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Self-assembly of proteins on lipid membranes underlies many important processes in cell biology, such

as, exo- and endo-cytosis, assembly of viruses, etc. An attractive force that can cause self-assembly is

mediated by membrane thickness interactions between proteins. The free energy profile associated with

this attractive force is a result of the overlap of thickness deformation fields around the proteins which

can be calculated from the solution of a boundary value problem. Yet, the time scales over which two

inclusions coalesce has not been explored, even though the evolution of particle concentrations on

membranes has been modeled using phase-field approaches. In this paper we compute this time scale

as a function of the initial distance between two inclusions by viewing their coalescence as a first

passage time problem. The mean first passage time is computed using Langevin dynamics and a partial

differential equation, and both methods are found to be in excellent agreement. Inclusions of three

different shapes are studied and it is found that for two inclusions separated by about hundred

nanometers the time to coalescence is hundreds of milliseconds irrespective of shape. An efficient

computation of the interaction energy of inclusions is central to our work. We compute it using a finite

difference technique and show that our results are in excellent agreement with those from a previously

proposed semi-analytical method based on Fourier–Bessel series. The computational strategies

described in this paper could potentially lead to efficient methods to explore the kinetics of self-

assembly of proteins on lipid membranes.

1 Introduction

Self-assembly of proteins on lipid membranes has been a topic of
interest for at least the last three decades.1–3 Proteins onmembranes
self-assemble because they interact with each other through forces
that have their origins in membrane bending deformations,4,5

membrane thickness deformations,4,6–11 electrostatics12 and entro-
pic interactions.4,13 There is a large literature on this topic that we do
not attempt to review here.3–6,13–20 Our interest is in self-assembly
caused by membrane thickness mediated interactions of proteins.

It is well known that lipid bilayers consist of two leaflets with
the hydrophobic tails of the lipid molecules spanning the
membrane thickness. Proteins that are embedded in the
membrane have hydrophobic peptides placed in such a way
as they interact mostly with the hydrophobic tails of the lipid
molecules. If the thickness of the hydrophobic region of a
protein is different from that of the lipid membrane then the
leaflets deform so that the membrane thickness in the vicinity

of the protein changes (see Fig. 1). The energy cost of the
thickness deformation has been estimated analytically by tak-
ing account of the lipid hydrocarbon chain entropy.9,21 The
result is an energy functional written in terms of the deforma-
tion field u(x,y) of the half-membrane thickness and its
gradients.4,9 The membrane bending modulus Kb, the
membrane thickness modulus Kt and the isotropic membrane
tension F enter as parameters into this functional. The Euler–
Lagrange equation obtained by the minimization of this energy
functional is a fourth order linear partial differential equation
(PDE). A series of papers by Phillips, Klug, Haselwandter and
colleagues6–8 start from this energy functional and utilize the
linearity of the PDE to computationally analyze allosteric inter-
actions of clusters of proteins of various shapes. The key idea
is that the thickness deformation fields caused by distant
proteins can overlap (superimpose) and give rise to interaction
forces just as defects in elastic solids interact due to the overlap
of deformation fields.22 This idea has been in place since at
least the mid-1990s,9 but it was computationally extended to
complex protein shapes and large clusters by the above authors.

An important result that emerged from the research on
clusters discussed above6 is that the free energy has a maximum
when plotted as a function of distance between individual
proteins which form a lattice (the proteins on the lattice are
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all identical). To the left of the maximum there are strong
attractive interactions between the proteins, while to the right
there are weak repulsive forces which decay away as the
proteins move far apart. The strong attractive forces should
cause self-assembly if two (or more) proteins happen to come
close together as they diffuse on the membrane. We are
interested in the time scale of the self-assembly process. There
are few experiments which focus on this time scale, but one by
Shnyrova et al.23 found that viral proteins (that did not interact
electrostatically) on a micron-sized vesicle self-assemble in
seconds.

Temporal evolution of the self-assembly of viral proteins on
a lipid membrane has been analyzed in a few recent papers
using simulations. Often these simulations can be computa-
tionally prohibitive, but they do give insight about time scales
and intermediate states of the cluster of proteins assembling
into a virus particle or nano-container.1–3,24 A drawback of
these simulations is that they may not be able to tackle time
scales of seconds over which self-assembly was seen to occur in
experiments.23 There is a large literature on phase-field
approaches that can capture the evolution of particle concen-
trations on membranes (see for example ref. 25 and 26), but
these methods are not appropriate for computing the time to
coalescence of a few particles diffusing on a membrane. We will
take a different approach in this paper by analyzing self-
assembly of differently shaped inclusions using Langevin
dynamics and the corresponding Fokker–Planck equations. In
recent work we viewed self-assembly of two inclusions as a first-
passage time problem which can be quantitatively analyzed
using the theory of stochastic processes.27 We implemented
this approach in the context of interactions based on
membrane bending. The analytical calculations (using PDEs)
in ref. 27 were confined to absorbing boundary conditions on
both boundaries. A novelty of this work is that we extend the
PDE approach to include absorbing and reflecting boundary
conditions.

This paper is arranged as follows. First, we quantify the
interaction energy profile of hexagonal, rod- and star-shaped
inclusions.† We show that our finite difference numerical
method for computing energies agrees very well with analytical
formulae (using Fourier–Bessel series) in most cases. After
computing the interaction energies, we solve first-passage time
problems to find the time scales over which two inclusions
coalesce due to attractive interactions. We use both Langevin
dynamics and the Fokker–Planck equation to obtain mean first
passage times and study both isotropic and anisotropic
problems with reflecting/absorbing boundary conditions.
Finally, we summarize our results in the discussion and
conclusion sections and point to various enrichments that
can be implemented following our earlier work.27

2 Energy landscape
2.1 Analytical solution based on Fourier–Bessel basis

We consider a circular lipid membrane with radius R2 and two
inclusions embedded in it. Our first goal is to compute the
energy landscape seen by an inclusion interacting with another
inclusion on a flat membrane. The interactions between the
inclusions are a result of the overlap of membrane thickness
deformation fields in their vicinity (see Fig. 1(c) for the thickness
deformation profile around one inclusion). The interaction
energy will be computed by considering two inclusions, one
fixed and the other moving as shown in Fig. 2(a). The coordinate
frame at the fixed inclusion (blue) denoted as inclusion 1 (r1,y1)

Fig. 1 (a) Schematic of bilayer deformations due to a thickness mismatch
between hydrophobic region of a bilayer leaflet and an embedded protein.
(b) The two types of boundary conditions that are used in this work.
Dirichlet boundary condition Ui(yi) gives the thickness deformation along
the boundary of inclusion i, while the slope boundary condition ru � n̂ ¼
U 0

i ðyiÞ determines the derivative along normal directions at each point

along the boundary of inclusion i. The top view of the surrounding lipid
molecules (green circles) is only shown along the horizontal line, but the
lipids are everywhere on the plane. (c) A 3d plot of the thickness deforma-
tion field caused by one hexagonal inclusion. The thickness deformation is
significant in the immediate vicinity of the inclusion and decays rapidly as
one moves further away.

† We are limited in the shapes we can explore by the equilateral triangle grid used
in our computations.
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is set to be the default one. We assume that the moving inclusion
(purple) denoted as inclusion 2 initially stays in the same
orientation as inclusion 1 (see Fig. 2(a)). To keep the analysis
simple, when an inclusion moves we do not consider its
rotational diffusion (see ref. 27 where rotational diffusion was
considered). As inclusion 2 moves from its initial position to the
green spot and forms an angle y with the horizontal line (see
Fig. 2(b)), the energy of the system can be computed by rotating
both inclusions anticlockwise by angle y from the initial configu-
ration (see Fig. 2(c)). This interaction energy will enter our
analysis of the kinetics of the moving inclusion due to Brownian
motion.

The elastic energy due to thickness deformation is given
by,6–8,10

f ¼ 1

2

ð
Kbðr2uÞ2 þ Kt

u

a

� �2
þF

2u

a
þ ðruÞ2

� �� �
dxdy; (1)

where Kb is the membrane bending modulus, Kt is the thickness
deformation modulus, F is the applied tension and a is the
unperturbed bilayer half-thickness. The integration is carried

out over the area of the membrane. The Euler–Lagrange equa-
tion associated with eqn (1) is given by,7

Kbr4u� Fr2uþ Kt

a2
uþ F

a
¼ 0: (2)

Eqn (2) can be reduced to the following form using the trans-

formation �u ¼ uþ Fa

Kt
;

ðr2 � nþÞðr2 � n�Þ�u ¼ 0;

n� ¼ 1

2Kb
F � F2 � 4KbKt

a2

� 	1
2

2
4

3
5: (3)

First, we consider the case of an infinitely large circular
membrane with R2 - N without applied tension (F = 0). We
assume natural boundary condition which means that u = %u- 0
as R2 - N. Let inclusion 2 be on the right side of inclusion 1.
Then, a Fourier–Bessel series solution for the thickness deforma-
tion field around each inclusion i(i = 1,2) can be obtained,

�ui
�ðri; yiÞ ¼ A�

i;0K0ð
ffiffiffiffiffiffi
n�

p
riÞ þ

X1
n¼1

A�
i;nKnð

ffiffiffiffiffiffi
n�

p
riÞ cos nyi

þ B�
i;nKnð

ffiffiffiffiffiffi
n�

p
riÞ sin nyi

�A�
i;0K0ð

ffiffiffiffiffiffi
n�

p
riÞ þ

XN
n¼1

A�
i;nKnð

ffiffiffiffiffiffi
n�

p
riÞ cos nyi

þ B�
i;nKnð

ffiffiffiffiffiffi
n�

p
riÞ sin nyi;

(4)

where Kn are modified Bessel functions of the second kind and
we take the first N terms in the series to approximate the sum. In
ref. 8 the authors used N = 12 to compute energy caused by
thickness deformations and they showed that the series is
almost converged. For small applied tension F and large
membrane size R2, we follow ref. 8 and use eqn (4) as an
approximation for the solution of %u�i .‡ Since the Euler–Lagrange
equation (eqn (2)) is linear, the solution for eqn (3) is given by,8

%u = %u+1(r1,y1) + %u�1 (r1,y1) + %u+2(r2,y2) + %u�2 (r2,y2), (5)

in which we used the coordinate transformations,

r2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r12 � 2rr1 cos y1

p
9F1ðr1; cos y1; rÞ;

cos y2 ¼ ð�rþ r1 cos y1Þ=r2; sin y2 ¼ r1 sin y1=r2;

r1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r22 þ 2rr2 cos y2

p
9F2ðr2; cos y2; rÞ;

cos y1 ¼ ðrþ r2 cos y2Þ=r1; sin y1 ¼ r2 sin y2=r1:

(6)

In order to efficiently apply the boundary conditions, we rewrite

Fig. 2 (a) The initial configuration of a system of two inclusions. The fixed
inclusion located at the center (blue) has local coordinate system (r1,y1)
and the moving inclusion (purple) has local coordinate system (r2,y2).
(b) The inclusion on the right moves to the green spot and forms an angle
y with the horizontal line. (c) The energy of the configuration here is the
same as the one in (b). Note that the hexagons in (c) are rotated when
compared to hexagons in (a).

‡ The solution should include terms of the modified Bessel functions of the first
kind when F a 0 and R2 is finite. However, we show later that this approximation
agrees quite well with the numerical solution of eqn (2).

This journal is The Royal Society of Chemistry 2021 Soft Matter, 2021, 17, 2539�2556 | 2541

Soft Matter Paper

Pu
bl

is
he

d 
on

 2
0 

Ja
nu

ar
y 

20
21

. D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f P

en
ns

yl
va

ni
a 

Li
br

ar
ie

s o
n 

4/
23

/2
02

1 
2:

45
:2

9 
PM

. 
View Article Online

https://doi.org/10.1039/d0sm01752c


%u2 as a function of r1,y1,r and %u1 as a function of r2,y2,r,

û�1 ðr2; y2; rÞ ¼ A�
1;0K0ð

ffiffiffiffiffiffi
n�

p
F2ðr2; cos y2; rÞÞ

þ
XN
n¼1

A�
1;nKnð

ffiffiffiffiffiffi
n�

p
F2ðr2; cos y2; rÞÞ

� Tn
r

r1
þ r2

r1
cos y2

� 	
þ
XN
n¼1

B�
1;nKnð

ffiffiffiffiffiffi
n�

p
F2

� ðr2; cos y2; rÞÞUn�1
r

r1
þ r2

r1
cos y2

� 	

� r2

r1
sin y2;

(7)

û�2 ðr1; y1; rÞ ¼ A�
2;0K0ð

ffiffiffiffiffiffi
n�

p
F1ðr1; cos y1; rÞÞ

þ
XN
n¼1

A�
2;nKnð

ffiffiffiffiffiffi
n�

p
F1ðr1; cos y1; rÞÞ

� Tn � r

r2
þ r1

r2
cos y1

� 	
þ
XN
n¼1

B�
2;nKn

� ð ffiffiffiffiffiffi
n�

p
F1ðr1; cos y1; rÞÞUn�1 � r

r2
þ r1

r2
cos y1

� 	

� r1

r2
sin y1;

(8)

where Tn, Un are Chebyshev polynomials of the first kind and
second kind, respectively. Let h1 = %u+1 + %u�1 , h2 = %u+2 + %u�2 , ĥ1 = û+1 +
û�1 , ĥ2 = û+2 + û�2 . We consider the following type of boundary
conditions (see Fig. 1(b)),

ðh1 þ ĥ2ÞðR1ðy1Þ; y1; rÞ ¼ U1ðy1Þ

n̂ � @ðh1 þ ĥ2Þ
@r1

;
1

r1

@ðh1 þ ĥ2Þ
@y1

 !
ðR1ðy1Þ; y1; rÞ ¼ U 0

1ðy1Þ
(9)

ðĥ1 þ h2ÞðR2ðy2Þ; y2; rÞ ¼ U2ðy2Þ

n̂ � @ðĥ1 þ h2Þ
@r2

;
1

r2

@ðĥ1 þ h2Þ
@y2

 !
ðR2ðy2Þ; y2; rÞ ¼ U 0

2ðy2Þ:
(10)

We can solve for the 4(2N + 1) coefficients A�1,0, A
�
2,0, A

�
1,n, A

�
2,n,

B�1,n, B
�
2,n, n = 1, 2,. . .,N because eqn (9) and (10) result in a linear

system. This determines the full deformation field due to the
overlap of the deformations caused by both inclusions. In the
above expressions R1 is the shape function for inclusion 1
which is defined as the boundary of inclusion 1 in the polar
coordinates (r1,y1), and similarly for R2 which is the shape
function of inclusion 2. For a hexagon shaped inclusion R1 is
given by

R1 ¼
ffiffiffi
3

p
‘

2
csc y1 �

p
3

�1þ floor
3y1
p

� 	� 	� 	
;

0o y1 � 2p;
(11)

where c is the side length. The shape functions for rod shaped
inclusion and star shaped inclusion are long and are given in the
Appendix in the section named Shape functions for star and rod
inclusion. The next step is to compute the energy f(r) due to this
deformation field. Note that the angular dependence of f(r)
appears through the shape functions of two inclusions, R1,R2.

Using the divergence theorem, the total energy expression in
eqn (1) can be converted to the sum of line integrals over the
boundary, i.e. f = f1 + f2 with fi given by,

fi ¼ 1

2
G0 þ

1

2

ð
r � Kbðr�uÞr2�u� Kb�ur3�uþ F�ur�u
� �

dxdy

¼ 1

2
G1 �

1

2

ð2p
0

n̂ � Kbðr�uÞr2�u� Kb�ur3�uþ F�ur�u
� �

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ri

2ðyiÞ þR
02
i ðyiÞ

q
dyi

¼ 1

2
G1 �

1

2

ð2p
0

U 0
iðyÞ Kbðnþ�uþ þ n��u�Þ þ F�uð Þ

�

�Kb�un̂ � rðnþ�uþ þ n��u�Þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ri

2ðyiÞ þR
02
i ðyiÞ

q
dyi:

(12)

From the first line to the second line we assume the line
integral along the outer boundary is a constant w.r.t r (which
works out to 0 as R2 - N and F - 0) and put it into the G1

term (both G0 and G1 are constants). To compute eqn (12) we
need to solve for the 4(2N + 1) coefficients A�1,0, A

�
2,0, A

�
1,n, A

�
2,n,

B�1,n, B
�
2,n, n = 1, 2, . . .,N from eqn (9) and (10) and use them to

compute %u+, %u�. Then we can evaluate eqn (12) numerically. The
energy f(r) can be computed relatively efficiently using this
technique. This is important since f(r) must be computed
repeatedly as inclusion 2 moves and r changes due to Brownian
motion when we solve the first passage time problem. We will
also need the forces acting on inclusion 2 in our analysis later.
Eqn (12) gives an expression to compute the force analytically,
which in the special case of an isotropic f(r) (i.e., no angular
dependence) works out to

f0
iðrÞ ¼ �Ri

2

ð2p
0

½U 0
iðyÞ Kbðnþ�u0þ þ n��u0�ÞþF�u0


 �
�Kb�u

0n̂ � rðnþ�uþ þ n��u�Þ�Kb�un̂ � rðnþ�u0þ þ n��u0�Þ�dyi:
(13)

When there is only one circular inclusion in the membrane, the
thickness deformation field in eqn (5) has a closed form
solution7 which can be compared to the simulation result of
Klingelhoefer et al.28 who studied radial bilayer thickness
profiles for the Ga nanopore (among many others). We used
the same parameters and boundary conditions as they did: a =
34.19 Å, U1 = 0.81 Å, U 0

1 ¼ 0:7, R1 = 10 Å for all y1 and fit their
curves by choosing Kt = 120 pN nm�1, Kb = 2 pN nm and F = 0.
The black curve in Fig. 3(a) (which comes from eqn (4) with N =
8) captures the overall trend and the magnitude of the bilayer
thickness changes in the simulation done by Kingelhoefer
et al.28 This is reasonable given that (a) the black curve is the
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result of a continuum approximation eqn (1) where as the lipids
are discrete particles in the simulations of Kingelhoefer et al.,28

and (b) the black curve assumes that the membrane is infinitely
large where as it is finite in the simulations.

2.2 Finite difference method based on refined grid

The above analysis gives us a semi-analytical technique to
compute f(r). This technique can be used when there are
one or two inclusions whose shapes are simple. For a larger
number of inclusions or those with complex shapes (see
Fig. 4(a)) we need a numerical method to compute the thick-
ness deformation field. Fortunately, eqn (1) can be minimized
using a finite difference method. We discretize the membrane
using equilateral triangle elements as shown in Fig. 4(a) and (b)
following.29,30 We use a fine grid in the center of the domain
and a coarse grid farther away for reasons explained below.
Recall that one inclusion is fixed at the center of the domain
and the other inclusion is allowed to move. The motion of the
second inclusion is influenced by the change in interaction

energy between the inclusions. This interaction energy
depends on the gradients of u(x,y) which changes rapidly when
the two inclusions are nearby (which happens when the second
inclusion is near the center of the domain). Hence, to accu-
rately compute the energy when the two inclusions are nearby

Fig. 3 (a) Red squares are data from the simulation done by Klingelhoefer
et al.28 and the black curve is fitted using the analytical method based on
Fourier–Bessel function eqn (4). A reasonable agreement of the two
profiles suggests that the energy functional eqn (1) and the associated
Euler–Lagrange equation are a good starting point for estimating
interaction energies of inclusions. (b) The thickness deformation of
one hexagon inclusion with shape function eqn (11), Kb = 20 kBT, Kt =
60 kBT nm�2, boundary conditions U1 = �0.5 nm, U 0

1 ¼ 0 and under
applied tension F = 1 pN nm�1 converges to the result computed by
analytical method eqn (4) with N = 8 as n increases. Recall that the side of
the triangles in the fine grid is 1/n the side in the coarse grid.

Fig. 4 (a) Triangular discretization of the membrane in our finite differ-
ence method. The side of the triangles is c. Three types of inclusions are
studied in this paper: hexagon (red), star (purple), rod (green). (b) A fine grid
is implemented in a region near the center of the domain because the
thickness deformation profile changes rapidly in that vicinity when two
inclusions are present. The side of the triangles in the fine grid is 1/n that of
the coarse grid. In this figure n = 2. (c) The blue regions are the Voronoi
cells of purple node (in the coarse grid), yellow node (at the interface
between fine and coarse grids) and white node (at the boundary of an
inclusion), respectively.

This journal is The Royal Society of Chemistry 2021 Soft Matter, 2021, 17, 2539�2556 | 2543
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(see Fig. 4(b)) we use a fine grid in the center of the domain.
When the inclusions are far away from each other there is
hardly any interaction between them, so we use a coarse grid far
away from the center of the domain to reduce computational
cost. The side of the triangles in the fine grid is 1/n of the side
of the triangles in the coarse gird. The grid does not change as
inclusion separation changes. The thickness deformation at
node i is denoted by ui.

Using methods similar to those in ref. 29 and 30 the energy
is first written in a discrete form and then the thickness
deformation field that minimizes this energy is computed.
Finally, the minimizer is plugged back into the energy expres-
sion. Thus, the problem to be solved is

f ¼ min
ui

KbVi

X
i

X6
c¼1

uci � 6ui

 !2
2

9‘4
þ
X
i

Vi

2
Kt

ui

a

� �2

þ
X
i

FuiVi

a
þ
X
i;j;k

FAijk

3‘2
ðui � ujÞ2 þ ðuj � ukÞ2 þ ðuk � uiÞ2
� �

¼ min
u

uTMuþ luT1u:

(14)

For nodes i in the coarse or fine grid that are far away from the
interface or the boundary of an inclusion (for example, see the
purple node in Fig. 4(c)) uci ,c = 1, 2,. . .,6 are the thickness
deformations at the nodes surrounding node i. In the above
Vi is the area of the Voronoi cell around node i and l is the side
of the triangle. When node i is located at the boundary of an
inclusion then the appropriate Vi is shown around the white
node in Fig. 4(c) and the sum over c in the first term is
computed by assuming that the inclusion is flat. When node
i is at the interface between the fine and coarse grid (see the
yellow node in Fig. 4(c)) then the appropriate Vi is shown
around the yellow node in Fig. 4(c) and we have to use different
weights depending on where uci is in the coarse grid or the fine
grid.§ In the final discrete version of the energy expression, 1u

is a column vector of size len(u) with all entries 1 and l ¼ FVi

a
.

M is the stiffness matrix where Mij multiplies uiuj. It has been
shown8 that the boundary condition can be written in the
discrete form,

u(ri,yi) = U(yi), 8i on the boundary (15)

uk �
1

2
ui þ uj

 �
ffiffiffi
3

p
‘=2

¼ U 0ðyi0 Þ; 8i0; i; j; k pairs along the boundary

ði0 is the midpoint of i and j; see Fig: 4ðaÞÞ:
(16)

Note that ui, uj are given in eqn (15) and thus uk can be
solved from eqn (16) immediately. We also assume that the

inclusions are flat. Hence, eqn (14) can be rewritten as,

f ¼ min
ua

ua

ub

" #T
Maa Mab

MT
ab Mbb

" #
ua

ub

" #
þ l

ua

ub

" #T
1a

1b

" #

¼ uTaMaaua þ 2uTaMabub þ uTbMbbub þ luTa 1a þ luTb 1b:

(17)

In the above ub is the vector of all nodes determined by eqn (15)
and (16) and ua is the vector of all nodes that are not in ub. Taking
@ uTMuþ luT1u

 �

@ua
¼ 0, we get �ua ¼ �Maa

�1 Mabub þ
l
2
1a

� 	
at

which eqn (17) is minimized where 1a is a column vector of size
len(ua) with all entries 1. Then, we can write the minimized total
energy as,

f ¼ l
2
1Ta þ uTbM

T
ab

� 	
Maa

�1 Mabub þ
l
2
1a

� 	
� 2

l
2
1Ta þ uTbM

T
ab

� 	

�Maa
�1Mabub þ uTbMbbub � l

l
2
1Ta þ uTbM

T
ab

� 	
Maa

�11a

þ luTb 1b:

(18)

In Fig. 3(b) we compare the numerical solution of eqn (2) for
the thickness deformation profile around one hexagon shaped
inclusion using the above finite difference technique with the
analytical solution eqn (4) with N = 8, Kb = 20 kBT, Kt =
60 kBT nm�2, F = 1 pN nm�1, boundary conditions U1 = �0.5 nm,
U 0

1 ¼ 0 where kB is the Boltzmann constant and T = 300 K is the
absolute temperature and find excellent agreement as n increases.
Unless indicated otherwise, we use these parameter values in all
calculations in this work. This shows that the analytical and
numerical methods to compute the thickness deformation profiles
are consistent with each other and with the results of molecular
simulations documented in the literature. We use n = 20 in all the
energy computations henceforth for each of the three different types
of inclusions studied.

2.3 Applications to hexagon, rod and star shaped inclusions

We now focus on the interaction of two hexagon shaped
inclusions on a lipid membrane which has a rotational peri-
odicity of p/3. We use eqn (18) derived from our numerical
method and eqn (12) derived from the analytical method, to
compute the interaction energy of two inclusions separated by
distance r and then make comparisons. As shown in Fig. 5(a),
the energy computed using the analytical method for two
inclusions separated by distance r in two different orientations
(shown in the inset differing by a rotation of p/6) are almost the
same. Hence, we can simplify our model and consider the
energy landscape generated by two hexagon inclusions as being
almost isotropic (insensitive to rotation). In Fig. 5(b), we fix the
shape of the two hexagons (see inset of the figure), and show
that as n increases, the match between the energy computed
from the numerical method and analytical method gets better,
justifying our numerical approach of using a fine grid when the
inclusions are nearby. From Fig. 5(c) we learn that as applied
tension increases, the attraction at small separations (around

§ Slightly different weights for computing the energy contributions of the inter-
face nodes do not change the final result for the profiles of u or the minimized
energy.
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r = R1 = 7 nm) becomes weaker, but the repulsive force at
around 9–10 nm also becomes weaker. In Fig. 5 we study short
range interactions as small as center-to-center distance 7 nm
for two hexagon inclusions. The side of the hexagon is 2.5 nm,
so a 7 nm center-to-center distance corresponds to about 2 nm
distance between their boundaries, which corresponds to two
lipid molecules. At such small separations we do not expect that

minimization of the continuum expression eqn (1) will capture
molecular level deformations, although it has been shown
previously that it captures many aspects of protein-induced
bilayer perturbations.6,31,32 For this reason, in later computa-
tions of the first passage time we take R1 = 9 nm for both
hexagon and star inclusions. Fig. 6(a) and (b) show that the
computed energy hardly changes as we increase N from N = 8 to

Fig. 5 (a) The energy computed by the analytical method using eqn (12)
for two configurations of hexagon inclusions differing by a rotation of p/6
under F = 1 pN nm�1. (b) The energy of the configuration with F =
1 pN nm�1 computed numerically using eqn (18) converged to the
energy computed by eqn (12) as n increases. Recall that the side of the
triangles in the fine grid is 1/n that of the coarse grid. (c) A comparison of
the energy profiles at three different applied tensions: 0.1 pN nm�1,
1 pN nm�1, 10 pN nm�1.

Fig. 6 The energy computed using different number of terms in
the series (N = 8,9,10) in eqn (4) under applied tension (a) 1 pN nm�1,
(b) 10 pN nm�1. The energy computed with different N are almost identical.
For this reason we use N = 8 in eqn (4) for all energy computations. The
energy in these two plots is not scaled by subtracting the value at r = R2.
(c) The energy of a cluster of seven hexagons (one fixed at the center) as a
function of separations r under applied tension F = 1 pN nm�1. There is a
maximum around r = 9 nm which is similar to the findings in ref. 29 that
focuses on bending deformations and those in ref. 6 that analyzes thickness
deformations.
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N = 9, 10 in eqn (12). For this reason we use N = 8 for all the
computations in this work. In Fig. 6(c), we compute the energy
due to thickness deformations of a cluster of seven inclusions
as shown in the inset using our finite difference method. We
find a maximum in the energy around r = 9 nm similar to
the findings in ref. 27 and 29 which studied interactions of
inclusions due to membrane bending deformations in the
presence of fluctuations and those in ref. 6 which studied
thickness deformations of MscL lattice. We do not assume
pairwise additivity of the energy in any of our computations
(including those with 7 inclusions) because the thickness defor-
mation field is solved by minimizing eqn (1) with boundary
conditions applied at each inclusion.

Fig. 7(a) shows that the energy landscape of two rod shaped
inclusions is anisotropic – at small separations the force is
repulsive at y = 01 and becomes attractive at some angle around
401 o y o 501. The attraction increases as y goes up to 901.
This behavior of the energy of two rod shaped inclusions is
reminiscent of the energy from out-of-plane deflection for two
rods27 on a lipid membrane. Fig. 7(b) shows that the energy
computed by the numerical method and analytical
method again agree very well which gives us confidence in
the numerical method.

Next we compute the interaction energy of rod shaped
inclusions for tensions F = 0.1 pN nm�1 and F = 10 pN nm�1.
The comparison between Fig. 8 and 7(a) shows that as applied
tension increases, the interaction force becomes weaker at
short separations, which implies that elastic interactions could
be weakened by strong applied tension. Physically, this is
reasonable, since high tension will tend to make the membrane
flatter so that the thickness is more uniform everywhere.

Next, we apply both methods to compute the interaction
energy of two star shaped inclusions in Fig. 9. Just as in the case
of hexagons, we consider various orientations of the star
shaped inclusions as shown in the inset of Fig. 9(a). The match
between the analytical method and numerical method is not as
good in this case because the star shaped inclusion has 12
vertices at which the derivative along normal directions are
discontinuous. Since in the analytical method we used Fourier–
Bessel series to approximate the contour (R1,R2) and the
derivative along normal directions to the boundaries, it
requires a large number of terms N to obtain a good approxi-
mation. This is computationally not feasible for symbolic
operations in MATLAB. Thus, we have greater confidence in
our finite difference numerical method to compute interaction
energies in complex geometries. In Fig. 9(b) we use our numerical
method to compute the interaction energies for star shaped
inclusions for various values of F. The trends are similar to those

Fig. 7 (a) The energy of two rod shaped inclusions computed by numerical
method eqn (18) with different y under applied tension 1 pN nm�1. (b) The
energy computed by analytical method using eqn (12) fits the one com-
puted by numerical method using eqn (18) both with y = 01 and y = 901
under applied tension 1 pN nm�1.

Fig. 8 (a) The energy of two rod shaped inclusions computed by numerical
method eqn (18) with different y under applied tension 0.1 pN nm�1. (b) The
energy of two rod shaped inclusions computed by numerical method
eqn (18) with different y under applied tension 10 pN nm�1.
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seen for hexagon shaped inclusions. Finally, in Fig. 9(c) we
compute the energy of one hexagon and one star inclusion
separated by distance r and find again that there is a maximum
in the curve around r = 12 nm.

This completes our analysis of the interaction energy of
inclusions due to bilayer thickness interactions. In most
cases we have shown that there is a maximum in the interaction
energy of two inclusions around a separation r = 10 nm.
For separations smaller than this value there is a strong

attractive force between the inclusions which will cause them
to coalesce. In the next section we will compute the time to
coalescence as a function of the initial separation between the
inclusions.

3 First passage time for isotropic
inclusions under mixed boundary
condition

Our main goal in this paper is to study the kinetics of an
inclusion diffusing in an energy landscape resulting from
elastic interactions with another inclusion. Efficient methods
to compute the energy landscape developed above are a pre-
requisite to this exercise. We will now use these methods to
solve first passage time problems.

We consider a circular membrane of size R2 = 125 nm with a
circular inclusion of size 2.5 nm fixed at the center. Another
circular inclusion of the same size is diffusing around driven by
stochastic forces. Recall from the energy landscape that
there are attractive interactions between inclusions when the
separations are small. Hence, if the moving inclusion comes
close enough to the static one at the center then it will be
strongly attracted. Therefore, we assume that at R1 = 7 nm there
is an absorbing wall at which the moving inclusion will
disappear by being attracted towards the center. We assume
that at R2 = 125 nm (far away) there is a reflecting wall where the
moving inclusion will be bounced back. Note that problems in
which both boundaries are absorbing were solved elsewhere.27

The exercise we will perform now is as follows. We place the
second inclusion randomly on a circle of radius r = y at time t =
0 and let it diffuse around. At some time t = Tin when the
inclusion hits the inner boundary for the first time we stop it
from diffusing and record Tin. We repeat this experiment a
large number of times and record Tin for each repetition. The
mean value of Tin is the mean first passage time T1. Our goal is
to find T1(y) as a function of the initial condition r = y. This can
be done analytically or through a Langevin dynamics simulation.
We will use both methods in the following.

To estimate T1(y) analytically we first need to compute
survival probabilities. Let p be the probability density (for
finding the inclusion) at position r and angle y given initial

condition r = y, y = a and Pðr; tjyÞ ¼
Ð 2p
0 pðr; t; yjy; aÞdy: The

probability density p is independent of y since neither
the energy landscape nor the diffusion (or drag) coefficient of
the inclusion depends on it. As a result, the Fokker–Planck
equation for the evolution of this probability is in the following
isotropic form,27

@P

@t
¼ @

@r

1

n
@f
@r

PþD
@P

@r

� �
þ 1

r

1

n
@f
@r

PþD
@P

@r

� �
; (19)

with Dirichlet boundary condition at the inner boundary and
Robin boundary condition at the outer boundary,33

PðR1; tÞ ¼ 0; kBT
@P

@r
þ @f

@r
P

� 	����
ðR2;tÞ

¼ 0; 8t 	 0: (20)

Fig. 9 (a) Solid lines are the energy of two star inclusions with different
rotational angles computed by numerical method using eqn (18) and
dashed lines are the energy computed by analytical method using
eqn (12). The applied tension is 1 pN nm�1. (b) The energy of two star
inclusions computed by numerical method under three applied tensions:
0.1 pN nm�1, 1 pN nm�1, 10 pN nm�1. (c) The energy of one hexagon
inclusion and one star inclusion under applied tension 1 pN nm�1.
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The first equation in eqn (20) is an absorbing boundary
condition at R1 which means that if the moving particle hits
this wall it is absorbed and exits the kinetics. So, the probability
to find such a particle at the absorbing wall is zero. The second
equation in eqn (20) is the reflecting boundary condition at R2.
It means that when the moving particle hits the reflecting wall
it will bounce back, hence the probability current at this point
will be zero.33 In the above D is a diffusion coefficient of the
inclusion in the lipid membrane and n is a drag coefficient
which are related by the Nernst–Einstein relation nD = kBT.

27

Let S(y,t) be the survival probability,

Sðy; tÞ ¼
ðR2

R1

Pðr; tjyÞrdr: (21)

Then, we can get the first passage time density,

f ðy; tÞ ¼ �@Sðy; tÞ
@t

¼ �
ðR2

R1

@Pðr; tjyÞ
@t

rdr: (22)

The existence of the first moment of P(r,t|y) with respect to
time t can be shown from the fundamental solution con-
structed by Itô in ref. 34. Then, tP(r,t|y) - 0 as t - N.
Accordingly, the first passage time T1(y) can be derived from
eqn (22),

T1ðyÞ ¼
ð1
0

f ðy; tÞtdt ¼ �
ð1
0

ðR2

R1

@Pðr; tjyÞ
@t

rdrtdt

¼
ðR2

R1

ð1
0

Pðr; tjyÞdtrdr ¼
ðR2

R1

g1ðr; yÞrdr;

(23)

where g1 is defined by,

g1ðr; yÞ ¼
ð1
0

Pðr; tjyÞdt: (24)

Theorem 1: the ODE for T1(y) with a reflecting wall at the
outer boundary and an absorbing wall at the inner boundary is

@2T1ðyÞ
@y2

þ � 1

kBT

@f
@y

þ 1

y

� 	
@T1ðyÞ
@y

þ 1

D
¼ 0; (25)

with boundary conditions,

T1ðR1Þ ¼ 0; T 0
1ðR2Þ ¼ 0: (26)

Proof: see proof of Theorem 1.
Next, we describe how to estimate T1(y) using Langevin

dynamics simulations. The overdamped version of the Lange-
vin equation in an isotropic setting is given by,27

dri ¼ �1

n
@f
@ri

dtþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTdt

n

r
xi; (27)

where i represents two perpendicular directions of the motion.
n is the translational drag coefficient of a circular inclusion
which is calculated using the Saffman–Delbrck model,

n ¼ 4pZm
logð2e�1Þ � g

; (28)

where Zm = 15.3 � 10�9 Pa s m is the membrane viscosity (2D), Zw =
8.5 � 10�4 Pa s is the bulk viscosity of water (3D), c = 2.5 nm is the
radius of the circular cross section of the inclusion, e = 2Zwc/Zm and g
E 0.577 is Euler’s constant.35 Then we use the Einstein relation D =
kBT/n to compute the diffusion coefficient D. For more details we
refer the readers to ref. 27. The drag and diffusion coefficient are

Table 1 List of parameters

Symbol Description Units Typical values

c Side length of triangular grid nm 2.5
Kb Bending modulus pN nm 82.86

T Temperature K 300
kB Boltzmann constant N m K�1 1.38 � 10�23

Kt Thickness deformation modulus pN nm�1 248.46

r Separations between two inclusions nm 9–125
F Applied tension pN nm�1 0.1–10
a Unperturbed bilayer half-thickness nm 1.7511

R1(y1) Shape function for the centered inclusion nm
R2(y2) Shape function for the moving inclusion nm
y The angle between two inclusions and horizontal line (see Fig. 2(b)) radian per degree
u Thickness deformation nm
ui Thickness deformation at node i nm
Vi The area of the Voronoi cell at node i nm2

Aijk The area of the triangle with vertices i,j,k nm2

R1 Radius of the inner boundary for diffusing inclusion nm
R2 Radius of the outer boundary for diffusing inclusion nm
ub The vector of all nodes determined by eqn (15) and (16)
ua The vector of all nodes that are not in ub
u u = [uTa,u

T
b]
T

f Energy of the system pN nm
n Ratio of side of triangle in the coarse grid to that in the fine grid
n(nij) Translational drag coefficient (tensor for anisotropic inclusion) s pN nm�1 2.32 � 10�5 27

D(Dij) Diffusion coefficient (tensor for anisotropic inclusion) nm2 s�1 1.76 � 105 27

Tn Chebyshev polynomials of the first kind
Un Chebyshev polynomials of the second kind
Kn Modified Bessel functions of the second kind
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both given in Table 1. We have neglected rotational diffusion here
because it is shown in ref. 27 that it does not play a major role in
determining the first passage time. xi B N(0,1), a normally
distributed random variable with mean 0 and variance 1, represents
the stochastic force along direction i. We initially put the moving
particle somewhere at r = y, and choose a time step dt that ensures
convergence of the Lagenvin dynamics simulation. Then, for each
time step dt, we perform the calculation in eqn (27), updating the
position of the moving inclusion. We record the time at which the
moving particle hits the absorbing wall at R1. We run 8000 simula-
tions and then take an average to estimate the first passage time. For
more details the readers are referred to ref. 27. Fig. 5(a) and 9(a) show
that the f(r) for hexagon and star inclusions can be regarded as
nearly isotropic. For these we use eqn (25) to numerically solve for
the first passage time and compare it with the results obtained from
the Langevin simulations. Since inclusions have non-zero size and
our computations of the interaction energyf(r) are notmeaningful if
the distance between their boundaries (not centers) is comparable to
the size of a lipid headgroup (which is 1 nm), so we choose R1 = 9 nm
for isotropic inclusions (hexagon, star) and R1 = 11 nm for anistropic
inclusion (rod) in our first passage time calculations.

Fig. 10 shows that the first passage time for hexagonal
inclusion derived from the two methods are in good agreement.
As the applied tension increases, the first passage time is
reduced at most r that are not close to R1. At first glance this
might seem counter-intuitive because from Fig. 5(c) we know
that at small separations (close to R1) the attraction force

becomes weaker as applied tension increases. However, there
is a stronger repulsive force at around r = 9–10 nm under small
applied tension which slows the motion of the moving particle
from a large starting separation (see Fig. 5(c)).

The first passage time computed by the two methods is also
in good agreement when the inclusions are star shaped (see
Fig. 11). The order of the first passage time is the same as the
hexagonal inclusions and similar arguments for the shape of
the curves can be made here.

The first passage times in all the above computations are domi-
nated by the Brownian motion because the membrane thickness
mediated interactions play a significant role only for small separations
y. To validate our methods for stronger and longer range interactions

between inclusions we choose f ¼ 50

r
to mimic electrostatic interac-

tions between point charges and use eqn (27) and (25) to compute the
first passage times. The time step used in all previous Langevin
simulations is dt = 10�6 s. However, we did a small number of
Langevin simulations with dt = 10�7 to validate our results. From
Fig. 12 we see that as dt decreases to 10�7 in eqn (27) the first passage
time computed by Langevin simulations (green curves) converges to
the one solved from theODE in eqn (25). The purple curve in Fig. 12 is
derived by setting f = 0 in eqn (27) and eqn (25) for the purpose of
comparison. It is clear that the repulsive electrostatic force slows down
the kinetics of coalescence of the moving particle. These results show
that our methods are also applicable in scenarios where deterministic
forces play an important role in the interactions of the inclusions.

Fig. 10 The first passage time for two hexagon inclusions is computed
using (a) Langevin dynamics simulations in eqn (27), (b) ODE in eqn (25)
under three applied tensions 0.1 pN nm�1, 1 pN nm�1, 10 pN nm�1.

Fig. 11 The first passage time for two star inclusions is computed by (a)
Langevin dynamics simulations in eqn (27), (b) ODE in eqn (25) under three
applied tensions 0.1 pN nm�1, 1 pN nm�1, 10 pN nm�1.
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4 First passage time for anisotropic
inclusions under mixed boundary
condition

For two non-circular inclusions, the corresponding Fokker–
Planck equation for the probability density p is a partial
differential equation of parabolic type,27

@p

@t
¼ @

@xi
nij�1@f

@xj
p

� �
þ @2

@xi@xj
½Dijp�

¼ 1

na
@2f
@x12

pþ @f
@x1

@p

@x1

� 	
þ 1

nb
@2f
@x22

pþ @f
@x2

@p

@x2

� 	

þDa
@2p

@x12
þDb

@2p

@x22
:

(29)

Accordingly, we need to redefine the first passage time in
eqn (23) which is now given by,

T1ðy; aÞ ¼
ð1
0

f ðy; a; tÞtdt ¼ �
ð1
0

ðR2

R1

ð2p
0

@pðr; y; tjy; aÞ
@t

rdrdytdt

¼
ðR2

R1

ð2p
0

ð1
0

pðr; y; tjy; aÞdtdyrdr

¼
ðR2

R1

ð2p
0

q1ðr; yjy; aÞdyrdr;

(30)

where tp(r,y,t|y,a) - 0 as t - N is implemented in the first
equation of the second line and q1 is defined by,

q1ðr; yjy; aÞ ¼
ð1
0

pðr; y; tjy; aÞdt: (31)

Theorem 2: the PDE for T1(y,a) with a reflecting wall at the outer
boundary and an absorbing wall at the inner boundary is

given below,

Da cos
2 aþDb sin
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@y

2y
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@f
@a

y2

0
BB@

1
CCA
3
775@T1

@a
þ 1 ¼ 0;

(32)

with boundary conditions

T1ðR1; aÞ ¼ 0;
@T1

@y
ðR2; aÞ ¼ 0;T1ðy; 0Þ ¼ T1ðy; 2pÞ: (33)

Proof: see proof of Theorem 2.
The overdamped Langevin equation in an anisotropic

setting is given by,27

dri ¼ �nij�1@f
@rj

dtþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTdt

nii

s
xiðno sum in the second termÞ;

(34)

where i represents two perpendicular directions of themotion and
nij and xi are the drag coefficient tensor and random force tensor.
Note that for a rod shaped inclusion the drag coefficient along the
longitudinal direction is smaller than that perpendicular to it. The
details for how to compute these drag coefficients can be found in
ref. 27. Fig. 7(a) shows that the interaction energy f(r) for rod
shaped inclusions depends on y (it is anisotropic). In the Langevin
dynamics calculations, for each initial position y we use eqn (34)
to run 8000 simulations with a reflecting wall at R2 and an
absorbing wall at R1 for four y = 01,301,601,901 and then take an
average (for each y separately) to estimate the first passage time.
We also use eqn (32) to numerically solve the first passage time
and compare the results derived from the two methods for F =
0.1,1,10 pN nm�1 in Fig. 13–15, respectively.

The good agreement between the first passage time solved
from the PDE in eqn (32) and estimated by Langevin equation
once again shows that our methods work well. As shown in
Fig. 13, as the initial angle increases from 01 to 901, the first
passage time decreases at small separations, but increases at large
separations. This can be explained by the fact that stronger
attractive force near R1 pulls the moving particle to be absorbed
faster from smaller initial separations while stronger repulsive
force around 12–16 nm leads to a larger first passage time when
the particle is initially located at a large distance.

Fig. 12 The first passage time for hexagon inclusions with electrostatic

potential f ¼ 50

r
estimated by Langevin equation eqn (27) with time step

dt = 10�6 (orange), with time step dt = 10�7 (green), by ODE eqn (25) (blue)
under applied tension 1 pN nm�1. The purple curve is solved from eqn (25)
by setting f = 0 as a comparison.
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The result of the first passage time under 1 pN nm�1 applied
tension in Fig. 14 is similar to the one under 0.1 pN nm�1

applied tension.
Compared to the results under 0.1,1 pN nm�1 applied

tension, the first passage time is reduced under 10 pN nm�1

applied tension. The order of magnitude of the first passage
time under all three tensions is similar.

5 Discussion

This paper has two major parts. In the first part we use a finite
difference method to compute the interaction energy of two
inclusions due to membrane thickness deformations. In the
second part we use the computed energy landscape to solve first
passage time problems. Our method to compute energies is
different from the analytical method in ref. 7 and 8 which uses
perturbation theory to study thickness mediated interactions
between two anisotropic inclusions; we implement an approach
to compute the energy using the divergence theoremwhich is more
general and can deal with strongly anisotropic inclusions. The
advantage of analytical methods in both ref. 7 and 8 and this work
is that they can compute the energy accurately at small applied
tension F if enough terms in the Fourier–Bessel series are used.
However, it is time consuming to compute the coefficients in the
Fourier–Bessel series and this becomes computationally infeasible

when the inclusions are strongly anisotropic. On the other hand,
our numerical method is able to handle arbitrary values of F and
can efficiently compute the interaction energy of two inclusions for
different separations r given a fixed set of parameters (Kb,Kt,a etc.)
which are stored in a pre-calculated stiffness matrix.

In the second part of the paper we compute the time to
coalescence of two inclusions of various shapes as a function of
the distance separating them.We use both Langevin dynamics and
a PDE to arrive at our estimates. For two inclusions separated by
about 125 nm we predict that the time to coalescence is hundreds
of milliseconds irrespective of the shape of the inclusion. The time
to coalescence with only membrane bending interactions was of
similar magnitude as shown in ref. 27. The order of magnitude of
the time to coalescence is the same even though the attractive force
due to membrane thickness interactions is stronger than that due
to membrane bending interactions in ref. 27 at small separations.
The reason is that even with membrane thickness interactions the
attractive force decays to zero quickly and Brownian motion
dominates the kinetics of the moving particle in most regions, just
as in ref. 27. Therefore, at small separations the first passage time
with thickness mediated interactions is smaller than that with out-
of-plane bending interactions, but is not very different at large
separations. The time to coalescence at large separations can be
changed from that dictated by Brownian motion alone if longer
range interactions (for instance, due to electrostatics) are taken into
account as shown in Fig. 12.

Fig. 13 The first passage time for two rod inclusions computed from (a)
Langevin dynamics using eqn (34), (b) PDE using eqn (32) under applied
tension 0.1 pN nm�1.

Fig. 14 The first passage time for two rod inclusions computed from (a)
Langevin dynamics using eqn (34), (b) PDE using eqn (32) under applied
tension 1 pN nm�1.
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6 Conclusion

In this paper we have analyzed the temporal self-assembly of
inclusions due to interactions mediated by membrane thickness
variations. It is shown that the results from Langevin dynamics
simulations agree well with those obtained from a PDE for the first
passage time. The approach based on the PDE is much faster than
the Langevin dynamics simulation and could open new ways to
study the process of self-assembly. This is a step beyond earlier
studies which focused on the energy landscape of clusters of
proteins, but did not look into kinetics. Some papers based on
molecular simulation did consider the temporal process, but to the
best of our knowledge most did not reach the time scales calculated
in this paper. Phase-field methods can compute the evolution of
particle concentrations on a membrane, but it is beyond their scope
to track the motion of discrete particles as we have done here. We
close this paper by mentioning some effects that we did not
consider. First, hydrodynamic interactions between inclusions
(based on the Oseen tensor) were shown to speed up self-
assembly in ref. 27 and they are expected to have a similar effect
here. Second, the temporal behavior of a cluster of inclusions are
not studied in this paper due to limitations of computational power,
but we expect the overall behavior to be similar to the clusters
studied in our earlier work.27 Third, only a limited set of inclusion
shapes are considered in this paper, but it is found that the time to
coalescence does not depend strongly on shape. We leave it to

future work to add these refinements and extend this type of
analysis to important functional proteins such as ion-channels.8
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A Shape functions for star and rod
inclusion

The shape function for star shaped inclusion of side c is
given by:

R1 ¼

ffiffiffi
3

p
‘

2

1

sin y1 þ
p
6

� �; 0
 o y1 � 30
;

ffiffiffi
3

p
‘

2

1

cosðy1Þ
; 30
 o y1 � 60
;ffiffiffi

3
p

‘

2

1

sin y1 �
p
6

� �; 60
 o y1 � 90
;

ffiffiffi
3

p
‘

2

1

cos y1 �
p
3

� �; 90
 o y1 � 120
;

ffiffiffi
3

p
‘

2

1

sin y1 �
p
2

� �; 120
 o y1 � 150
;

ffiffiffi
3

p
‘

2

1

cos y1 �
2p
3

� 	; 150
 o y1 � 180
;

ffiffiffi
3

p
‘

2

1

sin y1 �
5p
6

� 	; 180
 o y1 � 210
;

ffiffiffi
3

p
‘

2

1

cosðy1 � pÞ; 210
 o y1 � 240
;ffiffiffi
3

p
‘

2

1

sin y1 �
7p
6

� 	; 240
 o y1 � 270
;

ffiffiffi
3

p
‘

2

1

cos y1 �
4p
3

� 	; 270
 o y1 � 300
;

ffiffiffi
3

p
‘

2

1

sin y1 �
3p
2

� 	; 300
 o y1 � 330
;

ffiffiffi
3

p
‘

2

1

cos y1 �
5p
3

� 	; 330
 o y1 � 360
;

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(35)

Fig. 15 The first passage time for two rod inclusions computed from (a)
Langevin dynamics using eqn (34), (b) PDE using eqn (32) under applied
tension 10 pN nm�1.
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The shape function for rod inclusion with major axis length

2c and minor axis length

ffiffiffi
3

p
‘

2
is given by:

R1 ¼

ffiffiffi
3

p
‘

1

sin y1 þ
p
3

� �; 0
 o y1 � 30
;

ffiffiffi
3

p
‘

2

1

sinðy1Þ
; 30
 o y1 � 150
;

ffiffiffi
3

p
‘

1

sin y1 �
p
3

� �; 150
 o y1 � 180
;

ffiffiffi
3

p
‘

1

sin y1 �
2p
3

� 	; 180
 o y1 � 210
;

ffiffiffi
3

p
‘

2

1

sinðy1 � pÞ; 210
 o y1 � 330
;

ffiffiffi
3

p
‘

1

sin y1 �
4p
3

� 	; 330
 o y1 � 360
;

8>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>:

(36)

B Proof of theorem 1

Following techniques in ref. 27, 33 and 36, we integrate eqn (19)
for P over all t Z 0,ð1

0

@P

@t
dt ¼ @

@r

1

n
@f
@r

g1 þD
@g1
@r

� �
þ 1

r

1

n
@f
@r

g1 þD
@g1
@r

� �
(37)

�1

r
dðr� yÞ ¼ Lrg1ðr; yÞ; (38)

where
1

r
dðr� yÞ is the initial condition and the second order

linear differential operator Lr: D(Lr) C C2([R1,R2]) -

C2([R1,R2]) is defined as,

Lr ¼
@

@r

1

n
@f
@r

þD
@

@r

� �
þ 1

r

1

n
@f
@r

þD
@

@r

� �
; (39)

with domain

DðLrÞ ¼ v1 2 C2ð½R1;R2�Þ v1ðR1Þ ¼ 0;j
�

kBTv10 ðR2Þ þ f0ðR2Þv1ðR2Þ ¼ 0g:
(40)

Using themethod in ref. 27, we can get the adjoint operatorL�
r which

satisfies v2;Lrv1h i ¼ L�
r v2; v1

� �
; 8v1 2 DðLrÞ; v2 2 DðL�

r Þ,

L�
r ¼�1

n
@f
@r

@

@r
þD

@2

@r2
þ 1

n
@f
@r

1

r
�D

@
1

r
@r

: (41)

with domain

DðL�
r Þ ¼ v2 2 C2ð½R1;R2�Þ v2ðR1Þ ¼ 0;

v2ðR2Þ
R2

� v02ðR2Þ ¼ 0

����
� �

;

(42)

and the inner product is defined as,

v1; v2h i ¼
ðR2

R1

v1v2dr; 8v1 2 DðLrÞ; v2 2 DðL�
r Þ: (43)

Proofs for the existence of the solutions of second order inhomoge-
neous linear ordinary differential equation are well known. Hence, we
can find a u0 A C2([R1,R2]) s.t. L

�
ru0ðrÞ ¼ r. Then, it follows from

eqn (23) that,

T1ðyÞ ¼
ðR2

R1

L�
ru0ðrÞ


 �
g1ðr; yÞdr

¼
ðR2

R1

u0ðrÞ Lrg1ðr; yÞð Þdr

¼�
ðR2

R1

u0ðrÞ
1

r
dðr� yÞdr ¼�u0ðyÞ

1

y
;

(44)

) L�
yyT1ðyÞ ¼ �y: (45)

Using eqn (41), we can derive eqn (25), a second order ODE for T1(y).
The boundary condition of T1(y) at the absorbing wall is straightfor-
ward:33,36 T1(R1) = 0. For the boundary condition at the reflecting wall,
we appeal to the Langevin equation in eqn (27). If the particle sits at
position R2, decomposing the overdamped Langevin equation27 into
radial direction and angular direction, we have,

dy ¼�1

n
@f
@y

dtþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTdt

n

r
xy; (46)

dy ¼�1

n
1

y

@f
@y

dtþ 1

y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTdt

n

r
xy: (47)

After time dt, the particle can only move to R2 + dy(dyo 0) along the
radial direction because of the reflecting wall at R2. The motion along
the angular direction can be neglected because T1(y) does not have
dependence on angular direction. Note that dy is a random variable
depending on xy and dt with constraint R1 r R2 + dyr R2. Then, we
can write

T1ðR2Þ ¼ dtþC1ðdtÞ
ð0
C2ðdtÞ

T1ðR2 þ dyÞGðxyÞdxy

¼ dtþC1ðdtÞ
ð0
C2ðdtÞ

T1ðR2ÞþT 0
1ðR2 þ ZdyÞdy

� �
GðxyÞdxy

¼ dtþT1ðR2Þ

þC1ðdtÞ
ð0
C2ðdtÞ

ðT 0
1ðR2Þþ ZdyT

00
1 ðR2 þ bdyÞÞdyGðxyÞdxy

¼ dtþT1ðR2Þ�
1

n
@f
@y

T 0
1ðR2Þdt

þC1ðdtÞ
ð0
C2ðdtÞ

T 0
1ðR2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTdt

n

r
xyGðxyÞdxy þC1ðdtÞ

�
ð0
C2ðdtÞ

Zdy
dy

T 00
1 ðR2 þ bdyÞ

2kBTdt

n
xy

2 þ oðdtÞ
� 	

GðxyÞdxy

(48)

where we usedmean value theorem twice to reach to eqn (49) with R2
+ dy o R2 + Zdy o R2 + bdy o R2. Note that bdy depends on Zdy and
thus depends on dy. C2(dt) is the value to satisfy R2 + dy = R1 for given
dt and xy. C1(dt) is the scaling factor such that the integral of
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probability density equals 1: C1ðdtÞ
Ð 0
C2ðdtÞGðxyÞdxy ¼ 1 where

GðxyÞ ¼
e�xy2=2ffiffiffiffiffiffi

2p
p : After some re-arrangements and dividing by dt on

both sides,

�1 ¼ �1

n
@f
@y

T 0
1ðR2ÞþT 0

1ðR2Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
2kBT

ndt

r
C1ðdtÞ

ð0
C2ðdtÞ

xyGðxyÞdxy

þC1ðdtÞ
ð0
C2ðdtÞ

Zdy
dy

T 00
1 ðR2þbdyÞ

2kBT

n
xy

2þoð1Þ
� 	

GðxyÞdxy:

(49)

As dt - 0, C1 - 2, C2 - �N. Note that
Zdy
dy

o1 and we have

jT 00
1 ðR2þbdyÞjoM for some M because T1 is C2. Then if we take

t - N the third term in RHS of eqn (49) can be bounded as,

lim
t!1

C1ðdtÞ
ð0
C2ðdtÞ

Zdy
dy

T 00
1 ðR2þbdyÞ

2kBT

n
xy

2þoð1Þ
� 	

GðxyÞdxy

�����
�����

� lim
t!1

C1ðdtÞ
ð0
�1

Zdy
dy

T 00
1 ðR2þbdyÞ

2kBT

n
xy

2þoð1Þ
� 	

GðxyÞ
����

����dxy
� 2M lim

t!1
C1ðdtÞ

ð0
�1

2kBT

n
xy

2

� 	
GðxyÞ

����
����dxy

� 4M

ð0
�1

2kBT

n
xy

2

� 	
GðxyÞ

����
����dxy

o1:

(50)

The first term in the RHS of eqn (49) is independent of dt and thus is
finite as t - N. For the second term in RHS of eqn (49),

lim
t!1

C1ðdtÞ
Ð 0
C2ðdtÞxyGðxyÞdxy

��� ���o1, but

ffiffiffiffiffiffiffiffiffiffiffi
2kBT

ndt

r
!1 as dt - 0.

Since the LHS of eqn (49) is finite, we must have T 0
1ðR2Þ¼ 0.

C Proof of theorem 2

We transform eqn (29) into polar coordinates,

@p

@t
¼ Fr;yp ¼ r � S; (51)

where the elliptic differential operator Fr,y:D(Fr,y) C
C2([R1,R2] � [0,2p]) - C2([R1,R2] � [0,2p]) is in divergence form,
with domain

DðFr;yÞ ¼ v1 2 C2ð½R1;R2� � ½0; 2p�Þjv1ðR1; yÞ ¼ 0;
�
� @SðR2; yÞ

@r
¼ 0; v1ðr; 0Þ ¼ v1ðr; 2pÞ

�
;

(52)

and the inner product is defined as,

v1; v2h i ¼
ðR2

R1

ð2p
0

v1v2drdy; 8v1; v2 2 DðFr;yÞ: (53)

The expression ofFr,y can be found in ref. 27 and we ignore the
expression of S for brevity. Then, it’s useful to derive F�

r;y

(see ref. 27), the adjoint operator of Fr,y that satisfies

v1;Fr;yv2
� �

¼ F�
r;yv1; v2

D E
; 8v1 2 D Fr;y


 �
; v2 2 D F�

r;y

� �
.

Next, we integrate eqn (51) for p over t Z 0 and get,

�1

r
dðr� yÞdðy� aÞ ¼ Fr;yq1: (54)

F�
r;y is uniformly elliptic with certain boundary conditions the

solution of which has been discussed in ref. 37. Then, we can
find a u0 A C2([R1,R2] � [0,2p]) s.t. F�

r;yu0ðr; yÞ ¼ r. It follows

from eqn (30) that,

T1ðy; aÞ ¼
ðR2

R1

ð2p
0

q1 F�
r;yu0ðr; yÞ

� �
dydr

¼
ðR2

R1

ð2p
0

u0ðr; yÞFr;yq1dydr

¼ �
ðR2

R1

ð2p
0

u0ðr; yÞ
1

r
dðr� yÞdðy� aÞdydr

¼ � 1

y
u0ðy; aÞ;

(55)

) F�
y;ayT1ðy; aÞ ¼ �y: (56)

Then, we can derive a second order PDE for T1(y) (eqn (32)). For
boundary conditions, we just need to worry about the reflecting
wall. For anisotropic case, dyo 0. dy could be either positive or
negative. Similarly we can write,

TðR2;yÞ ¼dtþC1ðdtÞ
ð0
C2ðdtÞ

ð1
�1

TðR2þdy;yþdyÞ

�GðxyÞdxyGðxyÞdxy

¼dtþC1ðdtÞ
ð0
C2ðdtÞ

ð1
�1

TðR2þdy;yÞ½

þTyðR2þdy;yþZ�dy;dyÞdy
i
GðxyÞdxyGðxyÞdxy

¼dtþC1ðdtÞ
ð0
C2ðdtÞ

TðR2;yÞþTyðR2þZdy ;yÞdy
h i

GðxyÞdxy

þC1ðdtÞ
ð0
C2ðdtÞ

ð1
�1

Ty R2þdy;yþZ�dy;dy

� �
dy

h i

�GðxyÞdxyGðxyÞdxy

¼dtþC1ðdtÞ
ð0
C2ðdtÞ

ðTyðR2;yÞ

þZdyTyyðR2þbdy ;yÞÞdyGðxyÞdxy

þC1ðdtÞ
ð0
C2ðdtÞ

ð1
�1

TyðR2þdy;yÞdy½ �GðxyÞdxyGðxyÞdxy

þC1ðdtÞ
ð0
C2ðdtÞ

ð1
�1

Tyy R2þdy;yþb�dy;dy

� �
dyð Þ2

Zdy;dy
�

dy

� �

�GðxyÞdxyGðxyÞdxyþTðR2;yÞ
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where in the process to eqn (57) we used mean value theorem
three times with yo yþ b�dy;dy o yþ Z�dy;dy o yþ dy if dy 4 0

and yþ dyo yþ Z�dy;dy o yþ b�dy;dy o y if dyo 0. After some re-

arrangements and dividing by dt on both sides, we get

�1¼C1ðdtÞ
ð0
C2ðdtÞ

Zdy
dy

TyyðR2þbdy ;yÞ
2kBT

n
xy

2þoð1Þ
� 	

GðxyÞdxy

þC1ðdtÞ
ð0
C2ðdtÞ

TyðR2;yÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
2kBT

ndt

r
xyGðxyÞdxy�

1

n
@f
@y

TyðR2;yÞ

�C1ðdtÞ
ð0
C2ðdtÞ

TyðR2þdy;yÞ1
n
1

R2

@f
@y

� �
GðxyÞdxy

þC1ðdtÞ
ð0
C2ðdtÞ

ð1
�1

Tyy R2þdy;yþb�dy;dy

� � 2kBT

nR2
2
xy

2þoð1Þ
� 	�

�
Z�dy;dy
dy

�
GðxyÞdxyGðxyÞdxyþC1ðdtÞ

ð0
C2ðdtÞ

TyðR2þdy;yÞ

� 1

R2

ffiffiffiffiffiffiffiffiffiffiffiffi
2kBT

ndt

r ð1
�1

xyGðxyÞdxyGðxyÞdxy:

(58)

Using the continuity of Ty, Tyy and Tyy and the fact that
Zdy
dy

;
Z�dy;dy
dy

o1, it is clear that the 1st, 3rd, 4th, 5th terms on

RHS of eqn (58) are finite as dt - 0. The 6th term is vanishing
due to

Ð1
�1xyGðxyÞdxy¼0: Since the LHS of eqn (58) is finite

also, the 2nd term on RHS of eqn (58) must also be finite as dt

- 0. Accordingly, Ty(R2,y) = 0 follows from lim
dt!1

ffiffiffiffiffiffiffiffiffiffiffiffi
2kBT

ndt

r
!1:
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