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Abstract

Machine learning (ML) is transforming all areas of science.The complex and
time-consuming calculations in molecular simulations are particularly suit-
able for an ML revolution and have already been profoundly affected by the
application of existing ML methods. Here we review recent ML methods
for molecular simulation, with particular focus on (deep) neural networks
for the prediction of quantum-mechanical energies and forces, on coarse-
grained molecular dynamics, on the extraction of free energy surfaces and
kinetics, and on generative network approaches to sample molecular equi-
librium structures and compute thermodynamics. To explain these meth-
ods and illustrate openmethodological problems,we review some important
principles of molecular physics and describe how they can be incorporated
intoML structures. Finally, we identify and describe a list of open challenges
for the interface between ML and molecular simulation.
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1. INTRODUCTION

In 1929 Paul Dirac (1, p. 714) stated,

The underlying physical laws necessary for the mathematical theory of a large part of physics and the
whole of chemistry are thus completely known, and the difficulty is only that the exact application of
these laws leads to equations much too complicated to be soluble. It therefore becomes desirable that
approximate practical methods of applying quantum mechanics should be developed, which can lead
to an explanation of the main features of complex atomic systems without too much computation.

Ninety years later, this quote is still state of the art. However, in the past decade, new tools from
the rapidly developing field of machine learning (ML) have started to make a significant impact
on the development of approximate methods for complex atomic systems, bypassing the direct
solution of “equations much too complicated to be soluble.”

ML aims at extracting complex patterns and relationships from large data sets, to predict spe-
cific properties of the data. A classical application of ML is to the problem of image classification
in which descriptive labels need to be associated with images that are presented in terms of sets of
pixels. The machine is trained on a large number of examples and learns how to classify new im-
ages. The underlying idea is that there exists a complex relationship between the input (the pixels)
and the output (the labels) that is unknown in its explicit form but can be inferred by a suitable
algorithm. Clearly, such an operating principle can be very useful in the description of atomic and
molecular systems as well.We know that atomistic configurations dictate the chemical properties,
and the machine can learn to associate the latter with the former without solving first-principle
equations, if presented with enough examples.

Although different ML tools are available and have been applied to molecular simulation [e.g.,
kernel methods (2)], here we mostly focus on the use of neural networks, now often synonymous
with the term deep learning. We assume the reader has basic knowledge of ML, and we refer to
the literature for an introduction to statistical learning theory (3, 4) and deep learning (5, 6).

One of the first applications of ML in chemistry has been to extract classical potential energy
surfaces from quantum mechanical (QM) calculations, to efficiently perform molecular dynamics
(MD) simulations that can incorporate quantum effects. The seminal work of Behler & Parrinello
(7) in this direction has opened the way to a now rapidly advancing area of research (8–17). In
addition to atomistic force fields, effective molecular models at resolution coarser than atomistic
can be designed byML (18–21).Analysis and simulation ofMD trajectories have also been affected
by ML—for instance, for the definition of optimal reaction coordinates (22–27), the estimation of
free energy surfaces (25, 28–30), the construction ofMarkov state models (24, 26, 31) and dynamic
graphical models (32) of molecular kinetics, and the enhancement of MD sampling by learning
bias potentials (33–37) or selecting starting configurations by active learning (38–40). Finally,ML
can be used to generate samples from the equilibrium distribution of a molecular system without
performing MD altogether, as proposed in the recently introduced Boltzmann generators (41). A
selection of these topics are reviewed and discussed in this article.

All these different aspects of molecular simulation have evolved independently so far. For in-
stance,ML-generated force fields have mostly been developed and applied on small molecules and
ordered solids, while the analysis of MD trajectories is mostly relevant for the simulation of large,
flexible molecules like proteins. In order to really revolutionize the field, these tools and methods
need to evolve, become more scalable and transferable, and converge into a complete pipeline
for the simulation and analysis of molecular systems. There are still some significant challenges
toward this goal, as we discuss here, but considering the rapid progress of the past few years, we
envision that in the near future ML will have transformed the way molecular systems are studied
in silico.
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This review focuses on physics-based ML approaches for molecular simulation. ML is also
having a big impact in other areas of chemistry without involving a physics-based model—for
example, by enabling direct attempts to predict physicochemical or pharmaceutical properties
(42–45) or to design materials and molecules with certain desirable properties by using generative
learning (46–49). We refer the interested reader to other recent reviews on the subject (50, 51).

The review is organized as follows. We start by describing the most important ML problems
and principles for molecular simulation (Section 2). A crucial aspect of the application of ML
in molecular simulations is to incorporate physical constraints, and we discuss this for the most
commonly used physical symmetries and invariances for molecular systems (Section 3). We then
provide examples of specific ML methods and applications for molecular simulation tasks, focus-
ing on deep learning and the neural network architectures involved (Section 4). We conclude by
outlining open problems and pointing out possible approaches to their solution (Section 5).

2. MACHINE LEARNING PROBLEMS FOR MOLECULAR SIMULATION

In this section we discuss how several of the open challenges in the simulation ofmolecular systems
can be formulated as ML problems and describe the recent efforts to address them.

2.1. Potential Energy Surfaces

MD andMarkov chain Monte Carlo simulations employing classical force fields within the Born–
Oppenheimer approximation constitute the cornerstone of contemporary atomistic modeling in
chemistry, biology, and materials science. These methods perform importance sampling; that is,
in the long run, they sample states x from the molecular system’s equilibrium distribution, which
has the general form

μ(x) ∝ e−u(x). 1.

The reduced potential u(x) contains terms that depend on the thermodynamic constraints (e.g.,
fixed temperature, pressure). In the canonical ensemble (fixed number of particles, volume, and
temperature), u(x) =U (x)/kBT , where kBT is the thermal energy at temperature T.

However, the predictive power of these simulations is only as good as the underlying poten-
tial energy surface (PES). Hence, predictive simulations of properties and functions of molecular
systems require an accurate description of the global PES, U(x), where x indicates the nuclear
Cartesian coordinates. All many-body interactions between electrons are encoded in the U (x)
function. Although U (x) could be obtained on the fly using explicit ab initio calculations, more
efficient approaches that can access long timescales are required to understand relevant phenom-
ena in large molecular systems. A plethora of classical mechanistic approximations toU (x) exist, in
which the parameters are typically fitted to a small set of ab initio calculations or experimental data
(52–55). Unfortunately, these classical approximations often suffer from a lack of transferability
and can yield accurate results only close to the conditions (geometries) they have been fitted to.

Alternatively, sophisticated ML approaches that can accurately reproduce the global PES for
elemental materials (7, 9, 14, 56–58) and small molecules (10, 11, 58–62) have recently been de-
veloped (see Figure 1). Such methods learn a model of the PES, Û (x, θ ), where the parameters θ
are optimized by energy matching and/or by force matching. In energy matching, an ML model
is trained to minimize the loss function

Lene =
∑
i

[Û (xi, θ ) −Ui]2, 2.
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c   Applications: free energy surfaces d   Interatomic distance distribution
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Figure 1

Constructing force field models with machine learning. (a) Reference geometries are sampled from a molecular dynamics trajectory
that is sufficiently long to ensure optimal coverage of the configuration space. (b) For a small subset of geometries, energy and force
labels are then computed at a high level of theory to form the training, validation, and test data sets. A globally consistent atom–atom
assignment across the whole training set enables the identification and reconstructive exploitation of relevant spatial and temporal
physical symmetries of the molecular dynamics. (c) The resulting machine learning model of the potential energy surface is finally used
to speed up sampling-intensive path-integral molecular dynamics simulations at the accuracy of the reference electronic structure
method (10). (d) An interatomic distance distribution, sampled with classical and path-integral molecular dynamics, is shown.
Abbreviations: CCSD(T), coupled-cluster single double (triple); DFT, density functional theory.

whereUi are energy values obtained by QM calculations at specific configurations (see Figure 1).
For force matching, we compute the QM forces at specified configurations

f (x) = −∇U (x) 3.

and minimize the loss function:

Lforce =
∑
i

∥∥∥∇Û (xi, θ ) + fi
∥∥∥2
. 4.

The existing ML PES models are based either on nonlinear kernel learning (9, 10, 57, 61) or on
(deep) neural networks (14, 56, 62). Specific neural network architectures are discussed in Sec-
tions 4.1 and 4.2. Both approaches have advantages and limitations. The advantage of the kernel
methods is that their convex nature yields a unique solution, whose behavior can be controlled
outside of the training data. Neural networks are nonconvex ML models and are often harder to
interpret and generalize outside of the training manifold.

364 Noé et al.

A
nn

u.
 R

ev
. P

hy
s.

 C
he

m
. 2

02
0.

71
:3

61
-3

90
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

R
ic

e 
U

ni
ve

rs
ity

 o
n 

04
/2

3/
21

. F
or

 p
er

so
na

l u
se

 o
nl

y.
 



PC71CH16_Noe ARjats.cls April 9, 2020 14:5

2.2. Free Energy Surfaces

Given the Cartesian coordinates of a molecule with N atoms, x ∈ R
3N , we define the collective

coordinates by the encoding

y = E(x), 5.

where y ∈ R
m and m is a small number. In ML terms, the coordinates y define a latent space.

In molecular simulations, the collective coordinates are often defined to describe the slowest pro-
cesses of the system (63). In general, the mapping (or encoding) of E can be highly nonlinear. If the
energy functionU (x) associated with the atomistic representation is known, an important quan-
tity to compute—for instance, to connect with experimental measurements—is the free energy of
the system as a function of the collective variables. The free energy is defined as

F (y) = − logμY (y) + const, 6.

where μY (y) is the marginal distribution on y of the equilibrium distribution μ(x) given by
Equation 1:

μY (y) =
∫
x|E(x)=y

μ(x)dx. 7.

The integral in Equation 7 is in practice impossible to compute analytically for high-dimensional
systems, and several methods have been developed for its numerical estimation by enhancing the
sampling of the equilibrium distribution in MD simulations of the system.

The definition of the free energy can also be formulated as a learning problem: The aim is to
optimize the parameters θ of a free energy function model F̂ (y, θ ) such that Equations 6 and 7
are satisfied to a good approximation. Fulfilling these equations is usually referred to as enforcing
thermodynamic consistency.

Using methods that estimate the free energy Fλ (or its gradient �Fλ) at a given set of points
in the collective variables space yλ (λ = 1, . . . ,M), one can use the free energy loss,

Lene =
M∑
λ=1

‖Fλ − F̂ (yλ, θ )‖2,

or the free energy gradient loss,

Lgrad =
M∑
λ=1

‖∇Fλ − ∇F̂ (yλ, θ )‖2,

with these free energy estimates to reconstruct the entire surface F̂ (y,θ ). Both kernel regression
(28) and neural networks (30) have been used for this purpose.ML has also been used in combina-
tion with enhanced sampling methods to learn the free energy surface on the fly (25, 29, 64–69).

An alternative way to learn Equation 6 is by using force matching (70, 71). It has been demon-
strated (72) that, given the forces �xU of the atomistic system collected along an MD trajectory,
xt , t = 1, . . . , T, the gradient of a free energy model F̂ (y,θ ) that best satisfies Equation 6 also
minimizes the force-matching loss,

Lforce =
∑
t

∥∥∥∇yF̂ [E(xt ), θ ] + f ylmf (xt )
∥∥∥2

, 8.
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where the term f ylmf is the local mean force,

f ylmf (x)=∇xU ·Gy + ∇x ·Gy

Gy =∇xE[(∇xE )T∇xE]−1,

that is, the projection of the atomistic force �xU on the collective variable space through the
mapping E.

In practice, the estimator in Equation 8 is very noisy: Because of the dimensionality reduction
from x to y, multiple realizations of the projected force f ylmf can be associated with the same value
of the collective coordinates y, and the minimum of the loss function in Equation 8 cannot go to
zero. It can be shown by invoking statistical estimator theory that this loss can be broken down
into bias, variance, and noise terms (20).

2.3. Coarse Graining

The use of coarse-grained models of complex molecular systems, such as proteins, presents an
attractive alternative to the use of atomistic models that are very expensive to simulate (71, 73).

The design of a coarse-grained model for a system withN atoms into a reduced representation
with n effective beads starts with the definition of a mapping similar to Equation 5, where now
y ∈ R

3n are the coordinates of the coarse-grained beads. In this case, themapping is usually a linear
function, as in general the beads are defined as a subset or a linear combination of sets of atoms
in the original system, in a way that allows one to keep some information about the geometry
of the molecule. For instance, in protein systems, a coarse-grained mapping can be defined by
replacing all the atoms in a residue with a bead centered on the corresponding Cα atom. There is
at present no general theory to define the optimal coarse-graining mapping for a specific system.
A few methods have been proposed in this direction by optimizing the mapping E to preserve
certain properties of the original system. Examples include the definition of a system’s dynamical
assembly units (74) or the use of an autoencoder to minimize the reconstruction error (75).

Once the coarse-graining mapping is given, several strategies exist to define the model energy
function, either to match experimental observables (top-down) or to reproduce specific proper-
ties of the atomistic system (bottom-up) (71). If one wants to define a coarse-grained model that
is thermodynamically consistent with the original model (Equations 6 and 7), then the definition
of the energy function associated with a coarse-grained molecular model can be seen as a special
case of the free energy learning discussed in the previous section (70). The effective energy of the
coarse-grained model is the free energy defined by Equation 6, where y are now the coarse vari-
ables. Therefore, once the coarse-graining map is defined, the definition of the effective potential
can also be seen as a learning problem. In particular, the force-matching loss function given by
Equation 8 can be used to train the effective energy of the model from the atomistic forces. For
a general linear mapping y = Ex where matrix E ∈ R

3n×3N clusters N atomic coordinates into n
bead coordinates, the expression for the loss, Equation 8, reduces to

Lforce =
∑
t

‖∇yF̂ (Ext , θ ) + f y(xt )‖2, 9.

where the instantaneous coarse-grained force is given by f y(x) = (EE� )−1Ef (x) of the atomistic
forces f (x) (Equation 3). This loss function has been used to design coarse-grained force fields for
different systems with both kernel methods (18) and deep neural networks (19, 20).
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2.4. Kinetics

Kinetics are the slow part of the dynamics.Due to the stochastic components in theMD integrator,
for any trajectory emerging from a configuration xt at time t, there is a probability distribution of
finding the molecule in configuration xt+τ at a later time t + τ :

xt+τ ∼ pτ (xt+τ | xt ). 10.

We can express the transition density (Equation 10) as the action of the Markov propagator in
continuous space and by its spectral decomposition (76, 77):

p(xt+τ ) =
∫
p(xt+τ | xt; τ )p(xt ) dxt ≈

n∑
k=1

σ ∗
k 〈p(xt ) | φ(xt )〉ψ (xt+τ ). 11.

The spectral decomposition can be read as follows: The evolution of the probability density p(x)
can be approximated as the superposition of functions ψ . A second set of functions, φ, is required
to compute the amplitudes of these functions.

In general, Equation 11 is a singular value decomposition with left and right singular functions
φk, ψk and true singular values σ ∗

k (77). The approximation is then a low-rank decomposition in
which the small singular values are discarded. For the special case that dynamics are in thermal
equilibrium,detailed balance (Equation 21) holds, andEquation 11 is an eigenvalue decomposition
with the choices

σ ∗
k = λ∗

k (τ ) = e−τ/t
∗
i , 12.

φk(x)=ψk(x)μ(x).

Hence, Equation 11 simplifies: We need only one set of functions, the eigenfunctions ψk. The
true eigenvalues λ∗

k are real valued and decay exponentially in time τ with characteristic relaxation
times t∗i that are directly linked to kinetic experimental observables (78, 79). The approximation
in Equation 11 is due to truncating all terms with relaxation times shorter than t∗n .

A quite established approach is to learnmolecular kinetics (Equation 11) from a given trajectory
data set. To obtain a low-dimensional model of the molecular kinetics that is easy to interpret and
analyze, this usually involves two steps: (a) finding a low-dimensional latent space representation
of the collective variables, y = E(x), using the encoder E; and (b) learning a dynamical propagator
P in that space:

xt
E−→ yt

MD ↓ ↓ P

xt+τ
E−→ yt+τ .

13.

A common approach in MD, but also in other fields such as dynamical systems and fluid mechan-
ics, is to seek a pair (E,P) such that P is a small matrix that propagates state vectors in aMarkovian
(memory-less) fashion (77, 78, 80–88). This is motivated by the spectral decomposition of dynam-
ics (Equation 11): If τ is large enough to filter fast processes, a few functions are sufficient to
describe the kinetics of the system, and if E maps to the space spanned by these functions, P can
be a linear, Markovian model.

If no specific constraints are imposed on P, then the minimum regression error of yt+τ = Pyt ,
the variational approach of Markov processes (VAMP) (77, 89), and maximum likelihood will all
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lead to the same estimator (90),

P = C−1
00 C0τ , 14.

using the latent space covariance matrices

C00 = 1
T

T−τ∑
t=1

yty�
t ,C0τ = 1

T

T−τ∑
t=1

yty�
t+τ ,Cττ = 1

T

T−τ∑
t=1

yt+τy�
t+τ .

If E performs a one-hot encoding that indicates which state the system is in, then the pair (E,P)
is called a Markov state model (78, 80–84), and P is a matrix of conditional probabilities to be in
state j at time t + τ given that the system was in state i at time t.

Learning the embedding E is more difficult than learning P, as optimizing E by maximum like-
lihood or minimal regression error in latent space y leads to a collapse of E to trivial, uninteresting
solutions (90). This problem can be avoided by following a variational approach to approximating
the leading terms of the spectral decomposition (Equation 10) (77, 89). The variational approach
for conformation dynamics (89) states that for dynamics obeying detailed balance (21), the eigen-
values λk of a propagator matrix P via any encoding y = E(x) are, in the statistical limit, lower
bounds of the true λ∗

k . The VAMP variational principle is more general, as it does not require
detailed balance (see Equation 21) and applies to the singular values σ k:

λk ≤ λ∗
k (with detailed balance),

σk ≤ σ ∗
k (no detailed balance).

As VAMP is the more general principle, we can use it to define the loss function for estimating
molecular kinetics models:

LVAMP−2({y0t , yτt }) = −
∥∥∥(C00)−

1
2 C0τ (Cττ )−

1
2

∥∥∥2

F
. 15.

If dynamics obey detailed balance, we can useCττ = C00 and plug in a symmetric estimate forC0τ

(26, 90).

2.5. Sampling and Thermodynamics

MD time steps are on the order of one femtosecond (10−15 s), while configuration changes govern-
ing molecular function are often rare events that may take 10−3 to 103 s. Even when the potential
and the forces generated by single-protein folding and unfolding are evaluated quickly, simulating
these processes by directMD simulation may take years to centuries on a supercomputer.To avoid
this sampling problem,ML methods can be employed to learn generation of equilibrium samples
from μ(x) more efficiently, or even to generate statistically independent samples in one shot.

Learning to sample probability distributions is the realm of generative learning (91–94). In
the past few years, directed generative networks, such as variational autoencoders (92), generative
adversarial networks (93), and flows (94, 95), have received a particular surge of interest. Such
networks are trained to transform samples from an easy-to-sample probability distribution, such
as Gaussian noise, into realistic samples of the objects of interest. These methods have been used
to draw photorealistic images (96, 97), generate speech or music audio (98), and generate chemical
structures to design molecules or materials with certain properties (46–49).
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If the aim is to learn a probability distribution from sampling data (density estimation) or to
learn to efficiently sample from a given probability distribution [Boltzmann generation (41)], one
typically faces the challenge of matching the probability distribution of the trained model with a
reference.

Matching probability distributions can be achieved by minimizing probability distances. The
most commonly used probability distance is the Kullback–Leibler (KL) divergence, also called
relative entropy between two distributions q and p:

KL(q ‖ p) =
∫
q(x)

[
log q(x) − log p(x)

]
dx. 16.

In Boltzmann generation (41), we aim to efficiently sample the equilibrium distribution μ(x) of a
many-body system defined by its energy function u(x) (Equation 1).We can learn the parameters θ

of a neural network that generates samples from the distribution pX (x;θ) by making its generated
distribution similar to the target equilibrium distribution. Choosing q ≡ pX (x) and p ≡ μ(x) in
Equation 16, we can minimize the KLθ

[
qX ‖ μX

]
with the energy loss (EL):

EL = Ex∼pX (x;θ)
[
log pX (x;θ) + u(x)

]
. 17.

As the network samples from an energy surface u(x;θ) = − log pX (x;θ) + const (Equation 1),
this loss is performing energy matching, similar to what was discussed in Section 2.1. In order
to evaluate the loss (Equation 17), we need not only to be able to generate samples x ∼ pX (x;θ)
from the network but also to be able to compute pX (x;θ) for every sample x (see Section 4.5 for
an example).

The reverse case is density estimation. Suppose we have simulation data x, and we want to train
the probability distribution pX (x;θ) to resemble the data distribution.We choose q(x) as the data
distribution and p ≡ pX (x;θ) in Equation 16 and exploit that Ex∼data

[
log q(x)

]
is a constant that

does not depend on the parameters θ. Then we can minimize the loss:

NL = −Ex∼data[log pX (x;θ)]. 18.

This loss is the negative likelihood (NL) that the model generates the observed sample; hence,
minimizing it corresponds to a maximum likelihood approach. Likelihood maximization is abun-
dantly used in ML; in this review we discuss it in Section 4.5.

3. INCORPORATING PHYSICS INTO MACHINE LEARNING

3.1. Why Incorporate Physics?

Compared to working with classical ML problems such as image classification, we have a decisive
advantage when working with molecular problems: We know a lot of physical principles that
restrict the possible predictions of our machine to the physically meaningful ones.

Let us start with a simple example to illustrate this.We are interested in predicting the potential
energy and the atom-wise forces of the diatomic molecule O2 with positions x1, x2 in a vacuum
(without external forces). Independent of the details of our learning algorithm, physics tells us that
a few general rules must hold:

1. The energy is invariant when translating or rotating the molecule. We can thus arbitrarily
choose the positions x1 = (0, 0, 0); x2 = (d, 0, 0), and the energy becomes a function of the
interatomic distance only:U (x) →U (d ).
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2. Energy is conserved. The energy U and the force of the molecule are related by F(x) =
−∇U (x). Now we can compute the components of the force as f1 = ( ∂U (d )

∂d , 0, 0); f2 =
(− ∂U (d )

∂d , 0, 0).
3. Identical particles are indistinguishable.The energy is unchanged if we exchange the labels 1

and 2 of the identical oxygen atoms.

In ML, there are two principal approaches when dealing with such invariances or symmetries: (a)
data augmentation and (b) building the invariances into the ML model.

3.2. Data Augmentation

Data augmentation means we learn invariances by heart by artificially generating more training
data and applying the known invariances to it. For example, given a training data point for posi-
tions and energy/force labels, (x;U , f ), we can augment this data point with translation invariance
of energy and force by adding more training data (x +	x;U , f ) with random displacements 	x.
Data augmentation makes the ML model more robust and helps us predict the invariances ap-
proximately. It is an important ML tool, as it is easy to do, although for certain invariances it is
conceptually difficult or computationally expensive to hardwire those invariances into the ML
model.

However, data augmentation is statistically inefficient, as additional training data are needed,
and inaccurate, because a network that does not have translation invariance hardwired into it will
never predict that the energy is exactly constant when translating the molecule. This inaccuracy
may lead to unphysical and potentially catastrophic predictions when such an energy model is
inserted into an MD integrator.

3.3. Building Physical Constraints into the Machine Learning Model

The more accurate, statistically efficient, and elegant approach to incorporating physical con-
straints is to directly build them into the MLmodel. Doing so involves accounting for two related
aspects that are both essential to making the learning problem efficient. First are equivariances:
The ML model should have the same invariances and symmetries as the modeled physics prob-
lem. Second is parameter sharing: Whenever there is an invariance or symmetry, this should be
reflected by sharing model parameters in different parts of the network.

3.4. Invariance and Equivariance

If we can hardwire the physical symmetries into the ML structure, we can reduce the dimension-
ality of the problem. In the example of the O2 molecule above, the energy and force are one-
and six-dimensional functions defined for each point x in six-dimensional configuration space.
However, when we use the invariances described above, we have to learn only a one-dimensional
energy function over a one-dimensional space, and we can compute the full force field from it.
The learning problem has become much simpler because we now learn only in the manifold of
physically meaningful solutions (Figure 2a).

An important concept related to invariance is equivariance. A function is equivariant if it trans-
forms the same way as its argument. For example, the force is defined by the negative gradient of
the energy,−∇U (x). If we rotate the molecule by applying the rotationR·, the energy is invariant,
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a   Manifold of physical constraints 

b   Invariance and equivariance

c   Equivariance in convolutions
Predictions without
physical constraints

Physically valid 
manifold

Space of possible machine learning models of a given class

Training data

Rotate

F = −∇E

F

E = (d − d0)2

d d

* =

* =
Bead

Figure 2

Illustration of physical constraints, invariance, and equivariance. (a) Physical constraints. These define a manifold of physically valid
solutions for a given machine learning model class, such as a given neural network architecture: Only certain combinations of
parameters will obey these physical constraints. Using data augmentation, the network can learn by heart to make almost physically
valid predictions. Directly building physical constraints into the machine learning model is more data efficient and accurate, as then
every prediction is physically meaningful. (b) Invariance and equivariance. Upon rotation of the beads, the spring energy is invariant,
but the forces of the beads are equivariant; that is, they rotate in the same way. (c) Translational equivariance in convolutional layers.
Convolving a translated image with a filter results in a translated feature map. Cat photograph in panel c reproduced from “Young Male
Tabby Cat, Portugal” by Joaquim Alves Gaspar (https://en.wikipedia.org/wiki/File:Cat_November_2010-1a.jpg), used under CC
BY 3.0.

but the force is equivariant as it rotates in the same way as x (Figure 2b):

x R·−→ Rx
↓ ∇U (·) ↓ ∇U (·)
∇U (x) R·−→ R∇U (x) = ∇U (Rx).

Equivariances are closely linked to convolutions in ML. For example, standard convolutions are
translation invariant: Each convolution kernel is a feature detector that is applied to each pixel
neighborhood (99). When that feature is present in the image, the convolved image will show a
signal in the corresponding position (Figure 2c).When translating the input, the convolved image
translates in the same way (Figure 2c).

We briefly review below common invariances and equivariances useful for applications to
molecular simulations and discuss strategies to incorporate them in an ML algorithm.

3.4.1. Rototranslational invariance and equivariance. Physical quantities that depend only
on the interactions of the atoms within a molecule should be invariant with respect to translation
T and rotationR·. Examples include potential and free energies of a molecule without an external
field:

U (Rx + T) =U (x).

www.annualreviews.org • Machine Learning for Molecular Simulation 371

A
nn

u.
 R

ev
. P

hy
s.

 C
he

m
. 2

02
0.

71
:3

61
-3

90
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

R
ic

e 
U

ni
ve

rs
ity

 o
n 

04
/2

3/
21

. F
or

 p
er

so
na

l u
se

 o
nl

y.
 

https://en.wikipedia.org/wiki/File:Cat_November_2010-1a.jpg


PC71CH16_Noe ARjats.cls April 9, 2020 14:5

The force is equivariant to rotation but invariant to translation (Figure 2b; Section 3.4):

−∇U (Rx + T) = −R∇U (x).

Rototranslational invariance can be achieved by transforming the configuration x into roto-
translationally invariant features, such as intramolecular distances or angles. Equivariance of the
force can then be achieved by computing the force explicitly by a network layer that computes the
derivatives with respect to x, as it is done, for example, in SchNet (100) andCGnet (coarse-graining
neural network) (20) (Section 4.3).Note that periodic systems, such as crystals and explicit-solvent
boxes, have translational but not rotational invariances and equivariances.

3.4.2. Permutational invariance and equivariance. Physical quantities, such as QM energies,
are invariant if we exchange the labels of identical atoms—for example, carbons. As the number
of possible permutations increases exponentially with the number of identical particles, trying to
learn permutation invariance by data augmentation is hopeless. Permutation invariance can be
built into the ML model by choosing a functional form to compute the quantity of interest that
is permutation invariant (see Reference 101 for the general conditions). Following the pioneering
work in References 102–105, a specific choice that is common for networks that compute extensive
quantities such as potential energyU (x) is to model them as a sum,

U (x) =
∑
i

Ui(x), 19.

where Ui is the contribution of the energy by the ith atom in its chemical environment (7, 11,
62, 100). To account for the multibody character of QM, Ui(x) must generally also be a multi-
body function. Equation 19 can be implemented by using separate networks for the individual
contributions Ui and adding up their results (Figure 3). The force resulting from Equation 19 is
automatically permutation equivariant.

a   Coordinates b   Coordinates H2O

Total energy E

Atom i energy

Atom i features g1
i g1

O g1
H1gk

O gk
H1 g1

H2 gk
H2gk

i

x1

EO EH1 EH2

xn

Ei

x1 xn

Atom-specific 
neural network

Oxygen 
network

Hydrogen 
network 

Figure 3

Behler–Parrinello networks for learning quantum energies. (a) A Behler–Parrinello network computes the atomic energy of a single
atom i. The system coordinates are mapped to rototranslationally invariant features describing the chemical environment of atom i.
(b) A molecular system such as H2O is composed by employing a network copy for each atom. The parameters are shared between
networks for same elements. The total energy is given by the sum of atomic energies, introducing permutation invariance.
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Classical MD force fields define bonded interactions by assigning atoms to nodes in a bond
graph, and thus, exchanging of individual atom pairs no longer preserves the energy.However, the
energy is still invariant to the exchange of identical molecules, such as solvent, and it is important
to take that into account for coarse graining (20) and generating samples from the equilibrium
density (41).

A simple alternative to building permutation invariance into the ML function is to map all
training and test data to a reference permutation.This can be done efficiently by so-called bipartite
graph matching methods such as the Hungarian method (106) that are frequently used in recent
learning models (10, 41, 107).

3.4.3. Energy conservation. Closed physical systems are energy conserving,which implies that
the force field is defined by the gradient of the energy (Equation 3). When learning potential
energy, it can be a great advantage to use force information, because eachN-atom configuration is
associated with only one energy but 3N forces, which may result in superior data efficiency when
force labels are used during learning (10, 61). If we use supervised learning for coarse graining
with thermodynamic consistency, we can only use forces, as no labels for the free energies are
available (Section 2.3).

In these examples,we have labeled training data [x, f (x)]i.Using a network that directly predicts
the forces would not guarantee that Equation 3 holds. Therefore, when Equation 3 holds, it is
common to learn an energyU (x) and then compute the force in the network by using a gradient
layer (20, 100) (Section 4.3). An alternative to ensure Equation 3 is gradient-domain ML (61).

3.4.4. Probability conservation and stochasticity. In statistical mechanics (both equilibrium
and nonequilibrium), we are interested in the probability of events. An important principle is thus
probability conservation—that is, the sum over all events is 1. A common approach to encode the
probability of classes or events with a neural network is to use a SoftMax output layer, where the
activation of each neuron can be defined as

yi(u) = e−ui∑
j e

−u j , 20.

where j runs over all neurons in the layer. In this representation, u can be seen as a vector of
energies giving rise to the Boltzmann probabilities yi(u); yi(u) are nonnegative, because of the
exponential functions, and they sum up to 1.

In Markov state models of molecular kinetics, we would like to obtain a Markov transition
matrixP that is stochastic; that is, pij ≥ 0 for all elements, and

∑
j pij = 1 for all i. If the encoder E(x)

uses a SoftMax, then the estimator in Equation 14 will result in a transitionmatrixP that conserves
probability (

∑
j pij = 1 for all i). SoftMax can be exploited in VAMPnets to simultaneously learn

an embedding E(x) from configurations to metastable states and a Markov transition matrix P
(Section 4.4) (24).

3.4.5. Detailed balance. Detailed balance connects thermodynamics and dynamics. In a dy-
namical system that evolves purely in thermal equilibrium—that is, without applying external
forces—the equilibrium distribution μ(x) and the transition probability p(y | x) are related by the
following symmetry:

μ(x)p(y | x) = μ(y)p(x | y). 21.
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Thus, the unconditional probabilities of forward and backward trajectories are equal. Enforcing
Equation 21 in kineticMLmodels ensures the spectral decomposition (Equation 11) is real valued,
which is useful for many analyses.

To learn a kinetic model that obeys detailed balance, estimators other than Equation 14 must
be used; these typically enforce the unconditional transition probabilities p(x, y) = μ(x)p(y | x) to
be symmetric (see Reference 90 for details).

3.5. Parameter Sharing and Convolutions

A decisive advance in the performance of neural networks for classical computer vision problems
such as text or digit recognition came with going from fully connected dense networks to convo-
lutional neural networks (99). Convolution layers are equivariant, thus helping with the detection
of an object independent of its location (Figure 2c), but the real efficiency of convolutional neural
networks is due to parameter sharing.

In a classical dense network, all neurons of neighboring layers are connected and have inde-
pendent parameters stored in a weight matrixWl . This leads to a problem with high-dimensional
data. If we were to process relatively small images, say 100 × 100 = 104 pixels, and associate each
pixel with a neuron, a single dense neural network layer l will have 104 × 104 = 108 parameters in
Wl . Not only would this be demanding in terms of memory and computing time but a network
with so many independent parameters would also likely overfit and not be able to generalize to
unknown data.

Convolutions massively reduce the number of independent parameters. A convolutional layer
with a filter w acting on a one-dimensional signal xl−1 computes, before applying bias and
nonlinearities,

zli =
∑
j

xl−1
i− jw

l
j . 22.

In terms of an image, convolution applies the same filter w to every pixel neighborhood; in other
words, all pixel transformations share the same parameters. Additionally, the filters w are usually
much smaller than the signal x (often 3 × 3 for images), so each convolution has only a few pa-
rameters. For molecules, we extend this idea to continuous convolutions that use particle positions
instead of pixels (Section 4.2).

Besides the sheer reduction of parameters, parameter sharing—for example, via convolution
layers—is the keystone of transferability across chemical space. In convolutions of a grayscale
image, we apply the same filters to every pixel, which implies translational equivariance but also
means the same rules apply to all pixels. If we have multiple color channels, we have different
channels in the filters as well, so pixels in the same color channels behave the same. In molecules
we can apply the same idea to particle species. When one is learning energies from QM data,
for example, every chemical element should be treated the same; that is, one should use the same
convolution filters to sense its chemical environment. This treatment gives us a building-block
principle that allows us to train on one set of molecules and make predictions for new molecules.

4. DEEP LEARNING ARCHITECTURES FOR MOLECULAR
SIMULATION

In this section, we present specific methods and neural network architectures that have been pro-
posed to tackle the ML problems discussed in Section 2.
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4.1. Behler–Parrinello, Deep Potential Net, and ANI

Behler–Parrinello networks are one of the first applications of ML in the molecular sciences (7).
They aim at learning and predicting potential energy surfaces from QM data, and they combine
all of the relevant physical symmetries and parameter sharing for this problem (Section 3).

First, the molecular coordinates are mapped to rototranslationally invariant features for each
atom i (Figure 3a). In this step, the distances of neighboring atoms of a certain type, as well
as the angles between two neighbors of certain types, are mapped to a fixed set of correlation
functions that describe the chemical environment of atom i.These features are the input to a dense
neural network that outputs one number, the energy of atom i in its environment. By design of the
input feature functions, this energy is rototranslationally invariant. Parameters are shared between
equivalent atoms—for example, all carbon atoms have the same network parameters for computing
their atomic energies—but since the chemical environments will differ, their energies will differ.
In a second step, the atomic energies are summed over all atoms of the molecule (Figure 3b). This
second step, combined with parameter sharing, achieves permutation invariance, as explained in
Section 3.4.2.Transferability is achieved due to parameter sharing but also because the summation
principle allows one to grow or shrink the network to molecules of any size, including sizes that
were never seen in the training data.

A related approach is Deep Potential net (62), where each atom is treated in a local coordinate
frame that has the rotational and translational degrees of freedom removed.

Behler–Parrinello networks are traditionally trained by energy matching (Section 2.1) (7, 56),
but they can be trained with forcematching if a gradient layer is added to compute the conservative
force (Section 2.1; Equation 3). The Behler–Parrinello method has been further developed in the
ANI network, for example, by extending it to more advanced functions involving two neighbors
(11). While Behler–Parrinello networks have mainly been used to make predictions of the same
molecular system in order to run MD simulations unaffordable by direct ab initio QM MD (56),
ANI has been trained on density functional theory and coupled-cluster data across a large chemical
space (11, 12, 108).

4.2. Deep Tensor Neural Networks, SchNet, and Continuous Convolutions

One of the first deep learning architectures to learn to represent molecules or materials was the
family of deep tensor neural networks (DTNNs) (14), with its recent addition SchNet (58, 109).
While in kernel-based learning methods (2, 110) chemical compounds are compared in terms of
prespecified kernel functions (8, 111–113), DTNN and its extension SchNet learn a multiscale
representation of the properties of molecules or materials from large data sets.

DTNNs were inspired by the language processing approach word-to-vec (114), where the role
of a word within its grammatical or semantic context is learned and encoded in a parameter vector.
Likewise, DTNNs learn a representation vector for each atom within its chemical environment
(Figure 4b, left). DTNN’ s tensor construction algorithm then iteratively learns higher-order
representations by first interacting with all pairwise neighbors, for example, extracting information
implemented in the bond structure (Figure 4b, middle). By stacking such interaction layers deep,
DTNNs can represent the structure and statistics of multibody interactions in deeper layers. As
DTNNs are end-to-end trained to predict certain QM quantities, such as potential energies, they
learn the representation that is relevant for the task of predicting these quantities (115).

SchNet (58) uses a deep convolutional neural network (116, 117). Classically, convolutional
neural networks were developed for computer vision using pixelated images, so they use discrete
convolution filters. However, the particle positions of molecules cannot be discretized on a grid
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Figure 4

SchNet, a continuous convolution framework. (a) As molecular structures cannot be well discretized on a grid, SchNet generalizes the
ConvNet approach to continuous convolutions between particles. (b, left) In the SchNet architecture, the input, consisting of atom
types (chemical elements Z1, . . . , Zn) and positions r1, . . . , rn, is processed through several layers to produce atom-wise energies that
are summed to a total energy. Numbers in boxes indicate network layer shapes (for details see 58, 108). (b, middle) The most important
layer is the interaction layer, in which atoms interact via continuous convolution functions. The variableWt denotes convolutional
weights, and v are interactions. (b, right) Continuous convolutions are generated by dense neural networks that operate on interatomic
distances, ensuring rototranslational invariance of the energy. Abbreviation: PBC, periodic boundary conditions. Figure adapted from
Reference 100. All rights reserved by Klaus-Robert Müller.

because QM properties such as the energy are highly sensitive to small position changes, such as
the stretching of a covalent bond.For this reason,SchNet introduced continuous convolutions (58,
100), which are represented by filter-generating neural networks that map the rototranslationally
invariant interatomic distances to the filter values used in the convolution (Figure 4b, right).

DTNNs and SchNet have both reached highly competitive prediction quality both across
chemical compound space and across configuration space in order to simulate MD. In addition to
their prediction quality, their scalability to large data sets (109) and their ability to extract novel
chemical insights bymeans of their learned representationmake theDTNNs increasingly popular
research tools.

4.3. Coarse Graining: CGnets

Asmentioned in Section 2.3,ML has been used to define coarse-grainedmodels for molecular sys-
tems. Both kernel methods (18) and deep neural networks (19, 20) have been designed tominimize
the force-matching loss, Equation 9, for given coarse-graining mappings for specific systems.

In both cases, it has been shown that the incorporation of physical constraints is crucial to the
success of the model. The training data are obtained by means of atomistic molecular dynamic
simulations, and regions of the configurational space that are physically forbidden, such as config-
urations with broken covalent bonds or overlapping atoms, are not sampled and not included in
the training.Without additional constraints, the machine cannot make predictions far away from
the training data and thus will not reliably predict that the energy should diverge when approach-
ing physically forbidden regions.

Excluding high-energy states such as broken bonds or colliding atoms is different from en-
forcing physical symmetries as described in Section 3.4. Rather, it is about enforcing the correct
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CGnet. (a) Using the CGnet neural network architecture to design a coarse-grained model by force matching, via the loss function of
Equation 9. (b) Application of CGnet to the coarse graining of the miniprotein chignolin, from the fully atomistic and solved model to a
Cα-only model of 10 beads. (c) Results of CGnet for chignolin. The term kBT is thermal energy. (i) The free energy of the original
atomistic model, as a function of the two reaction coordinates. State 1 is the folded state, state 2 is the unfolded state, and state 3 is a
misfolded state. (ii) The free energy resulting from a coarse-grained model where only two-body terms are included in the energy
function. (iii) The free energy resulting from CGnet. States 1′, 2′, and 3′ correspond to states 1, 2, and 3 in subpanel i. (iv) The same
free energies as in subpanels i–iii but as a function of only one reaction coordinate. Abbreviations: CGnet, coarse-graining neural
network; TIC, time-lagged independent component. Figure adapted from Reference 20.

asymptotic behavior of the energy when going toward an unphysical limit. CGnets proposed to
achieve this by learning the difference from a simple prior energy that was defined to have the
correct asymptotic behavior (20) (Figure 5a). The exact form of this prior energy is not essential
for success, as the CGnet can correct the prior energy where training data are available. In Ref-
erence 20, the prior energy consisted of harmonic terms for bonds and angles of coarse-grained
particles whose equilibrium values and force constants were obtained with Boltzmann inversion,
as well as excluded volume terms in the form of (σ/r)c, where r is the interparticle distance and σ ,
c are hyperparameters.

As in Behler–Parrinello networks and SchNet, CGnet predicts a rototranslationally invari-
ant energy as the first layer transforms the Cartesian coordinates into internal coordinates such
as distances and angles (Figure 5a). Furthermore, CGnet predicts a conservative and rotation-
equivariant force field as the gradient of the total free energy with respect to input configuration
x is computed self-consistently by the network (see Figure 5a). The network is trained by mini-
mizing the force-matching loss of this prediction (Equation 8).

Figure 5b,c shows an application of CGnets to the coarse graining of the miniprotein chig-
nolin, in which all solvent molecules are coarse grained away and the atoms of each residue are
mapped to the corresponding Cα atom (Figure 5b). MD simulations performed with the force
field predicted by the CGnet predict a free energy surface that is quantitatively similar to the free
energy surface of the all-atom simulations, and they resolve the same metastable states (folded,
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unfolded, and misfolded). In contrast, a spline-based coarse-grained model where only two-body
terms are included in the energy function cannot reproduce the all-atom free energy surface and
does not even predict that folded and unfolded are separated metastable states. These results
clearly illustrate the importance of multibody interactions in the coarse-grained energy—for ex-
ample, surface or volume terms that can describe implicit solvation.While the spline model can be
dramatically improved by adding suitable terms to the list of features, this is not necessary when
using a deep neural network that automatically learns the required multibody terms. Similar con-
clusions can be obtained by using Gaussian approximation potentials as the ML model to capture
multibody terms in coarse-grained energy functions (18).

4.4. Kinetics: VAMPnets

VAMPnets (24) were introduced to replace the complicated and error-prone approach of con-
structing Markov state models by (a) searching for optimal features; (b) combining them into a
low-dimensional representation y, for example, via time-lagged independent component analysis
(118); (c) clustering y; (d) estimating the transition matrix P; and (e) coarse graining P. VAMPnets
instead use a single end-to-end learning approach in which all of these steps are replaced by a
deep neural network. This is possible because with the variational approach for conformational
dynamics and VAMP principles (Section 2.4) (77, 89), loss functions are available that are suitable
to train the embedding E(x) and the propagator P simultaneously (see Section 2.4; Equation 13).

VAMPnets contain two network lobes representing the embedding E(x). These networks
transform the molecular configurations found at a time delay τ along the simulation trajecto-
ries (Figure 6a). VAMPnets can be trained by minimizing the VAMP loss (Equation 15), which is
meaningful for dynamics both with and without detailed balance (77). VAMPnets may, in general,
use two distinct network lobes to encode the spectral representation of the left and right singular
functions [which is important for nonstationary dynamics (119, 120)]. Extended dynamic mode
decomposition with dictionary learning (121) uses an architecture similar to that of VAMPnets but
is optimized by minimizing the regression error in latent space. To avoid collapsing to trivial em-
beddings, such as constant functions (see Section 2.4), a suitable regularization must be employed
(121).

While hyperparameter selection can be performed by minimizing the variational loss
(Equation 15) on a validation set (122–125), it is important to test the performance of a kinetic
model on timescales beyond the training timescale τ . We can use the Chapman–Kolmogorov
equation to test how well the learned model predicts longer times:

Pn(τ ) ≈ P(nτ ). 23.

A common way to implement this test is to compare the leading eigenvalues λi(τ ) of the left- and
right-hand sides (81, 84, 126).

In Reference 24, parameters were shared between the VAMPnet nodes, and a unique em-
bedding E(x) was thereby learned. When detailed balance is enforced while computing P(τ )
(Equation 21), the loss function automatically becomes a variational approach for conforma-
tional dynamics score (89). In this case, the embedding E(x) encodes the space of the dominant
Markov operator eigenfunctions (24). This feature was extensively studied in state-free reversible
VAMPnets (26).

To obtain a propagator that can be interpreted as a Markov state model, Mardt et al. (24)
chose to use a SoftMax layer as an output layer, transforming the spectral representation to a soft
indicator function similar to spectral clustering methods such as robust Perron cluster analysis
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VAMPnet and application to alanine dipeptide. (a) A VAMPnet (24). The network includes an encoder E that transforms each
molecular configuration xt to a latent space of slow reaction coordinates yt and is trained on pairs (yt , yt+τ ) sampled from the molecular
dynamics simulation using the VAMP score (77). If the encoder performs a classification, the dynamical propagator P(τ ) is a Markov
state model. (b) Structure of alanine dipeptide. The backbone torsion angles φ and ψ describe the slow kinetics of conformation
changes, but Cartesian coordinates of heavy atoms are used as VAMPnet inputs here. (c) Classification of the VAMPnet encoder of
molecular dynamics frames to metastable states in the φ and ψ space. Color corresponds to activation of the respective output neuron.
(d) Equilibrium probabilities of Markov states (purple circles, with size proportional to probability; numbers are as in panels c and e) and
transition probabilities given by P(τ ) (arrows, with thickness proportional to transition probability). (e) Chapman–Kolmogorov test
comparing long-time predictions of the probability of being in a metastable state j at a certain time given a starting point in a
metastable state i (i→j on each graph). The panel compares predictions by the VAMPnet model estimated at τ = 50 ps with estimates at
longer lag times. Figure adapted from Reference 24.

(127, 128). As a result, the propagator computed by Equation 14 conserves probability and is
almost a transition matrix (Section 3.4.4), although it may have some negative elements with small
absolute values.

The results described in Reference 24 (see, e.g., Figure 6) were competitive with and some-
times surpassed the state-of-the-art handcrafted Markov state model analysis pipeline. Given the
rapid improvements in training efficiency and accuracy of deep neural networks seen in a broad
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range of disciplines, we expect end-to-end learning approaches such as VAMPnets to dominate
the field eventually.

In Reference 31, a deep generativeMarkov statemodel was proposed that, in addition to the en-
coder E(x) and the propagator P, learns a generative part that samples the conditional distribution
of configurations in the next time step. The model can be operated in a recursive fashion to gen-
erate trajectories to predict the system evolution from a defined starting state and to propose new
configurations. The deep generative Markov state model was demonstrated to provide accurate
estimates of the long-time kinetics and to generate valid distributions for small MD benchmark
systems.

4.5. Sampling/Thermodynamics: Boltzmann Generators

Boltzmann generators were introduced in Reference 41 to learn to sample equilibrium distribu-
tions (Equation 1). In contrast to standard generative learning, a Boltzmann generator does not
attempt to learn the probability density from data but is trained to efficiently sample μ(x) ∝ e−u(x)

using the dimensionless energy u(x) as an input. A Boltzmann generator consists of two parts:

1. a generative model that is trained to propose samples from a probability distribution pX (x)
that is similar to μ(x) and that allows us to evaluate pX (x) (up to a constant) for every x, and

2. a reweighting procedure that takes proposals from pX (x) and generates unbiased samples
from μ(x).

Boltzmann generators use a trainable generative network Fzx that maps latent space samples z
from a simple prior—for example, a Gaussian normal distribution—to samples x ∼ pX (x). Train-
ing is done by combining the energy-based training using the KL divergence (Equation 17) and
maximum likelihood (Equation 18).

For both training and reweighting, we need to be able to compute the probability pX (x) of
generating a configuration x. This can be achieved by the change-of-variables equation if Fzx is
an invertible transformation (Figure 7a) (94, 95). Such invertible networks are called flows due
to the analogy of the transformed probability density with a fluid (94, 129). In Reference 41, the
nonvolume preserving transformations RealNVP were employed (129), but the development of
more powerful invertible network architectures is an active field of research (97, 130, 131). By
stacking multiple invertible blocks, a deep invertible neural network is obtained that can encode
a complex transformation of variables.

Figure 7b–e illustrates the Boltzmann generator on a condensedmattermodel system that con-
tains a bistable dimer in a box densely filled with repulsive solvent particles (Figure 7b). Opening
or closing the dimer is a rare event, and it involves the collective rearrangement of the solvent par-
ticles due to the high particle density. Using short MD simulation in the open and closed states
as an initialization, the Boltzmann generator can be trained to sample open, closed, and previ-
ously unseen transition states by generating Gaussian random variables in latent space (Figure 7c)
and feeding them through the transformation Fzx. Such samples have realistic structures and close-
to-equilibrium energies (Figure 7d). Free energy differences can be computed by employing
reweighting (Figure 7e). There is a direct relationship between the temperature of the canonical
ensemble and the variance of the latent-space Gaussian of the Boltzmann generator (41). This
allows us to learn to generate thermodynamics, such as the temperature-dependent free energy
profiles, using a single Boltzmann generator (Figure 7e). Finally, as the latent space concentrates
configurations of equilibrium probability around the origin, Boltzmann generators can be used to
generate physically realistic reaction pathways by performing linear interpolations in latent space.
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Boltzmann generators. (a) A Boltzmann generator is trained by minimizing the difference between its generated distribution and the
desired Boltzmann distribution. Generation proceeds by drawing latent space samples z from a simple prior distribution (e.g.,
Gaussian) and transforming them to configurations x via an invertible flow: a deep neural network Fzx and its inverse, Fxz. To compute
thermodynamics, such as configurational free energies, the samples must be reweighted to the Boltzmann distribution. (b) Repulsive
particle system with bistable dimer. Closed (blue) and open (red) configurations are from molecular dynamics simulations (input data).
(c) Distribution of molecular dynamics simulation data in latent space coordinates z1, z2 after training the Boltzmann generator.
(d) Potential energy distribution from molecular dynamics (gray) and the Boltzmann generator for closed (blue), open (red), and
transition (yellow) configurations. Insets show one-shot Boltzmann generator samples. (e) Free energy differences as a function of dimer
distance and relative temperature sampled with Boltzmann generators (green circles) and umbrella sampling (gray lines). The shaded areas
represent the 68% confidence intervals. Figure adapted from Reference 41.

5. DISCUSSION

Despite rapid advances in the field of ML for molecular simulation, there are still significant open
problems that need to be addressed, in all the areas discussed above.

5.1. Accuracy and Efficiency in Quantum Chemical Energies and Forces

To be practically useful, an ML model for both PES and atomic forces is needed that (a) can yield
accuracy of 0.2–0.3 kcal/mol for the energy per functional group and about 1 kcal/(mol·Å) for
the force per atom, (b) is not much more expensive to evaluate than classical force fields, (c) scales
to large molecules such as proteins, and (d) is transferable to different covalent and noncovalent
environments. Such a universal model does not exist yet.
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Crucial steps toward items a and b have been recently taken by symmetrized gradient-domain
machine learning (sGDML), a kernel-based approach to constructing molecular force fields (10,
61, 132, 133). Currently, sGDML already enables MD simulations with electrons and nuclei
treated at essentially exact QM level for molecules with up to 20–30 atoms.

Network-based approaches, such as SchNet and ANI, are better suited to items c and d, as they
break down the energy in local interactions of atoms with their environment, enabling a building-
block principle that is by design better scalable to molecules of different sizes and transferable
across chemical space.However, these approaches do not reach the high accuracy in configuration
space that sGDML does. Combining high accuracy in configuration and chemical space remains
an active research topic.

5.2. Long-Ranged Interactions

The vast majority of approaches to make ML inference on molecular structures are based on
local chemical information. Current neural networks for modeling molecular energies use the
summation principle (e.g., Equation 19) to sum up local energies Ei(x) of atom iwith its neighbors.
While multibody and long-ranged energies can be obtained by stacking multiple layers (14, 58,
100)—the working principle of deep convolution networks (116)—there are fundamental physical
limits of this approach: Long-ranged interactions such as electrostatics cannot be cut off.

For classical point-charge models, long-ranged electrostatics methods have been developed,
such as the Ewald summation method for periodic systems (134). One option is to combine short-
ranged ML models with such long-ranged electrostatics methods. To avoid double counting in-
teractions, one must also predict atomic charges, which is an active field of research (135, 136). An
alternative option—currently unexplored territory—is to develop neural network structures for
particle interactions that can compute long-ranged interactions by design.

In addition to electrostatics, van der Waals dispersion interactions can also have a substantial
long-range character; that is, they can extend to separations of tens of nanometers or more in
large molecular and nanoscale systems (137–139). Developing MLmodels that correctly treat the
QM many-body nature of van der Waals interactions remains a difficult challenge to overcome
(15).

5.3. Quantum Kinetics

With the availability of chemically transferable MLmodels that have quantum chemical accuracy,
the next open problem is to sample metastable states and long-timescale kinetics. Although avail-
able ML models for predicting QM energies and forces are still significantly slower than force
fields, the vast array of enhanced sampling methods and kinetic models (Sections 2.4 and 4.4) will
likely allow us to explore the kinetics of quantum chemical systems on timescales of microseconds
and beyond. A plethora of new physical insights that we cannot access with current MD force
fields await us there. For example, what is the role of protonation dynamics in mediating protein
folding or function?

5.4. Transferability of Coarse-Grained Models

An outstanding question in the design of coarse-grained models is that of transferability across
chemical space. Bottom-up coarse-grained models are useful in practice if they can be parame-
terized on small molecules and then used to predict the dynamics of systems much larger than
what is possible to simulate with atomistic resolution. It is not clear to what extent transferability
of coarse-grained models can be achieved and how that depends on the coarse-graining mapping
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(140, 141). Compared with the manual design of few-body free energy functionals, ML free en-
ergies can help with transferability, as they are able to learn the important multibody effects—for
example, to model neglected solvent molecules implicitly (Section 4.3) (18–20).

It is natural to consider Behler–Parrinello networks or SchNet as a starting point for modeling
transferable coarse-grained energies, but their application is nontrivial: It is a priori unclear what
the interacting particles are in the coarse-grained model and how to define their types, as they
are no longer given by the chemical element. Furthermore, these networks assume permutation
invariance between identical particles, while classical MD force fields do not have permutation
invariance of atoms within the same molecule. Therefore, particle network structures that can
handle bonding graphs need to be developed.

5.5. Kinetics of Coarse-Grained Models

While coarse-grained MD models may perform well in reproducing the thermodynamics of the
atomistic system, theymay fail in reproducing the kinetics. Existing approaches include adding fic-
titious particles (142) or training the coarse-grainedmodel with spectral matching (143).There are
indications that the kinetics can be approximated up to a global scaling factor in barrier-crossing
problems when the barriers are well approximated (144), which could be achieved by identify-
ing the slow reaction coordinates (63) and assigning more weight to the transition state in force
matching or relative entropy minimization. This area of research is still underdeveloped.

5.6. Transferable Prediction of Intensive Properties

Extensive properties such as potential energies can be well predicted across chemical space, as
they can be conceptually broken down as a sum of parts that can be learned separately. This is not
possible with intensive properties such as spectra or kinetics, and for this reason, the prediction of
such properties is, as yet, far behind.

5.7. Equivariant Generative Networks with Parameter Sharing

Generative networks, such as Boltzmann generators (Section 4.5), have been demonstrated to be
able to generate physically realistic one-shot samples of model systems and proteins in implicit
solvent (41). To scale to larger systems, we will need to build the invariances of the energy, such
as the exchange of identical solvent particles, into the transformation and to include parameter
sharing (Section 3.5), such that we can go beyond just sampling the probability density of one
given system with energy u(x) and instead generalize from a data set of examples of one class of
molecules, such as solvated proteins. To this end, equivariant networks with parameter sharing
need to be developed for generative learning; these are, to date, not available.

5.8. Explainable Artificial Intelligence

Recently, the increasing popularity of explainable artificial intelligence methods (see, e.g., 145–
148) has allowed us to gain insight into the inner workings of deep learning algorithms. In this
manner, it has become possible to extract how a problem is solved by the deep model. This allows,
for example, for the detection of so-called clever Hans solutions (147)—that is, nonsensical solu-
tions relying on artifactual or nonphysical aspects in data. Combined with networks that learn a
representation, such as DTNN/SchNet (14, 100) and VAMPnets (24), these inspection methods
may provide scientific insights into themechanisms that give rise to the predicted physicochemical
quantity and thereby fuel the development of new theories.

www.annualreviews.org • Machine Learning for Molecular Simulation 383

A
nn

u.
 R

ev
. P

hy
s.

 C
he

m
. 2

02
0.

71
:3

61
-3

90
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

R
ic

e 
U

ni
ve

rs
ity

 o
n 

04
/2

3/
21

. F
or

 p
er

so
na

l u
se

 o
nl

y.
 



PC71CH16_Noe ARjats.cls April 9, 2020 14:5

DISCLOSURE STATEMENT

The authors are not aware of any affiliations, memberships, funding, or financial holdings that
might be perceived as affecting the objectivity of this review.

ACKNOWLEDGMENTS

We gratefully acknowledge funding from the European Commission (ERC CoG 772230
“ScaleCell” to F.N. and ERC CoG grant BeStMo to A.T.), Deutsche Forschungsgemeinschaft
(CRC1114/A04 to F.N.; EXC 2046/1, project ID 390685689, to K.-R.M.; and GRK2433
DAEDALUS to F.N. and K.-R.M.), the MATH+ Berlin Mathematics research center (AA1-6 to
F.N. and EF1-2 to F.N. and K.-R.M.), Einstein Foundation Berlin (Einstein Visiting Fellowship to
C.C.), the National Science Foundation (grants CHE-1265929, CHE-1740990, CHE-1900374,
and PHY-1427654 to C.C.), theWelch Foundation (grant C-1570 to C.C.), an Institute for Infor-
mation and Communications Technology Planning and Evaluation grant funded by the Korean
government (2017-0-00451 and 2017-0-01779 to K.-R.M.), and the German Ministry for Edu-
cation and Research (grants 01IS14013A-E, 01GQ1115, and 01GQ0850 to K.-R.M.). We thank
Stefan Chmiela and Kristof Schütt for help with Figures 1 and 5.

LITERATURE CITED

1. Dirac PAM. 1929. Quantum mechanics of many-electron systems. Proc. R. Soc. A 123:714–33
2. Müller KR, Mika S, Rätsch G, Tsuda K, Schölkopf B. 2001. An introduction to kernel-based learning

algorithms. IEEE Trans. Neural Netw. 12:181–201
3. Vapnik VN. 1999. An overview of statistical learning theory. IEEE Trans. Neural Netw. 10:988–99
4. Bishop CM. 2006. Pattern Recognition and Machine Learning. Singapore: Springer
5. LeCun Y, Bengio Y, Hinton G. 2015. Deep learning.Nature 521:436–44
6. Goodfellow I, Bengio Y, Courville A. 2016.Deep Learning. Cambridge, MA: MIT Press
7. Behler J, ParrinelloM. 2007.Generalized neural-network representation of high-dimensional potential-

energy surfaces. Phys. Rev. Lett. 98:146401
8. Rupp M, Tkatchenko A, Müller KR, Lilienfeld OAV. 2012. Fast and accurate modeling of molecular

atomization energies with machine learning. Phys. Rev. Lett. 108:058301
9. Bartók AP, Payne MC, Kondor R, Csányi G. 2010. Gaussian approximation potentials: the accuracy of

quantum mechanics, without the electrons. Phys. Rev. Lett. 104:136403
10. Chmiela S, Sauceda HE, Müller KR, Tkatchenko A. 2018. Towards exact molecular dynamics simula-

tions with machine-learned force fields.Nat. Commun. 9:3887
11. Smith JS, Isayev O, Roitberg AE. 2017a. ANI-1: an extensible neural network potential with DFT ac-

curacy at force field computational cost. Chem. Sci. 8:3192–203
12. Smith JS, Nebgen BT, Zubatyuk R, Lubbers N, Devereux C, et al. 2018. Outsmarting quantum chem-

istry through transfer learning. ChemRxiv 6744440. https://doi.org/10.26434/chemrxiv.6744440.v1
13. Brockherde F, Vogt L, Li L, Tuckerman ME, Burke K, Müller KR. 2017. Bypassing the Kohn–Sham

equations with machine learning.Nat. Commun. 8:872
14. Schütt KT, Arbabzadah F, Chmiela S, Müller KR, Tkatchenko A. 2017. Quantum-chemical insights

from deep tensor neural networks.Nat. Commun. 8:13890
15. Bereau T, DiStasio RA Jr., Tkatchenko A, von Lilienfeld OA. 2018. Non-covalent interactions across

organic and biological subsets of chemical space: physics-based potentials parametrized from machine
learning. J. Chem. Phys. 148:241706

16. Welborn M, Cheng L, Miller TF III. 2018. Transferability in machine learning for electronic structure
via the molecular orbital basis. J. Chem. Theory Comput. 14:4772–79

17. Cheng L, Welborn M, Christensen AS, Miller TF III. 2019. A universal density matrix functional
from molecular orbital-based machine learning: transferability across organic molecules. J. Chem. Phys.
150:131103

384 Noé et al.

A
nn

u.
 R

ev
. P

hy
s.

 C
he

m
. 2

02
0.

71
:3

61
-3

90
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

R
ic

e 
U

ni
ve

rs
ity

 o
n 

04
/2

3/
21

. F
or

 p
er

so
na

l u
se

 o
nl

y.
 

https://doi.org/10.26434/chemrxiv.6744440.v1


PC71CH16_Noe ARjats.cls April 9, 2020 14:5

18. John ST, Csányi G. 2017. Many-body coarse-grained interactions using Gaussian approximation po-
tentials. J. Phys. Chem. B 121:10934–49

19. Zhang L, Han J, Wang H, Car R, Weinan E. 2018. DeePCG: constructing coarse-grained models via
deep neural networks. J. Chem. Phys. 149:034101

20. Wang J, Olsson S,Wehmeyer C, Pérez A, Charron NE, et al. 2019.Machine learning of coarse-grained
molecular dynamics force fields. ACS Cent. Sci. 5:755–67

21. Durumeric AEP, Voth GA. 2019. Adversarial-residual-coarse-graining: applying machine learning the-
ory to systematic molecular coarse-graining. J. Chem. Phys. 151:124110

22. Wehmeyer C, Noé F. 2018. Time-lagged autoencoders: deep learning of slow collective variables for
molecular kinetics. J. Chem. Phys. 148:241703

23. Hernández CX,Wayment-Steele HK, Sultan MM,Husic BE, Pande VS. 2018. Variational encoding of
complex dynamics. Phys. Rev. E 97:062412

24. Mardt A, Pasquali L,WuH,Noé F. 2018.VAMPnets: deep learning of molecular kinetics.Nat. Commun.
9:5

25. Ribeiro JML, Bravo P, Wang Y, Tiwary P. 2018. Reweighted autoencoded variational Bayes for en-
hanced sampling (RAVE). J. Chem. Phys. 149:072301

26. Chen W, Sidky H, Ferguson AL. 2019. Nonlinear discovery of slow molecular modes using state-free
reversible VAMPnets. J. Chem. Phys. 150:214114

27. Jung H,Covino R,Hummer G. 2019. Artificial intelligence assists discovery of reaction coordinates and
mechanisms from molecular dynamics simulations. arXiv:1901.04595 [physics.chem-ph]

28. Stecher T, Bernstein N, Csányi G. 2014. Free energy surface reconstruction from umbrella samples
using Gaussian process regression. J. Chem. Theory Comput. 10:4079–97

29. Mones L,BernsteinN,CsányiG.2016.Exploration, sampling, and reconstruction of free energy surfaces
with Gaussian process regression. J. Chem. Theory Comput. 12:5100–10

30. Schneider E, Dai L, Topper RQ, Drechsel-Grau C, Tuckerman ME. 2017. Stochastic neural network
approach for learning high-dimensional free energy surfaces. Phys. Rev. Lett. 119:150601

31. WuH,Mardt A,Pasquali L,Noé F. 2018a.Deep generativeMarkov state models.Adv.Neural Inf. Process.
Syst. 31:3975–84

32. Olsson S, Noé F. 2019. Dynamic graphical models of molecular kinetics. PNAS 116:15001–6
33. Valsson O, Parrinello M. 2014. Variational approach to enhanced sampling and free energy calculations.

Phys. Rev. Lett. 113:090601
34. Bonati L,Zhang YY,ParrinelloM.2019.Neural networks-based variationally enhanced sampling.PNAS

116:17641–47
35. Zhang J, Yang YI, Noé F. 2019. Targeted adversarial learning optimized sampling. J. Phys. Chem. Lett.

10:5791–97
36. McCarty J, Parrinello M. 2017. A variational conformational dynamics approach to the selection of

collective variables in metadynamics. J. Chem. Phys. 147:204109
37. Sultan MM, Pande VS. 2017. tICA-metadynamics: accelerating metadynamics by using kinetically se-

lected collective variables. J. Chem. Theory Comput. 13:2440–47
38. Doerr S, Fabritiis GD. 2014. On-the-fly learning and sampling of ligand binding by high-throughput

molecular simulations. J. Chem. Theory Comput. 10:2064–69
39. Zimmerman MI, Bowman GR. 2015. FAST conformational searches by balancing explo-

ration/exploitation trade-offs. J. Chem. Theory Comput. 11:5747–57
40. Plattner N, Doerr S, Fabritiis GD, Noé F. 2017. Protein-protein association and binding mechanism

resolved in atomic detail.Nat. Chem. 9:1005–11
41. Noé F, Olsson S, Köhler J, Wu H. 2019. Boltzmann generators—sampling equilibrium states of many-

body systems with deep learning. Science 365:eaaw1147
42. Jiménez J, Skalic M, Martinez-Rosell G, Fabritiis GD. 2018. KDEEP: protein–ligand absolute binding

affinity prediction via 3D-convolutional neural networks. J. Chem. Inf. Model. 58:287–96
43. SkalicM,Varela-Rial A, Jiménez J,Martínez-Rosell G, Fabritiis GD. 2018. LigVoxel: inpainting binding

pockets using 3D-convolutional neural networks. Bioinformatics 35:243–50

www.annualreviews.org • Machine Learning for Molecular Simulation 385

A
nn

u.
 R

ev
. P

hy
s.

 C
he

m
. 2

02
0.

71
:3

61
-3

90
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

R
ic

e 
U

ni
ve

rs
ity

 o
n 

04
/2

3/
21

. F
or

 p
er

so
na

l u
se

 o
nl

y.
 



PC71CH16_Noe ARjats.cls April 9, 2020 14:5

44. Wu Z, Ramsundar B, Feinberg EN, Gomes J, Geniesse C, et al. 2018b. MoleculeNet: a benchmark for
molecular machine learning. Chem. Sci. 9:513–30

45. Feinberg EN, Sur D,Wu Z, Husic BE,Mai H, et al. 2018. PotentialNet for molecular property predic-
tion. ACS Cent. Sci. 4:1520–30

46. Gómez-Bombarelli R,Wei JN,Duvenaud D,Hernández-Lobato JM, Sánchez-Lengeling B, et al. 2018.
Automatic chemical design using a data-driven continuous representation of molecules. ACS Cent. Sci.
4:268–76

47. Popova M, Isayev O, Tropsha A. 2018. Deep reinforcement learning for de novo drug design. Sci. Adv.
4:eaap7885

48. Winter R,Montanari F, Steffen A, BriemH,Noé F,Clevert DA. 2019a. Efficient multi-objective molec-
ular optimization in a continuous latent space. Chem. Sci. 10:8016–24

49. Winter R, Montanari F, Noé F, Clevert DA. 2019b. Learning continuous and data-driven molecular
descriptors by translating equivalent chemical representations. Chem. Sci. 10:1692–701

50. Butler KT, Davies DW, Cartwright H, Isayev O, Walsh A. 2018. Machine learning for molecular and
materials science.Nature 559:547–55

51. Sanchez-Lengeling B, Aspuru-Guzik A. 2018. Inverse molecular design using machine learning: gener-
ative models for matter engineering. Science 361:360–65

52. Lindorff-Larsen K, Maragakis P, Piana S, Eastwood MP, Dror RO, Shaw DE. 2012. Systematic valida-
tion of protein force fields against experimental data. PLOS ONE 7:e32131

53. Nerenberg PS, Jo B, So C, Tripathy A, Head-Gordon T. 2012. Optimizing solute-water van der Waals
interactions to reproduce solvation free energies. J. Phys. Chem. B 116:4524–34

54. Huang J, Rauscher S, Nawrocki G, Ran T, Feig M, et al. 2016. CHARMM36m: an improved force field
for folded and intrinsically disordered proteins.Nat. Methods 14:71–73

55. Robustelli P, Piana S, Shaw DE. 2018. Developing a molecular dynamics force field for both folded and
disordered protein states. PNAS 115:E4758–66

56. Behler J. 2016. Perspective: machine learning potentials for atomistic simulations. J. Chem. Phys.
145:170901

57. Li Z, Kermode JR, Vita AD. 2015. Molecular dynamics with on-the-fly machine learning of quantum-
mechanical forces. Phys. Rev. Lett. 114:96405

58. Schütt KT, Sauceda HE, Kindermans PJ, Tkatchenko A, Müller KR. 2018. SchNet—a deep learning
architecture for molecules and materials. J. Chem. Phys. 148:241722

59. Gastegger M, Behler J, Marquetand P. 2017. Machine learning molecular dynamics for the simulation
of infrared spectra. Chem. Sci. 8:6924–35

60. Dral PO, Owens A, Yurchenko SN, Thiel W. 2017. Structure-based sampling and self-correcting ma-
chine learning for accurate calculations of potential energy surfaces and vibrational levels. J. Chem. Phys.
146:244108

61. Chmiela S, Tkatchenko A, Sauceda HE, Poltavsky I, Schütt KT,Müller KR. 2017. Machine learning of
accurate energy-conserving molecular force fields. Sci. Adv. 3:e1603015

62. Han J, Zhang L, Car R, Weinan E. 2018. Deep Potential: a general representation of a many-body
potential energy surface. Phys. Rev. Lett. 120:143001

63. Noé F, Clementi C. 2017. Collective variables for the study of long-time kinetics from molecular tra-
jectories: theory and methods. Curr. Opin. Struct. Biol. 43:141–47

64. Galvelis R, Sugita Y. 2017. Neural network and nearest neighbor algorithms for enhancing sampling of
molecular dynamics. J. Chem. Theory Comput. 13:2489–500

65. Sidky H,Whitmer JK. 2018. Learning free energy landscapes using artificial neural networks. J. Chem.
Phys. 148:104111

66. Ribeiro JML, Tiwary P. 2018. Toward achieving efficient and accurate ligand-protein unbinding with
deep learning and molecular dynamics through RAVE. J. Chem. Theory Comput. 15:708–19

67. Chen W, Ferguson AL. 2018. Molecular enhanced sampling with autoencoders: on-the-fly collec-
tive variable discovery and accelerated free energy landscape exploration. J. Comput. Chem. 39:2079–
102

386 Noé et al.

A
nn

u.
 R

ev
. P

hy
s.

 C
he

m
. 2

02
0.

71
:3

61
-3

90
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

R
ic

e 
U

ni
ve

rs
ity

 o
n 

04
/2

3/
21

. F
or

 p
er

so
na

l u
se

 o
nl

y.
 



PC71CH16_Noe ARjats.cls April 9, 2020 14:5

68. SultanMM,Wayment-SteeleHK,PandeVS. 2018.Transferable neural networks for enhanced sampling
of protein dynamics. J. Chem. Theory Comput. 14:1887–94

69. Guo AZ, Sevgen E, Sidky H,Whitmer JK, Hubbell JA, de Pablo JJ. 2018. Adaptive enhanced sampling
by force-biasing using neural networks. J. Chem. Phys. 148:134108

70. Noid WG, Chu JW, Ayton GS, Krishna V, Izvekov S, et al. 2008. The multiscale coarse-graining
method. I. A rigorous bridge between atomistic and coarse-grained models. J. Chem. Phys. 128:244114

71. Noid WG. 2013. Perspective: coarse-grained models for biomolecular systems. J. Chem. Phys.
139:090901

72. Ciccotti G, Lelièvre T, Vanden-Eijnden E. 2008. Projection of diffusions on submanifolds: application
to mean force computation. Commun. Pure Appl. Math. 61:371–408

73. Clementi C. 2008.Coarse-grained models of protein folding: toy-models or predictive tools?Curr.Opin.
Struct. Biol. 18:10–15

74. Boninsegna L, Banisch R, Clementi C. 2018. A data-driven perspective on the hierarchical assembly of
molecular structures. J. Chem. Theory Comput. 14:453–60

75. Wang W, Gómez-Bombarelli R. 2018. Variational coarse-graining for molecular dynamics.
arXiv:1812.02706 [physics.chem-ph]

76. Sarich M, Noé F, Schütte C. 2010. On the approximation quality of Markov state models. Multiscale
Model. Simul. 8:1154–77

77. Wu H, Noé F. 2017. Variational approach for learning Markov processes from time series data.
arXiv:1707.04659 [stat.ML]

78. Buchete NV, Hummer G. 2008. Coarse master equations for peptide folding dynamics. J. Phys. Chem.
B 112:6057–69

79. Noé F, Doose S, Daidone I, Löllmann M, Chodera JD, et al. 2011. Dynamical fingerprints for prob-
ing individual relaxation processes in biomolecular dynamics with simulations and kinetic experiments.
PNAS 108:4822–27

80. Schütte C, Fischer A, Huisinga W, Deuflhard P. 1999. A direct approach to conformational dynamics
based on hybrid Monte Carlo. J. Comput. Phys. 151:146–68

81. Swope WC, Pitera JW, Suits F. 2004. Describing protein folding kinetics by molecular dynamics simu-
lations: 1. Theory. J. Phys. Chem. B 108:6571–81

82. Noé F, Horenko I, Schütte C, Smith JC. 2007. Hierarchical analysis of conformational dynamics in
biomolecules: transition networks of metastable states. J. Chem. Phys. 126:155102

83. Chodera JD, Dill KA, Singhal N, Pande VS, Swope WC, Pitera JW. 2007. Automatic discovery of
metastable states for the construction of Markov models of macromolecular conformational dynamics.
J. Chem. Phys. 126:155101

84. Prinz JH, Wu H, Sarich M, Keller BG, Senne M, et al. 2011. Markov models of molecular kinetics:
generation and validation. J. Chem. Phys. 134:174105
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