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Abstract
The S-shaped curvature of the spine has been hypothesized as the underlying mechanical cause of adolescent idiopathic 
scoliosis. In earlier work, we proposed a reduced-order model in which the spine was viewed as an S-shaped elastic rod under 
torsion and bending. Here, we simulate the deformation of S-shaped rods of a wide range of curvatures and inflection points 
under a fixed mechanical loading. Our analysis determines three distinct axial projection patterns of these S-shaped rods: two 
loop (in opposite directions) patterns and one Lemniscate pattern. We further identify the curve characteristics associated 
with each deformation pattern, showing that for rods deforming in a Loop1 shape the position of the inflection point is the 
highest and the curvature of the rod is smaller compared to the other two types. For rods deforming in the Loop2 shape, the 
position of the inflection point is the lowest (closer to the fixed base) and the curvatures are higher than the other two types. 
These patterns matched the common clinically observed scoliotic curves—Lenke 1 and Lenke 5. Our S-shaped elastic rod 
model generates deformations that are similar to those of a pediatric spine with the same sagittal curvature characteristics 
and it can differentiate between the clinically observed deformation patterns.
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1  Introduction

During the fast growth period around puberty, some pedi-
atric spines deform in three dimensions leading to scoliosis 
(Burwell 2003; Castelein et al. 2005; Castelein and Veraart 
1992; Weinstein et al. 2008). While the pathogenesis of this 
disease remains unknown (Gu et al. 2009; Liu et al. 2012), 
the side view of the S-shaped curvature of the fast-growing, 
flexible, immature, slender spines has been hypothesized 
as an underlying mechanical cause of adolescent scoliosis 
which also may impact the clinical management of the dis-
ease (Cheng et al. 2015; Pasha 2019a, b; Pasha and Baldwin 
2019a; Schlösser et al. 2014). It has been clinically shown 
that at an early stage of scoliosis, the sagittal curvature of the 
spine is different between scoliotic and non-scoliotic sub-
jects of similar age and sex (Schlösser et al. 2015). However, 

as the scoliosis changes the spinal alignment in three dimen-
sions (Pasha et al. 2014a), even at an early stage of the dis-
ease (Brink et al. 2018), it is challenging to evaluate the 
role of the true sagittal alignment of the spine in induction 
of scoliosis. As the idiopathic scoliotic patients are other-
wise healthy, identifying these patients before the onset of 
scoliosis in order to obtain their patterns of sagittal profile 
is difficult (Castelein and Veraart 1992).

We turn to simulations to test the hypothesis that changes 
in the S-shaped curvature of a rod, similar to the sagittal cur-
vature of the spine, result in deformity patterns that are simi-
lar to the spinal deformity patterns in scoliosis. Previously, 
buckling of 2D rods was used to explain different deforma-
tion patterns in scoliotic spine (Belytschko et al. 1973; Lucas 
1970). These deformations were explained based on the Eul-
er’s critical load that causes instability in a 2D rod model, 
and then, the buckling modes were compared to patterns of 
the spinal deformity in thoracic and lumbar spine (Crisco 
and Panjabi 1992; Crisco et al. 1992; Goto et al. 2003; Lucas 
and Boris 1961; Meakin et al. 1996). However, significant 
change in the mechanical loading or mechanical properties 
of such straight rods is required to achieve different defor-
mation patterns. Such significant change in the mechanical 
characteristics of the rod may not be justifiable in human 
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spine. More recently, a reduced-order rod model for study-
ing scoliosis has been proposed by Pasha (2019a). Using 
finite element analysis, this model simulates the spines as 
S-shaped slender elastic rods with varying curvatures while 
maintaining the same mechanical loading and mechanical 
properties for the rod (Pasha 2019a). This model showed the 
changes in the sagittal curvature of the spine itself can cause 
variation in the mechanical loading along the spine resulting 
in deformation modes that are similar to the scoliotic curve 
patterns (Pasha 2020). In the current study, we wish to deter-
mine the geometrical parameters that affect the deformation 
of such slender elastic rods, while mechanical loading and 
propertiese remain unchanged. One way to do this is by finite 
element simulation as was done previously by modeling the 
spine as a linear elastic material (Pasha 2019a). Repeating 
such finite element simulations while iterating over vari-
ous initial shapes obtained by permutation of geometrical 
parameters is computationally prohibitive. To reduce com-
putational cost, we developed a semi-analytical model using 
Kirchhoff equations (Meakin et al. 1996) to solve for the 
deformation given the initial geometry and loading on an 
S-shaped elastic rod (Neelakantan et al. 2020). The analyti-
cal model allows us to compute the deformed configuration 
of a rod subject to loads through a set of ordinary differential 
equations. The reduced computational complexity allows us 
to iterate over all permutations of the geometrical parameters 
describing the sagittal shape of the spine.

We simulate the curvature of the spine by two regions 
of constant curvature. We define the sagittal profile of the 
spine using 5 parameters shown in Fig. 1 which allows us 
to vary the shape of the sagittal curve systematically. Using 
this simplified geometry, we hypothesize that under the same 
mechanical loading and mechanical properties, the geomet-
rical parameters–the two curvatures of the S-shaped rod, 
position of the inflection point and the slope of the curve 
at the lowest point with respect to the horizontal axis—can 
significantly impact the deformation of the rod. We hypoth-
esize that the variations in the sagittal spinal alignment may 
modulate how the spinal deformity patterns in adolescent 
idiopathic scoliosis manifest.

2 � Methods

Here, we describe an elastic rod model for the spine to inves-
tigate the effects of the different geometrical parameters. 
Since our goal is to focus on the geometrical parameters of 
the sagittal curvature, we will hold the bending modulus of 
our S-shaped rod fixed for all the simulations. We present 
a schematic in Fig. 1 to label the geometrical parameters.

The spine is modeled as an S-shaped elastic rod. The 
undeformed spine is assumed to rest on the � − � plane 
with the base of the spine at the origin in the laboratory 

coordinate system given by [�x �y �z] . We define an arc 
length coordinate along the centerline s; a point located 
at s in the reference configuration moves in the deformed 
configuration to �(s) = x(s)�x + y(s)�y + z(s)�z . The rod 
is then subject to a body force along the −ve z direction 
which is caused due to the weight distribution of the upper 

Fig. 1   Schematic of an S-shaped rod representing the spine. 
�̂(s) vector of the Frenet–Serret frame points out of the plane. 
�
0
+ �

0
= �∕2 and �

0
= �∕2 . Body force fz(s) acts in the negative 

�z direction. The curvatures �P and �N , the position S of the inflection 
point and the angle �

0
 play important roles in determining the shape 

of the xy projection of the S-shaped rod when the loading and mate-
rial properties are held fixed
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body. It is also subject to moments at the ends to simulate 
asymmetry in the body mass (Pasha et al. 2014).

The Frenet–Serret frame for the rod is [�(s) �̂(s) �̂(s)] . 
�̂(s) is the tangent vector, �̂(s) = d�

ds
 . The rod is assumed 

in-extensible; hence, |||�̂(s)
||| = 1 . �̂(s) can be expressed in the 

laboratory coordinate system as:

where � is the polar angle measured from the x − y plane 
and � is the azimuthal angle used in conventional spherical 
polar coordinates. �̂(s) and �̂(s) are the normal and binor-
mal vectors, respectively, and they are computed using the 
Frenet–Serret equations:

The curvature �(s) and the torsion �(s) of the rod are obtained 
from the above equations (Nizette and Goriely 1999). This 
completes the kinematic description of the rod.

2.1 � Mechanics

Next, we present the equilibrium equations for the rod. We 
begin with the conservation of linear momentum (Antman 
2006; Audoly 2010),

where �(s) = [nx(s) ny(s) nz(s)] is the internal force in the 
rod. � = fz(s)�z is the body force on the rod and is directed 
only along the �z direction due to gravity. For fz(s) , we use 
the values found in Pasha et al. (2014). The rod is assumed 
in-extensible; hence, there is no constitutive law for �(s) . 
�(s) must be determined as part of the solution of the bound-
ary value problem for the rod. We use Eqs. (2) and (3) to get

Since there are no forces in the �x and �y directions, 
n0
x
= n0

y
= 0 . The conservation of angular momentum of the 

rod states that

(1)
�̂(s) = cos 𝛼(s) cos𝜙(s)�x + cos 𝛼(s) sin𝜙(s)�y

+ sin 𝛼(s)�z,

(2)d�̂

ds
= 𝜅�̂,

dn̂

ds
= −𝜅 �̂ + 𝜏�̂,

d�̂

ds
= −𝜏�̂.

(3)
dnx

ds
= 0,

(4)
dny

ds
= 0,

(5)
dnz

ds
+ fz(s) = 0

(6)nx(s) = n0
x
, ny(s) = n0

y
.

where �(s) = [mx(s) my(s) mz(s)] is the internal moment 
in the rod in the laboratory frame and � is the body moment 
per unit length. We set � = � in this work. Since nx = ny = 0 , 
the balance of angular momentum becomes:

We get mz = T  from Eq. (9), a constant which we compute 
from torque boundary condition applied at s = 0.

The internal moment can be written in the Frenet frame as 
� = mt �̂ + m𝜈 �̂ + m𝛽 �̂ which is convenient if we use the fol-
lowing simple constitutive relation:

where Kb(s) and Kt(s) are the bending and twist-
ing moduli of the elastic rod, respectively. The curva-
ture functions in the stress free state are given by �0(s) 
and �0

3
(s) , respectively. We assume �0

3
= 0 . This con-

stitutive law is a special case of a general form given by 
� = Kb(�1 − �0

1
)�1 + Kb(�2 − �0

2
)�2 + Kt(�3 − �0

3
)�3 where 

[�1(s) �2(s) �3(s)] is a material frame that convects with 
the arc-length coordinate s.

Plugging this constitutive law into the conservation of 
angular momentum and considering the component along the 
�̂ direction only gives (Antman 2006; Audoly 2010)

If we define Kt(s)(�3(s) − �0

3
(s)) = m3(s) , then Eq.  (11) 

shows that dm3

ds
= 0 or m3 = const . We also set Kb(s) as con-

stant since our focus is on the effects of the geometrical 
parameters. Then, from the constitutive law, we can write 
the moment in the laboratory frame as

dmx

ds
+ (t̂ × n)x + lx = 0,

dmy

ds
+ (t̂ × n)y + ly = 0,

dmz

ds
+ (t̂ × n)z + lz = 0,

(7)
dmx

ds
+ nz sin� cos � =0,

(8)
dmy

ds
− nz cos� cos � =0,

(9)
dmz

ds
=0.

(10)� = Kb(s)(𝜅 − 𝜅0(s))�̂ + Kt(s)(𝜅3 − 𝜅0

3
)�̂,

(11)
dKt

ds
(�3(s) − �0

3
(s)) + Kt(s)

(
d�3

ds
−

d�0

3

ds

)
= 0.

(12)
mx =Kb

�(s) − �0(s)

�(s)

[
−�� cos� sin � cos � + �� sin�

]

+ m3 cos� cos �,
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The elimination Kb , �0(s) and �(s) from the above gives:

Then, we solve Eq. (15) to get

where we determine the solution branch from �0 . We com-
pute ��(s) using Eq. (16) to get

where the ± sign is dependent on the sign of ��(s).
Finally, the deformed curve can be determined using

This along with Eqs. (5), (7), (8) and (19) forms the govern-
ing equations of the system along with the boundary condi-
tions given by:

(13)
my =Kb

�(s) − �0(s)

�(s)

[
−�� sin� sin � cos � − �� cos�

]

+ m3 sin� cos �,

(14)mz = Kb

�(s) − �0(s)

�(s)
�� cos2 �. + m3 sin �.

(15)mx cos� + my sin� = −mz tan � +
m3

cos �
,

(16)(mx sin� − my cos�)�
� =

mz − m3 sin �

cos2 �
��.

(17)sin � =
m3mz ± P

√
P2 + m2

z
− m2

3

P2 + m2
z

,

(18)P = mx sin� + my cos�,

(19)

�� =
mz − m3 sin �

Kb(s) cos
2 �

±
�0(s)

cos �

1
√

1 + cos2 �
(mx sin�−my cos�)

2

(mz−m3 sin �)
2

,

(20)
dx

ds
= cos� cos �,

(21)
dy

ds
= sin� cos �,

(22)
dz

ds
= sin �.

where nz0 is the weight of the upper body and mx0
 and my0

 
are used to account for the loading asymmetry experienced 
by a scoliotic spine.

2.2 � Phase plot

Now, we will use the above model to study the effects of 
the different geometrical parameters of the curved rod. Kb 
is set to an arbitrary constant. We will simplify �0(s) using 
the following function:

where S is the point of inflection of the rod and a is the 
distance over which the curvature of the rod goes from �P to 
�N . �N∕�P are the curvatures of the lower/upper portion of 
the rod (above and below the inflection point, respectively).

We will focus on the effects of varying �P , �N , S, a and �0 . 
The range of values for these parameters used in this study 
are given in Table 1. To reduce the data space, we study the 
parameters that cause the largest change in deformations. 
We restrict �0 to the three major values found in clinical 
studies (Pasha and Baldwin 2019b).The range of values for 
�P , �N , S and a are based on maximum and minimum values 
of these parameters in Pasha et al. (2019a) who investigated 
the geometrical shapes of spines of patients with adolescent 
idiopathic scoliosis. For a range of a (0.01–0.1), we did not 
observe significant changes in deformation when we varied 
a over this range. So, we keep a fixed in all our computations 
and focus on the remaining four geometrical parameters.

We have chosen the moments in Table 1 based on work in 
Neelakantan et al. (2020). Neelakantan et al. had solved an 
inverse problem to deduce the bending modulus Kb(s) and the 
moments mz , m3 , etc., to match clinically observed scoliotic 
spine shapes under given loading due to the weight of organs. 
The values of mz , average Kb and their ratio mz∕Kb are given 
in Table 2. We are interested in the ratio mz

Kb

 because it is a 
curvature and curvatures of scoliotic spines are known, while 
no experimental measurement of Kb or mz , m3 , etc., is availa-
ble. Table 2 shows that the ratio mz

KB

 varies from − 0.11m−1 to 
0.1 m−1 . Recall that mz is used to simulate a torsion following 

(23)
nz(0) = nz0 , mx(0) = mx0

, my(0) = my0
,

�(0) = �∕2, x(0) = 0, y(0) = 0, z(0) = 0,

(24)�0(s) =
�P + �N

2
+

�P − �N

2
tanh

(
s − S

a

)
,

Table 1   Parameter values used 
to investigate the effects of 
geometry

Moment and stiffness values are the same for all rods studied. The width of the region over which the cur-
vature changes from �N to �P is a. a has little effect on the phase diagrams that follow, so it is also the same 
for all rods studied

�P (m−1) �N (m
−1) S (m) �0 ( 

◦) a (m) Kb(Nm
−2) mz (Nm) m3 (Nm) mx(0) (Nm)

0.1–5 0.1–5 0.3–0.8 31
◦ , 37◦ , 44◦ 0.01 10 − 2 0 − 8
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(Pasha 2019a), although it is clear that pure gravity loads in 
the z-direction alone cannot give rise to an mz . We have set m3 
to zero to ease calculation and understanding of the system 
because it also causes torsion which is already taken into 
account by a nonzero mz . The value of mx(0) is chosen such 
that the deformation in the axial view is of the same order as 
in Neelakantan et al. [compare Fig. 10 of this manuscript with 
Fig. 1 in Neelakantan et al. (2020)]. Since the moment values 
are constrained by Eq. (16) and we have set mx(0) , mz and m3 , 
my is already fixed and does not need to be specified. With this 
rationale for our choice of parameters in Table 1, our goal is 
to show how geometrical parameters of an S-shaped rod pro-
duce different shapes, which resemble shapes of scoliotic 
spines, even when loading and material properties of the rod 
are fixed.

2.3 � Uprightness

To ensure the deformed state of the rod is physiologically 
acceptable, we restrict the values of the parameters such that 
the initial configuration of the spine remains upright. The 
shape of the spine is assumed to lie in the � − � plane in the 
absence of loads. Hence, when �(s) = �∕2 we can compute 
the initial curve from �0(s) using the following system of 
ODEs

We limit the � displacement of the top of the S-shaped rod 
to 20% of the � displacement in the initial configuration to 
filter out unrealistic shapes where there is a large displace-
ment between the head and pelvis, i.e., the two ends of the 
rod. This constraint boils down to

(25)�(s) =
d�

ds
= �0(s),

(26)
dy

ds
= cos �,

(27)
dz

ds
= sin �.

(28)|y(L)| < 0.2 |z(L)|.

Now we apply the analytical model to find the deformation 
over the range of parameters. As shown previously by Pasha 
et al. (2019a), the most common curve types in scoliosis 
deform in a loop or Lemniscate shape in the axial plane 
( � − � plane). We classify the deformed shapes as loop or 
Lemniscate based on the number of points of intersection the 
curve in the � − � projection has with the line segment join-
ing the two end points of the curve. The curve is classified as 
a loop shape if the line segment does not intersect the curve 
and as a Lemniscate shape if the line segment intersects with 
the curve at least once (we exclude the intersection at the end 
points). We perform this check over the range of parameters 
given in Table 1.

We create a scatter plot of points in the data space which 
satisfies the Lemniscate condition using �P , �N and S as the 
axes of the plot. The boundary points are filtered and sur-
faces are fit to the points. A polynomial fit is used to sepa-
rate the regions into loop and Lemniscate shapes. A simi-
lar procedure is followed for points satisfying the upright 
condition and a polynomial fit is used to create surfaces to 
separate regions where the undeformed rod is upright from 
those where it is not.

For each �0 , we plot all the initial configurations that 
deform into loop and Lemniscate shapes, respectively, along 
with the average curve for each case. The equations of the 
surfaces for the Lemniscate condition along with the coef-
ficient of determination of the fit ( R2 ) are given in Table 4 
in appendix. The resulting three surface plots at the three �0 
values appear in “Results” section.

3 � Results

Figure 2 presents the loop–Lemniscate classification regions 
and the condition of uprightness in the data space. We see in 
Fig. 2a that two surfaces divide the volume of interest into 
three parts comprising of two loop regions and one Lem-
niscate region. We label the loop region with low �P and S 
as “Loop2” and the other region as “Loop1.” Only variable 
ranges bounded by both uprightness surfaces and loop–Lem-
niscate classification surfaces are presented in the follow-
ing sections. The different regions are classified accordingly 
and serve as a reference when we consider both conditions 
together in the following plots.

Next, we present the combined surface plots in Fig. 3. 
We present the surface plots for 3 angles—31

◦ , 37◦ and 44◦ . 
The surfaces span the entire parameter space, so that we can 
visualize any trends that develop in the region of interest. 
We have included the equations of the surfaces and the fit 
information in Table 4 of appendix. We have also presented 
the range of values in Table 3. We also present the equations 
for the uprightness check surface (yellow surface) in Table 5 
of appendix.

Table 2   mz and average Kb values from Neelakantan et al. (2020)

Case mz (Nm) Avg ( Kb ) ( Nm
2) mz∕Kb ( m−1)

Case 1 − 11.32 158.61 − 0.07
Case 2 21.72 216.95 0.1
Case 3 16.52 302.75 0.05
Case 4 − 25.24 269.27 − 0.09
Case 5 − 24.49 212.49 − 0.11



	 S. Neelakantan et al.

1 3

Figure 2b shows that the range of admissible �P values 
that satisfy the uprightness condition is smaller than the 
range of �N values for each S. Recall that the range of a is 
also very small and it has minimal effect on the classifica-
tion of deformation patterns.

To show that the phase plots in Fig. 2a, b are typical and 
not an isolated result of our choice of parameters in 
Table 1, we give phase plots for different choices of load-
ing in Figs. 4 and 5. The effect of mz on the loop–Lemnis-
cate surface is shown in Fig. 4 by taking mz = − 1 Nm and 
1 Nm and �0 = 37

◦ (while keeping all other parameters the 
same as given in Table 1). Our choice of these mz values 
is based on Table 2 in which − 0.11 <

mz

Kb

< 0.1m−1 . Simi-
larly, a phase plot with m3 = -1Nm with all other param-
eters as given in Table 1 is shown in Fig. 5. These phase 
plots look qualitatively similar to other such plots pre-
sented before, confirming that they are typical. We have 
used the parameters in Table 1 because they produce phase 
plots that are visually clear, but the qualitative conclusions 
of this paper do not depend on the particular choice of 
parameters in Table 1.

We present the shape of the initial configurations that 
lead to loop and Lemniscate shapes in the deformed con-
figuration in Fig. 6. The initial shape of the curve (black 
line) along with the range of the curves (shaded area) for 
each �0 is shown in Fig. 6. The corresponding sagittal pro-
file values are presented in Table 3. As shown in both 
Fig. 6 and Table 3, the position of the inflection point is 
the highest, closer to the top, in Loop1 and decreases in 
Lemniscate and Loop2 cases. However, the changes in the 
inflection point position within each case as the �0 changes 
are small. Both �P and �N are the smallest in Loop1 cases 
and highest in Loop2 cases, suggesting a more flat sagittal 
profile in Loop1 patients compared to the Lemniscate and 
Loop2 cases.

Fig. 2   Representative classification surfaces with regions marked. 
When the line joining the end points of the xy projection does 
not intersect the xy projection of the curved rod, then we call it a 
loop; when it intersects once, then we call it a Lemniscate. When 
|y(L)| < 0.2|z(L)| , then the curved rod is said to represent an upright 
spine

Fig. 3   Loop and Lemniscate regions for each case of �
0
 . The space 

between the blue surfaces reduces with increasing �
0
 . The yellow sur-

faces shift left (toward increasing �P ) with increasing �
0
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4 � Discussion

We analyzed the deformation patterns of S-shaped elastic 
rods to investigate the role of geometrical parameters of 
the sagittal spine on the deformity patterns seen in scoli-
otic spines. Our results show that under the same initial 
bending and torsion loading, informed by our previous 
work in Neelakantan et al. (2020), an S-shaped elastic 

rod deforms in three distinct configurations (deforma-
tion modes), presented as Loop1, Lemniscate and Loop2 
(Fig. 2a). We also determined specific geometrical char-
acteristics of these S-shaped rods leading to these three 
deformation patterns (Table 3).

Since the moments acting on the spine and its bending 
modulus have not been experimentally measured, but its 
curvatures can be estimated, we perform our analysis for a 
particular choice of mz

Kb

 . A nonzero mz is needed because it 
represents a torsional load that ultimately causes the out-of-
plane deformation of our S-shaped rod mimicking the defor-
mation seen in scoliotic patients. The other loading param-
eters used here are chosen such that the magnitude of the 
deformation is of the same order as in Neelakantan et al. 
(2020) which was determined using clinical data. We show 
that the phase plots demarcating regions of loop and Lem-
niscate projections look qualitatively similar to the 3D sco-
liotic patterns seen in Pasha et al. (2019a) irrespective of the 
choice of loading parameters, so we keep the loading fixed 
in this paper and focus instead on the geometrical parameters 
of the S-shaped rod.

The sagittal curvature of the spine in idiopathic scoliosis 
has been hypothesized to be a mechanical factor leading 
to the spinal deformity development (Chu et al. 2008; de 
Reuver et al. 2018; Janssen et al. 2011; Kouwenhoven et al. 
2006; Pasha et al. 2019b, c; Schlösser et al. 2014). However, 
specific characteristics of the sagittal curve that determine 
the deformity patterns of the spine are not known. Here, 
our analysis of S-shaped elastic rods showed that without 
any assumption about the mechanical properties of the dif-
ferent sections of the spine, geometrical details of the ver-
tebral body or properties of the intervertebral disk, three 
distinct modes of deformation can be identified for a curved 
elastic rod under bending and torsion: two loops and one 
Lemniscate. These deformation modes, which are related 
to the geometrical parameter of the rod (Table 3), were also 
observed in the most common scoliotic curve types (Lenke 1 
and Lenke 5) (Duong et al. 2006; Pasha et al. 2019a). Lenke 
1 scoliosis, which manifests as a deformity in the thoracic 
spine, was shown to have axial deformation patterns as seen 
in Loop1 and Lemniscate. On the other hand, Lenke 5 sco-
liosis had loop-shaped deformity patterns as was seen in 
Loop2 cases. Moreover, the Lenke 1 cases with loop-shaped 
axial projection were shown to have a higher inflection point 
compared to the Lenke 1 with Lemniscate axial projection 
and Lenke 5 patients (Pasha et al. 2019a) (as shown in 
Fig. 7). Although we used the result of our previous study 
on Lenke 1 patients to determine the mechanical loading of 
the spine (Neelakantan et al. 2020), our analysis here was 
able reproduce the deformation patterns that are observed in 
Lenke 5 just by changing the sagittal curvature parameters. 
This clinical observation matched the simulation results as 

Fig. 4   Effect of varying mz while keeping the remaining parameters 
fixed as given in Table  1. �

0
= 37

◦ . The two plots cover the two 
extreme values of mz

Kb

 in Table 2

Fig. 5   Effect of nonzero m
3
= −1 Nm while keeping other parameters 

fixed as given in Table 1. �
0
= 37

◦
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Fig. 6   Initial configuration to get loop and Lemniscate shapes for each case of �
0
 . The line is the average curve, and the gray region corresponds 

to the range
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given in Table 3. Our reduced-order model was able to dif-
ferentiate between these curve types providing evidence that 
geometry alone can give rise to different scoliosis-like defor-
mations under the same loading and material properties.

Figure 6 and Table 3 show that the average initial con-
figurations that produce loop and Lemniscate projections 
are different. �P and �N that produce a particular projection 
(loop or Lemniscate) increase with an increase in �0 in most 
cases; exceptions are �N in Lemniscate and Loop2. We see 
that �P ≈ �N in these three cases. The parameter values are 
different for the two loop regions. Table 3 shows that inter-
mediate values of �P , �N and S lead to the top view of the 
deformation being Lemniscate shape. Low or high values of 
these parameters leads to the loop shape. Our results show 
that we can predict the deformation case based on a limited 
number of geometrical parameters.

Our analysis further investigated the mechanical load-
ing of the S-shaped rod in the three deformation modes. 
As shown in Figs. 8 and 9, although the external loading 

Table 3   Average and range 
of the geometrical parameter 
values describing the sagittal 
profile for Loop1, Lemniscate 
and Loop2 cases

The parameter values of the average curve is in bold. The range of values are reported within square brack-
ets

Case �0 �P �N S

Loop1 31
◦ 1.36 [0.85 : 1.60] 0.32 [0.10 : 0.85] 0.81 [0.70 : 0.80]

37
◦ 1.50 [0.95 : 1.90] 0.44 [0.10 : 1.45] 0.80 [0.65 : 0.80]

44
◦ 1.75 [1.20 : 2.30] 0.62 [0.10 : 2.05] 0.80 [0.60 : 0.80]

Lemniscate 31
◦ 2.06 [0.75 : 5.00] 1.75 [0.10 : 5.00] 0.56 [0.30 : 0.80]

37
◦ 2.71 [1.10 : 5.00] 2.50 [0.45 : 5.00] 0.55 [0.30 : 0.80]

44
◦ 2.74 [1.25 : 5.00] 2.12 [0.10 : 5.00] 0.55 [0.30 : 0.80]

Loop2 31
◦ 2.78 [0.85 : 5.00] 2.72 [0.10 : 5.00] 0.41 [0.30 : 0.80]

37
◦ 4.35 [3.10 : 5.00] 4.19 [2.75 : 5.00] 0.40 [0.30 : 0.45]

44
◦ 4.03 [2.55 : 5.00] 3.18 [1.05 : 5.00] 0.40 [0.30 : 0.50]

Fig. 7   Schematics of the sagittal profiles in Lenke 1 scoliosis with 
loop (a) and Lemniscate (b) axial projection and Lenke 5 scoliosis 
with loop-shaped axial projection

Fig. 8   Sagittal view of the initial configuration of the 37◦ average curve in Fig. 6. ( my(s) plotted as red vectors). We see how changes in initial 
sagittal geometry can affect axial view of the deformed configuration
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(gravity and torsion) and mechanical properties of the rods 
are the same, the moment distribution along the rod varies 
in the y–z and x–z planes resulting in different deformation 
patterns as shown in Fig. 10. The geometry affects the final 
deformations because the moments in the rod depend on � 
and � as seen in Eqs. (7) and (8). my causes primarily bend-
ing deformations in the x-z plane, while mz causes twisting 
deformations, bringing the rod out of the y–z plane. We see 
that mx(s) is negative and the rod bends toward +ve y-axis 
in all three cases. mx changes along the spine in Loop1, but 
does not seem to affect the other cases as the deformation in 
the y-z projection can be explained by the effects of mx(s) . 
The reason mz does not affect the deformation y–z projec-
tion is due to the difference in magnitude between mx(s) and 
mz(s) . However, when both of these moments are nonzero it 
is difficult to qualitatively explain the deformation of the rod 
from a knowledge of their magnitudes. As shown in Fig. 10, 
the shape in the x–y projection is predominantly determined 
by mz . Note that my(s) is positive in all three cases of Fig. 8, 
and the axial projection of the three cases follows the same 
qualitative trend. In particular, the rod deflects toward the 
-ve x-axis for small s and then bends toward the +ve x-axis 
for larger s. (In the Loop1 case, this trend is not as obvious 
as the other two cases, but the rod begins to bend toward the 

+ve x-axis for larger s.) Thus, the sign of the my moment and 
the deformation are correlated. The deformed shape of the 
sagittal curves is presented in appendix. It can be seen that 
the relative position of the inflection point varies between 
the groups, i.e., Loop1 being the highest and Loop2 the 
lowest with respect to the horizontal axis as was seen prior 
to the deformation holds true in the deformed shape of the 
spine (Appendix Fig. 11).

As the mechanical loading on the spine results in the 3D 
deformation of the spine in scoliosis, the changes in the 
stress/strain patterns on the growth plate can impact the 
osteoblast function in the vertebral body and disk proper-
ties resulting in permanent changes in the functional units of 
the spine. As proposed before by Stokes et al. (1998), such 
changes that induce vertebral wedging result in a vicious 
cycle that further causes curve development. Although 
a possibility, we have not tested the primary or second-
ary cause of the vertebral asymmetry in this paper, yet we 
showed that the sagittal curvature of the spine impacts the 
mechanical loading of the spine; thus, geometry could pos-
sibly cause increased loading in different sections of the 
spine for patients with different sagittal curvatures (Pasha 
2019a). This observation was also shown in our previous 
work in which abnormal bone growth was dependent on 

Fig. 9   Frontal view of the initial configuration of the 37◦ average curve in Fig. 6. ( mx(s) plotted as red vectors)

Fig. 10   Axial view of the 
deformed configuration of the 
37

◦ average curve in Fig. 6. 
Red line segment connects end 
points to show loop/Lemniscate 
classification
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curve development and did not occur equally at all verte-
bral levels (Pasha et al. 2019b). As such, our model did not 
intend to include abnormal growth as a mechanism that 
initiates deformation. Instead, our model was developed to 
explain how changes in the sagittal curvature can impact the 
biomechanical loadings and consequently the deformation 
patterns.

In this study, we fixed the mechanical loading and 
mechanical properties of the S-shaped rod and observed sco-
liosis-like deformations only as a function of the geometrical 
differences between the sagittal curvatur1992es. In a straight 
rod, as previously has been proposed as a model of scoliosis 
(Crisco and Panjabi 1992; Crisco et al. ; Goto et al. 2003; 
Lucas and Boris 1961; Meakin et al. 1996), doing so will 
not produce scoliosis-like deformations. Different scoliotic 
patterns in a straight rod only can be produced by assuming 
significant variations in the compressive load or mechanical 
properties of the spine in patients with scoliosis. As such, we 
do not believe that a straight rod can produce scoliosis-like 
deformities as a result of constant axial compression and 
axial torsion. The sagittal curve, as opposed to the straight 
rod, can cause variation in the location of the maximum/
minimum moments along the spine. Thus, the curvatures 
and position of the inflection point, among other variables 
related to the S-shaped curvature of the spine, impact the 
mechanical loading of the spine. This is obviously not the 
case in an straight rod. Yet, causation of scoliosis, i.e., devel-
opment of large 3D curves is multifactorial and having a 
specific sagittal curve alone may not result in scoliosis.

Finally, it is important to point out some limitations of 
our analysis. We chose a nonzero mz to induce 3D deforma-
tion and break the symmetry of the system (Pasha 2019a) 
even though gravity loading in the z-direction alone cannot 
produce such a moment. The change in the position of the 
center of mass at the onset of scoliosis curve development 
was assumed to result in the tendency of the sagittal curve 
rotation in one direction in a majority of AIS patients. In 

a living person, in this case a fast-growing child, growth 
may induce this off-plane deformation and the direction 
of such deformation may be dictated by the trunk mass 
asymmetry of the trunk, explaining why a majority of the 
curves are right thoracic and left lumbar. However, growth 
is not taken into account in our model. A nonzero torsional 
moment m3 could also have caused off-plane deformation 
of our S-shaped rod; we did not pursue these possibilities 
here because the loading parameters used are sufficient to 
support our hypothesis that geometrical parameters alone 
can produce scoliosis-like deformation patterns of an 
S-shaped rod. Our model has other limitations. It assumes 
a constant bending modulus Kb even though (Neelakantan 
et al. 2020) had shown that it may vary as function of posi-
tion in the spine and even among different people (Pasha 
et al. 2014b). Furthermore, the values of the bending mod-
ulus and the moments mz , mx , etc., have not been measured 
in experiments, so they cannot be directly verified. How-
ever, the values used here do produce deformations (in the 
axial projections) and curvatures that are in the same range 
as those in Neelakantan et al. (2020).  

5 � Conclusion

By changing the geometry of an S-shaped elastic rod, we 
determined three different deformation patterns while load-
ing and material properties of the rod were held fixed. The 
deformation patterns were related to the position of the 
inflection point of the S-shaped rod and the curvature of the 
rod above and below the inflection point. These parameters 
change slightly as the base angle of the rod changes within 
each deformity pattern group. These curve characteristics 
relate to the sagittal curvature of the spine in the most com-
mon scoliotic curve types and they produce axial projections 
that mimic those seen in scoliotic patients.

Fig. 11   Sagittal view of the deformed configuration of the 37◦ average curve in Fig. 8



	 S. Neelakantan et al.

1 3

Ta
bl

e 
4  

E
qu

at
io

ns
 o

f t
he

 lo
op

–L
em

ni
sc

at
e 

cl
as

si
fic

at
io

n 
su

rfa
ce

s (
Fi

g.
 3

 b
lu

e 
su

rfa
ce

) f
or

 th
e 

3 
ca

se
s i

n 
al

on
g 

w
ith

 th
e 

co
effi

ci
en

t o
f d

et
er

m
in

at
io

n

H
er

e,
 x

=
�
P
 , y

=
�
N

 a
nd

 S
=
f(
x
,
y)

�
0

Su
rfa

ce
 (f

(x
, y

))
R
2

3
1
◦

−
0
.0
0
2
1
5
x
3
−
0
.0
0
3
8
4
x
2
y
+
0
.0
3
6
9
x
2
+
0
.0
0
4
4
8
x
y
2
+
0
.0
0
7
7
5
x
y
−
0
.2
2
2
x
+
0
.0
0
1
6
2
y
3
−
0
.0
3
8
8
y
2
+
0
.1
5
3
y
+
0
.9
4
6

0.
99

53
−
0
.0
0
1
6
1
x
5
+
0
.0
2
7
9
x
4
−
0
.0
0
1
3
6
x
3
y
2
+
0
.0
1
9
9
x
3
y
−
0
.2
0
1
x
3
+
0
.0
0
7
3
9
x
2
y
2
−
0
.1
0
8
x
2
y
+
0
.7
2
8
x
2
−
0
.0
1
4
6
x
y
2
+
0
.2
2
x
y
−
1
.3
9
x
−
0
.0
0
6
7
7
y
4
+
0
.0
3
9
8
y
3

−
0
.1
1
2
y
2
+
0
.1
0
8
y
+
1
.3
2

0.
99

83

3
7
◦

−
0
.0
0
3
2
8
x
3
−
0
.0
0
2
9
3
x
2
y
+
0
.0
4
5
8
x
2
+
0
.0
0
4
1
x
y
2
+
0
.0
0
1
2
4
x
y
−
0
.2
3
6
x
+
0
.0
0
2
6
5
y
3
−
0
.0
4
6
2
y
2
+
0
.1
8
8
y
+
0
.9
0
6

0.
99

30
−
0
.0
1
0
9
x
3
−
0
.0
0
6
0
3
x
2
y
+
0
.1
3
1
x
2
−
0
.0
0
1
5
3
x
y
2
+
0
.0
4
1
5
x
y
−
0
.5
6
x
+
0
.0
0
3
4
4
y
3
−
0
.0
3
6
4
y
2
+
0
.1
2
6
y
+
0
.9
3
4

0.
99

12
4
4
◦

−
0
.0
0
5
0
1
x
3
+
0
.0
5
6
8
x
2
+
0
.0
0
2
6
4
x
y
2
−
0
.0
1
7
x
y
−
0
.2
4
9
x
+
0
.0
0
2
9
4
y
3
−
0
.0
4
3
1
y
2
+
0
.2
1
6
y
+
0
.8
7
3

0.
99

06
−
0
.0
0
2
2
4
x
5
−
0
.0
0
1
3
2
x
4
y
+
0
.0
3
6
1
x
4
−
0
.0
0
1
3
4
x
3
y
2
+
0
.0
2
3
8
x
3
y
−
0
.2
3
4
x
3
+
0
.0
0
7
3
9
x
2
y
2
−
0
.1
2
x
2
y
+
0
.7
4
7
x
2
+
0
.0
0
3
9
6
x
y
3
−
0
.0
3
3
9
x
y
2
+
0
.2
6
1
x
y

−
1
.2
7
x
−
0
.0
0
4
6
9
y
4
+
0
.0
2
5
8
y
3
−
0
.0
7
0
8
y
2
+
0
.0
6
5
4
y
+
1
.1
4

0.
99

60

Ta
bl

e 
5  

E
qu

at
io

ns
 o

f t
he

 u
pr

ig
ht

ne
ss

 c
on

di
tio

n 
su

rfa
ce

s (
Fi

g.
 3

 y
el

lo
w

 su
rfa

ce
) f

or
 th

e 
3 

ca
se

s a
lo

ng
 w

ith
 th

e 
co

effi
ci

en
t o

f d
et

er
m

in
at

io
n.

 H
er

e,
 x

=
�
P
 , y

=
�
N

 a
nd

 S
=
f(
x
,
y)

�
0

Su
rfa

ce
 (f

(x
, y

))
R
2

3
1
◦

0
.0
5
7
7
x
3
y
−
0
.0
4
5
8
x
3
+
0
.0
1
1
1
x
2
y
2
−
0
.0
7
8
5
x
2
y
+
0
.4
8
6
x
2
−
0
.0
0
4
3
1
x
y
3
+
0
.2
5
6
x
y
−
1
.7
8
x
−
0
.0
0
2
5
y
4
+
0
.0
0
3
0
6
y
3
−
0
.0
1
9
9
y
2
−
0
.1
6
3
y
+
2
.4
8

0.
99

45
−
0
.0
0
4
8
x
5
−
0
.0
0
3
2
4
x
4
y
+
0
.0
8
2
5
x
4
−
0
.0
0
2
8
6
x
3
y
2
+
0
.0
5
7
7
x
3
y
−
0
.5
7
6
x
3
+
0
.0
1
1
1
x
2
y
2
−
0
.2
6
4
x
2
y
+
1
.9
1
x
2
−
0
.0
0
4
3
1
x
y
3
−
0
.0
1
0
2
x
y
2
+
0
.4
6
1
x
y

−
3
.1
x
−
0
.0
0
2
5
y
4
+
0
.0
2
0
4
y
3
−
0
.0
6
5
6
y
2
−
0
.0
7
2
3
y
+
2
.1
9

0.
99

57

3
7
◦

0
.0
1
1
3
x
3
y
−
0
.0
4
7
6
x
3
−
0
.0
8
6
7
x
2
y
+
0
.5
2
8
x
2
−
0
.0
0
5
0
3
x
y
2
+
0
.3
0
7
x
y
−
2
.0
2
x
−
0
.0
0
2
5
7
y
2
−
0
.2
6
3
y
+
2
.9
1

0.
99

50
0
.0
1
1
3
x
3
y
−
0
.0
5
6
7
x
3
−
0
.0
9
0
5
x
2
y
+
0
.5
0
9
x
2
+
0
.0
0
4
9
1
x
y
2
+
0
.2
3
x
y
−
1
.5
5
x
+
0
.0
0
7
6
2
y
3
−
0
.0
4
6
8
y
2
−
0
.0
2
7
8
y
+
1
.7
9

0.
99

10
4
4
◦

0
.0
0
7
4
8
x
3
y
−
0
.0
4
7
8
x
3
−
0
.0
8
3
4
x
2
y
+
0
.5
5
7
x
2
−
0
.0
0
4
4
1
x
y
2
+
0
.3
1
3
x
y
−
2
.2
3
x
−
+
0
.0
0
1
3
2
y
3
−
0
.0
0
5
8
5
y
2
−
0
.2
9
6
y
+
3
.3
7

0.
99

50
0
.0
1
0
6
x
3
y
−
0
.0
5
2
4
x
3
−
0
.0
9
2
4
x
2
y
+
0
.5
0
9
x
2
+
0
.0
0
2
1
x
y
2
+
0
.2
6
4
x
y
−
1
.6
9
x
+
0
.0
0
3
6
7
y
3
−
0
.0
2
7
6
y
2
−
0
.1
1
6
y
+
2
.1
3

0.
99

27



A reduced‑order model of the spine to study pediatric scoliosis﻿	

1 3

Acknowledgements  Sunder Neelakantan and Prashant K. Purohit 
acknowledge partial support for this work through an NSF Grant NSF 
CMMI 1662101. Saba Pasha acknowledges partial support for this 
work through a research grant from the Scoliosis Research Society and 
the National Institute of Health (NIH)  R21 AR075971 01A1.

Compliance with ethical standards 

Conflict of interest  The authors declare that they have no conflict of 
interest.

Appendix

We present the sagittal view of the deformed configuration 
of the rods presented in Fig. 8 in Fig. 11. We see that the 
rods bend toward the +ve y- axis, which would be the case 
given a -ve mx(s) moment acting along the length of the rod.

We present the equations of the surfaces and the coeffi-
cient of determination(R2 ) used in Fig. 3 in Tables 4 and 5. 
We present the equations of the loop–Lemniscate classifica-
tion surfaces in Table 4. We also present the equations of the 
surfaces generated from the uprightness check in Table 5.
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