical performance
profile to challenge whether it should accept the default decision
made by the network; It performs online learning to infer missed
potentials and determines its corresponding action (device-side
customization). It further monitors the outcome to ensure better
performance than the default choice.

We implement iCellSpeed on commodity smartphones, and con-
firm its effectiveness with large speed gains in both AT&T and
Verizon. It increases access speed by at least 10 Mbps at 79.2% of
locations out of 50 runs per location. It more than doubles the
speed at 62.5% of locations, and achieves the gain up to 8.11x at
one location (up to 28.4x in a single run). We want to highlight
that iCellSpeed has one limitation that it would disrupt ongoing
traffic for about 2 seconds on the application layer. As a result, it
may not benefit mice traffic despite its improvement for bandwidth-
intensive heavy traffic flows like video streaming, conferencing and
file downloading. This limitation is rooted in its implementation
constraint, as the device is incapable of taking action swiftly in the
software space without corresponding support from the chipset. We
note that iCellSpeed is designed to exploit under-utilized potentials,
not to increase raw system potentials. There is no speed benefit on
the network side in case full potentials have been used up by other
devices. In a word, iCellSpeed is not perfect but offers a promising
on-device solution to increase data speed.

In summary, iCellSpeed offers arguably the first on-device, pure
software solution that guides infrastructure-centric cell selection

for higher access speed. We make three main contributions:
(1) We conduct extensive measurements to identify and quan-

tify the missed performance potentials in today’s mobile
networks (Findings F1-F5 in §3.1, §5.2).

(2) We unveil the limitations of current cell selection for missed
potentials (F6 - F12 in §3.2).

(3) We design, implement, and evaluate iCellSpeed on commod-
ity smartphones with instant speed gains (§4 and §5).

2 RADIO ACCESS PRIMER

We introduce necessary background on radio access in mobile net-
works, as illustrated in Figure 1. We focus on 4.5G and beyond (e.g.,
4.5G LTE-Advanced and 4.75G LTE-Advanced Pro), because all four
major US operators have advanced to 4.5G and beyond.

Cells and frequency channels/carriers. A mobile device’s radio
access is provided by one or more serving cells. A cell is a logical
unit that runs over a contiguous spectrum frequency block (referred
to a frequency channel or a component carrier) to serve devices
within its vicinity ranging from tens of meters to several kilometers.
Each channel has fixed operational frequency and bandwidth (say,
1.4, 3, 5, 10, 15 and 20 MHz, Table 1), as regulated by 3GPP [11].

Haotian Deng, Qianru Li, Jinggi Huang, and Chunyi Peng

PCell: primary serving cell
SCell: secondary serving cell
CCell: candidate cell (dotted line) ¥ r

cell

(logic unit) T.' .T

Figure 1: Radio access in 4.5G and beyond.

Existing procedure
(®Send configurations from the old serving cell to the devic
@ - (@Measure serving/candidate cells as configured

C Report radio measurement results once triggered
Decide the target serving one and switch if different

@—@’ Note: (1)-@ repeated for selecting PCell, Cell or both
Figure 2: State-of-the-practice cell selection procedure.
Band Downlink Width | Channel No. Bandwidths (MHz)
2 1930 - 1990 60 MHz 600 — 1199 1.4, 3,5, 10, 15, 20
4 2110 - 2155 45 MHz 1950 - 2399 1.4, 3,5, 10, 15, 20
5 869 -894 25 MHz 2400 - 2649 1.4,3,5,10
12 728 - 746 18 MHz 5010 - 5179 14,3,5,10
30 2350 - 2360 10 MHz 9770 - 9869 5,10
66* 2110 - 2200 90 MHz | 66436 — 67335 1.4,3,5, 10, 15, 20

Table 1: Examples of bands and downlink channels [11, 23].
* band 66 is a superset of band 4.

It is uniquely identified by the channel number, say, EARFCN for
4G/4.5G and beyond. All channels reside within multiple licensed
bands (e.g., bands 2,4,5,12,29,30,66 for AT&T, bands 2,4,5,13,66 for
Verizon [23]). A cell is operated at a cell tower, which is a physical
entity deployed for a small geographic area, accommodating a num-
ber of logical cells via directional antennas and multiple channels.
Channels are assigned during cell deployment phase.

Carrier aggregation in 4.5G and beyond. Intuitively, larger band-
width (wider spectrum) promises higher data speed. A key advance
from 4G to 4.5G and beyond is carrier aggregation (CA), which
allows more than one serving cells to offer simultaneous radio
access, thus increasing bandwidth on an aggregated carrier (over
multiple individual carriers with each being used by a cell) . The
set of serving cells consists of a primary cell (PCell) and several
secondary cells (SCells). PCell is mandatory and needed for data
transmission and connection management. SCells are optional and
used for data transmission only. In principle, CA supports up to
100 MHz by aggregating maximum five 20MHz carriers [9]. In our
study, we see at most two SCells in all four major US operators.
Selection of serving cell(s). Serving cells are selected from a num-
ber of candidate cells (dash line in Figure 1). When the device is
active with ongoing traffic, cell selection is realized by the stan-
dard procedure handoff [12]. Figure 2 depicts its operation flow
in four steps: @ configuration, @ measurement, @ reporting, and
@ decision and execution. The first step of configuration defines
criteria and parameters to trigger, decide and execute a handoff,
including whether to invoke measurement, what/when to measure,
whether/what/when to report and how to decide the next cell, and
so on. The followup steps (@ - @) are invoked when the conditions
pre-configured by the current serving cell (PCell) are met at run-
time. With carrier aggregation, cell selection chooses PCell first.
PCell then determines SCells out of available candidates.

3 MISSED PERFORMANCE POTENTIALS

We use real-world instances to reveal missed potentials for user
access to today’s mobile networks, and analyze their root causes.

iCellSpeed: Increasing Cellular Data Speed
with Device-Assisted Cell Selection

MobiCom ’20, September 21-25, 2020, London, United Kingdom

I(J(j T T T T T T T 1(](]

E 0l A (default) =B (customized) 7’@ 80| T oA (d(‘ffxultﬁ stToImZ(‘d) AGO) G0 Main sets of serving cells (%)
2 =] }‘T T: T ‘ 1T jTT o H min | 293 | 351% | A | S19:{2425 (363) - none - none} 100%
= 60 = 6 B T HTlpTiT] E‘l | 1‘ w* ,T 25th | 35.9 | 459% | B | SI: {5145 (16) - 850 (16) - none} 47.3%
540, Rt HE $ B Hg‘ HEH E E med | 422 | 600% $3: {850 (16) - 5145 (16) - none} 39.2%
£ 20 & 20 u B “" L il LT * 75th | 473 | 837% S4: {2000(103) - 5145(16) - 2175(103)} | 10.4%

0 Satvng e SNV oy [P A tpatart IO 0 ééés'%%;%&-}-?%%%? %‘%%%% é%é%%é?%ééééé%%‘% L max | 60.6 | 1506% others 3.1%

0 20 40 60 8 100 120 40

Time (second)

(a) One instance (4.6 Mbps vs. 49.3 Mbps) (b) 40 run pairs

Experlment run

(c) Speed gains (d) Serving cell sets in use. Each set is repre-
sented as {PCell - SCell; - SCell}.

Figure 3: An motivating example at one location L1 (AT&T).

3.1 An Motivating Example

We first use an example to illustrate two new findings:

F1. In today’s mobile networks, the device is not always served by
the cells that can offer the highest access speed (Figure 3a);

F2. Higher speed can be achieved when the device takes extra actions
without changes to the current network infrastructure (Figure 3a).

Figure 3a plots the downlink throughput in two paired runs,
where the phone keeps on downloading the same large file (500MB)
at a fixed location using AT&T. The first run (A) is performed under
the default network operations; It starts after the user arrives at
the test location (L1 in Figure 10) along a fixed walking route. The
second run (B) is performed at the same spot right after run A,
while taking the device-side action (disabling band 5). In this case,
the phone obtains 4.6 Mbps on average by default (A), while 49.3
Mbps is available (B). It is clear that the default network operations
fail to select those serving cells that are used in run B and available
in run A, thus miss higher speed (907% miss) (A).

We repeat the above experiment with more runs, and observe
the same finding. Specifically, we repeat the paired runs at different
hours of the day (from 9AM to 22 PM) and at different days of
two weeks (in Dec 2019 and Feb 2020). Each run (B) with device
customization (blocking band 5) immediately follows a default run
(A). Figure 3b compares downlink throughput (0, 25, 50, 75 and 100
percentile) in 40 test pairs. We treat the gap in each pair to be the
what-if speed gain if B’s choice were selected to serve the device
in reality. This is a reasonable estimate because the achievable
potential is no smaller than the achieved one and we run what-if
experiments almost simultaneously (under the same condition). We
make two more observations.

F3. The significant gaps persistently occur; Poor performance in re-
ality can be largely avoided through device-side action (Figure 3b, 3c);

F4. Persistent gaps imply that they are unlikely caused by transient
factors, say, dynamic loads and time-varying radio signal quality.
Instead, they are due to the poor cell selection in the current network
operations (Figure 3d, §3.2).

In all our tests, device customization (blocking band 5) brings
significant speed gains. By default, the phone constantly gets poor
performance (medium speed < 8.5 Mbps, maximum <12.4Mbps).
To quantify speed gain, we define two metrics,

A(P) lp(P) ¢](<f)1)4’ FIEP) lp(P) l//(P))/l//(P) (1)

p is the percentile from 0 (min) to 100 (max). l//(p) and 1//(p) are the
p-percentile performance (here, throughput) in ‘the default (A) and
customized (B) run at the k-th pair. At this location, we observe
that the median speed increases by at least 29.3 Mbps and up to
60.6 Mbps. In more than 50% tests, the median rate grows by at

~100p1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

;%]80*: 0T -r

SIS I e A A
=N

= . -
e I EB$$$5%%$$%;
IS i TR 8B E
§%§ Z % e R &
23013 = n = 3
~ — A 3

Figure 4: Performance and occurrence frequency of main serving
cell sets at L1 (AT&T) in a 3-month reality check.

least 42.2 Mbps. In terms of 109 the simple device customization
scheme brings up to 15-fold gain with the minimal growth of 351%.

Data speed fluctuates over a small window of time (Figure 3a
and 3b). Such fluctuations are partly induced by dynamic resource
allocation under changing traffic load and partly caused by varying
radio channels. These transient factors contribute to speed variance
in each run, but not the significant gaps observed in all tests. Instead,
they are primarily attributed to the quality of the serving cells.

We examine the set of serving cells in these 40 tests (Figure 3d).
In the default runs (A), only one serving cell is used (the potential of
CA is wasted). Each cell is represented by its channel number(cell
ID) here, e.g. 2425(363). Channel 2425 is centered at 871.5 MHz on
band 5, with 5MHz channel bandwidth. In the device-customized
runs (B), this poorly-performed cell is filtered out by disabling band
5 at the device. Data speed rises with distinct serving cells. We
see that CA takes effect and more serving cells are being used. It
leads to three main choices and the first two use identical cells.
The occurrence frequency is computed in terms of the observation
duration (but not the number of runs), because more than one
serving cell sets are used in some runs.

The total channel bandwidth does matter. All these new sets
have larger aggregated bandwidth (25/25/20 MHz) than the default
one (5MHz). We will confirm the impact of channel bandwidth
later in §3.2. We would like to highlight that the speed variances in
the default runs are relatively small. This implies that such poor
performance is primarily determined by the selected serving cell(s),
despite small variations due to transient factors.

F5. The above case is not rare. Significant potential miss is fre-
quently observed among all four operators (§5.2).

We conduct a measurement study across a small city and several
regions of three other cities in the US. We find that significant
potential miss happens frequently in all four US carriers (§5.2).
Missed potentials are caused by the poorly-performed cell selection.

3.2 Why Are Significant Potentials Missed?

We next examine why. It turns out that

MobiCom ’20, September 21-25, 2020, London, United Kingdom

F6. The legacy design for seamless radio access should be held
accountable. Today’s cell selection is largely designed for seamless
connectivity, but not for best connectivity and data performance, thus
missing good candidates for serving cells (Figure 4, 5, 6).

In fact, current selection practice favors the cells with stronger
radio signal quality over those offering higher speed. Such practice
is not without rationale. However, in today’s mobile networks
where dense cell deployment is the norm, it is likely to underutilize
high speed potentials empowered by rich cell choices at most places.

We use the above example at L1 (AT&T) to illustrate its limita-
tions. Same/similar conclusions hold at many other spots for all
four US operators in our large-scale reality check (detailed in §5.2).
At L1, we run an extensive study; Different from §3.1, we perform
only the default runs without taking any extra device-side action.
To observe as many candidate cells as possible, we take diverse
walking or driving routes to reach L1. We run 192 tests sporadically
from Dec 2019 to Feb 2020. Each run lasts for 2 to 10 minutes and
the total time observed at L1 is about 10.5 hours. We see 57 cell sets
out of 31 cells over 6 bands (2,4,5,12,30,66). Among them, 19 sets
out of 21 cells are used for more than 60 seconds. Figure 4 plots
their data performance and occurrence frequency, in descending
order of median speed. We make two observations at L1.

First, abundant choices bring rich diversity in cell selection (F7,
Figure 4). There is no single winner at a location. We see that five
sets (1,3, 6, 7 and 19) are frequently selected at L1. S1 (short for set 1),
S3 and S19 refer to Figure 3d. S6 is {2425(363)-1150(413)-none} that
enables CA compared to S19. S7 is {66486(103)-none-none} which
uses a PCell on band 66 (a superset of band 4). Other set information
is omitted due to space limit. Figure 5 plots radio quality of four
common PCells at L1 in all the runs. RSRP/RSRQ (reference signal
received power/quality) are two key measures of radio evaluation.
We see that all four cells have comparable radio quality, stronger
than most other cells at L1. This is why they are often selected.

Second, abundant choices cannot guarantee the selection quality
(F8, Figure 4). The choice with poor data performance is regularly or
even repeatedly selected in reality. At L1, S19 is frequently selected
but the offered speed is 8x slower than the best (via S1). We observe
that S19 is always selected when the device moves to L1 along one
direction (§3.1). Figure 6 plots RSRPs of these three cells in such a
walk instance towards L1.

We further use this instance to illustrate how current selection
practice misses good choices in four aspects.

o Cell selection is primarily radio-based and ignores channel band-
width (F9, Figure 5, 6). All steps of measurement, reporting and
decision to perform a cell selection (Figure 2) count on radio quality
evaluation. For instance, whether to measure candidate cells de-
pends on how weak the current one is; Which cell to report depends
on whether its radio signal quality is strong enough; Which cell to
select depends on who has the strongest radio quality out of those
reported ones; This is consistent with prior studies [16, 18, 25].

Such radio-based cell selection ignores non-radio factors which
impact data performance, such as channel bandwidth. Cell 2425(363)
has only 5 MHz and offers the lowest data speed at L1. 850(16)
uses 20 MHz and offers higher speed. But 850(16) is not favored at
locations where its radio signal is slightly weaker than 2425(363)
(say, < 50m). Note that, along the route towards L1 (Figure 6),
2425(363) is stronger than both good choices of 850(16) and 5145(16)

Haotian Deng, Qianru Li, Jingqi Huang, and Chunyi Peng

850(16) *5I45(16) | _ 70 ©2425(363)+5145(16)-850(16) |
@ -5 [-2425(363) ,66486(103) & 5(363)+5145(16) °850(16)
i g X 2 .80
v_lo ° g 3
z &-100 :
20 e L1
_110 | | O
-110 -100 -90 -80 -70 0 25 50 75 100 1%

RSRP (dBm) Distance (m)
Figure 5: Four cells’ RSR-Figure 6: RSRP of three selected cells in
P/RSRQ at L1. one walking instance towards L1.

at < 50 m locations (more than 75 m away from L1). This is why
2425(363) often wins at these places. Selecting the cells regardless
of their bandwidths results in high likelihood of selecting poorly-
performed cells.

o Radio-based cell selection discourages leaving the current cell
despite poor performance (F10, Figure 6). We find that no cell selection
will be triggered as long as the current cell’s radio signal quality
is tolerable. In this walk instance, we see that cell 850(16) is even
stronger than 2425(263) when we move closer to L1, say at [50m,
125m]. However, 850(16) is not considered in this instance and
rarely considered in all the instances with cell 2425(263) as PCell.
This is because 2425(363) has RSRP around —95 dBm and its RSRQ
stays above —15 dB, which does not meet the criterion to measure
other cells. Hence, cell 850(16) and other cells (e.g., cell 5145(16))
are missed despite their far better performance.

o Current selection practice fails to make full power of CA (F11,
Figure 4, 12). CA expects to leverage SCells to increase channel
bandwidth and data performance. However, its power is hampered.
CA is feasible at L1 when 2425(363) is a PCell, as S6 {2425(363)-
1150(413)-none} is commonly observed (Figure 12). However, in
the walk instance, no CA is enabled. It loses the second chance
(via SCells) to make up the missed potentials when radio-driven
selection picks a poorly-performed PCell. We further find that CA
does not explore all possible SCells. The 3GPP standard [12] requires
that PCell and SCells must co-locate on the same cell tower, to
implement CA within the same radio protocol stack. However, not
all the cells on the same tower are open to CA. We check all the
cell sets in the neighborhood of L1 and group the cells as long as
they appear in one cell set. We see 6 cells on the tower of cell 850
(16) and all of them have acceptable signal strength. Theoretically,
there are Cél + C(Ll + C2—1 = 18 CA options. However, we only
observe 2 cell sets in reality: S3 {850(16) - 5145(16) - None} and S12
{850(16) - None - None}. It seems that the PCell - SCell combination
is constrained out of a small number of pre-set choices. This is partly
validated in our large-scale study (Figure 12). We gauge that it is
constrained by cell deployment and CA managed by the operator.

o Last but not least, current selection practice seeks for local opti-
mum, not for global optimum (F12, Figure 6). We find that its initial
cell choice profoundly restricts the subsequent operations and con-
sequences. It does not only discourage a cell selection, but also
limits the scope of candidate cells considered for a selection. Take
radio measurement as an example to illustrate this local constraint.
There are intra-freq and inter-freq measurements [12]. The former
measures the cells over the same channel and the latter measures
more cells over distinct channels. What cells to measure depends
on the current one and its radio quality. In the walk instance (Fig-
ure 6), cell 850(16) or cell 5145(16) is not measured because no

iCellSpeed: Increasing Cellular Data Speed
with Device-Assisted Cell Selection

inter-measurement is invoked. We want to point out that the cur-
rent serving cell is unaware of this biased choice at runtime when it
decides the next target cell out of a small subset, not out of a whole
set of all candidate cells. This way, there is no escape to better cells
once the current cell gets stuck at a local stable choice. Multiple
stable choices correspond to multiple winners at L1.

We would like to emphasize that we do not intend to blame
the selection practice. It is indeed effective and efficient to ensure
seamless radio coverage while retaining reasonable overhead (e.g.,
avoiding ping-pong effects). It switches to new cells only when the
current ones are about to fail. At the early phase when full coverage
was still a big concern, good radio was highly correlated to good
performance. However, good radio # good performance in today’s
mobile networks with abundant choices at place. We argue that it
is right time to revisit cell selection and solve its underutilization
problem that ends with unnecessarily poor performance.

4 [1CELLSPEED DESIGN

We propose iCellSpeed to increase data speed by tackling the un-
derutilization problem that stems from the existing cell selection
scheme. iCellSpeed seeks to achieve higher speed gains by select-
ing better cells that better utilize available capabilities rather than
through enhancing raw capabilities. The ideal and straightforward
solution is to directly implement a clean-state selection scheme for
performance optimality out of all choices (discussed in §8). How-
ever, it is not practical (at least in the near future) because of big
changes to network infrastructure. We thus propose iCellSpeed,
a device-side solution which exploits software power available at
commodity smartphones and works in concert with the current
cell selection practice. It is compatible with standard mechanisms
and operational network infrastructure, with no need to change the
network side. If successful, iCellSpeed promises to bring immediate
benefits for the device and by the device.

4.1 Overview of iCellSpeed

Figure 7 depicts iCellSpeed’s main components and operation flows.
The center is to use performance profiling as the main instrument
and enable proactive device-customization atop of the existing
network-centric cell selection procedure (Figure 2). Profiling lever-
ages historical measurements to accumulate global knowledge and
thus offers the ability to challenge and correct the improper de-
cision out of partial information at runtime. The device switches
its role from a dumb, reactive terminal to an intelligent, proactive
one. Instead of simply following the commands from the network
and executing rigid reactions pre-implemented in the chipset, the
device proactively overrides the default reactions to influence the
consequence of cell selection. But the serving cell is still decided
by the network eventually.

Two core enabling modules are iCustomize (@) and iProfile (®
and @). There are two main operation flows.

1. Device-side customization at runtime. iCellSpeed makes
one change at the device side, incorporating with the existing hand-
off procedure (D — @ in Figure 2). It adds the iCustomize step to
break a direct chain between measurement (@) and reporting (®)
which are configured by the network and executed at the device.
Instead of passively following the commands from the network,

MobiCom ’20, September 21-25, 2020, London, United Kingdom

£}

iProfile:
- (©Offline
default Online

B]Customization <= Yes
—— -1 Same mechanism+same input (default)
next roung - Same mechanism+new input
()@ next round | @ New in iCellSpeed

Figure 7: iCellSpeed’s overview and main operation flows.

QOE O .

the device is empowered to question and challenge the default se-
lection operations, because the device stays alert of the identified
limitations in §3.2 and the resulted potential miss. Intuitively, iCus-
tomize is to compare real-time performance and current choice
with the profiles learned in advance; It then determines whether
better cells are missed at runtime, and which action from device
side is feasible to prompt better cells to be selected. If iCustomize
confirms no need of further device actions, no change will be made
and the default procedure proceeds (see the branch @-@-No-®-
@). Otherwise, it executes device-side customization to override
the default reaction and thus influence the selected cells (see the
branch @-@-Yes-@)-3)-@). Note that iCellSpeed does not alter
the existing mechanism or network-side functions (say, @, @ and
@), which are also beyond control. Instead, it leverages just device
power to change the input of these functions so as to indirectly
affect the consequence of selected cells, towards a more desirable
choice. iCellSpeed uses more intelligent device assistance to comply
and complement the cell selection practice, while improving the
chance of selecting cells with better performance.

2. Device-side profiling at runtime and offline. iProfile is to
leverage measurements in the past and accumulate global knowl-
edge regarding performance at every place so as to combat the
limitations of local views used for cell selection at runtime. It gath-
ers what cells are available, how they are selected, and how they
perform in reality. Then it aggregates observed samples into the pro-
files regarding availability of choices (cell deployment), frequency
of choices (cell selection), and performance of choices. It supports
both offline and online modes. The former creates initial profiles
through offline training or crowdsourced measurements. The latter
updates the profiles with measurements over time.

4.2 iCustomize

It is not easy to decide a device-side action because its impact is
not deterministic. As illustrated in Figure 7, the final decision is
still made by the network. Take the example at L1 (Figure 3d) to
illustrate control uncertainty. Blocking band 5 results in three pos-
sible consequences, not a single deterministic one. Fortunately, all
three new choices are positive, offering much higher speed than
the default one (which is the worst set observed at that location).
However, it is not always true. At other places, multiple new pos-
sibilities can be positive and negative. The key of iCustomize is
to predict both gains and risks (negative gains) and tame control
uncertainty to determine the proper device-side action.

Specifically, iCustomize addresses three technical questions:

Q1. Should the device accept the default cell set?

Q2. If no, what action should be taken?

Q3. Should the device accept the previous action?

A naive idea. The straightforward solution is to predict the gain

MobiCom °20, September 21-25, 2020, London, United Kingdom

associated with each possible action and then maximize the predi-
cated gain to determine whether and how to take actions (Q1 and
Q2). It can be formulated into a classic Expectation-Maximization
(EM) problem [14]. Let us assume that the iProfile module has suf-
ficient samples in the past and thus gathers reliable knowledge
for a given location. Let S be all possible choices at the given lo-
cation, i.e. S = {Sylu = 1,2,--- ,U}. Xg, is a random variable
for data performance of cell set S;,. The resulted performance
upon action 7 is a weighted sum of multiple random variables
as Xy = 2U_ P(Su|r) - Xs,. where P(S,|r) is the likelihood of
selecting cell set S;, upon action z. Consequently, the decision is
made by maximizing performance expectation,

7y = argmax E[X]. (2)
mell

No action is taken when E[X,] is no better than the default one.
Otherwise, 7, is taken. Q3 is used to address control uncertainty
in case the new action brings a negative gain. To answer it, it
monitors performance under action 7. If the resulted new cell
set is worse than the default one at the new round, the previous
action is withdrawn and excluded from the action set II. At next
round, a new action is derived out of the updated action set the IT
to maximize Eq. (2). Otherwise, it stops.

Our practical solution. However, the storage overhead of the
above computation is too huge. We thus work on a practical solu-
tion that approximately predicts the gain and looks for a reasonably
good action (customization) so that we probably boost data speed
in an efficient way. This solution tradeoft is feasible according to
the famous PAC (probably approximately correct) learning the-
ory [?]. In our context, we enable a fuzzy logic that incorporates
non-deterministic profile models and deterministic domain knowl-
edge. Note the consequence of our customization is approximately,
not precisely accurate. Once the previous action is incorrect, we
take just-in-time reinforcement learning and correct our previous
“mistake” with up-to-date feedback.

Figure 8 shows the core logic of iCustomize. At the first level,
it goes to NO-branch when no device customization is performed
previously; Otherwise, it goes to the YES-branch at the next round
to check whether the speed is worse; If no, no more action is needed.
Otherwise, it excludes the previously-used actions and runs iCus-
tomize” (the NO-branch).

iCustomize™ uses a two-level decision subtree. To decide whether
to challenge the default choice, it takes the following factors into
account: real-time performance of the current cell set, historical
performance of the current cell set, and potential gains of device-
side actions. On the first level (speed-OK trigger), we examine if
the current speed is satisfactory. We devise intuitive rules such
as current performance no worse than a portion of the best (e.g.,
above 70% of the 50-percentile performance of the best set), or
current performance above a certain percentile (e.g., the midpoint
of the performance range. Note that the used information (e.g.,
the best/worst performance) can be easily learned by iProfile. We
test with several rules in our evaluation (§5.3) and shows that
these intuitive rules work robustly to differentiate good runs from
runs with missed potentials. The reason is simple. At places with
significant performance potential miss (see the example of S19 at
L1 in Figure 4), there exists huge room to design speed-OK rules

Haotian Deng, Qianru Li, Jingqi Huang, and Chunyi Peng

iCustomize*
excluding previous action

Gain prediction + decision|
(Y/N & How)

Figure 8: The core logic of iCustomize.

to differentiate good and poor performance; At places with small
or overlapping performance gaps, low accuracy is tolerable since
the likelihood to realize missed potential is low as well. As a result,
intuitive rules suffice in iCellSpeed. On the next level, we check
if the current cell set is poor based on iProfile (§ 4.3). It decides
whether iCellSpeed takes aggressive or conservative actions.

We next predict the gain and make a decision. We exploit domain
knowledge to approximate Eq. (2) and simplify gain prediction.

We find that device-side actions are very limited. The ideal cus-
tomization is to allow the device to directly lock the target serving
cell(s) which offers desirable performance. However, such explicit
cell locking is not available at almost all commodity phones (the ex-
ceptions [8?] cannot work); Software interfaces such as API [5], AT
commands [1] and secret codes [6] can not lock cells. Constrained
by available software power, three actions are considered:

A1: lock one frequency band;

A2: block one or multiple bands;

A3: reset, particularly via turning off and on mobile data (or the
flight mode);

Al is one special case of A2, when blocking all the other possible
bands, except the one to be locked. A1 and A2 will rule out all
the cells over certain bands. A3 is to give equal chances to all
candidate cells by clearing the impact of the current choice. We
note that all these actions have one downside in practice. Because
they change frequency bands/channels or reset radio access, these
device-side actions require to disrupt radio resource control (RRC)
and thus suspend data connection for a while. We evaluate the
impact of the disruption time in §5.3. It is about two seconds at
the application (APP) layer and several hundreds of milliseconds at
RRC. Note that the disruption at RRC is mandatory but the extra
disruption at the APP layer is avoidable with better mobile OS
support. The disruption time is tolerable for elephant traffic flows
which last long and require huge throughput. We thus consider
bulk file downloading in this work and leave its extension to other
applications as future work.

We exploit the above knowledge to estimate P(S; |7). For A1/A2,
P(S,|m) is zero as long as one cell in set S, is explicitly ruled out.
We further estimate P(S,|7) in proportion to P(S,) only for those
eligible choices allowed by action 7. A winner in the default runs
is likely a winner under action , because of the same network
selection function; In reality, they often have relatively stronger
radio quality. For A3, it is to reset radio access and the likelihood
is the same as P(Sy,).

Given P(Sy|r), we look for the action that maximize E[X,]. We
start with blocking one band. We iteratively expand the actions to be
considered. We stop when there is no more chance to find an action
with gain larger than the current maximum. One action’s gain is

iCellSpeed: Increasing Cellular Data Speed
with Device-Assisted Cell Selection

{05, 5, € S}
e

1 Rouna k-1 ——» Round k

Cbest 3
@~_ Nk—1 + Mme = N[k
oPw
w(nw 777777 Nk, W Yo
| Rl g nk,w»wm L
'4/1(/)1) '*: ! E EEEEES W =2 ! ! E
Ll | U= A

P Pu PW New w(mﬂl Pu PW
(0) (100) samples

a

clustering 4 exponential smoothing
Figure 9: Profiles and online performance profiling.

estimated as the weighted sum of all eligible choices. We also notice
that a big gain change may occur when one action is linked with a
mixture of good and poor sets; So we continue only when the gain
of the good choice is larger than the current maximum. Regarding
performance, we use runtime measurement for the current choice
and profiles for other choices. There is a slight difference when
a good set is in use. Its runtime performance does not match its
profile. We need to remove all high-rank actions which allow the
current set and re-calculate the action with the maximal gain based
on runtime performance measurement. If blocking any band(s) does
not bring performance gain and current performance is way below
the expectation, we can consider A3. Otherwise, no action is feasible.
Its actual calculation is simple because we see that there are only
4-5 popular sets in most cases; Blocking one band is enough at most
cases; We block at most 2 bands in this study.

4.3 iProfile

The iProfile module maintains and updates three types of profiles
to support device-assisted cell selection.

(I) Availability of choices. This records working cell sets at each
location. This provides global knowledge regarding cell deploy-
ment which remains stable for a long period (months or years).
Its update is straightforward. Whenever a new serving cell set or
cell is observed, it is inserted into its set of choices at the given
location. This helps us to efficiently profile abundant choices in
reality. Even given measurements holes at some places, we can infer
these choices based on records in its close vicinity.

(II) Frequency of choices. This records the consequence of cell
selection in reality. P(Sy,) is the frequency of choice S, in the default
cell selection. We record the count of instances over time. It is
updated as follows. The sum of P(S,,) remains invariant (here,), =
1) but its individual value changes accordingly as the count of the
observed choice (say, Sy) increases. When one specific action 7 is
taken, we take a similar way to update its occurrence frequency.

() Performance of choices. This accumulates global knowledge
on performance of choices at this location. Rather than storing
a huge amount of raw samples over time for Xs,, we record its
performance statistics over time, which is represented by multi-
ple percentiles, Q = [PV yP2) ... y(PW)] W and p, (0 =
1,2,---,W) are constants configured at the start. They are ascend-
ing percentiles such that (min) 0 = p; < -+ < pp < Pp+1 < -+ <
pw = 100 (max). Offline profiling is simple. Given N[0] samples for
one serving cell set S, at location L;, we calculate its performance
statistical vector.

MobiCom ’20, September 21-25, 2020, London, United Kingdom

Online profiling is illustrated in Figure 9. We develop a fast
algorithm to update Q[k], given the previous profile Q[k — 1] and
ny performance samples measured at round k. We update the total
amount of effective samples as N[k] = [N[k—1]+ A -ng]. Here, A%
is a tuning parameter to pace the rate of forgetting historical records.
It is used to balance sample staleness and approximation accuracy.
Without loss of generality, we assume that new samples are sorted in
ascending order; Namely, ¢y | < @g 2 < ... < @, . Weiteratively
update y(Pe)[k] when o increases from 1 to W. Clearly, when
w =1, W, we update the minimum and maximum as follows:

Y Pkl = min(y [k - 1], 6y 1), (3)
Yk = max(@PW[k - 1], 6g p,)- (4)

We then iteratively update §/(P=)[k], 2 < @ < W — 1. The mathe-
matical derivation looks sophisticated, and we present its simple
heuristics first. There is no need to change Q if new samples per-
fectly match with the existing performance profile. That is,

By, VPR =1 < Gpy 2SO <W=1 (5)

Ni.w = [Nk * pe/100] is the position of p,-percentile sample in
the new sample set. Otherwise, the profile should be updated. The
displacement between ny. ,, and the sample position corresponding
to 1,//<pw)[k— 1] marks the potential update scope. The core idea is to
approximate the old sample sets by assuming a uniform distribution
between adjacent percentiles. We omit its mathematical derivation.
The above update is iteratively performed with modest computation
overhead. In turn, we will update l//(pl)[k] — 1//(p2)[k] (based on
YPO[k] and P [k—1]) >, - - -, — P=)[k] (based on y(Pe-1[k]
and l,b(p"fw) [k — 1]), and so on. The above generic-form works for
any W and {p,, }. In this work, we consider a common setting like
W =5, {pp} = {0%,25%,50%, 75%, 100%}. We validate that our
performance profiles are accurate enough for iCellSpeed.

To facilitate the iCustomize module (e.g., configure the decision
criteria), we aggregate per-set performance into per-location pro-
file (illustrated by the outer box of Figure 9). We run a clustering
algorithm to learn the top and bottom groups, referred to as good
and poor. Note that the best and worst cell set belong to the good
and poor groups, respectively. In case the performance profiles of
the best and worst sets are similar, iCellSpeed is not needed because
there is no significant performance missed. Otherwise, we are able
to learn good and poor groups and use their performance profiles
to determine thresholds used in iCustomize.

5 IMPLEMENTATION AND EVALUATION

We implement iCellSpeed on rooted Android smartphones. It is con-
ceptually implementable on non-rooted phones but we currently
prototype it on rooted phones for two reasons. First, blocking/lock-
ing a band is unavailable through the existing APIs of commodity
Android OS releases (e.g., class telephony [5]). We use an encap-
sulated library over confidential secret codes. Root is not required
if ROM is customized [4]. Second, we collect raw traces for debug-
ging and evaluation. These traces include packet traces captured by
tcpdump and mobile network signaling messages collected by Mo-
bilelnsight [2, 20]. Both work with rooted phones only. The second
feature is not necessary for normal operations of iCellSpeed. We
implement several intuitive rules in the proof-of-concept prototype.

MobiCom °20, September 21-25, 2020, London, United Kingdom

5.1 Methodology and Datasets

Our evaluation is primarily conducted in a small city, West Lafayette,
IN (4 Km X 4.5 Km), marked as C1 in Figure 10. We also consider
several locations and routes in three other cities — C2 (Los Angeles,
CA), C3 (Austin, TX) and C4 (Lafayette, IN) — to validate its effec-
tiveness and wide applicability in diverse real-world circumstances.
We run two types of experiments without (A) and with (B) enabling
iCellSpeed. We perform both static and driving tests. In static tests,
we randomly choose 24 locations, including 17 locations in C1 in
two representative zones: campus (aka, urban) and residence (subur-
ban) and 2-3 locations each in other three cities. In driving tests, we
use 10 fixed routes (Table 2) in four cities. These routes are popular
in the test cities (e.g., routine routes between work and home) and
cover representative types. U/S represents urban/suburban and L/P
represents local (< 35mph) and parkway (45-55 mph).

We assess data performance in terms of downlink speed. We
primarily use heavy traffic load which keeps downloading a large
file (500MB) from our lab server. We monitor the server’s outbound
link rate and ensure that it is not a speed bottleneck in our mobile
network experiments. We later evaluate iCellSpeed while running
some applications like video steaming and conferencing. We mea-
sure all four US operators while AT&T is considered in all the cases,
because the unlimited plan of AT&T only temporarily throttles rate
if the network is busy after using more than 100GB. Sprint has the
smallest dataset (10.8 hours, mainly on 2 routes in C1) due to its
worst rate throttling. We purchase multiple lines to ensure that the
rate is not throttled when we run downloading experiments. For
each operator, one test phone is used at one time to avoid contention
for radio access unless specified. We use eight phones out of three
models: Google Pixel 3/2/2XL. They use Qualcomm Snapdragon
835/845/855 chipsets which all support 4.5G. The results are not
phone-specific. Similar findings are observed in all four operators
unless specified. To evaluate iCellSpeed, we first conduct extensive
real-world measurements (A only) from Sep 2019 to Feb 2020, and
then run A+B experiments together, primarily in Feb, March and
June 2020. Our dataset D1 (Table 3) collects data speed samples for
about 372 hours (static + driving) over 5,953 Km (driving).

To learn real-world cell deployment and characterize abundant
choices available, we perform a wider-area driving experiment in
C1. In addition to six routes, we do a city-scale scan to cover every
road multiple times (main roads: > 30, almost all local roads: > 5)
in C1. We use mice traffic (ping Google every second) to keep radio
connectivity active at all time. We run experiments primarily from
July to Dec 2019 and get dataset D2 over 549 hours and 5,113 Km.

Both datasets are public available at [7].

5.2 Reality Check Without iCellSpeed

Missed potentials in reality. We first present our real-world mea-
surements without enabling iCellSpeed in D1. This helps to better
understand the test locations for iCellSpeed’s evaluation. Our re-
ality check shows that significant performance potential miss is
frequently observed at many places for all four operators (Findings
F1, F4 and F5). At all 24 selected locations (AT&T), we observe
significant performance gaps as we see at L1 (Figure 4). The median
speed gap is at least 10Mbps and up to 74 Mbps. Due to space limit,
we present only the results of the driving tests in C1, which covers a

Haotian Deng, Qianru Li, Jingqi Huang, and Chunyi Peng

@ Distance Type [Time Distance |
UL

R1 Cl1 29Km D1 (A+B, heavy load)

R2 C1 3.6Km U+S,L A 247.9 hr 2,561 Km

R3 C1 58Km U+S, L 68.6 hr 1,977 Km
“4 R4 Cl 1.8Km S,P 45.1 hr 1,182 Km

R5 C1 42Km S, L 10.8 hr 233 Km

R6 C1 24Km S, P 2 (A, light load)

R7 C2 2.0Km UL 111.2 hr 1,221 Km

R8 C3 2.6Km UL 231.6 hr 1,493 Km

R9 C4 32Km UL 137.7 hr 1,259 Km

R10 C4 1.8Km UP 68.5 hr 1,140 Km
1km - Total 30.3 Km Total: 921.4 hr 11,066 Km

Figure 10: Map@C1. Table 2: Routes. Table 3: Datasets.
r

r
50 0 25

» < »gle <

’

LT LT LT] /‘,Jf(s[)‘,s())’
0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80
A (Mbps) A (Mbps) A (Mbps) A (Mbps)
(a) AT&T (b) Verizon (c) T-Mobile (d) Sprint
Figure 11: CDF of the observed speed gaps across C1.
100 T =7= T er=s = F
S8 ff I i 4 F . g
=X 7 V3§
o 60l 5 4 | [#-pcen
g 4028 10 | [§--P+SCell |
~ 287l\ 1 1 1 i P 1 1 1 1 i 4 \—(\jel\lse\ti
0 1020304050 0 1020304050 0 1020304050 0 1020 30 40 50
Number Number Number Number
(a) AT&T (b) Verizon (c) T-Mobile (d) Sprint

Figure 12: CDF of the number of serving cells and sets in C1.

wider area than the static tests. We divide the roads into small grids
(each approximately 55m x 42m) and retrieve missed performance
per grid. We use a pair of metrics A(P1-#2) and T(P1-£2) to char-
acterize the absolute and relative gaps between the p1l-percentile
performance of the best set and the p2-percentile performance of
the worst set at each grid. We use two pairs: (1) p1 = p2 = 50, (2)
pl =25, p2 = 75. Clearly, the latter is a more conservative approxi-
mation. Figure 11 plots their CDFs across all the grids with enough
runs and samples. Note that insufficient runs can not capture real-
world diversity on serving cells and insufficient samples can not
capture data speed dynamics. Hence, we only consider grids with >
10 runs and samples > 100 seconds. There are 690, 438, 139 and 66
grids considered for A, V, T, S, respectively. We want to highlight
that the actual gap at each grid can be still underestimated given
our limited measurement scale. Even in a more conservative way,
we see A2%75) 5 20 Mbps at more than 55%, 48%, 20% and 74% for
AV, T, S, respectively. (2575 s at least 1 (speed doubled) at more
than half of locations for all four operators. A and V have similar
results on significant performance gaps. It is mainly due to their
larger cell diversity than T and S. We notice that in Sprint, the
absolute gap (A) is larger but the relative gap (I') is smaller. This
is because the observed speed is much higher than other carriers,
up to 160 Mbps; The lowest data speed is larger than 20 Mbps at
almost all places, much faster than several Mbps or even hundreds
of Kbps observed for other operators.

Cell deployment in reality. We use a city-scale measurement in
C1 to show that dense deployment is the norm for all four operators
(Finding F7). We see similar or even denser deployment in other
cities, particularly in C2 which is one of top-3 US cities. We combine
our driving tests in D1 and D2 and plot the CDF of the number of

iCellSpeed: Increasing Cellular Data Speed
with Device-Assisted Cell Selection

100 T —lmd 100 T T =2 100 = T

=%) 7= wl B
R I . 3] | . | |- o -
=40t 1A g NOJ=60 | g0 7 :
g 20} / No]=0] 20| --N[0]=120| 20 S N[o] = 300]

00 2 4 6 8 10
Mean error rate (%)
(a) 25th-percentile (b) 50th-percentile (c) 75th-percentile
Figure 13: CDF of average performance profiling error rate over all

popular cell sets at all the static locations.

00 2 4 6 8 10
Mean error rate (%)

0 2 4 6 8 10
Mean error rate (%)

serving cells and sets observed across the measured grids in Fig-
ure 12. We exclude grids with insufficient runs and samples in the
same way. We see more than 9 PCells (12 P+SCells) and 18 cell sets
at more than 50% grids in AT&T. T and S have more than 5 PCells
(7 P+SCells) at more than 50% places. We also performed limited
test at several locations in rural areas and find that it is much less
dense for all four operators. We see that the performance gap is not
significant without abundant choices. As a result, we believe that
abundant cell choices are available in the cities.

We also check all the cells used in C1 by four operators. We see
that AT&T deploys 501 unique cells over 19 channels at 6 bands (2,
4,5, 12, 30, 66). But the use of these channels is quite uneven. The
most popular channels (> 10%,) are 850, 2000, 5145, 2175 and 2425
in descending order. Only three channel bandwidths of 5, 10, 20
MHz are used. We admit that such device-side measurement may
be still incomplete despite our extensive study. We observe similar
results for other three operators and omit them.

5.3 Micro-Benchmark Evaluation

We first use the test results at the static locations to evaluate how
iCellSpeed’s main components work in reality.

iProfile. We compare performance profiling accuracy with differ-
ent parameters. In particular, we test with different numbers of
initial samples, N[0] = 0, 60, 120, 300, and three smoothing weights
A =1,1.1,1.5. iProfile takes every experiment run by a chronologi-
cal order. Meanwhile, the ground truth is calculated out of all the
samples at this moment. Figure 13 shows the average error rate for
all popular cell sets (sample number > 600) at all static locations
when N[0] varies from 0 to 300. We show 25, 50, 75-th performance
percentiles of cell set, and omit 0 (min) and 100 (max)-th percentiles
because they are updated accurately. Figure 14 uses one instance
to illustrate the impact of smoothing weight over time (samples).
We show performance profile of cell set 1 {5145(16) - 850(16)} at L1
with A = 1,1.1, 1.5 and N[0] = 60.

We have three observations. First, iProfile achieves accurate es-
timation, by storing several performance percentiles, not a huge
number of raw samples. Second, the accuracy results are very simi-
lar given various sizes of initial samples (even N[0] = 0). The low-
percentile (25) is more sensitive to the initial sample size because
fewer performance samples are considered for a low percentile.
Third, the estimated profiles are quite accurate regardless of 1. Note
that the smoothing weight of 1.5 induces more fluctuation in Fig-
ure 14, which is consistent with our observations at other locations.
This is because higher weight accelerates the pace of forgetting
historical data. Ideally, the weight should be tuned according to the
elapsed time since last update. Considering most of our evaluation
experiments are heavily conducted within one month (every few

MobiCom ’20, September 21-25, 2020, London, United Kingdom

2 7___1‘51,(25)___‘ ;(zs)L [—v 00)_U(00) == (75) = 1)
L] RN AR S R N e g, \,.,V,,Nﬂ\
E40 [W 1) [T 40 | vz N
= %8 [nstmssssssinangy gg *Wu-,?’w-/‘“""*:-; 38 ’W’»‘\r ok
BN 3 O 1 2 3 o1 3

= Sample number (-10%) Sample number (-10%) Sample number (-10%)

(@A=1 b)yA=1.1 (c)A=1.5
Figure 14: Profiling accuracy in one example (Set 1 at L1)

days), we set A = 1.51¢¢k] in our implementation. In the following

evaluation, the default parameters are A = 1 (1.5%), N[0] = 60.
iCustomize. We evaluate the impact of the rules of “speed-not-
OK”, which determines whether iCellSpeed needs further actions.
We define 4 rules accordingly:

Rule I 7 <08 y®) ory!® _10;

current best ™ Voest
Rule L y10), 0 < Ui
Rule III: l//iior)re nt <0.7- wéSe(l)t or ‘//l(yseos)t >
Rule Vi &) 0 < 0.9 942 or g, =5

l//g;)rr ent and xﬁé’;)s , are p-th percentile of performance in the cur-
rent run and in the existing profile. We run the experiment as
follows. Start file downloading on the device and manually disable
iCellSpeed for the first 2 — 3 minutes; That is, iCustomize is run-
ning (monitor performance for decision making), but none of its
decisions is made. Afterwards, as long as any rule above is satisfied,
the device takes action correspondingly. We use the collected traces
to evaluate the rule impact.

Figure 15 presents three showcases at L17 (C1), L15 (C1) and L18
(C2). We use average speed gain to evaluate the impact of the above
four rules. In those plots, red bars represents default performance
before the device action is taken, the stacked bars above red ones
represent performance gains achieved by iCellSpeed with different
rules. There are also default runs with pretty high data speed (none
of rules are satisfied), referring to black bars. We have two main
findings at L17. First, all the rules work well. They detect all runs
with big improvement room and do not bother with good runs
(the last 8 runs). iCellSpeed exploits great potentials at L17 with
speed gains of 20 — 70 Mbps, up to 27-fold. Second, these rules work
slightly different because Rules I to IV become more aggressive.
There is small difference in not-OK runs detected by four rules at
L17. Because the default performance is too poor in most runs so
even the most conservative rule (Rule I) is met. Rules I - IV miss
potential gains in 4 runs (11, 23, 27, 29), 1 run (11) and 0 runs. Note
the missed gains are relatively small and the only exception is at
run 11, where the default speed is not too bad (~ 30Mbps) but the
gain empowered by iCellSpeed is extraordinarily large. Generally,
the speed-not-OK rule is a tuning knob to balance speed gains and
the missed rate. The more aggressive rule brings smaller miss rate,
but more likely with smaller gain.

We further apply Rules I and IV to other two locations. At L15,
iCustomize improves poor situations by 8 Mbps and 7 Mbps on
average for I and IV, given a limited achievable gain (median of the
best cell set is 17 Mbps); At L18, iCustomize decides to take action
in all 23 runs. It makes good catch in 19 runs with more than 1x
enhancement. Dynamics in performance provided by the target cell
set accounts for small or negative gain in other runs, especially like
run 23. This implies that more action rounds should be considered.

MobiCom °20, September 21-25, 2020, London, United Kingdom

Haotian Deng, Qianru Li, Jingqi Huang, and Chunyi Peng

8 601 A Default ATATHIV ——T

6 40

4
A

AN
S

20
2 A

B, R

I €S ESSNNNY |

IXNNNN
S50

P

Z |2

10

Experimennt run
(c) At L18 (C2)

05 20

Experiment run

(b) At L15 (C1)

Figure 15: Showcases of speed gains under different speed-not-ok rules.

Emy gg 1t
20 []
<20 FEHFFTT ’
ARYs5np e
0 10 20
Experiment run
(a) At L17 (C1)
100 F ‘ RRC Case 1:Idle Usage
|| APP{ K | (ms) Phoneidle 12%
80 11| Tock 243 Google Play 6%
OL\O/G o)RRC ! Block 340 Android System 6%
= 7/ Reset _ Mobile Net. 5%
840ﬁ '.' , 71\})}) Screen 2%
- 19 _ 1 1%
lgrlg Lock 2092 rStemU §
20 —H olck 1 Block 2176 iCellSpeed <1%
e ?et Reset 2604 Case 2: Active
0T 2 35 —oo¢ 25%% "YouTube 45%
(a) CDF (b) median iCellSpeed 5%

Figure 16: Disruption time. Table 4: Battery usage.

Disruption. Due to implementation constraints, iCellSpeed has to
disrupt ongoing traffic while taking actions to influence the default
cell selection. We run experiments to measure the disruption time
at both application (APP) and radio resource control (RRC) layers.
We evaluate several actions of iCellSpeed: blocking one or two
frequency bands, locking one specific band, and resetting mobile
networks. In our test phones, blocking any band automatically
blocks band 66. Figure 16 shows blocking or locking band have
similar disruption time at APP layer, which is slightly less than
resetting mobile network (2,694 ms). Locking disrupts RRC and
APP for 248 ms and 2092 ms (median); Blocking has a little larger
disruption time: 340 ms (RRC) and 2176 ms (APP). This matches
with expectation because locking limits the spectrum bands to scan
and has lower overhead. Resetting mobile network results in the
longest disruption because it has to restart Radio Interface Layer
(RIL) daemon [?]; We cannot measure its RRC disruption because it
powers off the radio directly without releasing RRC connection. We
would like to emphasize that the disruption at RRC is unavoidable as
a solution compatible to the existing mechanism and infrastructure;
The disruption from RRC to APP can be reduced with advances on
mobile phone OSes and chipsets.

5.4 Data Speed Gains by iCellSpeed
Static tests (AT&T). We use two metrics to evaluate iCellSpeed.

Figure 17 presents its speed gains at all test locations in AT&T.

When an device action is taken in one run k, iCellSpeed’s gain is
calculated as A or I, for the absolute or relative gap between the
average throughput in the default and customized runs. Note that
the gain can be negative if the customized run is worse. We show
the speed after the first round, without showing the final result after
multiple rounds because iCellSpeed is eventually no worse than
the default one. We clearly see that iCellSpeed significantly boosts
data speed at many locations. It boosts data speed at all locations
in terms of the 25-th percentile absolute gain; The 50-th percentile

i) - =
City C1

8P O o s e
%L'éa%é%%%%%L$%$;%ég$ééé

il 678 0101112131415161718102021222324

=

r .I_\ (Mbps)

Figure 17: Performance gains at all static locations for AT&T.

(median) gain is larger than 10 Mbps at 19 out of 24 locations (79.2%).
Note that our test locations are randomly selected and the achieved
gain is bounded by the missed performance potentials which vary
across locations (Figure 11a). This is why the absolute gain is not
significant at all the locations. We see that the 75-th percentile gain
is smaller than 10 Mbps at 4 out of 24 locations (here, 15, 16 in
C1, 19 in C2 and 22 in C3). Hence, we use the relative gain I to
deal with variance in the bound of the best achievable performance.
Actually, at 15 out of 24 locations (62.5%), the relative gain is larger
than 100% in more than half of runs, up to 28.4x (at location L17).

The second metric is the error rate at the first round, i.e. the
number of runs with negative gains over all device-customized
runs. 14 out of 24 locations have zero error rate. The error rate
is below 0.1 at 6 out of the rest 10 locations. This indicates that
iCellSpeed reliably tames uncertainty and balances gains and risks
well. iCellSpeed corrects the mistake finally while its intermediate
performance may get hurt.

Other operators. We evaluate iCellSpeed for Verizon and T-Mobile.

Rate throttling makes it hard for us to evaluate Sprint. We see similar
results with significant gains in Verizon (plots omitted). iCellSpeed
increases data speed by more than 30 Mbps at 57% of test locations
(up to 91Mbps). It at least doubles speed at 87% of test locations
(up to 27.3x). We do not often observe expected gains for T-Mobile.
We observe that resetting mobile networks sometimes boosts data
speeds but its impact is random, depending on which cell set being
selected. We find that most missing performance in T-Mobile is
from the use or combined use of band 66. However, our current
implementation automatically disables band 66 when blocking any
bad band. It is the implementation constraint that prevents us from
increasing data speed through iCellSpeed. Gains are possible once
this constraint is released.

Driving tests. Figure 18 demonstrate iCellSpeed’s speed gains
using three examples on driving routes R1, R3 and R6. We use the
left plot (R1) to illustrate how iCellSpeed works. We drive the same
route without (default) and with iCellSpeed. In the default run, the

30
20

10

-3

—

iCellSpeed: Increasing Cellular Data Speed
with Device-Assisted Cell Selection

MobiCom ’20, September 21-25, 2020, London, United Kingdom

1207 T T, T T 20 T T T T 90 T T T T T
2100 -~ Default -+ iCellSpeed 315 -~ Default = iCellSpeed A -~ Default =+ iCellSpeed
) : 8151 1 &
= 80 = 260
= 60 |4 ; Zor | =
g 40 ' 25 £30
£ 20 = = LA

0l) | C . . (rU} oo P00 ' ! ! L

0 200 400 600 800 1,000 200 400 600 800 1,000 200 400 600 800 1,000 1,200 1,400

Distance (m)

VBR/ CBR Zoom Download 109 ‘
Main | Stall/Play || Delay (ms) Time (s) ;\380
Res. | 1K | 4K || Send| Recv || 25MB| 100M} - 60
D 360p 4.5 | 41.7 || 210 | 201 55.1 329.6 840
iCS 1080p | O 0.84 || 91 85 17.7 | 82.4 20
D/iCS | -) 49.6(| 2.3 | 24 3.1 4.0

0

(a) Multiple applications at L17 (D: default, iCS: iCellSpeed) (b) Zoom at L17

Distance (m)
Figure 18: Three examples of iCellSpeed’s speed gains over distinct routes (R1, R3 and R6, from left to right).

Stall/Play

Distance (m)

i Os60p E4s0p
ODefaultdiCelSpeed

1

L1 L5 L7 L9 L14 L15 L17 L18
(d) VBR video streaming

o Default E720pld1080p 4K

[oiCellSpeed B
X
. az 1 i)

L1 L5 L7 L9 L14 L15 L17 L18
(c) 4K CBR video streaming

=

'
T
n

T
Iﬂ}w
| HIH
L
;¥

Figure 19: iCellSpeed’s performance gains for test applications at multiple locations (AT&T)

R1
275%

R2
115%

R3
181%

R4
97%

R5
135%

R6
119%

Route
Gain (y)

Table 5: Speed gains by iCellSpeed on 6 driving routes in C1.

device suffers poor performance no more than 15 Mbps from the
point of 270 m. It is connected to cell set {2425(363)-None-None}
(270-464 m) and {66911(421)-None-None} (464-1047 m). For a run
with iCellSpeed, it detects poor performance with {2425(363)-None-
None} in the area of 450-480 m. Then iCellSpeed takes the action
of blocking band 5 and 66 and thus moves to a good cell set. The
average performance grows from 13 Mbps to 64 Mbps.

We define y = (lf//iCeIISpeed = Vdefault)/ Vdefault to quantify the
speed gain in a driving test, where 1/ is the average speed by *
(default or iCellSpeed) over the same route segment after iCellSpeed
is triggered (including OMbps during 2-second disruption). Note
that we use the average speed over the same segment (distance),
not over the same duration because the driving time changes at
each run. We see 352% and 120% gains in other two examples (R3
and R6). Table 5 shows the average gain observed on six routes in
C1 where iCellSpeed is in use.

Other applications. We test iCellSpeed with three popular appli-
cations with elephant flows: DASH video streaming, video confer-
encing and file downloading. Note that iCellSpeed is not applicable
to mice flows only because it is not triggered in a short flow lifespan.
Figure 19 plots the results at 8 representative locations (with vari-
ous data speeds and iCellSpeed gains) including 7 locations in C1
and 1 location (L18) in C2 using AT&T. For video streaming, we test
with a demo video at bitmovin [?] with constant bitrate encoding
(CBR) and variable bitrate encoding (VBR). For video conferencing,
we use Zoom to set up a call between a mobile phone and another
device via WiFi with abundant bandwidth. For file downloading,
we consider two sizes: 25MB and 100MB. In this test, we see the
worst data performance at L17 and thus choose L17 as an example
to demonstrate that iCellSpeed has greatly boosted performance
for all test applications in Figure 19a. Specifically, iCellSpeed helps
VBR streaming to increase it dominant bitrate from 360p to 1080p
(1K). It drops the stall/play ratio for CBR video streaming, from 4.5
to 0 for a 1K video (from 41.7 to 0.84 for a 4K video), making at
least 1K video steaming affordable at L17; In Zoom video confer-
encing, it reduces the send/uplink latency by 2.3x (downlink: 2.4x),

from 210ms (201ms) to 91ms (85ms). It accelerates file download-
ing by 3.1x (25MB) and 4x (100MB). Due to space limit, we only
present CBR and VBR streaming results at test locations (Figure 19¢
and 19d). We see that iCellSpeed enables 4K video streaming at
5 locations (L1, L5, L7, L14, L18); All these gains are attributed to
increased speeds by iCellSpeed. We notice that 4K CBR is not an
acceptable viewing option in these default runs, which all suffer
from extremely high stall/play rate except at L18. We choose it as a
stress test to see how badly it can be without iCellSpeed. Similar
enhancements are observed in the VBR tests, with more acceptable
viewing experience by default, thanks to lower bitrates in use.

Multiple devices. We next evaluate how iCellSpeed performs
in a multi-device scenario. We use (n, m) test phones where n is
the total number of co-located phones and m is the number of
phones running iCellSpeed (m = 1,- - - ,n — 1). We consider in two
scenarios: (a) all the phones are initially served by poor cells; (b)
only those running iCellSpeed are initially served by poor cells
and others are served by good cells (which actually run iCellSpeed
to move to good cells first and then disable iCellSpeed). The first
setting is to evaluate how iCellSpeed’s effectiveness scales up, and
the second is to evaluate its impact on those devices without iCell-
Speed. Figure 20 plots the results before and after iCellSpeed takes
effects at L5 (AT&T) in both settings. The results at other locations
are similar and omitted. We test with n up to 5 and present the
results when n = 5, as similar results are observed at n = 2, 3, 4. We
have three observations. First, we clearly see that iCellSpeed boosts
performance of those iCellSpeed-enabled phones previously served
by the poor cells in both scenarios. Second, the gain declines as m
grows when all the phones are previously served by the poor cells.
The data speed grows from 2.2Mbps to 87Mbps (39.5x), 47.7Mbps
(21.7x), 29.7 Mbps (13.5x) and 20.9Mbps (9.5x) when m grows from
1 to 4. Third, this results in the dropped speed for those phones
which are previously served by the good cells. In Figure 20b, the
phone without iCellSpeed gets its speed from 87 Mbps to 17.4Mbps
when four phones switch to the good cells. This is expected be-
cause iCellSpeed is to exploit under-utilized capabilities, but not
to increase raw capabilities. Once more devices move to the good
cell(s), they compete resources and thus the obtained share drops.
We observe significant enhancements in our real-world tests. This
implies that the network capabilities are often under-utilized in

MobiCom °20, September 21-25, 2020, London, United Kingdom

ESO . /ggo IE] Default-before

= S |MDefault-after

=i b=

20 = 90 3ics-before

240 2.40 (BiCS-after :

"&b "&b :

Zaf 220 . 1

2 £ u 5

E o =& = =
(5.1 (5.2) (5,3) (5,4) (6.1 (5,2) (5,3 (5.4

(a) n phones are poor (b) m phones are poor
Figure 20: iCellSpeed in (n, m) multi-device tests at L5 (AT&T).

presence of a number of real user phones beyond our control.
Energy overhead. We further assess iCellSpeed’s energy con-
sumption in two scenarios where the device is idle (with iCellSpeed
being in the background but not triggered) or active with heavy
traffic (here, YouTube, with iCellSpeed being triggered). We test it
with a Pixel 2 device (2700 mAh) and Table 4 shows the results. In
the idle setting, we see that extra energy consumed by iCellSpeed
is negligible, compared to built-in services and components run-
ning in the background. In the active setting, we keep playing an
YouTube video and find that iCellSpeed consumes 5% extra energy
when YouTube uses 45% energy. The energy overhead is mainly
used to monitor GPS, cellular signaling messages and system level
throughput, which can be cut with energy-efficient monitoring.

6 RELATED WORK

There is no prior work to boost data performance through device-
assisted cell selection. We briefly introduce most relevant work
on cell selection/handoff in mobile networks and device-only per-
formance improvement. Our work is inspired by recent handoff
studies [15, 16, 18, 25]. [18] examines how handoff is performed
and whether a handoff decision converges; [16, 25] investigate how
handoff decisions impact performance and show that a handoff
may result in worse performance; [15] is our preliminary study and
unveils the problem of missed performance, by measuring the gap
between the worst and the best choices. Our work differs from all
the above studies, and targets to solve the problem. Device-centric
performance solutions are divided into three categories: higher-
layer APP/TCP optimization (e.g., [17, 21]), cross-layer optimization
that leverages cellular-specific lower-layer information to enhance
higher-layer functions (e.g., [13, 22, 24]), and lower-layer optimiza-
tion (e.g., [19]). Our work also does lower-layer optimization. [19]
enhances multi-operator access in Google Fi and we improve dom-
inant radio access within a single operator. Given distinct causes
for poor data performance, the proposed solution is different.

7 DISCUSSION

We discuss other possibilities and remaining issues.

Are larger gains possible? Absolutely yes. The gain would be
larger when more device power is available, for example, when
the device can directly lock the desired cells instead of blocking
some bands to indirectly influence cell selection. The gain would
be larger if the device supports swift band switching, without the
2-second disruption which is constrained by current practice of
device chipsets and OSes.

Should we do it on-device only? Absolutely no. Instead, we ar-
gue that network is a better place to solve this problem. The gain
is much larger or even reaches its full potential when the changes

Haotian Deng, Qianru Li, Jingqi Huang, and Chunyi Peng

are allowed at the network side. For instance, it performs a global
performance-driven optimization, which is not myopia constrained
by partial observations at runtime. In this work, our aim is to offer
a working solution even with modest gains and demonstrate feasi-
bility to increase speed missed by current cell selection practice.
Does it hurt other devices and/or network? Maybe. The oper-
ators may intend to sacrifice user experience with rational, e.g,
load balancing for network-side optimization, or throttling data for
those without premium plans. We do not argue that they have to
select cells that offer the best performance to mobile users. Our
goal is to pursue better data performance which is sometimes un-
necessarily missed in reality. We believe that boosting performance
with no need of changing physical infrastructure is aligned with
the interests of both operators and users in some real-wold cir-
cumstances. If they do not match, the network always holds the
right and final power to decide what to serve the device. We notice
that iCellSpeed may benefit the device but at the cost of perfor-
mance degradation of other devices (Figure 20b). This is because
the default selection is unfair and should take the blame at the first
place. In theory, iCellSpeed may oscillate when a large number of
iCellSpeed-enabled devices are synced to intervene cell selection
and impact each other. It is not observed in practice as iCellSpeed
removes this cell choice once it underperforms. In the worst case,
it conservatively goes back to the default selection.

Will the problem disappear in 5G? It will not go away as 5G
proceeds. The identified issue of missed performance potentials
conceptually exists in 5G that still takes radio signal quality, not the
resulted performance into account [10]. This issue is likely even
worse in 5G with much denser deployment, more spectrum choices,
and bigger performance gaps contributed by advanced technologies
(e.g., 10Gbps vs tens of Mbps). It was reported that the device failed
to get 5G where 5G was available in an early 5G measurement [3].

8 CONCLUSION

In this work, we present the design, implementation and evaluation
of iCellSpeed. Our effort is motivated by the premise that today’s
network-centric cell selection may result in a nonnegligible, sub-
optimal choice of cells for a given device. Consequently, the user
device suffers from large access speed dip from the highest avail-
able one in practice, while the network suffers from significantly
underutilizing the available resources. Our extensive measurements
have confirmed both. The root cause lies in today’s network-centric
cell selection scheme where the device has minimal influence on
decision making. While this might work on the dumb terminals in
the past telecom age, it does not work well with the increasingly
capable and smart devices in the Internet and Al age.

iCellSpeed thus explores a new paradigm of “device-assisted,
infrastructure-decided” design for 4.5G and beyond. As a result, it
is a win-win game for both the device and the infrastructure. The
infrastructure better utilizes its current resources, while the device
gains its desirable, higher access speed. iCellSpeed thus improves
device performance without upgrading the infrastructure, but via
smart decision inputs from users and better utilization for networks.

Acknowledgments. We appreciate our shepherd and reviewers
for their constructive comments. This work was partially supported
by NSF grants: CNS-1749049, CNS-1750953 and CNS-2027650.

iCellSpeed: Increasing Cellular Data Speed
with Device-Assisted Cell Selection

REFERENCES

(1]

[14]

[15

2016. AT Command User Guide. http://gamma.spb.ru/images/pdf/L506_AT
Command_User_Guide_V2.1.pdf. Access: 01/24/2020.

2019. MobileInsight. http://www.mobileinsight.net,2019.

2020. 5G Speed Report: Early 5G Experience Provides Mixed Re-
sults. https://www.telecompetitor.com/5g-speed-report-early-5g-experience-
provides-mixed-results/. Access: 03/01/2020.

2020. Android Open Source Project. https://source.android.com/.
01/19/2020.

2020. Android.Telephony. http://developer.android.com/reference/android/
telephony/package-summary.html. Access: 01/20/2020.

2020. Codes Google Pixel. https://www.hardreset.info/devices/google/google-
pixel/codes/. Access: 01/19/2020.

2020. iCellSpeed Datasets. https://github.com/mssn/iCellSpeed-Dataset.

2020. Network Signal Guru. https://play.google.com/store/apps/details?id=com.
qtrun.QuickTest. Access: 01/21/2020.

3GPP. 2013. Carrier Aggregation explained. https://www.3gpp.org/technologies/
keywords-acronyms/101-carrier-aggregation-explained.

3GPP. 2019. TS23.502: Procedures for the 5G System (5GS). V15.8.0 (Release 15).
3GPP. 2019. TS36.101: E-UTRA; User Equipment (UE) radio transmission and
reception. V15.6.0 (Release 15).

3GPP. 2020. TS36.331: E-UTRA; Radio Resource Control (RRC). V15.9.0 (Release
15).

Arjun Balasingam, Manu Bansal, Rakesh Misra, Kanthi Nagaraj, Rahul Tandra,
Sachin Katti, and Aaron Schulman. 2019. Detecting if LTE is the Bottleneck with
BurstTracker. In The 25th Annual International Conference on Mobile Computing
and Networking (MobiCom’19).

Arthur P Dempster, Nan M Laird, and Donald B Rubin. 1977. Maximum likelihood
from incomplete data via the EM algorithm. Journal of the Royal Statistical Society:
Series B (Methodological) 39, 1 (1977), 1-22.

Haotian Deng, Kai Ling, Junpeng Guo, and Chunyi Peng. 2020. Unveiling the
Missed 4.5G Performance In the Wild. In Proceedings of the 21st International
Workshop on Mobile Computing Systems and Applications (Austin, TX, USA)
(HotMobile’20).

Access:

[16

o
)

[18

[19

[20

[21

[22

[23

[24

[25

MobiCom °20, September 21-25, 2020, London, United Kingdom

Haotian Deng, Chunyi Peng, Ans Fida, Jiayi Meng, and Charlie Hu. 2018. Mobility
Support in Cellular Networks: A Measurement Study on Its Configurations
and Implications. In ACM Internet Measurement Conference (Boston, MA, USA)
(IMC’18).

Prateesh Goyal, Anup Agarwal, Ravi Netravali, Mohammad Alizadeh, and Hari
Balakrishnan. 2020. ABC: A Simple Explicit Congestion Control Protocol for
Wireless Networks. In USENIX Symposium on Networked Systems Design and
Implementation (NSDI'20).

Yuanjie Li, Haotian Deng, Jiayao Li, Chunyi Peng, and Songwu Lu. 2016. Instabil-
ity in Distributed Mobility Management: Revisiting Configuration Management
in 3G/4G Mobile Networks. In ACM International Conference on Measurement and
Modeling of Computer Science (Antibes Juan-Les-Pins, France) (SIGMETRICS16).
Yuanjie Li, Haotian Deng, Chunyi Peng, Guan-Hua Tu, Jiayao Li, Zengwen Yuan,
and Songwu Lu. 2016. iCellular: Define Your Own Cellular Network Access on
Commodity Smartphones. In USENIX Symposium on Networked Systems Design
and Implementation (Santa Clara, CA, USA) (NSDI’16). 643-656.

Yuanjie Li, Chunyi Peng, Zengwen Yuan, Jiayao Li, Haotian Deng, and Tao Wang.
2016. MobileInsight: Extracting and Analyzing Cellular Network Information
on Smartphones. In ACM International Conference on Mobile Computing and
Networking (MobiCom’16).

Ashkan Nikravesh, Yihua Guo, Xiao Zhu, Feng Qian, and Z Morley Mao. 2019.
MP-H2: A Client-only Multipath Solution for HTTP/2. In The 25th Annual Inter-
national Conference on Mobile Computing and Networking (MobiCom’19).
Zhaowei Tan, Yuanjie Li, Qianru Li, Zhehui Zhang, Zhehan Li, and Songwu Lu.
2018. Supporting mobile VR in LTE networks: How close are we? Proceedings of
the ACM on Measurement and Analysis of Computing Systems 2, 1 (2018), 1-31.
Wikipedia. 2017. LTE Frequency bands. https://en.wikipedia.org/wiki/LTE_
frequency_bands.

Xiufeng Xie, Xinyu Zhang, and Shilin Zhu. 2017. Accelerating Mobile Web
Loading Using Cellular Link Information. In Proceedings of the 15th Annual Inter-
national Conference on Mobile Systems, Applications, and Services (MobiSys’17).
Shichang Xu, Ashkan Nikravesh, and Z Morley Mao. 2019. Leveraging Context-
Triggered Measurements to Characterize LTE Handover Performance. In Interna-
tional Conference on Passive and Active Network Measurement (PAM). 3-17.

	Abstract
	1 Introduction
	2 Radio Access Primer
	3 Missed Performance Potentials
	3.1 An Motivating Example
	3.2 Why Are Significant Potentials Missed?

	4 iCellSpeed Design
	4.1 Overview of iCellSpeed
	4.2 iCustomize
	4.3 iProfile

	5 Implementation and Evaluation
	5.1 Methodology and Datasets
	5.2 Reality Check Without iCellSpeed
	5.3 Micro-Benchmark Evaluation
	5.4 Data Speed Gains by iCellSpeed

	6 Related work
	7 Discussion
	8 Conclusion
	References

