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ABSTRACT

This paper reports our five-year lessons of developing and using

MobileInsight, an open-source community tool to enable software-

defined full-stack, runtime mobile network analytics inside our

phones. We present how MobileInsight evolves from a simple mon-

itor to a community toolset with cross-layer analytics, energy-

efficient real-time user-plane analytics, and extensible user-friendly

analytics at the control and user planes. These features are enabled

by various novel techniques, including cross-layer state machine

tracking, missing data inference, and domain-specific cross-layer

sampling. Their powerfulness is exemplified with a 5-year longitu-

dinal study of operational mobile network latency using a 6.4TB

dataset with 6.1 billion over-the-air messages. We further share

lessons and insights of using MobileInsight by the community, as

well as our visions of MobileInsight’s past, present, and future.
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1 INTRODUCTION

The mobile network has been a critical global infrastructure for

decades. Together with the wired Internet, it offers ubiquitous wire-

less network access and wide-area seamless mobility. The 4G LTE

and upcoming 5G have successfully served billions of users today,

and will enable trillions of Internet-of-Things in the foreseen future.
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Despite its great success, the mobile network remains a complex

łblack boxž for its users. To enable łanywhere, anytimež network

services, it incorporates various wireless communication, mobility

management, data transfer, and security functions on the control

plane and user plane. These functions work together to enable

network services, and involve complex interactions in a distributed

environment. Moreover, themobile network inherits the łsmart core,

dumb terminalž design philosophy from the telephony network:

Most functions are placed inside the infrastructure, leaving limited

visibility to the end devices. Such opaqueness prevents devices from

understanding what goes on, why it happens, and how to deal with

it. Furthermore, operators are reticent to share their insights from

the infrastructure side. So it is hard for researchers and developers

to understand and exploit the operational mobile network.

To open up the łblack boxž mobile network operations to de-

vices, we started the MobileInsight project in 2015. Our goal was

to build an open-source community software tool that enables

software-defined full-stack, runtimemobile network monitoring and

analytics inside our commodity phones. This tool should enable

open access to operational mobile network data and offer exten-

sible in-device analytics for runtime network behaviors. It should

facilitate researchers and developers to readily and accurately un-

derstand and exploit the mobile network, without relying on the

netwrok infrastructure or operators.

We released the first version of MobileInsight to the commu-

nity in 2016 [13, 53]. Since then, MobileInsight has evolved from

a simple in-device network monitor to an enabler of device-based

network analytics, diagnosis, and customization. We are thrilled to

see numerous real uses with MobileInsight, such as performance

boosting, energy analysis, configuration diagnosis, security threat

detection, to name a few (see representative studies in Table 3).

We continuously refine its design based on user feedback, extend

it with advanced features, use it to build large-scale operational

datasets, and repeatedly validate its value in diverse scenarios.

This paper is a retrospective of our experiences in building

and using MobileInsight over the past five years. We revisit the

(un)successful lessons from MobileInsight as a community tool.

Rather than focusing on MobileInsight’s specific issues, we use

MobileInsight as an example to address three general questions:

(1) How can an in-device software tool help analyze the łblack-

boxž mobile network, and enable various new applications

that existing solutions cannot?

(2) Looking back, what design choices did the original MobileIn-

sight design make right, and what did not?

(3) What are the potentials and limitations of device-based, data-

driven mobile intelligence and customization?

The rest of the paper will answer these questions from both the

developers’ and users’ perspectives. We explain why it is hard to

enable in-device mobile network analytics in §2. Then in §3, we
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Table 1: Virtual interfaces for the diagnostic mode.
Mobile OS OS Version Chipset Virtual interface Open driver

Android 4.4ś11.0 Qualcomm /dev/diag [2]

Android 4.4ś11.0 MediaTek /dev/ccci_md_log_ctrl [1]

Android 4.4ś11.0 Intel XMM /dev/mdmTrace [11]

iOS 9ś14 Apple A6 /private/var/logs/Baseband [4]

• Protocol analyzers: The initial MobileInsight focused on the

analysis of individual control-plane signaling protocol. Given raw

messages, MobileInsight infers each protocol’s states, triggering

conditions for state transitions, and taken actions. Moreover, it

infers certain protocol operation logic that uses operator-defined

policies and configurations. MobileInsight abstracts each protocol

analytics as an analyzer class with open APIs. Users can customize

their own analytics on top of MobileInsight’s built-in analyzers.

3.2 Why is Initial MobileInsight Not Enough?

We publicly released the initial MobileInsight in 2016. From user

feedback and our own experiences, we realized the initial MobileIn-

sight has not yet achieved all its aforementioned goals:

(1) In-device, full-stack runtime monitor: This feature has

been successful since MobileInsight’s first release, with positive

user feedback and high satisfaction. Our first release only supported

Qualcomm chipsets. Later we supported MediaTek chipsets, and

more messages from new standards (from 3GPP Release 7 to Release

15). To support new chipsets and OSes, we first verify whether they

have provided similar diagnostic ports. If yes, we can follow the

similar way in the initial design (§3.1) to enable in-device monitor.

As summarized in Table 1, we have validated that similar diagnostic

ports are indeed available for Qualcomm, MediaTek, Huawei, and

Intel chipsets. We have also validated that similar in-device monitor

can be realized in iOS (although jailbreak is needed). In the past five

years, we have explored new virtual interfaces to enable MobileIn-

sight at more device models (with new chipsets and OS versions)

and continuously upgraded MobileInsight accordingly to support

new 3GPP standards (up to Release 15). Our experience is that Mo-

bileInsight is extensible to future 3GPP standards and device models,

given its successful extension to new standards, chipsets, and mo-

bile OS versions in the last years. We only need to acquire latest

commodity phones for testing and exploit diagnostic ports’ driver

codes as the ground truth. Moreover, the monitor-analyzer design

is flexible for long-term extension across devices: the monitor can

be extended independently due to device-specific characteristics,

while most analyzers can be reused across the devices.

(2) Real-time deep mobile network analytics: The initial Mo-

bileInsight mainly analyzed individual signaling protocols in the

control plane. This is not enough for two reasons. First, many

usage scenarios involve multiple protocols across layers in a dis-

tributed environment. It has been widely reported [54, 71, 73] that,

even if each individual protocol behaves well, the interactions be-

tween protocols can still be problematic in reality. Understanding

these interplays calls for cross-layer, vertical analytics (ğ4.1). Sec-

ond, the user-plane analytics was largely missing, especially for

the link/physical-layer analytics below the TCP/IP stack. Without

it, many issues in runtime data transfer remained mysterious for

devices. However, different from the control-plane analytics, the

user plane one faces an explosive growth of over-the-air messages.

This poses challenges on energy-efficient, real-time analytics (ğ4.2).

Table 2: Available over-the-air messages in MobileInsight.
Message types

C
o
n
tr
o
l
p
la
n
e

SM Default or dedicated session setup, modification and release; PDN

connectivity setup, modification and release.

MM Attach/detach; Authentication request, response, and failure; Secu-

rity mode control; Service request; Paging; Identification request

and response.

RRC Radio connection setup, release, re-establishment and reconfigura-

tion; System info blocks; Handover command; Measurement control

and report; Radio capability query; Paging; Security model com-

mand.

U
se
r
p
la
n
e

PDCP Uplink and downlink control/data packets; Ciphering, integrity

check, and compression configuration.

RLC Uplink and downlink control/data segments, sequence number, and

acknowledgment; Scheduling, retransmission and timer configura-

tion; Traffic delivery statistics.

MAC Uplink and downlink transport blocks, and positive/negative ac-

knowledgment; Uplink scheduling request; Uplink buffer status

report; Uplink random access trigger and attempt; Retransmission

configuration.

PHY Radio band indicator; DL/UL radio resource allocation; Channel

estimation (signal strengths, CQI, PMI, RI, path loss); Modulation

and coding scheme; Block error rate; Physical data rate; Cell search,

measurement and selection; Uplink transmission power control;

Downlink reception power control (DRX); Random access status.

(3) Open and extensible platform: The initial MobileInsight

indeed offered open APIs for fine-grained protocol analytics, cus-

tomizable data collection, and extensible plugins. However, accord-

ing to numerous technical inquiries and feedback from the com-

munity, they were not friendly to new users due to their nature of

low-level semantics. Using these APIs requires deep understanding

of mobile network and its complex operations, which is difficult for

most users. This limits MobileInsight’s wide adoption (ğ4.3).

3.3 Five-year Milestones

To address these limitations, we have progressively enhanced Mo-

bileInsight since its first public release in 2016. These refinements

follow MobileInsight’s simple framework in §3.1. Now the latest

MobileInsight (v6.0, released in December 2020) has 60,409 lines of

code (33,001 lines of C++ and 27,408 lines of Python). Figure 2 shows

MobileInsight’s evolution roadmap and milestones in the past five

years, from both the developers’ and primary users’ perspectives.

• Developers’ milestones: MobileInsight evolves as follows:

◦ 2015ś2016: Basic in-device monitor (§3.1). We built the alpha

MobileInsight for the in-device full-stack monitoring.

◦ 2016ś2017: Control-plane protocol analytics (§3.1).With runtime

over-the-air messages, we enabled basic analytics of each individ-

ual signaling protocol, including the protocol state tracking and

operation logic inference.

◦ 2017ś2018: Cross-layer vertical analytics (§4.1).We added cross-

layer analytics on top of individual protocol’s analytics. We started

from control-plane analytics, and later extended it to user plane

and interplay across control/user planes.

◦ 2018ś2019: Energy-efficient runtime user-plane analytics (§4.2).

We devised cross-layer sampling with missing data inference (§4.1)

for energy-efficient, real-time user-plane analytics.

◦ 2019ś2020: User-friendly, extensible analytics (§4.3). To broaden

the adoption, we followed the user feedback to extendMobileInsight

with user-friendly, extensible KPI analyzers to streamline its usage.

• Users’ milestones: Since 2016, MobileInsight has attracted

global uses from 350+ academia and industry institutes (Figure 3).
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Figure 4: Simplified cross-layer state machines.

to establish the radio connectivity, the MM protocol to mutually

authenticate the device and network, and the SM protocol to create

a data session (§2). As the device moves, the control plane should

migrate the session to new network nodes for seamless data access.

To this end, the RRC protocol migrates the radio connectivity to the

new base station via handover, and the SM/MM protocol migrate

the session across location domains via tracking area update. Before

these procedures are successfully completed, the data transfer will

be blocked, thus incurring extra latencies.

◦ User-plane interactions: In the mobile network, each packet tra-

verses across link/physical layers. These protocols collaboratively

deliver the user traffic through complex interactions. As shown in

Figure 4b, The PDCP layer labels each IP packet with a sequence

number, and pushes it to the RLC layer. The RLC layer divides

each packet into multiple segments based on the available runtime

physical-layer radio resource. For in-order reliable delivery, RLC

maintains per-segment sequence number and acknowledgment.

The MAC maps RLC segments to transport blocks, buffers them to

wait for physical-layer transfer, multiplexes them for delivery, and

corrects block errors via HARQ procedure.

◦ Interplays across control and user planes: The control and user

planes mutually impact each other. On one hand, before the control-

plane signaling procedures finish, the user-plane data is blocked.

The signaling protocols also configure the user-plane protocols

with channel bandwidth, scheduling parameters, retransmission

timers, to name a few. We will exemplify such configurations in

§5.1. On the other hand, the user plane also delivers the control-

plane signaling messages. The message loss/corruption will affect

the signaling protocols’ functionality, reliability and performance.

Challenges of cross-layer analytics: MobileInsight faces two

challenges in analyzing cross-layer network behaviors. First, it

should tackle the complex interactions at the control plane, user

plane, and across planes. Second, at the user plane, MobileInsight

should tolerate the missing data from the packet loss or corruption.

Missing data state from one layer can propagate to other layers and

complicate the analytics. For example, if a corrupted MAC block

cannot be recovered, its error will spread to RLC for retransmis-

sion with new missing data states. Inferring such missing states

is more difficult for downlink, since the device-side MobileInsight

has limited ground truth of downlink packets’ status.

MobileInsight’s cross-layer analytics: To address both issues,

MobileInsight derives the control/user-plane state machines, tracks

runtime states across layers, and infers the missing data state by

leveraging the temporal inter-packet dependency.

◦ Cross-layer state machine tracking: At the control plane, Mo-

bileInsight tracks signaling protocols’ runtime states and their inter-

actions. It first extracts each protocol’s state machines from 3GPP

standards [25, 26, 29, 30]. As shown in Figure 4a, the RRC states de-

cide the radio connectivity and power-saving mode, the MM states

define device’s registration status to core network, and the SM

states decide the session (de)activation. These state machines are

stacked and interconnected by standardized cross-layer state map-

ping (illustrated as dotted lines in Figure 4a): The lower-protocol’s

state change (e.g., łInactivež state in RRC due to radio link failure)

will propagate to upper layers (de-registration in MM and session

deactivation in RRC in this example). MobileInsight tracks each

protocol by feeding runtime messages to the state machines. Upon a

protocol state change, MobileInsight updates other protocols’ states

accordingly based on cross-layer state mapping.

At the user plane, MobileInsight tracks per-packet delivery status

across below-IP layers. Figure 4b shows the simplified per-packet

state machines from standards [18ś20, 22ś24] and their cross-layer

state mapping. The PDCP states define the delivery status of a ci-

phered IP packet. The RLC states track the in-order reliable delivery

status of segments. The MAC states decide the buffering, transfer,

and error status of transport blocks. These protocols’ states are cor-

related on a per-packet basis: A packet at PDCP layer is divided into

multiple RLC segments, each of which are further mapped to MAC

transport blocks based on available physical-layer radio resource.

The delivery state (sent, received, pending, lost/corruption, and

retransmission) at one layer will decide the delivery states of other

layers (dotted lines in Figure 4b). MobileInsight keeps a replica of

these state machines per packet, maps it to RLC segments and MAC
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Figure 6: Accuracy of MobileInsight compared to the

infrastructure-side ground truth (OAI [6] over USRP B210).

transport blocks, tracks the delivery of them based on the runtime

messages at each layer, and updates the fine-grained state across

layers based on the dependency in Figure 4b.

Last, MobileInsight tracks the interplay across control and user

planes. By checking the signaling protocol states, it decides if the

data transfer is allowed and updates each packet’s state accordingly.

Moreover, it tracks the delivery of signaling messages at user plane,

and updates the control-plane states if the message is lost/corrupted.

◦ Missing data state inference via inter-packet dependency: If a

user-plane packet is lost, its status is unknown to MobileInsight. To

infer its state, MobileInsight utilizes the temporal dependency be-

tween packets. Figure 5 exemplifies this with two received packets

and one missing packet. The link-layer in-order reliable delivery

couples packets’ state machines. A missing packet’s possible state

can be bounded by its nearby packets. By checking the received

packets’ states before/after the missing data, MobileInsight nar-

rows down the missing data’s possible states to provide bounded

information such as retransmission latency.

Comparison with the ground truth: To quantify the accuracy

of MobileInsight’s cross-layer analytics, we compare it with the

ground truth. We first compare MobileInsight with two device-

side analytics tools: QXDM [67] and Network Signal Guru [5]. We

confirm MobileInsight unveils identical standardized control/user-

plane operations to these tools, because all these tools have access to

the same mobile network information from the hardware modem.

We next compareMobileInsight’s accuracywith the infrastructure-

side ground truth. We build a controlled LTE infrastructure using a

commodity server (as core network), USRP B210 (as a radio base sta-

tion) and OpenAirInterface [6] software cellular protocol stack. We

use a commodity phone withMobileInsight to connect to this infras-

tructure, and compare the runtime MobileInsight analytical results

with those on the infrastructure side. Figure 6 exemplifies the com-

parison result at the control and user planes. At the control plane,

Figure 6a verifies MobileInsight unveils identical signaling protocol

states to those on the infrastructure side. At the user plane, Figure 6b

compares the upper/lower-bound of the downlink packet latency

inferred by MobileInsight with the infrastructure-side ground truth.

When there is no retransmission due to data loss/corruption, Mo-

bileInsight unveils identical per-packet downlink data latency to

the ground truth. In presence of the retransmission, MobileInsight’s

missing data inference via inter-packet dependency ensures mar-

ginal errors compared to the ground truth, with an error of 0.19ms

on average and 4ms at maximum (i.e., ≤1.4% estimation errors).

4.2 Efficient Real-time User-plane Analytics

In 2018, we extended MobileInsight for the below-IP user-plane

analytics. Different from control plane, user plane faces an explo-

sive growth of over-the-air messages. This poses challenges to the

energy-efficient, real-time analytics in commodity devices.

Characteristics of user-plane analytics: Compared to control-

plane messages, user-plane messages are simpler with fewer fields,

but more intensive with massive amount of packets to deliver. Fig-

ure 7 shows the user plane’s messages are 2∼3 orders of magnitude

more frequent than the control plane’s.

We next quantify how well the initial MobileInsight tackles user-

plane analytics inside devices. We enable all messages in Table 2 to

evaluate the initial MobileInsight’s runtime responsiveness, energy,

and CPU usage. We repeat this test with data collection only, col-

lection + message parsing, and collection + parsing + analysis. For

energy usage, we also compare MobileInsight with the worst-case

background scenario when the screen is always on. Figure 8 shows

the results. We make three observations:

•Real-time responsiveness: Surprisingly, even with intensive

user-plane messages, MobileInsight can still timely process them

before the next message arrives. For each message, we define its

accumulative lag as the elapsed time that its processing is after the

next message’s arrival. Figure 8a shows MobileInsight can analyze

≥95% user-planemessages with ≤1ms lag. Themaximal lag is ≤8ms.

This is because most user-plane messages are simple to process.

• Energy deficiency: The initial MobileInsight’s responsive

real-time user-plane analytics is at the cost of huge energy and

CPU usage. Figure 8d shows that, with all messages enabled, Mo-

bileInsight consumes 21% battery in 1 hour, which is 1.5× compared

to the scenario with the always-on screen. The battery is mostly

used by software, since the data collection from chipset consumes

comparable energy to the scenario without MobileInsight. Its en-

ergy consumption is proportional to message volumes.

• Heavy CPU usage: With all messages, Figure 8c shows the

initial MobileInsight occupies one core and uses 12ś23% CPU in

total. The CPU usage is proportional to message volumes, and

dominated by message parsing (≥99%) in software space.

Vanilla solution: Domain-specific independent sampling To

save the battery and CPU, MobileInsight should reduce the cost of

processing intensive link/physical-layer messages and retain high

analytics accuracy. For non-real-time tasks, MobileInsight can col-

lect raw messages in device and analyze them offline. For real-time

analytics, MobileInsight can sample the messages to analyze. The

initial version of MobileInsight’s user-plane analytics uniformly

sampled each physical/link-layer’s messages independently. Fig-

ure 8c implies sampling can be approximated by parsing only a
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For app developers and researchers, MobileInsight enables an alter-

native approach to conduct mobile network R&D without collabora-

tion with the mobile operators. For regulators, MobileInsight allows

them to independently verify the operational mobile networks, with-

out unconditionally trusting the operators. For mobile operators,

although they could conduct analytics with their 4G/5G infrastruc-

ture, they still lack end-to-end analytical results from the end device.

In fact, many user-experienced performances and reliability issues

are invisible from infrastructure-side analytics. MobileInsight fills

out this gap to complement operators’ infrastructure-side solutions.

5.2.2 How is MobileInsight used in diverse scenarios?

Table 3 shows some representative use cases of MobileInsight by

the community. MobileInsight has been applied to diverse usage

scenarios (Web, video, VR, mobile sensing, remote driving, high-

speed trains, to name a few) to enhance the network reliability,

performance, energy efficiency, and security. These use cases accu-

mulate various lessons of adopting MobileInsight for device-based,

data-driven mobile intelligence and customization.

The necessity of MobileInsight’s advanced features (§4): As

evidenced in Table 3, the initial MobileInsight design cannot fully

meet the demands from all these usage scenarios. Various tasks

require to study the reliability deficiencies, performance bottleneck,

energy wastes, and security vulnerabilities across the protocols

at the control and user planes. This justifies the necessity of Mo-

bileInsight’s cross-layer analytics in §4.1. Besides, many tasks need

efficient runtime user-plane analytics (e.g., link capacity estimation

[32, 33, 48] and latency reduction [71, 72] for performance boosting)

inside the devices, which motivates MobileInsight to build cross-

layer sampling in §4.2 to meet this demand. Furthermore, we note

that many analytics in Table 3 can be tracked by MobileInsight’s

recent KPI analyzers in §4.3, which helps users simplify their tasks.

The benefits with MobileInsight: As shown in Table 3, Mo-

bileInsight has demonstrated its potentials to benefit a broad range

of usage scenarios. It enables accurate physical-layer link capacity

estimation inside the device, which achieves up to 93% accuracy of

detecting if LTE downlink radio is the TCP bottleneck [32], helps

reduce the web loading time by 30% [76], and improve PSNR by

up to 6dB in WebRTC-based video streaming [48, 75]. It allows for

accurate inference of infrastructure-side handover decision policies

with up to 95% accuracy, which helps prevent unnecessary TCP

degradation on high-speed trains [74] and masks latency at the

application layer. MobileInsight’s cross-layer analytics helps unveil

various deficiencies of network latency, and helps achieve 2.1ś11.5×

control-plane latency reduction [54] and ≤25ms user-plane latency

with ≥95% probability for VR [71]. MobileInsight helps detect di-

verse network misconfigurations [36] and policy conflicts [49] some

of which cannot be detected by the infrastructure (e.g., conflicts

among carriers in Google Fi [81]). It also helps unveil network-

induced energy deficiencies [35], and security threats from call

spoofing [37] (with ≈100% accuracy) and signaling protocols [45].

The limitations of the current MobileInsight: While encour-

aging, users have also reported some scenarios that the current

MobileInsight cannot fully satisfy. First, some useful mobile net-

work information has not been revealed, such as the radio resource

allocation among devices (for congestion control [77]) and the angle

of antenna (for user localization [58]). This could be resolved by ex-

tendingMobileInsight for crowdsourcing analysis among users, and

developing more inference techniques. Second, MobileInsight re-

quires system privilege (root for Android, jailbreak for iOS) to access

the fine-grained network information, which limits its applicability

to more users [68, 82]. We plan to mitigate this issue by integrat-

ing MobileInsight into the mobile OS as a system application, or

developing rootless inference techniques inspired by MobileInsight

[72]. Last but not least, MobileInsight’s existing cross-layer user-

plane sampling may still not be enough for battery-constrained IoT

devices [80]. We plan to enhance MobileInsight’s future releases

with more IoT-friendly analytics.

6 RELATED WORK

Mobile network has been one of the most active research areas

for decades. Numerous efforts have been made to refine perfor-

mance [32, 54, 59, 76], resiliency [49, 56, 73, 81], energy efficiency

[35, 78], operational cost [36, 51, 55], and security [37, 41, 69] in

diverse usage scenarios [40, 60, 66, 75]. This creates great demands

for experimentation and validation with real mobile networks, and

therefore various open platforms such as ORAN [7], Powder [8],

CoLTE [70], srsLTE [10], OpenAirInterface [6], etc. These platforms

largely run in a controlled environment. MobileInsight comple-

ments them with operational mobile network data and analytics.

In the area of mobile network analytics, MobileInsight is also

orthogonal to most solutions today. Traditional analytics reside in

the infrastructure [43, 65]. MobileInsight complements them with

in-device analytics. While QXDM [67], OWL [34], and LTEye [46]

support device-side analytics, they require external hardware (i.e.,

desktop or USRP). X-CAL Mobile [31] and Network Signal Guru [5]

have similar data collection to MobileInsight. But they are mainly a

logger for offline analysis, rather than in-device runtime analytics.

To our best knowledge, only MobileInsight offers open-source full-

stack, runtime mobile network analytics in commodity devices.

7 DISCUSSION AND CONCLUSION

MobileInsight is the first attempt to build an open community tool

that enables in-device, software-defined mobile network analyt-

ics. It follows the end-to-end principle to facilitate the shift from

infrastructure-based to device-based mobile network intelligence

and customization. While encouraging, more efforts are needed

to refine MobileInsightfor the community, and by the community.

We conclude this work by summarizing our thoughts of the past,

present, and future of MobileInsight.

Looking back: Rethinking choices inMobileInsight’s design.

MobileInsight’s success is largely attributed to three key choices we

made. First, we aimed at an in-device, software-defined solution. This

ensures that MobileInsight can be readily deployed in commodity

phones today, and meet demands from a broader community of

researchers and developers. Second, we decided to keep MobileIn-

sight’s framework simple, modular and extensible. This facilitates

MobileInsight’s continuous evolution and refinement as shown in

§4. Last but not least, we chose to open-source MobileInsight. This

not only results in wide adoption, but also encourages more users

to contribute to MobileInsight’s development.
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Of course, we also made some sub-optimal choices for MobileIn-

sight. First, MobileInsight took a bottom-up evolution from low-

level analytics to user-friendly KPIs (§3.3). In the early stages of

developing MobileInsight, we focused on implementing a complete

set of low-level analytics features but ignored most users’ real de-

mands for simple APIs for intuitive mobile network analytics. This

unnecessarily complicated the MobileInsight codebase for most

users and delayed its wide adoption. Instead, a top-down evolution

could broaden MobileInsight’s usage, i.e., interview and understand

the users’ specific demands for mobile network analytics, enable

the corresponding high-level KPIs first to attract more users (rather

than a complete yet complicated low-level primitives), educate

them with hands-on KPI experiences, and then extend MobileIn-

sight to low-level analytics. Second, to enable extensible analytics

plugins, we built MobileInsight with Python because of its script-

like semantics. This turns out to be painful. Without Android’s

native support, we built MobileInsight with a 3rd-party Python-

for-Android package [9]. This caused many unexpected bugs and

slow Python2→Python3migration in MobileInsight’s development.

We are now migrating MobileInsight to Java and C/C++ using An-

droid’s native support, and retain its extensible analytics plugin

with Javascript. Third, MobileInsight was packaged as a standalone

app, which is hard for 3rd-party apps to call and integrate. We plan

to repackage MobileInsight as an Android SDK library to facilitate

3rd-party programming and integration.

Looking now: Potentials and limitations of using MobileIn-

sight for device-based network intelligence. MobileInsight

was originally designed for network analytics only. But it turns

out that, MobileInsight has also facilitated diverse device-based

mobile network customization and intelligence as shown in §5 and

Table 3. These efforts unveil three general insights on empowering

the device-based network intelligence with MobileInsight:

◦ Full-stack device-side customization: As a device-side solution,

MobileInsight has the unique advantage of full-stack intelligence,

from app to physical layers. This was not envisionedwhen initiating

the MobileInsight project in 2016. MobileInsight facilitates app-

driven network customization and network-aware app adaptation

that infrastructure cannot. Specifically, emergent scenarios (AR/VR,

video surveillance, smart home, IoT, etc.) involve heavy uplink data

transfer. By customizing the uplink network data transfer with

local app information, MobileInsight can help achieve ≤25ms user-

plane latency with ≥95% probability for mobile VR [71], reduce

the web loading time by 30% [76], and improve PSNR by up to 6dB

in WebRTC-based video streaming [48, 75]. These improvements

cannot be easily achieved by the infrastructure, which has no full

access to the device-side app demands and uplink traffic patterns.

◦ Inferring network-side operations: Even with MobileInsight,

some network-side operations are still not fully visible to devices,

such as the radio resource scheduling and handover decision poli-

cies. In this case, MobileInsight can infer device-perceived operation

logic at best. Such inferred logics are indeed not fully identical to the

ground truth, but they can be still helpful for devices. For example,

with the runtime physical radio resource allocation information

from MobileInsight, [32] achieves 93% accuracy of detecting if LTE

downlink radio is the TCP bottleneck and [48] predicts the uplink

radio bandwidth with the mean error rate as low as 7.67%. These

inferences can guide TCP to avoid unnecessary data rate drops.

◦ Harnessing from mobility: Device mobility across the network

nodes complicates analytics and optimization. To tackle it, existing

infrastructure-side solutions [43, 65] must coordinate the network

nodes. This is complex or sometimes impossible if network nodes

belong to different operators (e.g., international roaming [55] and

virtual operators like Google Fi [14]). Instead, our experience of

using MobileInsight unveils a unique opportunity to address this

issue: As a single vantage point across network nodes, a device with

MobileInsight can reveal more network-side insights as it moves,

simplify infrastructure-side solutions, or complement them with

insights that network alone cannot gain. For example, with Mo-

bileInsight, [36, 49] can use commodity phones to conduct mobility

misconfiguration analysis for 18,000+ cells and 32,000 handover

instances as the phone moves across base stations, without relying

on these base stations to coordinate or share their local configura-

tions. Moreover, in the multi-carrier access such as Google Fi [14]

(which combines T-Mobile and Sprint for better coverage), each

individual operator does not have global view on all others to fully

optimize their network services at the infrastructure side. Instead,

by allowing the device to analyze each carrier with MobileInsight

during its mobility, [50] realizes intelligent carrier selection with

3.74× throughput increment and 1.9× latency reduction, and [81]

resolves Google Fi’s persistent handover oscillations due to the mo-

bility management policy conflicts between T-Mobile and Sprint.

Looking forward: The future ofMobileInsight. MobileInsight

will continue its evolution toward a comprehensive, efficient, and

user-friendly open community analytics paradigm. In the foreseen

future, we will extend MobileInsight to support upcoming 5G and

cellular IoT technologies2. We will extend MobileInsight to the mo-

bile devices beyond commodity phones, and customize its features

and energy efficiency for battery-constrained IoT devices (e.g., via

application-driven intelligent sampling). Beyond a single device,

MobileInsight will unleash more network intelligence by crowd-

sourcing massive devices and cooperating with software-defined

radios. To scale tomore devices, wewill relaxMobileInsight’s depen-

dency on system privilege by exploring learning-based paradigms

with coarse-grained data. In the long term, we envision MobileIn-

sight could facilitate the users and operators to share their network

knowledge and achieve collaborative mobile network intelligence.

We wish more community efforts would join us to move toward a

transparent and intelligent next-generation mobile network.
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