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A Semi-Analytic Elastic Rod
Model of Pediatric Spinal
Deformity
The mechanism of the scoliotic curve development in healthy adolescents remains
unknown in the field of orthopedic surgery. Variations in the sagittal curvature of the
spine are believed to be a leading cause of scoliosis in this patient population. Here, we
formulate the mechanics of S-shaped slender elastic rods as a model for pediatric spine
under physiological loading. Second, applying inverse mechanics to clinical data of the
subtypes of scoliotic spines, with characteristic 3D deformity, we determine the unde-
formed geometry of the spine before the induction of scoliosis. Our result successfully
reproduces the clinical data of the deformed spine under varying loads, confirming
that the prescoliotic sagittal curvature of the spine impacts the 3D loading that leads to
scoliosis. [DOI: 10.1115/1.4048400]
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1 Introduction

The etiology of the adolescent idiopathic scoliosis (AIS)
remains largely unknown [1,2]. Several hypotheses have been
developed to explain the pathomechanism of AIS development
[3,5–8]. Among these hypotheses, the upright alignment of the
spine in humans, which impacts the mechanical loading of the
spine, is believed to be an important factor in induction of scolio-
sis [3,9]. The shape of the sagittal curvature of the spine, prior to
initiation of spine deformity development, has been shown to be
different between the scoliotic and nonscoliotic age, sex matched
cohorts [10]. The shape of the sagittal curvature of the spine in
prescoliotic patients was believed to make the spine rotationally
unstable and lead to scoliosis [3,4,11]. However, as the prescoli-
otic data on the sagittal profile of this patient population is scarce,
an analysis that can determine the physiologically acceptable
undeformed shapes of the sagittal spine that can lead to scoliotic-
like deformation can be valuable for early clinical diagnosis of the
curves. Identifying the characteristics of the spinal sagittal curva-
tures that are prone to scoliotic curve development under a general
set of loadings can be used as a risk stratification tool for early
diagnosis of the disease.

The sagittal curvature of the spine is believed to have an impor-
tant role in induction of scoliosis [3,12]. However, the data on the
sagittal curvature of the spine prior to curve development is
scarce. In a previous study, Pasha showed, using finite element
modeling, that an S-shaped elastic rod under bending and torsion
can deform into loop or lemniscate shape in the transverse projec-
tions only as a function of the curve geometry as seen in Fig. 1
[3]. When those curve geometries were compared to the clinical
data, it was observed that sagittal curvature of the scoliotic
patients also related to the transverse projection of the curve, in
the same manner as an elastic rod [3]. Our strategy to efficiently
identify sagittal curvatures of the spine under loads is to analyti-
cally model the spine as an elastic rod [3]. Since the spine is a
slender structure whose length dimension is much longer than the
cross-sectional dimensions we treat it as an elastic rod in this
work. This is sufficient for our purposes since we are interested in
the shape of the centerline of the spine, not the stresses in the

cross section which are more reliably computed using finite ele-
ment calculations. For simplicity, we assume that the rod has a
circular cross section and is inextensible. A circular rod is the sim-
plest approximation of the shape of the spine cross section. It also
has the advantage that the moment–curvature relation is isotropic
in the cross section. Inextensibility is a good assumption because
a pediatric spine deforms primarily in bending under applied
loads, not in uniaxial compression/tension due to its shape. Both
these assumptions are introduced for convenience and can be
relaxed in a more general theory [13].

Since the material of the spine can be modeled as linearly elas-
tic for small strains [14], our rod model for the spine has two
equal bending moduli KbðsÞ and a twisting modulus KtðsÞ which
vary as a function of position s along the centerline of the cross
section. The moduli are allowed to vary as a function of position
because the cross-sectional dimensions of the spine as well as the
material properties of the spine are different depending on the
position. For example, the thoracic region has a higher modulus
compared to the lumbar region due to attachment of the rib cage.
Furthermore, we wanted to allow for the possibility that a scoliotic
spine may have these properties varying in a different manner
compared to a healthy one. We also assume that the stress-free
configuration of our rod model for the spine is S-shaped as
observed in a human upright standing position. Thus, our rod has
a spontaneous curvature j0ðsÞ (which is inversely proportional to
the radius of curvature) which is a function of position along the
centerline. This stress–free curvature is assumed to have zero
twist component for a healthy spine. The advantage of modeling
the spine as a curved elastic rod under loads is that its deformed
shapes can be computed by solving a few ordinary differential
equations rather than performing a full finite element calculation
which requires many input variables. We show in this paper that
our model, although simple, can reproduce many important fea-
tures in the deformation of spines that have been observed clini-
cally and studied in finite element calculations.

This study aims to determine the deformation patterns of vari-
ous S-shaped elastic rods as are observed in sagittal curvature of
the scoliotic spines. It also aims to match the simulated deforma-
tion of such a rod model to the clinical data by altering the
mechanical loading and mechanical properties of the rods. We
hypothesized that an elastic rod under bending and torsional
moments deforms in a similar manner as a pediatric spine with
scoliosis. Also, the rod’s deformation and clinical data of the
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corresponding curved spines can produce similar deformations by
altering the mechanical loading of the rods.

2 Methods

2.1 Clinical Data and Data Preparation. The deformed sag-
ittal curvatures of the scoliotic spine were determined from a pre-
vious classification study of 103 scoliotic patients [15]. In brief,
these 3D curves were generated by postprocessing of the clinical
radiographs [16]. A hierarchical clustering determined the subsets
of the patients in this cohort with five significantly different 3D
spinal curves. The five cases are presented below in Fig. 1. It was
shown that these five subtypes can be divided into two groups
based on the top-down view (X–Y) of the 3D curves: cases 1, 3,
and 5 have lemniscate shaped, also known as figure eight-shaped
X–Y view and cases 2 and 4 have loop shaped X–Y view. We used
these two patterns (loop and lemniscate) as the basis of our study
to describe, using forward and backward mechanics, the parame-
ters causing an undeformed spine to develop either of these defor-
mation patterns. These views are also known as sagittal view (Y–Z
view), frontal view (X–Z view), and transverse view (X–Y view).

2.2 Elastic Rod Model. Let us consider the undeformed
spine as an S-shaped elastic rod. The sagittal plane of the spine is
chosen to be co-incident with the y–z plane of the lab frame. The
undeformed rod is assumed to have no out-of-plane curvature
with respect to the sagittal plane as would be the case for a healthy
spine. The origin of the lab coordinate system ½ex ey ez� is
placed at the bottom end of the spine s¼ 0 where s is an arc length
coordinate along the centerline of the spine. The position of a
point s in the deformed configuration is rðsÞ ¼ xðsÞex þ yðsÞey
þzðsÞez.

Now, we define the Frenet frame for the rod, given by the triad
½̂tðsÞ m̂ðsÞ b̂ðsÞ�. Here, t̂ðsÞ is the tangent vector and is given
by the equation t̂ðsÞ ¼ ðdr=dsÞ. It is a unit vector because the
rod is assumed inextensible. The tangent is given by
t̂ðsÞ ¼ cos hðsÞcos/ðsÞex þ cos hðsÞsin/ðsÞey þ sin hðsÞez. Here,
h is the polar angle measured from the x–y plane and / is the azi-
muthal angle used in conventional spherical polar co-ordinates.
The conventions and variables are described in Fig. 2. m̂ðsÞ and
b̂ðsÞ are the normal and binormal vectors, respectively. They are
related through the Frenet–Serret equations [17].

The curvature and torsion of the curve describing the centerline
of the spine are jðsÞ and sðsÞ, respectively, and are given by

jðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h02ðsÞ þ /02ðsÞ cos2hðsÞ

p
(1)

s sð Þ ¼
1

j2
h00/0 � h0/00� �

cos hþ /03 cos2hþ 2h02/0� �
sin h

h i
(2)

2.2.1 Forward Mechanics. This section will deal with the
mechanics of the rod. We will present an analytical model to com-
pute the deformed geometry for a given S-shaped rod. The bal-
ance of linear momentum [12,18] gives

dnx
ds

¼ 0 (3)

dny
ds

¼ 0 (4)

dnz
ds

þ fz sð Þ ¼ 0 (5)

where nðsÞ ¼ ½nxðsÞ nyðsÞ nzðsÞ� is the force in the rod and the
distributed load f ¼ fzðsÞez is directed only along the ez direction
due to gravity. It follows immediately from the above that

nxðsÞ ¼ n0
x ; nyðsÞ ¼ n0

y (6)

where n0
x and n0

y are constants that will be determined by the
boundary conditions. Since there are no forces applied on the
spine along ex and ey directions, then global equilibrium shows
that n0

x ¼ n0
y ¼ 0.

For the balance of angular momentum, the moment in the rod
mðsÞ is represented in the Frenet frame and given by m ¼
mt t̂ þ m� m̂ þ mbb̂ at any point. A simple constitutive relation for
the moment m is

m ¼ KbðsÞðjðsÞ � j0ðsÞÞb̂ þ KtðsÞðj3ðsÞ � j0
3ðsÞÞ̂t (7)

where j3ðsÞ is the twist rate and KbðsÞ and KtðsÞ are the bending
and twisting moduli of the spine. We assume that KbðsÞ and KtðsÞ
are functions of s since there is variation in spine stiffness in a
scoliotic spine and also because the material properties of
the spine may vary as a function of position. j0ðsÞ and j0

3ðsÞ

Fig. 2 The centerline of the rod a before and after deformation.
The [x y z] system of cooridnates represent the lab frame.
The [t̂ b̂ m̂] system represents the Frenet–Serret frame for the
deformed and undeformed configurations.

Fig. 1 The transverse view of the five cases of scoliosis
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are the values of the curvatures in the stress free state,
respectively. We assume j0

3 ¼ 0. This constitutive law is of
the form m ¼ Kbðj1 � j0

1Þd1 þ Kbðj2 � j0
2Þd2 þ Ktðj3 � j0

3Þd3

where ½d1ðsÞ d2ðsÞ d3ðsÞ� is a material frame that convects
with the arc-length coordinate s along the centerline of the cross-
section.2 Now, the derivative of the moment becomes

dm

ds
¼

dKb

ds
j sð Þ � j0 sð Þ
� �

þ Kb sð Þ
dj
ds

� dj0

ds

� �� �
b̂

Kt sð Þ j3 sð Þ � j0
3 sð Þ

� �
� Kb sð Þs sð Þ j sð Þ � j0 sð Þ

� �� 	
m̂



dKt

ds
j3 sð Þ � j0

3 sð Þ
� �

þ Kt sð Þ dj3

ds
� dj0

3

ds

� �� �
t̂

2
666666664

3
777777775
(8)

Hence, the conservation of angular momentum boils down to
[12,18]

dKb

ds
j sð Þ � j0 sð Þ
� �

þ Kb sð Þ
dj
ds

� dj0

ds

� �
 �
þ n� ¼ 0

((
(9)

KtðsÞfj3ðsÞ � j0
3ðsÞg � KbðsÞsðsÞfjðsÞ � j0ðsÞÞ � nb ¼ 0 (10)

dKt

ds
j3 sð Þ � j0

3 sð Þ
� �

þ Kt sð Þ dj3

ds
� dj0

3

ds

� �
¼ 0 (11)

We define

KtðsÞðj3ðsÞ � j0
3ðsÞÞ ¼ m3ðsÞ (12)

Then, Eq. (11) shows that

dm3

ds
¼ 0 (13)

Hence, the twisting moment in our rod model is constant along
the arc-length. We can also write the conservation of angular
momentum in the lab frame as

dmx

ds
þ nz sin/ cos h� ny sin h ¼ 0 (14)

dmy

ds
� nz cos/ cos hþ nx sin h ¼ 0 (15)

dmz

ds
þ ny cos/ cos h� nx sin/ cos h ¼ 0 (16)

If nx ¼ ny ¼ 0, as we concluded from the balance of linear
momentum, then the third equation above gives mz ¼ T, a con-
stant that is determined by a torque boundary condition applied at
s¼ 0.

Finally, the moment–curvature relation is given by

m ¼ KbðsÞðjðsÞ � j0ðsÞÞb̂ þ m3 t̂ (17)

We express this moment in the lab frame as

mx ¼ Kb sð Þ
j sð Þ � j0 sð Þ

j sð Þ
�/0 cos/ sin h cos hþ h0 sin/

 	

þ m3 cos/ cos h (18)

my ¼ Kb sð Þ
j sð Þ � j0 sð Þ

j sð Þ
�/0 sin/ sin h cos h� h0 cos/

 	

þ m3 sin/ cos h (19)

mz ¼ Kb sð Þ j sð Þ � j0 sð Þ
j sð Þ

/0 cos2hþ m3 sin h (20)

To better understand the effects of moments, we will describe the
effect of a constant moment along a single direction on the spine
(S-shaped rod). A moment along êx axis causes the spine to
straighten the lumbar curvature and increase the thoracic curva-
ture (leading to kyphosis). A moment along êy axis would cause a
person to tilt side-ways. A moment along êz would cause the spine
to twist to resemble a helix. Going back to the equations for
mx;my;mz above, KbðsÞ; j0ðsÞ, and jðsÞ can be eliminated to give

mx cos/þ my sin/ ¼ �mz tan hþ m3

cos h
(21)

mx sin/� my cos/
� �

/0 ¼ mz � m3 sin h
cos2h

h0 (22)

Equation (21) can then be solved to get

sin h ¼ m3mz6P
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þ m2

z � m2
3

p
P2 þ m2

z

; P ¼ mx cos/þ my sin/

(23)

where the solution branch can be determined from the initial value
of hðsÞ. We can find an expression for /0ðsÞ using Eq. (22) and
Eq. (1) to get

/0 ¼ mz � m3 sin h
Kb sð Þ cos2h

6
j0 sð Þ
cos h

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ cos2h

mx sin/�my cos/ð Þ2

mz�m3 sin hð Þ2

r (24)

where the “6” sign is dependent on the sign of /0ðsÞ.
Finally, the analytic model of the spine is given by the follow-

ing system of differential-algebraic equations:

dnz
ds

¼ �fz sð Þ (25)

dmx

ds
¼ �nz sin/ cos h (26)

dmy

ds
¼ nz cos/ cos h (27)

d/
ds

¼ mz � m3 sin h
Kb sð Þ cos2h

6
j0 sð Þ
cos h

1

A
(28)

h ¼ sin�1 m3mz6P
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þ m2

z � m2
3

p
P2 þ m2

z

 !
(29)

A ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ cos2h

mx sin/� my cos/
� �2

mz � m3 sin hð Þ2

vuut (30)

P ¼ mx cos/þ my sin/ (31)

dx

ds
¼ cos/ cos h (32)

dy

ds
¼ sin/ cos h (33)

2It assumes that the stress-free curvature of the spine is aligned along the
binormal vector bðsÞ. This is certainly true for planar deformations of a healthy spine
for which x(s)¼ 0 for all s. We show later that it also gives good results for full 3D
deformations even though it is not the most general constitutive law.
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dz

ds
¼ sin h (34)

In the above the body force, fzðsÞ can be found from a generalized
load distribution along the upper body as given by Pasha et al. [19].

2.2.2 Inverse Mechanics. In this section, we will present a
method to extract the properties of the undeformed rod and the
forces acting on it, given the deformed geometry. The deformed
geometry has been obtained from clinical data of patients suffer-
ing from scoliosis and is given as a set of position vectors of
points along the deformed spine [15]. We interpolate the data to
obtain a larger array of points which are spaced uniformly and
closer together than the clinical data. The size of the larger array
is N (which can be set) and each point be given by
pi ¼ ½xi yi zi�, where i goes from 1 to N. Then, the length of
the spine can be computed by

Dpi ¼ piþ1 � pi; L ¼
XN
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jjDpijj2

q
(35)

Consider s as an array of N points which can be defined by
si ¼ ððði� 1ÞLÞ=NÞ. Hence, we can compute h and / by

hi ¼ tan�1 Dpziffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dp2

xi
þ Dp2

yi

q
0
@

1
A (36)

/i ¼ tan�1 Dpyi
Dpxi

� �
(37)

We can then use hi and /i to compute their derivatives with
respect to s, i.e., h0i and /0

i; we use these to compute the deformed
curvature Ki. Then, we use fzðsÞ to determine the moments.

2.2.3 Moment Calculation From Generalized Body Force.
Recall the governing system of differential-algebraic equations
above, specifically Eqs. (25)–(27). We can compute the values of
mxðsÞ and myðsÞ since we have values of h and /. However, we do
not know the initial values (at s¼ 0) of the moments. To find
mxð0Þ; myð0Þ, mz and m3, we minimize the least squares error
between Eq. (29) and the clinical data. This is given by

err x1; x2; x3; x4ð Þ ¼
XN
i¼1

hi � sin�1 x4x36Pi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
i þ x2

3 � x2
4

p
P2
i � x2

4

 !" #2

(38)

Pi ¼ ðmxi þ x1Þcosð/iÞ þ ðmyi þ x2Þsinð/iÞ (39)

½mx1
;my1

;mz;m3� ¼ arg min
x1;x2 ;x3 ;x4

errðx1; x2; x3; x4Þ (40)

Hence, we offset the mx and my values by mx1
and my1

, respec-
tively. Now, we use the moment values to determine the KbðsÞ
and j0ðsÞ. We use Eq. (20) to define an error term based on the
least squares method to determine KbðsÞ and j0ðsÞ

hi x1; x2ð Þ ¼ x1/
0
i cos2hi �

x2/
0
i cos2hi
ji

þ m3 sin hi � mz

� �2

(41)

½Kbi ;Kbij
0
i � ¼ arg min

x1 ;x2

hiðx1; x2Þ (42)

Subject to the condition Kbi > 0; j0
i > 0 8 i 2 ½1;N�.

After verifying the values from the minimization, we compute
the spinal geometry prior to twisting using a special case of the
ODEs with /ðsÞ ¼ p=2, implying that /0 ¼ 0. For this case, we
assume that the spine is a planar rod being deformed by fzðsÞ
alone. This leads to out of plane moments going to 0, i.e.,
myðsÞ ¼ 0, mz¼ 0, m3 ¼ 0 with only mxðsÞ being the nonzero

moment. We get the geometry by solving the following differen-
tial equations:

dnz
ds

¼ �fz sð Þ (43)

dmx

ds
¼ �nz sð Þcos h (44)

dh
ds

¼ mx

Kb
þ j0 (45)

dy

ds
¼ cos h (46)

dz

ds
¼ sin h (47)

with the initial conditions being

nzð0Þ ¼ nz0
(48)

mxð0Þ ¼ 0 (49)

hð0Þ ¼ h0 (50)

yð0Þ ¼ 0 (51)

zð0Þ ¼ 0 (52)

where nz0
is the weight of the upper body, and h0 is the base angle

of the spine in the sagittal plane at s¼ 0.
We presented these curves in Fig. 3. We chose j0ðsÞ to ensure

that the rod remains upright. We constrain the horizontal displace-
ment of the top of the rod to remain under 15% of the vertical dis-
placement. We set this bound to ensure that the head remains
roughly over midline of the body in the sagittal plane.

Here, we define a few terms for ease of understanding. We
define S as the point of inflection of the rod, i.e., where the curva-
ture approaches 0. KP is average of the curvature values of the
part of rod occupying s< S, i.e., 1=KP is the radius of curvature of
the lumbar region of the spine. KN is the average of the curvature
of the part of the rod occupying s> S, i.e., 1=KN is the radius of
curvature of the thoracic region of the spine. We present these val-
ues in Table 1

S ¼ arg minsj
0ðsÞ (53)

KP ¼

ðS
0

j0 sð Þ ds

S
(54)

KP ¼

ðL
S

j0 sð Þ ds

L� S
(55)

We can see the effects of the moments better in the Frenet
frame of the rods. We compute the Frenet frame (½̂t m̂ b̂�) for
the curve prior to the twist (presented in Fig. 3) as

t̂ ¼ cos h0 êy þ sin h0 êz (56)

m̂ ¼ sin h0 êy � cos h0 êz (57)

b̂ ¼ êx (58)

where h0 is defined in Fig. 2. We then decompose the moments
along this frame and plot m�ðsÞ on the pretwist curve in Fig. 4.
Now, mbðsÞ is responsible for the shape of the spine in the sagittal
view while m�ðsÞ is responsible for the shape of the spine in the
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frontal view. We will present an explanation using case 5 as an
example in Sec. 4.

3 Results

We applied the inverse mechanics method to the five clini-
cally derived cases to determine the stiffness, undeformed cur-
vature, and moments. We validated the model by using the
parameters to solve the system ODEs (Eqs. 32–34). We present
a comparison between the clinical data and the model in the

transverse view in Fig. 5 and the sagittal view in Fig. 6 and the
frontal view in Fig. 7. These figures shows that the model is in
good agreement with clinical data quantified by the RMS error
in Table 1. We see a mean RMS error of 6.8% with a maxi-
mum RMS error of 8.54% for case 2. Plots of mxðsÞ and myðsÞ
are presented in Fig. 8. The moment and stiffness values of the
spine are presented in Table 1. We used these model parameters
to predict the curvature using Eq. (42). The shapes of the spine
prior to the twisting effects for each of the cases in Fig. 1 are
presented in Fig. 3.

Fig. 3 The geometry of the spine before twist in the sagittal view

Table 1 Table of average curvature values of the thoracic and lumbar regions

Case KP KN S hbase (deg) Mz (N�m) Max(Kb) (N�m2) Min(Kb) (N�m2) R2 RMS error (%)

Case 1 2.84 2.38 0.34 72.15 �1.32 490.75 93.92 0.9932 6.34
Case 2 0.95 1.27 0.71 62.72 21.72 339.76 1.15 0.9922 8.54
Case 3 3 0.9 0.3 66.58 16.52 771.38 3.08 0.9931 6.64
Case 4 2.29 2.96 0.53 53.38 �25.24 732.03 1.6 0.9917 6.35
Case 5 2.64 2.43 0.38 66.82 �24.49 433.84 65.82 0.9926 6.13

Fig. 4 mm(s) plotted on the pretwist curve. Vectors point away from the curve.
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We present the curve prior to twist and the m�ðsÞ component of
the moment decomposed along the Frenet frame for the curves
presented in Fig. 4 to better understand the physical significance
of the moments and the effect they have on the deformed shape in
the transverse view.

We compute the average curvatures for the two parts of the S-
shaped rod and the point of inflection and present them in Table 1.
The mz experienced in each case along with the variation in stiff-
ness is also presented in Table 1. We also present a representative
stiffness curve for this model in Fig. 9 (taken from case 5).

4 Discussion

The enigmatic spinal deformation in adolescents has been stud-
ied for centuries. Here, we use an analytical model of a curved
elastic rod to study the fundamentals of the 3D deformations as it
relates to the curve development in scoliosis. We use the clinical
subgroups of scoliotic patients with a thoracic curve, determined
from a 3D classification of the spine [15], and apply inverse
mechanics to determine the undeformed shape of the spine. In this
analysis, by untwisting the S-shaped rod under gravity, we deter-
mine the shape of the spine before the induction of scoliosis. Our
results show the characteristic of the S-shaped curvatures, i.e.,
sagittal profile of the spine, was preserved after untwisting the
curve, meaning that in the spines with a loop shaped projection
(cases 2 and 4) the length of the spinal section with a lordotic
curve is longer than the length of the spine with a kyphotic curve

with an inflection point above the center of spinal sagittal curve,
whereas spines with a lemniscate transverse projection (cases 1, 3,
and 5) have a slightly larger kyphosis than lordosis with an inflec-
tion point below the center of the curve. We compared the
deformed S-shaped curves under gravity and torsion to the clinical
data and found acceptable agreement between the simulations and
clinically reported deformity patterns as seen in Figs. 5 and 6.

Pasha showed that scoliotic spine can be modeled as an elastic
rod under bending and torsion [3]. Such reduced-order model
showed that an S-shaped rod deforms into loop or lemniscate
shapes in the transverse projection only as a function of the curve
geometry as seen in Fig. 1 [3]. When those curve geometries were
compared to the clinical data, it was observed that sagittal curva-
ture of the scoliotic patients also related to the transverse projec-
tion of the curve in the same manner as an elastic rod [3].
However, as that study used the sagittal profile of the scoliotic
curves, it could not be shown what characteristics of the sagittal
plane determined the deformity patterns of the spine in scoliosis.
Our analysis in this paper uses defined scoliotic curve types and
applies inverse mechanics analysis to determine the prescoliotic
shape of the spine. These shapes are then shown to produce the
3D scoliotic deformity, under physiologically acceptable condi-
tions, that matches the clinical data. The current analysis shows
that the moments that cause the off-plane curve deformation can
be formulated as a function of the curve’s sagittal parameters as
seen in Fig. 4. This study explains how the initial sagittal curva-
ture of the spine impacts the mechanical loading of the spine,

Fig. 5 Comparison between the clinical data and the computational model in the transverse view. The solid lines are the
results of the computational model. The dotted lines are clinical data from Ref. [15].

Fig. 6 Comparison between the clinical data and the computational model in the sagittal view. The solid lines are the results
of the computational model. The dotted lines are clinical data from Ref. [15].
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which in turn leads to the scoliotic like deformation. Understand-
ing the fundamentals of the spinal loading and resultant deform-
ities is the first step in developing clinical methods that prevent or
reverse the deformity development.

While several hypothesis have been developed to explain the
spinal deformity in AIS, the use of analytical models remains
unexplored. The only other existing analytical model of the spine
for scoliosis explains this deformity only in one plane (frontal

plane). This model considers the spine as a 2D straight rod, thus
ignoring the curvature of the spine in the sagittal plane. The defor-
mity under gravity then was explained as 2D buckling of the rod.
The deformation modes in the frontal plane were used to explain
variations in the curve types in scoliotic patients [20–22]. But,
AIS as we know it, is not 2D buckling. The curve deforms in 3D
gradually. Our elastic rod model, as shown in this study, agrees
with the characteristics of spinal deformity development in

Fig. 7 Comparison between the clinical data and the computational model in the frontal view. The solid lines are the results
of the computational model. The dotted lines are clinical data from Ref. [15].

Fig. 8 Trends of mx (s) and my (s) for the five cases. The plots in the top row correspond to the mx (s) values for the five cases.
The plots in the bottom row correspond to my (s).
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scoliosis as it incorporates the variation in the sagittal curvature.
Such a deformation may be reversible if all deformations are elas-
tic. The deformation of an elastic rod model, as described here,
relates to the deformity patterns of the AIS patients [3,4].

In the current model, in addition to gravity we used a transverse
moment to obtain the scoliotic shapes. This moment in the system
was originally meant to break the symmetry of the system that
would be otherwise only under gravity loads and thus would not
deform in 3D. This torsion can be physiologically justified by the
trunk mass asymmetry [12,23,24]. There is no evidence that this
moment (torsion) is larger in scoliotic patients than in nonscoliotic
patients or whether this moment varies between different curve
types as a result of differences in the kyphosis and the chest vol-
ume. We stipulate that such torsion may also be caused by a
period of fast growth in the spine; however, the trunk mass asym-
metry may dictate the direction of 3D deformation resulted from
the growth. This factor merits investigation to further personalize
the model.

We used several filtering criteria as the solution set to the
inverse problem is not unique. We eliminated solutions that are
physiologically not reasonable. We limited the maximum possible
mz and KbðsÞ. We also ensured that the characteristic of the curve
in the sagittal view was preserved. If one or more of these limiting
conditions were not met, we repeated the optimization procedure
with different initial values. This shows us that while the shape of
the curve in the sagittal view is important in the induction of scoli-
osis, a unique curve cannot be produced given a deformed shape.
We can determine a set of possible solutions with reasonable
physiological parameters for a given deformed shape and can
present a unique solution given more clinical data.

The spikes in KbðsÞ and j0ðsÞ are filtered out to ensure that
functions and their derivatives do not have discontinuities. The
comparison between the clinical data and the solution from the
model is presented in the results section. The solutions to Eq. (39)
and Eq. (41) are not unique. The minimization function finds the
local minima of the function in the neighborhood of the starting
point. We select solutions by changing the starting point. We
selected the solutions based on physiological limitations, which
we explain in Sec. 4.

We limit our KbðsÞ values to 1000 N�m2 based on a previous
finite element simulations where they modeled the spine as a rod
with a circular cross section [3]. We present the maximum and
minimum values of KbðsÞ for the five cases in Table 1. The KbðsÞ
(a representative curve is presented in Fig. 9) curve contains three
distinct peaks. The peaks in KbðsÞ correspond to the peaks in the
load function fzðsÞ. As we simplified the load along the spine to
point load with spikes to present the weight of the head and arms
Kb showed maximum value at the same points. In reality, it is
expected as the loads are distributed more gradually KbðsÞ will
show a more smooth transition from region-to-region.

We also presented the corresponding mxðsÞ and myðsÞ values in
Fig. 8. We can see that mxðsÞ are always positive for the

lemniscate shapes while they change signs for the loop shapes.
Looking at the myðsÞ values, we see that myðsÞ values always stay
positive for the loop shape cases. This can be used as a criterion to
determine whether loop or lemniscate shapes will develop. We
also present plot of m�ðsÞ vectors plotted along the undeformed
curve to understand the deformation in the X–Z plane. We do not
consider the effects of mtðsÞ and mbðsÞ as they are responsible for
twist and Y–Z plane deformations, respectively. We can see in
case 5 in Fig. 4 that m�ðsÞ points toward the right—front of
spine—at the bottom and top regions and toward the left-
backward—in the middle region and zero at the apices, but for
cases 2 and 3 this relationship is reversed since the mz was in
opposite direction. This direction also relates to the h which is less
than 90 deg at bottom and top and exceeding 90 deg in the middle
and 90 deg at the apices. We assume that the base is fixed, hence
due to the moment, the curve would deflect toward the positive x-
axis in the bottom and top regions. The curve would deflect
towards the negative x-axis in the middle region. This is exactly
what we see in Fig. 7 for case 5. Hence, we can predict the frontal
view after we look at m�ðsÞ and since we know that the sagittal
curve characteristic is roughly preserved, we can predict the shape
of the curve in the X–Y projection.

The current model has several limitations that were required for
constructing the analytical solution. First, the rod was considered
to be inextensible. The changes in the sagittal alignment of the
spine during the course of scoliotic development impacts the disc
morphology as a function of mechanical loading and changes the
curvature of the spine before any bony deformation occurs
[25–27]. This mechanism may extend sections of the spine and
contract the adjacent parts. Second, we considered the base angle
as the tangent to the curve at the lowest vertebral level. While in
reality the alignment of sacrum, which can be aligned independent
from the shape of the spine at the lowest vertebral level, plays an
important role in regulating the spinal alignment over the femoral
heads and transferring the force between the spine and lower
extremities [19,28]. Considering the position of the spine over the
sacrum may have required additional coordinate system transfer
particularly in cases with large sacral slope.

Despite the limitations mentioned above, our model delivers
results which are in good agreement with clinical data. The model
uses only five variables that can be easily captured in a clinical
setup for patient assessment. We can calculate the forces and
material properties using the x, y, z co-ordinates and the body
force acting on the spine which are easily measurable. This model
is advantageous compared to the reduced-order finite element
model to study deformation patterns in AIS because it captures
the essence of the deformation in an S shaped rod and provides
insight into the specifics of the geometrical variables of the sagit-
tal curvature and the deformation patterns.
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