Biomechanics and Modeling in Mechanobiology
https://doi.org/10.1007/510237-020-01394-5

ORIGINAL PAPER

=

Check for
updates

A reduced-order model of the spine to study pediatric scoliosis

Sunder Neelakantan’ - Prashant K. Purohit’ - Saba Pasha?

Received: 30 March 2020 / Accepted: 30 September 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract

The S-shaped curvature of the spine has been hypothesized as the underlying mechanical cause of adolescent idiopathic
scoliosis. In earlier work, we proposed a reduced-order model in which the spine was viewed as an S-shaped elastic rod under
torsion and bending. Here, we simulate the deformation of S-shaped rods of a wide range of curvatures and inflection points
under a fixed mechanical loading. Our analysis determines three distinct axial projection patterns of these S-shaped rods: two
loop (in opposite directions) patterns and one Lemniscate pattern. We further identify the curve characteristics associated
with each deformation pattern, showing that for rods deforming in a Loop1 shape the position of the inflection point is the
highest and the curvature of the rod is smaller compared to the other two types. For rods deforming in the Loop2 shape, the
position of the inflection point is the lowest (closer to the fixed base) and the curvatures are higher than the other two types.
These patterns matched the common clinically observed scoliotic curves—Lenke 1 and Lenke 5. Our S-shaped elastic rod
model generates deformations that are similar to those of a pediatric spine with the same sagittal curvature characteristics

and it can differentiate between the clinically observed deformation patterns.
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1 Introduction

During the fast growth period around puberty, some pedi-
atric spines deform in three dimensions leading to scoliosis
(Burwell 2003; Castelein et al. 2005; Castelein and Veraart
1992; Weinstein et al. 2008). While the pathogenesis of this
disease remains unknown (Gu et al. 2009; Liu et al. 2012),
the side view of the S-shaped curvature of the fast-growing,
flexible, immature, slender spines has been hypothesized
as an underlying mechanical cause of adolescent scoliosis
which also may impact the clinical management of the dis-
ease (Cheng et al. 2015; Pasha 2019a, b; Pasha and Baldwin
2019a; Schlosser et al. 2014). It has been clinically shown
that at an early stage of scoliosis, the sagittal curvature of the
spine is different between scoliotic and non-scoliotic sub-
jects of similar age and sex (Schlosser et al. 2015). However,
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as the scoliosis changes the spinal alignment in three dimen-
sions (Pasha et al. 2014a), even at an early stage of the dis-
ease (Brink et al. 2018), it is challenging to evaluate the
role of the true sagittal alignment of the spine in induction
of scoliosis. As the idiopathic scoliotic patients are other-
wise healthy, identifying these patients before the onset of
scoliosis in order to obtain their patterns of sagittal profile
is difficult (Castelein and Veraart 1992).

We turn to simulations to test the hypothesis that changes
in the S-shaped curvature of a rod, similar to the sagittal cur-
vature of the spine, result in deformity patterns that are simi-
lar to the spinal deformity patterns in scoliosis. Previously,
buckling of 2D rods was used to explain different deforma-
tion patterns in scoliotic spine (Belytschko et al. 1973; Lucas
1970). These deformations were explained based on the Eul-
er’s critical load that causes instability in a 2D rod model,
and then, the buckling modes were compared to patterns of
the spinal deformity in thoracic and lumbar spine (Crisco
and Panjabi 1992; Crisco et al. 1992; Goto et al. 2003; Lucas
and Boris 1961; Meakin et al. 1996). However, significant
change in the mechanical loading or mechanical properties
of such straight rods is required to achieve different defor-
mation patterns. Such significant change in the mechanical
characteristics of the rod may not be justifiable in human
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spine. More recently, a reduced-order rod model for study-
ing scoliosis has been proposed by Pasha (2019a). Using
finite element analysis, this model simulates the spines as
S-shaped slender elastic rods with varying curvatures while
maintaining the same mechanical loading and mechanical
properties for the rod (Pasha 2019a). This model showed the
changes in the sagittal curvature of the spine itself can cause
variation in the mechanical loading along the spine resulting
in deformation modes that are similar to the scoliotic curve
patterns (Pasha 2020). In the current study, we wish to deter-
mine the geometrical parameters that affect the deformation
of such slender elastic rods, while mechanical loading and
propertiese remain unchanged. One way to do this is by finite
element simulation as was done previously by modeling the
spine as a linear elastic material (Pasha 2019a). Repeating
such finite element simulations while iterating over vari-
ous initial shapes obtained by permutation of geometrical
parameters is computationally prohibitive. To reduce com-
putational cost, we developed a semi-analytical model using
Kirchhoff equations (Meakin et al. 1996) to solve for the
deformation given the initial geometry and loading on an
S-shaped elastic rod (Neelakantan et al. 2020). The analyti-
cal model allows us to compute the deformed configuration
of a rod subject to loads through a set of ordinary differential
equations. The reduced computational complexity allows us
to iterate over all permutations of the geometrical parameters
describing the sagittal shape of the spine.

We simulate the curvature of the spine by two regions
of constant curvature. We define the sagittal profile of the
spine using 5 parameters shown in Fig. 1 which allows us
to vary the shape of the sagittal curve systematically. Using
this simplified geometry, we hypothesize that under the same
mechanical loading and mechanical properties, the geomet-
rical parameters—the two curvatures of the S-shaped rod,
position of the inflection point and the slope of the curve
at the lowest point with respect to the horizontal axis—can
significantly impact the deformation of the rod. We hypoth-
esize that the variations in the sagittal spinal alignment may
modulate how the spinal deformity patterns in adolescent
idiopathic scoliosis manifest.

2 Methods

Here, we describe an elastic rod model for the spine to inves-
tigate the effects of the different geometrical parameters.
Since our goal is to focus on the geometrical parameters of
the sagittal curvature, we will hold the bending modulus of
our S-shaped rod fixed for all the simulations. We present
a schematic in Fig. 1 to label the geometrical parameters.
The spine is modeled as an S-shaped elastic rod. The
undeformed spine is assumed to rest on the y — z plane
with the base of the spine at the origin in the laboratory
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Fig.1 Schematic of an S-shaped rod representing the spine.
ﬁ(s) vector of the Frenet—Serret frame points out of the plane.
oy + 6, = /2 and ¢, = 7 /2. Body force f,(s) acts in the negative
e_direction. The curvatures xp and k, the position S of the inflection
point and the angle 6, play important roles in determining the shape
of the xy projection of the S-shaped rod when the loading and mate-
rial properties are held fixed

coordinate system given by [e, e, e ]. We define an arc
length coordinate along the centerline s; a point located
at s in the reference configuration moves in the deformed
configuration to r(s) = x(s)e, + y(s)e, + z(s)e,. The rod
is then subject to a body force along the —ve z direction
which is caused due to the weight distribution of the upper
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body. It is also subject to moments at the ends to simulate
asymmetry in the body mass (Pasha et al. 2014).

The Frenet—Serret frame for the rod is [t(s) V(s) i?(s)
t(s) is the tangent vector, t(s) j— The rod is assumed
in-extensible; hence, ’t(s)| = 1. t(s) can be expressed in the

laboratory coordinate system as:

f(s) =cos a(s) cos ¢(s)e, + cos a(s) sin q’)(s)e_\, W

+ sina(s)e,,

where « is the polar angle measured from the x — y plane
and ¢ is the azimuthal angle used in conventional spherical
polar coordinates. ¥(s) and B(s) are the normal and binor-
mal vectors, respectively, and they are computed using the
Frenet—Serret equations:

dt di s a dp
— = ﬁ’ — = —xt + , — = —7h. 2
ds * ds Kt+p ds ’ @
The curvature x(s) and the torsion 7(s) of the rod are obtained
from the above equations (Nizette and Goriely 1999). This
completes the kinematic description of the rod.

2.1 Mechanics

Next, we present the equilibrium equations for the rod. We
begin with the conservation of linear momentum (Antman
2006; Audoly 2010),

dn, _0o 3)

ds

g 4

T -0 4)

dn,

=0 5)
s

where n(s) = [n,(s) n,(s) n,(s)]is the internal force in the

rod. f = f,(s)e, is the body force on the rod and is directed
only along the e, direction due to gravity. For f,(s), we use
the values found in Pasha et al. (2014). The rod is assumed
in-extensible; hence, there is no constitutive law for n(s).
n(s) must be determined as part of the solution of the bound-
ary value problem for the rod. We use Egs. (2) and (3) to get
n,(s) = ng, ny(s) = n(y). (6)
Since there are no forces in the e, and e, directions,
no = n) 0. The conservation of angular momentum of the
rod states that

dm,

¥+(t><n)y+ly=0,

dm,

K+(t><n)z+lz =0,

where m(s) = [m,(s) my(s) m_(s)]is the internal moment

in the rod in the laboratory frame and 1 is the body moment
per unit length. We setl = 0 in this work. Since n, = n,, =0,
the balance of angular momentum becomes:

dm, .

—2 +n_singcos 8 =0, )
ds <

dmy

— —n_,cos¢cosf =0, ()
ds <

dm, 0 ©)
ds

We get m, = T from Eq. (9), a constant which we compute
from torque boundary condition applied at s = 0.

The internal moment can be written in the Frenet frame as
m=mt+mv+m ) B which is convenient if we use the fol-
lowing simple constitutive relation:

m = K,(s)(x — £°())B + K,(s)(kc; — kDA, (10)

where K,(s) and K,(s) are the bending and twist-
ing moduli of the elastic rod, respectively. The curva-
ture functions in the stress free state are given by x%(s)
and KO(S) respectively. We assume K = 0. This con-
stitutive law is a special case of a general form given by
m = K, (k; — Kk, Nd, + K, (x, — K'z)d2 + K, (k3 — k3 )d3where
[d,(s) d,(s) d;(s)]is a material frame that convects with
the arc-length coordinate s.

Plugging this constitutive law into the conservation of
angular momentum and considering the component along the
t direction only gives (Antman 2006; Audoly 2010)

dK, o di;  de)

E(’%(S) — Kk3(5)) + K (s) Fraairr 0. 1D
If we define K,(s)(k5(s) — KO(S)) = my(s), then Eq. (11)
shows that = 0 or m; = const. We also set K, (s) as con-
stant since our focus is on the effects of the geometrical
parameters. Then, from the constitutive law, we can write
the moment in the laboratory frame as

g K6 = K'0)
x b K(S)

+ mycos ¢ cosa,

[~¢' cos g sina cos a + o' sin ¢ 1

@ Springer



S. Neelakantan et al.

_ .0
k() -k (5 [~¢' singsinacosa — a’ cos @]

K(s) (13)

+ mysingcosa,

my, =K,

K(s) — K0(s)

=K ¢’ cos® a. + my sina. (14)

The elimination K, k°(s) and x(s) from the above gives:

m
m,cos ¢ + m,, singp = —m_tana + cosSa’ (15)

m, —mssina

(m, sing —m, cos p)¢’ = a. (16)

cos? a

Then, we solve Eq. (15) to get

mym, + Py/P? + m? — mg
- 17

P2 +m?2 ’

sina =

P = m,sin¢ + mycos , (18)

where we determine the solution branch from «,. We com-
pute ¢’(s) using Eq. (16) to get

_ m_—mzsina

‘l)’ _ KO(S) 1

K, (s)cos? a _cosa\/

b

(m, sin p—m,, cos ¢)?
1 COS2 og——2r
+ (m_—my sin )?

19)

where the + sign is dependent on the sign of ¢'(s).
Finally, the deformed curve can be determined using

dx
I = oo ¢pcosa, (20

2o sin ¢ cos a, 21
ds

dz _ .
e sina. 22)
This along with Egs. (5), (7), (8) and (19) forms the govern-
ing equations of the system along with the boundary condi-
tions given by:

n.0)=n,,
¢0) =z /2,

where n_ is the weight of the upper body and m, and m,
are used to account for the loading asymmetry experienced
by a scoliotic spine.

m(0) =m,,

x(0)=0, y0)=0,

my(0) = m,,

2(0) =0, @9

2.2 Phase plot

Now, we will use the above model to study the effects of
the different geometrical parameters of the curved rod. K,
is set to an arbitrary constant. We will simplify x°(s) using
the following function:

Kpt Ky  Kp—

0 —
K=" 2

K —
Ntanh<saS>, 24)

where S is the point of inflection of the rod and a is the
distance over which the curvature of the rod goes from x to
Ky- Ky/kp are the curvatures of the lower/upper portion of
the rod (above and below the inflection point, respectively).
We will focus on the effects of varying kp, ky, S, a and 6,,.
The range of values for these parameters used in this study
are given in Table 1. To reduce the data space, we study the
parameters that cause the largest change in deformations.
We restrict 6, to the three major values found in clinical
studies (Pasha and Baldwin 2019b).The range of values for
Kp, Ky, S and a are based on maximum and minimum values
of these parameters in Pasha et al. (2019a) who investigated
the geometrical shapes of spines of patients with adolescent
idiopathic scoliosis. For a range of a (0.01-0.1), we did not
observe significant changes in deformation when we varied
a over this range. So, we keep a fixed in all our computations
and focus on the remaining four geometrical parameters.
We have chosen the moments in Table 1 based on work in
Neelakantan et al. (2020). Neelakantan et al. had solved an
inverse problem to deduce the bending modulus K, (s) and the
moments m,, mj, etc., to match clinically observed scoliotic
spine shapes under given loading due to the weight of organs.
The values of m_, average K, and their ratio m, /K, are given

in Table 2. We are interested in the ratio ”KL because it is a
b

curvature and curvatures of scoliotic spines are known, while
no experimental measurement of K, or m_, mj, etc., is availa-
.oom, . _
ble. Table 2 shows that the ratio - varies from —0.11 m~!' to
B

0.1 m~!. Recall that m, is used to simulate a torsion following

Table 1 Parameter values used

) : S (m)
to investigate the effects of

kp(m™)  ky(m!)

6o ()

am) K,Nm™) m (Nm) m;®Nm) m/(0)(Nm)

geometry 0.1-5 0.1-5 0.3-0.8

31°,37°,44°  0.01 10 -2 0 -8

Moment and stiffness values are the same for all rods studied. The width of the region over which the cur-
vature changes from ky, to k' is a. a has little effect on the phase diagrams that follow, so it is also the same

for all rods studied
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Table 2 m_ and average K, values from Neelakantan et al. (2020)

Case m, (Nm) Avg (K,) (Nm?) m, /K, (m™
Case 1 - 11.32 158.61 -0.07
Case 2 21.72 216.95 0.1

Case 3 16.52 302.75 0.05
Case 4 — 2524 269.27 - 0.09
Case 5 —24.49 212.49 —0.11

(Pasha 2019a), although it is clear that pure gravity loads in
the z-direction alone cannot give rise to an m,. We have set m;
to zero to ease calculation and understanding of the system
because it also causes torsion which is already taken into
account by a nonzero m,. The value of m (0) is chosen such
that the deformation in the axial view is of the same order as
in Neelakantan et al. [compare Fig. 10 of this manuscript with
Fig. 1 in Neelakantan et al. (2020)]. Since the moment values
are constrained by Eq. (16) and we have set m,(0), m_ and m;,
m, is already fixed and does not need to be specified. With this
rationale for our choice of parameters in Table 1, our goal is
to show how geometrical parameters of an S-shaped rod pro-
duce different shapes, which resemble shapes of scoliotic
spines, even when loading and material properties of the rod
are fixed.

2.3 Uprightness

To ensure the deformed state of the rod is physiologically
acceptable, we restrict the values of the parameters such that
the initial configuration of the spine remains upright. The
shape of the spine is assumed to lie in the y — z plane in the
absence of loads. Hence, when ¢(s) = 7 /2 we can compute
the initial curve from x°(s) using the following system of
ODEs

K6 = 5 =), 25)
d
Y cos a, (26)
ds
% =sina. 27

We limit the y displacement of the top of the S-shaped rod
to 20% of the z displacement in the initial configuration to
filter out unrealistic shapes where there is a large displace-
ment between the head and pelvis, i.e., the two ends of the
rod. This constraint boils down to

VD] < 0.2 |z(L)]. (28)

Now we apply the analytical model to find the deformation
over the range of parameters. As shown previously by Pasha
et al. (2019a), the most common curve types in scoliosis
deform in a loop or Lemniscate shape in the axial plane
(x —y plane). We classify the deformed shapes as loop or
Lemniscate based on the number of points of intersection the
curve in the x — y projection has with the line segment join-
ing the two end points of the curve. The curve is classified as
a loop shape if the line segment does not intersect the curve
and as a Lemniscate shape if the line segment intersects with
the curve at least once (we exclude the intersection at the end
points). We perform this check over the range of parameters
given in Table 1.

We create a scatter plot of points in the data space which
satisfies the Lemniscate condition using xp, k and S as the
axes of the plot. The boundary points are filtered and sur-
faces are fit to the points. A polynomial fit is used to sepa-
rate the regions into loop and Lemniscate shapes. A simi-
lar procedure is followed for points satisfying the upright
condition and a polynomial fit is used to create surfaces to
separate regions where the undeformed rod is upright from
those where it is not.

For each 6, we plot all the initial configurations that
deform into loop and Lemniscate shapes, respectively, along
with the average curve for each case. The equations of the
surfaces for the Lemniscate condition along with the coef-
ficient of determination of the fit (R?) are given in Table 4
in appendix. The resulting three surface plots at the three 6,
values appear in “Results” section.

3 Results

Figure 2 presents the loop—Lemniscate classification regions
and the condition of uprightness in the data space. We see in
Fig. 2a that two surfaces divide the volume of interest into
three parts comprising of two loop regions and one Lem-
niscate region. We label the loop region with low xp and S
as “Loop2” and the other region as “Loopl.” Only variable
ranges bounded by both uprightness surfaces and loop-Lem-
niscate classification surfaces are presented in the follow-
ing sections. The different regions are classified accordingly
and serve as a reference when we consider both conditions
together in the following plots.

Next, we present the combined surface plots in Fig. 3.
We present the surface plots for 3 angles—31°, 37° and 44°.
The surfaces span the entire parameter space, so that we can
visualize any trends that develop in the region of interest.
We have included the equations of the surfaces and the fit
information in Table 4 of appendix. We have also presented
the range of values in Table 3. We also present the equations
for the uprightness check surface (yellow surface) in Table 5
of appendix.
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0.4

KN
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(b) Uprightness classification surfaces.

Fig.2 Representative classification surfaces with regions marked.
When the line joining the end points of the xy projection does
not intersect the xy projection of the curved rod, then we call it a
loop; when it intersects once, then we call it a Lemniscate. When
ly(L)] < 0.2|z(L)|, then the curved rod is said to represent an upright
spine

Figure 2b shows that the range of admissible x, values
that satisfy the uprightness condition is smaller than the
range of k), values for each S. Recall that the range of a is
also very small and it has minimal effect on the classifica-
tion of deformation patterns.

To show that the phase plots in Fig. 2a, b are typical and
not an isolated result of our choice of parameters in
Table 1, we give phase plots for different choices of load-
ing in Figs. 4 and 5. The effect of m, on the loop—Lemnis-
cate surface is shown in Fig. 4 by taking m, = — 1 Nm and
1 Nm and 6, = 37° (while keeping all other parameters the
same as given in Table 1). Our choice of these m, values
is based on Table 2 in which —0.11 < Z—b < 0.1m~!. Simi-

larly, a phase plot with m; = -1Nm with all other param-
eters as given in Table 1 is shown in Fig. 5. These phase
plots look qualitatively similar to other such plots pre-
sented before, confirming that they are typical. We have
used the parameters in Table 1 because they produce phase
plots that are visually clear, but the qualitative conclusions
of this paper do not depend on the particular choice of
parameters in Table 1.
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Fig.3 Loop and Lemniscate regions for each case of 6. The space
between the blue surfaces reduces with increasing 6. The yellow sur-
faces shift left (toward increasing kp) with increasing 6,

We present the shape of the initial configurations that
lead to loop and Lemniscate shapes in the deformed con-
figuration in Fig. 6. The initial shape of the curve (black
line) along with the range of the curves (shaded area) for
each 6, is shown in Fig. 6. The corresponding sagittal pro-
file values are presented in Table 3. As shown in both
Fig. 6 and Table 3, the position of the inflection point is
the highest, closer to the top, in Loopl and decreases in
Lemniscate and Loop2 cases. However, the changes in the
inflection point position within each case as the §, changes
are small. Both k and K are the smallest in Loop] cases
and highest in Loop2 cases, suggesting a more flat sagittal
profile in Loop1 patients compared to the Lemniscate and
Loop2 cases.
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Fig.4 Effect of varying m_ while keeping the remaining parameters
fixed as given in Table 1. 6, = 37°. The two plots cover the two
extreme values of 'K"— in Table 2

b

Fig.5 Effect of nonzero m; = —1Nm while keeping other parameters
fixed as given in Table 1. 6, = 37°

4 Discussion

We analyzed the deformation patterns of S-shaped elastic
rods to investigate the role of geometrical parameters of
the sagittal spine on the deformity patterns seen in scoli-
otic spines. Our results show that under the same initial
bending and torsion loading, informed by our previous
work in Neelakantan et al. (2020), an S-shaped elastic

rod deforms in three distinct configurations (deforma-
tion modes), presented as Loopl, Lemniscate and Loop2
(Fig. 2a). We also determined specific geometrical char-
acteristics of these S-shaped rods leading to these three
deformation patterns (Table 3).

Since the moments acting on the spine and its bending
modulus have not been experimentally measured, but its
curvatures can be estimated, we perform our analysis for a

. . m, . .
particular choice of . A nonzero m, is needed because it
x .

represents a torsional load that ultimately causes the out-of-
plane deformation of our S-shaped rod mimicking the defor-
mation seen in scoliotic patients. The other loading param-
eters used here are chosen such that the magnitude of the
deformation is of the same order as in Neelakantan et al.
(2020) which was determined using clinical data. We show
that the phase plots demarcating regions of loop and Lem-
niscate projections look qualitatively similar to the 3D sco-
liotic patterns seen in Pasha et al. (2019a) irrespective of the
choice of loading parameters, so we keep the loading fixed
in this paper and focus instead on the geometrical parameters
of the S-shaped rod.

The sagittal curvature of the spine in idiopathic scoliosis
has been hypothesized to be a mechanical factor leading
to the spinal deformity development (Chu et al. 2008; de
Reuver et al. 2018; Janssen et al. 2011; Kouwenhoven et al.
2006; Pasha et al. 2019b, c; Schlosser et al. 2014). However,
specific characteristics of the sagittal curve that determine
the deformity patterns of the spine are not known. Here,
our analysis of S-shaped elastic rods showed that without
any assumption about the mechanical properties of the dif-
ferent sections of the spine, geometrical details of the ver-
tebral body or properties of the intervertebral disk, three
distinct modes of deformation can be identified for a curved
elastic rod under bending and torsion: two loops and one
Lemniscate. These deformation modes, which are related
to the geometrical parameter of the rod (Table 3), were also
observed in the most common scoliotic curve types (Lenke 1
and Lenke 5) (Duong et al. 2006; Pasha et al. 2019a). Lenke
1 scoliosis, which manifests as a deformity in the thoracic
spine, was shown to have axial deformation patterns as seen
in Loopl and Lemniscate. On the other hand, Lenke 5 sco-
liosis had loop-shaped deformity patterns as was seen in
Loop2 cases. Moreover, the Lenke 1 cases with loop-shaped
axial projection were shown to have a higher inflection point
compared to the Lenke 1 with Lemniscate axial projection
and Lenke 5 patients (Pasha et al. 2019a) (as shown in
Fig. 7). Although we used the result of our previous study
on Lenke 1 patients to determine the mechanical loading of
the spine (Neelakantan et al. 2020), our analysis here was
able reproduce the deformation patterns that are observed in
Lenke 5 just by changing the sagittal curvature parameters.
This clinical observation matched the simulation results as
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Fig. 6 Initial configuration to get loop and Lemniscate shapes for each case of 6,,. The line is the average curve, and the gray region corresponds
to the range
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Table 3 Average and range

Ky S

; Case 0, Kp
of the geometrical parameter
values describing the sagittal Loopl 31° 1.36
profile for Loopl, Lemniscate o
37 1.50
and Loop2 cases
44° 175
Lemniscate 31° 2.06
37° 271
44° 2.74
Loop2 31° 2.78
37° 4.35
44° 4.03

[0.85:1.60] 0.32 [0.10: 0.85] 0.81 [0.70 : 0.80]
[0.95 : 1.90] 0.44 [0.10: 1.45] 0.80 [0.65 : 0.80]
[1.20:2.30] 0.62 [0.10 : 2.05] 0.80 [0.60 : 0.80]
[0.75 : 5.00] 1.75 [0.10 : 5.00] 0.56 [0.30: 0.80]
[1.10:5.00] 2.50 [0.45 : 5.00] 0.55 [0.30: 0.80]
[1.25:5.00] 212 [0.10: 5.00] 0.55 [0.30: 0.80]
[0.85 :5.00] 272 [0.10: 5.00] 0.41 [0.30: 0.80]
[3.10: 5.00] 4.19 [2.75 :5.00] 0.40 [0.30: 0.45]
[2.55:5.00] 3.18 [1.05:5.00] 0.40 [0.30: 0.50]

The parameter values of the average curve is in bold. The range of values are reported within square brack-

ets

Lenke1 Types Lenke5

)

s

Loop projection (Loop 1)

Lemniscate projection  Loop projection (Loop 2)

(a) (b)

Fig.7 Schematics of the sagittal profiles in Lenke 1 scoliosis with
loop (a) and Lemniscate (b) axial projection and Lenke 5 scoliosis
with loop-shaped axial projection

given in Table 3. Our reduced-order model was able to dif-
ferentiate between these curve types providing evidence that
geometry alone can give rise to different scoliosis-like defor-
mations under the same loading and material properties.

Figure 6 and Table 3 show that the average initial con-
figurations that produce loop and Lemniscate projections
are different. k» and k), that produce a particular projection
(loop or Lemniscate) increase with an increase in 6, in most
cases; exceptions are k in Lemniscate and Loop2. We see
that kp & Ky in these three cases. The parameter values are
different for the two loop regions. Table 3 shows that inter-
mediate values of kp, ky and § lead to the top view of the
deformation being Lemniscate shape. Low or high values of
these parameters leads to the loop shape. Our results show
that we can predict the deformation case based on a limited
number of geometrical parameters.

Our analysis further investigated the mechanical load-
ing of the S-shaped rod in the three deformation modes.
As shown in Figs. 8 and 9, although the external loading

08+ 0.8

06+
0.6 0.6

N N N 04
0.4 0.4

02} 02 02

0 0 0

-0.5 0.5 -0.5 0.5 -0.4 0.2 0.4
y y ¥
(a) Loopl (b) Lemniscate (c¢) Loop2

Fig.8 Sagittal view of the initial configuration of the 37° average curve in Fig. 6. (m,(s) plotted as red vectors). We see how changes in initial

sagittal geometry can affect axial view of the deformed configuration
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067 | 06" = =
N N = N 047

04+ < 04

0.2 0.2 £ 02

0 = 0 S 0 =

-0.5 0 0.5 -0.5 0 0.5 -04 -02 0 0.2 0.4
X X X
(a) Loopl (b) Lemniscate (¢) Loop2

Fig.9 Frontal view of the initial configuration of the 37° average curve in Fig. 6. (m,(s) plotted as red vectors)

(gravity and torsion) and mechanical properties of the rods
are the same, the moment distribution along the rod varies
in the y—z and x-z planes resulting in different deformation
patterns as shown in Fig. 10. The geometry affects the final
deformations because the moments in the rod depend on «
and ¢ as seen in Egs. (7) and (8). m, causes primarily bend-
ing deformations in the x-z plane, while m_ causes twisting
deformations, bringing the rod out of the y—z plane. We see
that m,(s) is negative and the rod bends toward +ve y-axis
in all three cases. m, changes along the spine in Loopl, but
does not seem to affect the other cases as the deformation in
the y-z projection can be explained by the effects of m,(s).
The reason m, does not affect the deformation y—z projec-
tion is due to the difference in magnitude between m,(s) and
m_(s). However, when both of these moments are nonzero it
is difficult to qualitatively explain the deformation of the rod
from a knowledge of their magnitudes. As shown in Fig. 10,
the shape in the x—y projection is predominantly determined
by m,. Note that m,(s) is positive in all three cases of Fig. 8,
and the axial projéction of the three cases follows the same
qualitative trend. In particular, the rod deflects toward the
-ve x-axis for small s and then bends toward the +ve x-axis
for larger s. (In the Loop1 case, this trend is not as obvious
as the other two cases, but the rod begins to bend toward the

Fig. 10 Axial view of the 03
deformed configuration of the
37° average curve in Fig. 6.
Red line segment connects end 0.2
points to show loop/Lemniscate
classification S

0.1

0

02  -0.1 0
X

(a) Loopl

@ Springer

+ve x-axis for larger s.) Thus, the sign of the m, moment and
the deformation are correlated. The deformed shape of the
sagittal curves is presented in appendix. It can be seen that
the relative position of the inflection point varies between
the groups, i.e., Loopl being the highest and Loop2 the
lowest with respect to the horizontal axis as was seen prior
to the deformation holds true in the deformed shape of the
spine (Appendix Fig. 11).

As the mechanical loading on the spine results in the 3D
deformation of the spine in scoliosis, the changes in the
stress/strain patterns on the growth plate can impact the
osteoblast function in the vertebral body and disk proper-
ties resulting in permanent changes in the functional units of
the spine. As proposed before by Stokes et al. (1998), such
changes that induce vertebral wedging result in a vicious
cycle that further causes curve development. Although
a possibility, we have not tested the primary or second-
ary cause of the vertebral asymmetry in this paper, yet we
showed that the sagittal curvature of the spine impacts the
mechanical loading of the spine; thus, geometry could pos-
sibly cause increased loading in different sections of the
spine for patients with different sagittal curvatures (Pasha
2019a). This observation was also shown in our previous
work in which abnormal bone growth was dependent on

0.3 0.3
0.2 0.2
> )
0.1 0.1
0 0
-02  -0.1 0 -02  -0.1 0
X X

(b) Lemniscate (¢) Loop2
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Fig. 11 Sagittal view of the deformed configuration of the 37° average curve in Fig. 8

curve development and did not occur equally at all verte-
bral levels (Pasha et al. 2019b). As such, our model did not
intend to include abnormal growth as a mechanism that
initiates deformation. Instead, our model was developed to
explain how changes in the sagittal curvature can impact the
biomechanical loadings and consequently the deformation
patterns.

In this study, we fixed the mechanical loading and
mechanical properties of the S-shaped rod and observed sco-
liosis-like deformations only as a function of the geometrical
differences between the sagittal curvatur1992es. In a straight
rod, as previously has been proposed as a model of scoliosis
(Crisco and Panjabi 1992; Crisco et al. ; Goto et al. 2003;
Lucas and Boris 1961; Meakin et al. 1996), doing so will
not produce scoliosis-like deformations. Different scoliotic
patterns in a straight rod only can be produced by assuming
significant variations in the compressive load or mechanical
properties of the spine in patients with scoliosis. As such, we
do not believe that a straight rod can produce scoliosis-like
deformities as a result of constant axial compression and
axial torsion. The sagittal curve, as opposed to the straight
rod, can cause variation in the location of the maximum/
minimum moments along the spine. Thus, the curvatures
and position of the inflection point, among other variables
related to the S-shaped curvature of the spine, impact the
mechanical loading of the spine. This is obviously not the
case in an straight rod. Yet, causation of scoliosis, i.e., devel-
opment of large 3D curves is multifactorial and having a
specific sagittal curve alone may not result in scoliosis.

Finally, it is important to point out some limitations of
our analysis. We chose a nonzero m, to induce 3D deforma-
tion and break the symmetry of the system (Pasha 2019a)
even though gravity loading in the z-direction alone cannot
produce such a moment. The change in the position of the
center of mass at the onset of scoliosis curve development
was assumed to result in the tendency of the sagittal curve
rotation in one direction in a majority of AIS patients. In

a living person, in this case a fast-growing child, growth
may induce this off-plane deformation and the direction
of such deformation may be dictated by the trunk mass
asymmetry of the trunk, explaining why a majority of the
curves are right thoracic and left lumbar. However, growth
is not taken into account in our model. A nonzero torsional
moment m; could also have caused off-plane deformation
of our S-shaped rod; we did not pursue these possibilities
here because the loading parameters used are sufficient to
support our hypothesis that geometrical parameters alone
can produce scoliosis-like deformation patterns of an
S-shaped rod. Our model has other limitations. It assumes
a constant bending modulus K, even though (Neelakantan
et al. 2020) had shown that it may vary as function of posi-
tion in the spine and even among different people (Pasha
et al. 2014b). Furthermore, the values of the bending mod-
ulus and the moments m_, m,, etc., have not been measured
in experiments, so they cannot be directly verified. How-
ever, the values used here do produce deformations (in the
axial projections) and curvatures that are in the same range
as those in Neelakantan et al. (2020).

5 Conclusion

By changing the geometry of an S-shaped elastic rod, we
determined three different deformation patterns while load-
ing and material properties of the rod were held fixed. The
deformation patterns were related to the position of the
inflection point of the S-shaped rod and the curvature of the
rod above and below the inflection point. These parameters
change slightly as the base angle of the rod changes within
each deformity pattern group. These curve characteristics
relate to the sagittal curvature of the spine in the most com-
mon scoliotic curve types and they produce axial projections
that mimic those seen in scoliotic patients.
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Appendix

We present the sagittal view of the deformed configuration
of the rods presented in Fig. 8 in Fig. 11. We see that the
rods bend toward the +ve y- axis, which would be the case
given a -ve m_(s) moment acting along the length of the rod.
We present the equations of the surfaces and the coeffi-
cient of determination(R?) used in Fig. 3 in Tables 4 and 5.
We present the equations of the loop—Lemniscate classifica-
tion surfaces in Table 4. We also present the equations of the
surfaces generated from the uprightness check in Table 5.
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