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ABSTRACT

A two-player finite game is represented by two payoff matrices
(A, B), one for each player. Imitation games are a subclass of two-
player games in which B is the identity matrix, implying that the
second player gets a positive payoff only if she “imitates" the first.
Given that the problem of computing a Nash equilibrium (NE) is
known to be provably hard, even to approximate, we ask if it is any
easier for imitation games.

We show that much like the general case, for any ¢ > 0, com-
puting a #—approximate NE of imitation games remains PPAD-
hard, where n is the number of moves available to the players. On
the other hand, we design a polynomial-time algorithm to find
e-approximate NE for any given constant € > 0 (PTAS). The for-
mer result also rules out the smooth complexity being in P, unless
PPAD c RP.
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1 INTRODUCTION

Nash equilibrium is arguably one of the most fundamental solution
concepts in game theory [31]. It is a state in which no individual can
gain by deviating unilaterally. In the previous two decades or more,
the field of algorithmic game theory has extensively studied the
computability of Nash equilibrium in various games, especially in
two-player finite games [7, 16, 33]. Such a game can be represented
by two payoff matrices (A, B), one for each player, where a play
can be thought of as the first player choosing a row and the second
choosing a column.

Computing a Nash equilibrium (NE) of a general two-player
game was shown to be PPAD-complete by a series of remarkable
results in 2006 [7, 13, 33]; PPAD is a complexity class introduced in
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[33]. Even computing e-approximate NE (e-NE) for € = m re-
mains PPAD-complete [7], where n is the number of rows/columns
in A and B; at an e-NE no player can achieve more than € additive
gain by deviating unilaterally. On the other hand, for a constant
€, a quasi-polynomial-time algorithm to find e-NE is known since
2003 [25], but there has been no improvement on this front since
then. Recently, this result was shown to be optimal assuming the
exponential time hypothesis for PPAD [34]. In the light of these neg-
ative results, various subclasses of two-player games, like win-lose
games, sparse games and constant-rank games have been analyzed
both for exact and approximate NE [1, 8, 10, 20] (see Section 1.1 for
a detailed discussion).

In this paper we study the complexity of finding an (approximate)
NE for one such subclass called imitation games. In such a game [28]
one of the players, say the second player, is an imitator. The imitator
gets a payoff of 1 only when she “imitates” the strategy of the other
player, and 0 otherwise, and thus her payoff matrix B is an identity
matrix. Imitation games are interesting because the symmetric NE
of a symmetric bimatrix game are in one-to-one correspondence
with the NE strategies of the imitator in an imitation game ([11, 27]).
They have also been employed to study the complexity of various
computational problems, like providing an alternate proof of the
Kakutani fixed point theorem that is brief and elementary [27],
relating the Lemke-Howson and Lemke paths’s algorithm [28], and
other problems on equilibria of two player games (e.g., [11, 17, 29,
30]).

The problem of finding an exact NE in imitation games is PPAD-
complete since the same problem on symmetric games reduces to it.
However, to the best of our knowledge, the complexity of finding
an approximate NE remains unknown. In this paper we obtain the
following set of results concerning imitation games: settling the
complexity of approximate NE for imitation games (and in doing so,
symmetric games), and the smoothed complexity. We also obtain
results for a stronger notion of approximation, called approximate
well-supported Nash equilibrium (wsNE). At an e-wsNE players play
a pure strategy with positive probability only if it gives maximum
payoff within an additive e.

Our contributions.

- We design a polynomial-time algorithm to find an e-
approximate-well-supported NE for a constant € > 0 (PTAS),
that runs in time n©@(1/€) poly (L), where L is the bit-size of
the input (see Section 3).

We show PPAD-hardness for the problem of finding a %—
1

approximate-well-supported NE, and thereby also for -
approximate NE, for any ¢ > 0. This hardness result rules out
any FPTAS for this problem unless PPAD C P (see Section
4).
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In showing the above, we also prove that computing a sym-
metric #—approximate—well—supported NE of a symmetric
game is also PPAD-hard, for any ¢ > 0.

- Towards beyond worst-case complexity, we infer that the
above PPAD-hardness result together with a result of [7]
rules out the smoothed complexity being in P unless PPAD C
RP.

1.1 Related work

The Lemke-Howson algorithm [24] is the oldest known algorithm
to find an exact Nash equilibrium in general two-player games,
and is also the only non-enumerative algorithm for the problem.
However it was shown to take exponentially many steps in the
worst-case [35]. Efficient algorithms were obtained for special cases,
like zero-sum games where B = —A [38], when rank of A or Bis a
constant [19, 25], or when rank(A + B) =1 [1].

The complexity of finding NE was shown to be PPAD-complete,
even for 1/poly(n) approximation [7, 16, 33], that is, an FPTAS for
this problem is unlikely unless PPAD C P. This was followed by
a number of results showing PPAD-hardness for important sub-
classes: exact NE in constant-rank games [30], exact as well as
approximate NE in sparse games ([8]), win-lose games ([10]), and
most recently sparse win-lose games ([26]). The hardness of sev-
eral related decision problems about Nash equilibria in symmetric
win-lose bimatrix games were considered in [5]. On the other hand
efficient algorithms were obtained to find approximate NE for sub-
classes like low rank games [2, 20] (FPTAS), and when (A + B) is
sparse [4] (PTAS).

Towards constant approximation a n “) -time algorithm is
known for e-NE [25], and is the best possible assuming exponential
time hypothesis for PPAD [34]. While [14] showed existence of

%—NE with support size at most two, [22] gave an efficient algorithm

to find %—NE, and more generally #—NE, where A is the minimum

expected payoff to any player at any Nash equilibrium. There have
been several other approaches to compute an e-NE for constant
€, see for e.g. [6, 15, 37]), with € = 0.3393 being the best so far.
Computing e-NE in subclasses has also been studied, relying on
the properties of the payoff matrices. See for example [21] for a
polynomial time algorithm to compute a (%+5) -NE for a symmetric

O(logn/e

game, and [37] for a polynomial time algorithm to compute a %-NE
in win-lose games.

Turning to approximate-well-supported Nash equilibrium, [14]
showed that computing 5/6-wsNE is possible in polynomial time,
assuming a graph theoretic conjecture. A polynomial time algo-
rithm to compute a e-wsNE where € is just above 0.6619 was shown
in [18]. For special cases, [23] provided polynomial time algorithms
(based on the solvability of zero sum games) for constructing a %—
wsNE for win-lose games and %-WSNE for normalized games. For
symmetric games, [12] provided a linear programming approach
to compute a (% + &)-wsNE, for an arbitrarily small constant § > 0,
in polynomial time.

Smoothed analysis is a beyond-worst-case analysis technique
which was introduced in [36]. It seeks to show that worst-case
instances are sparse and scattered. That is, the smoothed complexity
of a problem is in P, if any instance can be solved in polynomial
time after subjecting it to independent random perturbations. Using

888

AAMAS 2020, May 9-13, Auckland, New Zealand

PPAD-hardness for computing 1/poly(n)-NE, [7] shown that unless
PPAD c RP, it is unlikely that smoothed complexity of computing a
NE is polynomial. Towards the average case, [3] considered random
two-player games where all payoffs are i.i.d. random variables in
[0, 1] following either the normal or the uniform distribution. They
show that with probability at least 1 — O(1/logn), there exists a
Nash equilibrium with support of size two. Using this observation,
they present a O(m?nloglog n + n?mlog log m)-expected time Las
Vegas algorithm for finding a Nash equilibrium in such games. It
was shown by [32] that in random bimatrix games, where each
player’s payoffs are bounded and independent random variables
with common expectations, the completely mixed uniform strategy
profile is an O( \/LE)—NE with high probability.

The computational complexity of finding Nash equilibria in imi-
tation games has not been studied to the best of our knowledge.

2 PRELIMINARIES

Let [m] = {1,2,...,m} for any m € N. For a,b € R, the interval
[a, b] is the set {x : a < x < b}, and (a, b) is the set [a, b] \ {a, b}.
A m X n matrix M with entries from set S is denoted as M € S™*",
and its entries are denoted with the corresponding lowercase letter
indexed by the row and column numbers. That is, for an m X n
matrix M, its (i, j)!" entry is denoted by m;; € S, where i € [m]
and j € [n]. For a constant ¢, M + ¢ and cM are the matrices M’ and
M”" of dimensions m X n given by ml’.j =mjj +cand m:; =c-mjj,
respectively, for all i € [m], j € [n]. We denote by I an identity
matrix, whose dimension will be clear from the context. A vector
x is a m X 1 matrix whose i‘" entry is denoted by x;. The support
of a vector x denoted by supp(x) is the set of indices with positive
value, that is, supp(x) = {i € [m] : x; > 0}. Denote by A, the set
of all probability vectors of dimension m. Formally,

m
Am={x:Vie[m]x; >0, and in:l}
i=1

A vector X € A, is said to be uniformifforalli € [m],x; >0 =
x; = 1/|supp(x)|. A vector x € Ay, is said to be fully uniform if for
allie [m],x;=1/m.

A bimatrix game or a two player game consists of two players,
the row player and the column player. The row player has a m pure
strategies, denoted by the set [m] and the column player has n pure
strategies, denoted by [n]. The game is specified by two mxn payoff
matrices A, B whose entries are reals. If the row player chooses a
strategy i € [m] and the column player chooses a strategy j € [n],
then they receive payoffs equal to a;; and b;; respectively. The
players can randomize over their pure strategies, giving rise to a
mixed strategy. Formally, a mixed strategy for the row player (resp.
column player) is a probability vector x € Ay, (resp. y € A,). Any
(x,y) € A X Ay, is called a strategy profile. For a strategy profile
(x,y), the expected payoff of the row player is x! Ay and that of
the column player is x” By.

Nash’s celebrated theorem, when applied to bimatrix games,
states there always exists a strategy profile so that neither player
can increase her payoff by unilaterally deviating from the strategy
profile. Such a strategy profile is called a Nash Equilibrium (NE, for
short) ([31]).
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Definition 2.1. (Nash Equilibrium) Let (A, B) be a bimatrix game
where A, B € [0, 1]™*". A strategy profile (x*,y*) € Ay X Ay isa
Nash equilibrium of (A, B), if for all x € Aj; and for all y € Ay, it
holds that:

(x*)TAy* > XTAy* and (x*)TBy* > (x*)TBy

Note that at the Nash equilibrium a player will give positive
probability only to pure strategies that give her the maximum
payoff against the strategy of the other player. Mathematically,
(x*,y*) is a Nash equilibrium if and only if for all i € [m] and
j € [n]:

x; >0 = (Ay"); = max (Ay")k
ke[m]

¥ >0 = (B = max (B
ke[n]

Observe that the Nash equilibria of a bimatrix game are invariant
under scaling by positive constants, that is, the set of NEs of the
game (A, B) is the same as the set of NEs of the game («A, B), for
a, > 0. The NEs also remain invariant under shifting, that is, the
set of NEs of the game (A, B) is the same as the set of NEs of the
game (A + a, B + f§), for any «, . Thus, it is standard practice to
normalize the matrices and assume that all the entries belong to
[0, 1].

As it is hard to compute exact Nash equilibria, a natural no-
tion to consider is that of approximate equilibria. For € > 0, an
e-approximate Nash Equilibrium (e-NE for short) is a strategy pro-
file in which neither player has an incentive of more than e of
deviating unilaterally.

Definition 2.2. (e-approximate Nash Equilibrium) Let (A, B) be
a bimatrix game where A, B € [0, 1]"". For an arbitrary € > 0,
a strategy profile (%X,¥) € Ap X Ay, is an e-approximate Nash
equilibrium if:

VX € A X Ay = xT Ay — €

Vy €A, :x'By > % By —¢

A stronger notion of approximation of a Nash equilibrium is
the e-approximate-well-supported Nash equilibrium (e-wsNE for
short), in which neither player has an incentive of more than €
to unilaterally deviate from any of the pure strategies used in her
mixed strategy.

Definition 2.3. (e-approximate well-supported Nash Equilibrium)
Let (A, B) be a bimatrix game where A, B € [0, 1]™*". For an ar-
bitrary € > 0, a strategy profile (X,¥) € Ap X A, is an e-well-
supported Nash equilibrium if:

Vie[m]: % >0 = (Ay); > max (Ay)r — €
ke[m]
Vieln]:y;,>0 = ()‘(TB)]- > max ()‘(TB)k —€
ke[n]

It is easy to see that every e-wsNE is also e-NE, but not vice
versa. However as is observed in [9], the two approximate notions
of Nash equilibrium are polynomially equivalent:

LEMMA 2.4. ([9]) From every €?/8-approximate Nash equilib-
rium of a bimatrix game, we can compute in polynomial time an
e-approximate-well-supported Nash equilibrium of the same game.
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Symmetric bimatrix games are a subclass of bimatrix games in
which both players have the same set of pure strategies, and the
payoffs depend only on the strategies chosen and not the players
who play them, that is, B = AT Nash ([31]) showed that every
symmetric game has a symmetric Nash equilibrium (y*,y").

An imitation game ([28]) is a bimatrix game in which the column
player is an imitator, that is, she gets a payoff of 1 only when she
picks the same strategy as the row player, otherwise her payoff is 0.
Thus, the payoff matrix of the imitator is the identity matrix, that
is, B=1.

Definition 2.5. (Imitation game, I-equilibrium) An imitiation
game is a bimatrix game (A,I), where A € [0,1]™". An I-
equilibrium of an imitation game is a mixed strategy y for the
imitator such that supp(y) € argmaxc [, (Ay)k-

The symmetric Nash equilibria of any symmetric game (4, AT)
are in one-to-one correspondence with the I-equilibria of the imi-
tation game (A, I). Thus any efficient algorithm computing Nash
equilibria of imitation games can be used to efficiently compute
symmetric Nash equilibria of symmetric games. The following prop-
erties about Nash equilibria of imitation games are well-known
(and appear in different forms in [28], [17] and [29]).

LEMMA 2.6. Let A € [0,1]™" be a payoff matrix and let y € Ay,
be a mixed strategy. Then (y,y) is a symmetric NE of (A, AT) if and
only if y is an I-equilibrium of (A, I).

Proor. Observe that from equation 1, (y,y) is a symmetric NE
of (A,AT) if and only if for all i € [n] : y;, >0 = (Ay); =
max ¢ [,] (Ay)k, which holds if and only if i € supp(y) = i€
argmaxye|p] (Ay)g, which is true if and only if y is an I-equilibrium
of (A I). O

LEMMA 2.7. For any Nash equilibrium (x*, y*) € Ap X Ap of an
imitation game (A, I) where A € [0,1]™", supp(y*) C supp(x*).

Proor. Let (x*,y*) be a Nash equilibrium of an imitation game
(A, I). From equation 1, for all i € [n],y; > 0 = (x)T1); =
maxke[n]((x*)TI)k > 0. Thus, i € supp(y*) = i € supp(x*),
and hence supp(y*) C supp(x*). O

Next we observe that imitation games always have a Nash equi-
librium (x*, y*) where x* is uniform. As we shall see in Section 3,
this fact will be useful in constructing a PTAS for computing
an approximate-well-supported Nash equilibrium in an imitation
game.

LEMMA 2.8. For any imitation game (A,I) where A € [0, 1]™*",
there exists a Nash equilibrium (X, y) € Ay X Ay, where X is uniform.

Proor. By Nash’s theorem ([31]), we know that there exists
at least one Nash equilibrium (x*,y*) € A, X A, of (A, I). From
Lemma 2.7, if for some i € [n], y:.‘ > 0, then x;‘ > 0. Together with
equation 1, we have for all i € [n]:

)

yi >0 = xj >0 = (Ay*); = max (Ay*)
keln]

Consider a mixed strategy % for the row player given by %; =
1/|supp(y*)| <= y; > 0. Clearly % is a uniform vector in Ay.
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We also have that for all i € [n]:
®)

y; >0 & %; = max X >0

keln]
Set ¥ = y*. Now equations 2 and 3 together with equation 1 imply
that (%,¥) is a Nash equilibrium of (A, I) where X is uniform. 0O

3 POLYNOMIAL-TIME ALGORITHM FOR
CONSTANT APPROXIMATE NE

We now present a polynomial-time approximation scheme (PTAS)
for the problem of computing a well-supported approximate Nash
Equilibrium of an imitation game. Let (A, I) be an imitation game
where A € [0,1]™" is the payoff matrix of the row player and
I, the n X n identity matrix is the payoff matrix of the column
player. Given a constant € € (0,1), we will show how to com-
pute an e-approximate well-supported Nash Equilibrium (%,y) in
nO(/e poly(L) time, where L is the bit-size of the input, that is,
the sum of the bit-sizes of the n? entries of A.

Recall that an e-wsNE of an imitation game (A, ) is a mixed
strategy profile (%,¥) € A, X A, such that for all i € [n] and for
all j € [n]:

% >0 = (Ay); > Jax (Ay) —€
(4)

>0 = X; > max X, — €

Yj ke[n]

We assume € € (0,1) is a constant given to us in binary. Let
[1] Since ¢ > l , any 1/¢-wsNE is also an e-wsNE. From
Lemma 2.8, we know that there exists a NE (x ,y") of (A, I) where
x* is uniform, that is, x; > 0 = x] —1
~ TsuppGAIT”

We separately analyze the problem depending on the size of the
support of the row player’s strategy in any Nash equilibrium. In
Section 3.1 we discuss the case where there exists a Nash equilib-
rium (x*, y*) where x* is uniform and has support of size less than
{. In Section 3.2, we discuss the case where in every Nash equilib-
rium (x*,y*) with x* uniform, the support of x* is of size at least
¢. Our algorithm, presented in Section 3.3 finds a %—approximate—
well-supported Nash equilibrium by solving a finite set of linear
programs, which are presented in the next two sections, of which
one is guaranteed to be feasible. Using the solution to this feasi-
ble program we recover the desired e-approximate well-supported
Nash equilibrium of the imitation game (A, I).

3.1 Support less than ¢
Let S be a subset of [n] of cardinality m. Consider the following

linear program LP;(S) with variables (ILx = (x1,...,Xp),y =
(Y155 ¥n)):
LPi(5)

VieS: 1 = (Ay);

Vig$: 1> (Ay)

VieS:x;=1/m

Vi S:x;=0

VigS:y; =0

n
D2Vt
j=1
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PrRoPOSITION 3.1. The imitation game (A,I) has a Nash equilib-
rium (x*, y*) where x* is uniform and has a support of size less than
¢ if and only if there is a set S C [n] of size less than ¢ such that
LP;(S) is feasible. Further any (x, y) in its feasible region is a Nash
equilibrium.

Proor. (=) Let (x*,y") be a Nash equilibrium of (A, I) where
x* is uniform and has a support of size m < £. Then consider
the linear program LP; (S) where we set S = supp(x*). We claim
that (IL x*,y*) lies in the feasible region of LP;(S), where II =
maxge(p] (Ay*)k - This is true because:

- Since (x*,y") is a NE, by equation 1, x; > 0 = (Ay"); =
maxge(p] (Ay™)g, thus for all i € S, T = (Ay™);, and for all
i¢S, > (Ay*);.

- Since (x*,y"*) is a NE of an imitation game, by Lemma 2.7,
we have that supp(y”) C supp(x”), equivalently y; = 0 for
Jjés.

(&) Suppose on the other hand there is set S C [n] of cardinality
m < ¢ such that LP;(S) is feasible. Let (x,y) be any point in its
feasible region. Then we have for all i € [n]:

-x;>0 = i€S = II=(Ay); = maxjc[,] (Ay)k

-y, >0 = i€S = x;=1/m=maXc[n] Xk

Thus by equation 1, (x,y) is a Nash equilibrium of (A, I) where x
is a uniform vector with a support of size less than ¢. O

3.2 Support at least ¢

Suppose every NE (x*,y*) of (A,I) where x* is uniform has a
support of size at least ¢£. For a set S C [n], with |S| = ¢, consider
the following linear program with variables (ILy = (yy,...,y,)):

LP(S)
VieS:II=(Ay);
VigS:II> (Ay);

Vji:y; 20
>

J=1

yj=1

PROPOSITION 3.2. If every Nash equilibrium (x*, y*) of the imi-
tation game (A, I) where x* is uniform is such that |supp(x*)| > ¢,
then there exists a set S C [n] of size exactly ¢ such that LP(S) is
feasible. Further for every (I, y) in its feasible region, there exists a
uniform x € Ay, such that (X, y) isa —-approxtmate well-supported
Nash equilibrium.

Proor. Let (x*,y*) be some Nash equilibrium of the imitiation
game (A, I) where x* is uniform, which we know exist thanks to
Lemma 2.8. We further assume that [supp(x*)| > £. Let S be any
t-element subset of supp(x*). Then LP,(S) is feasible because the
point (IL, y*) lies in its feasible region, where IT = max.c[,,] (Ay*)k-
This is true, since we have for alli € [n] ifi € S, then x;f‘ > 0, which
in turn implies from equation 1 that (Ay"); = maxyc(,] (Ay*)x =
I1.

Now suppose LP;(S) is feasible for some subset S of [n] contain-
ing exactly ¢ elements. Let (I, §) be a point in its feasible region.
Clearly, IT = maxye[n](Ay)k- Let X € Ay be given by x; = % if

i € S, and 0 otherwise. Note that max¢[,] Xx = %. Then (%,y) is
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a %—approximate well-supported Nash equilibrium of (A, I) since it
holds that:
-foralie [n],% >0 = ieS = I =(Ay); =

(Ay)i = maxgep,) (AR — ¢
- foralli € [n],%; > 0.Thusy; >0 = X; > maXge[p] Xx—

% = 0 is also true.

Thus from Definition 2.3, it follows that (%x,y) is a %—approximate
well-supported Nash equilibrium, and thus also a e-wsNE. O

3.3 PTAS for imitation games

Given an imitation game (A, I) and a constant € > 0, the following
algorithm finds a e-approximate-well-supported Nash equilibrium.

Algorithm 1 PTAS for Imitation games

1: Compute ¢ = f%‘|

2: Iterate over all subsets S of [n] of size less than ¢ and check if
LP;(S) is feasible. If yes, output any point in its feasible region.

3. If not, iterate over all subsets S of [n] of size £ and check if
LP,(S) is feasible. Use Proposition 3.2 to output a %—WSNE.

THEOREM 3.3. Given an imitation game (A,I), where A €
[0,1]™", and a constant ¢ > 0, Algorithm 1 computes an e-
approximate-well-supported Nash equilibrium of (A,I) in time
nO0/€) poly (L), where L is the bit size of the matrix A.

ProoF. Correctness. Due to Propositions 3.1 and 3.2, at least one
of the linear programs examined in Steps 2 or 3 of Algorithm 1 will
be feasible. If the algorithm succeeds in Step 2, then it outputs an
exact NE of the imitation game due to Proposition 3.1; and if not, it
outputs a e-wsNE due to Proposition 3.2 in Step 3.

Complexity. In step 2, Algorithm 1 iterates over all subsets of [n]
of size less than ¢, which are () + (5) +---+(,",) < (n+ 1)’ in
number. Checking if an LP is feasible takes polynomial time in £,
the bit size of the input A. Thus step 2 of the algorithm takes time
at most:

. i

12

{
(n)polyu) < (n+ Dfpoly(£L) = "9 poly(L)
=1

In step 3, Algorithm 1 iterates over all subsets S of [n] of size ¢
and checks if the corresponding linear program LP3(S) is feasible.
This takes time at most:

(;)polyw < n'poly(£) = n/Ipoly(L)

Thus, Algorithm 1 runs in time n€(/)poly(£), and computes
an e-approximate-well-supported Nash equilibrium of the imitation
game (A, I). o

Having presented a polyomial time approximation scheme (PTAS),
we now ask if there is a fully polynomial time approximation scheme
(FPTAS) for the problem of computing an approximate Nash equi-
librium of an imitation game. The results of the next section show
that an FPTAS is unlikely.
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4 HARDNESS OF 1/n°() .APPROXIMATION

It was shown in [7] that the problem of computing an e-
approximate-well-supported Nash equilibrium of a bimatrix game
is PPAD-hard for € = # for any ¢ > 0. In this section we show
that a similar hardness result holds for imitation games as well.
We do this by first showing that it remains hard to compute a #—
approximate-well-supported symmetric Nash equilibrium of sym-
metric games, for any ¢ > 0. Then we show that any polynomial-
time algorithm that computes a %-approximate-Well-supported
Nash equilibrium of an imitation game (A, I) can be used to com-
pute a #-approximate-well-supported Nash equilibrium of a sym-
metric game (4, AT) in polynomial time, for any ¢ > 1, showing
PPAD-hardness. We then extend the result to show that comput-
ing an nl—l/c—wsNE of imitation games is PPAD-hard as well, for
integers ¢ > 1. Therefore this rules out an FPTAS for computing
approximate Nash equilibria of imitation games, unless PPAD C P.

LEMMA 4.1. For any ¢ > 0, the problem of computing a symmetric
#—approximate—well—supported Nash equilibrium of a symmetric
game is PPAD-hard.

PrOOF. Let (A, B) be any bimatrix game where A, B € [0, 1]™*".
Consider the symmetric game (C, CT), where C is the following
2n X 2n matrix, where m = 6.

(0]
Bl +m

A+m

C= o

where O is a zero matrix of appropriate dimensions, and m >
0. Let (z,z) be a symmetric e-approximate-well-supported Nash
equilibrium of (C,CT), where 0 < € < 1. Let x,y be such that
foralli € [n] : x; = Z; and y; = Zpyy. Let X = Zie[n] x; and
Y =2 yj- Since Z € Ag,, X + Y = 1. Assume without loss of
generality that X > 1/2. We have from Definition 2.3 that for all
i€ [n]:

®)
We have for all i € [n], (Cz); = (Ay); + mY and (CZ)p4; =

(BTx); + mX. Since X > 1/2, there exists i € [n] such that x; > 0.
Then we have that for any j € [n]:

zZ; >0 = (Cz); > max (Cz)p — €
ke[2n]

(Ay)i + mY > (BTx)j +mX —€
This gives:
T
Ys>x_ 4 (B"x); — (Ay)
m m
Since entries of A, B are from [0, 1], (BTx)j — (Ay); = —1. Thus for
m=6,
m-—2 1
> =
2m 3
Now consider X,y € Ay such thatforalli € [n],%; = % andy; =
%. Since (z,z) is an e-wsNE of (C, CT), it follows from equation 5
that for all i € [n]:

x;i >0 = (Ay);i +mY > kmz[ix](Ay)k +mY — €, thus
eln

€

X; >0 = (Ay); > AV —
X; (Ay)i knel'ilgfj( Yk ¥

> AV) — 3e
knelffj( Yk
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Similarly from equation 5 we have for all i € [n]:

y; >0 = (BTx)i+mX > km;[ix](BTx)k+mX—e,thus
€ln
€
y, >0 = (B'x); > max (BT%); - — > max (B %), — 2¢
5 (BT501 2 max (BT~ ;= mas (BT %),

Thus from Definition 2.3, (X,y) € Ap X A, is a 3e-wsNE of (A, B).
The entries of the matrix C are in [0, 7]. By noting that scaling the
entries of the payoff matrices by the same constant causes the ap-
proximation factor € to change only by a constant multiplicatively,
we can observe that a symmetric e-wsNE of (C, CT) is also a sym-
metric 5-wsNE of (D, DT), where D = %C is a matrix with entries
in [0, 1]. Thus in fact from any symmetric e-wsNE of the symmetric
game (D, DT), we can construct a 21e-wsNE of the general bimatrix
game (A, B). Since we know from [7] that for any ¢ > 0, computing
an %—aproximate Nash equilibrium of a general bimatrix game is
PPAD-hard, we conclude because of the above reduction that the
problem of computing a symmetric #-WSNE of a symmetric game
is PPAD-hard as well. O

We now show our first hardness result for imitation games:

THEOREM 4.2. For ¢ > 1, the problem of computing an 1/n°-
approximate-well-supported Nash equilibrium of an imitation game
(A, 1) is PPAD-hard.

PRrROOF. Let (A, I) be an imitation game where A is an nXn matrix
with entries from [0, 1]. Fix ¢ > 1. We first observe that for every
strategy profile (%,y) that is a 1/n®-approximate well-supported
NE of (A, I), the strategy profile (y,¥) is a 1/n®-approximate-well-
supported NE of (4, AT).

Let € = 1/n°. By definition of e-approximate well-supported NE,
we have for all i € [n]:

(6)
™)

Since X € Ap, maxy X > 1/n. If maxy X; = 1/n, then in fact for
eachi € [n], X; = 1/n > 0. On the other hand suppose max X3 >
1/n. Since € < 1/n, from equation 7 we have that if §; > 0 then
X; > maxy X; — € > 0. Thus, in either case whenever y; > 0, it
holds that %x; > 0. Thus from equations 6 and 7 we have for all
i €[n]:

% >0 = (Ay); > m,?x(Ay)k —€

y; >0 = X; > maxXy —€
k

¥,>0 = %, >0 = (Ay); > m]?x(Ay)k —€

Thus, (¥, ¥) is a symmetric 1/n-approximate-well-supported sym-
metric NE of (A, AT). Therefore, the problem of computing a sym-
metric 1/n-approximate-well-supported Nash equilibrium of the
symmetric game (A, AT) reduces to the problem of computing a
1/n€-approximate well-supported Nash equilibrium of an imitation
game (A, I). Since we know from Lemma 4.1 that the former is
PPAD-hard, the theorem follows. m]

We now show that the hardness extends to the problem of com-

puting a nll/c -wsNE of an imitation game, for ¢ > 1.

THEOREM 4.3. For ¢ > 1, the problem of computing a

1
/e~
approximate-well-supported Nash equilibrium of an imitation g'tlzme
(A, I) is PPAD-hard.
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ProOF. Let (A, I) be an imitation game, where A € [0, 1]™. Fix an
integer ¢ > 1. We construct an m X m matrix A’, where m = (2n)°,
given by:

A=

1A+1 H]
0] 0]

where H is an (m — n) X (m — n) matrix with every entry % and

O denotes zero matrices of appropriate size. Since every entry of

Aisin [0, 1], every non-zero entry of A’ is at least % and at most

1. Let (x’,y’) be an €’-wsNE of the imitation game (A’,I), where

€ = # Thus for any i € [m]:

®)

x;>0 = (A'y)i > max (A'y' ) — ¢
ke[m]
and for any j € [m]:

y';j>0 = x'j > max x'y - ¢ 9)
elm

ke[m]

Note that for any i € [n], (A'y’); > %, and for any i ¢ [n],
(A’y’)i = 0. Thus by the contrapositive of Equation 8, we get that
for all i ¢ [n], x; = 0. Thus supp(x’) C [n]. Similarly note that
since for all j ¢ [n], x;. = 0, it follows from the contrapositive of
Equation 9 that y’; = 0. Thus supp(y’) € [n].

Now we define vectors x € A, and y € A, given by x; = xlf and
y; =, foralli € [n]. Observe that for i € [n]:

A _m r o1 c 1 1
@AY= ay;=), PR

1 1
)Yj = E(AY)i +5

Jj=1 Jj=1
With e’ = m}/c = ﬁ we have from Equation 8 for all i € [n]:
>0 = S(Ay)++ > max = (Ay) + =
X = i+ - > max — - - —
! 2 YT = R 2 YR Y T o
Equivalently, for all i € [n]:
1
x; >0 = (Ay); > max (Ay); — —
ke(n] n
Similarly, from Equation 9 we have for all j € [n]:
1 1
>0 = X; > max X; — — > max Xj — —
Vi 1 kéln 2n ~keln] ¥ n

This in fact shows that (x,y) is an %-WSNE of the imitation game

#-WSNE of (4',1),
where A’ € [0, 1]™*™, can be used to compute an %-WSNE of (A1),
where A € [0,1]™". Since the latter problem is PPAD-hard due to

Theorem 4.2, the former problem must also be PPAD-hard. O

(A, I). Thus any algorithm that computes an

We summarize Theorems 4.2 and 4.3:

THEOREM 4.4. For any ¢ > 0, the problem of computing a n—lc—
approximate-well-supported Nash equilibrium of an imitation game
(A,I) is PPAD-hard.

Recall from Lemma 2.4 that the two notions of approximate Nash
equilibria are polyomially equivalent. Thus we have:

COROLLARY 4.5. For any ¢ > 0, the problem of computing a 1/n°-
approximate Nash equilibrium of a imitation game is PPAD-hard.
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This implies that a fully polynomial time approximation scheme,
that is, an algorithm which runs in time polynomial in n and 1/¢, for
the problem of computing an e-approximate-well-supported Nash
equilibrium of an imitation game is unlikely, unless PPAD c P.

This hardness result also rules out the smoothed complexity of
computing an approximate NE in imitation games being in P, as
was shown in [7] for general bimatrix games:

COROLLARY 4.6. It is unlikely that the problem of computing a
Nash equilibrium of an imitation game is in smoothed polynomial
time, under uniform perturbations, unless PPAD C RP.

Since an FPTAS is unlikely and so is obtaining smoothed com-
plexity in P, we can ask if the average case is any easier. Indeed, a
result of [32] applied to random imitation games, where the payoffs
(in [0, 1]) of the row player are chosen independently and randomly
from the same distribution, shows that with high probability, the
fully-uniform strategy profile is an O( \%)-approximate Nash equi-

librium. Note that no assumptions are made on the probability
distribution itself.

THEOREM 4.7 ([32]). Consider an imitation game (A,I) where
A € [0,1]™*", in which the entries of A are chosen independently at
random from the same distribution. Then with probability at least

1 . . .
1 — =, the fully uniform strategy profile is an e-approximate Nash

equilibrium, where € = O(dlrlT")

5 DISCUSSION

In this paper we studied the complexity of finding approximate
Nash equilibria in imitation games. In general two-player games,
the problem of computing an e-approximate NE, for constant ¢ >
0, is known to admit a quasi-polynomial-time algorithm, which
is in fact optimal assuming the exponential-time-hypothesis for
PPAD [34]. In contrast, we showed that for imitation games this
problem can be solved in polynomial time due to our polynomial-
time approximation scheme (PTAS) presented in Section 3.

On the other hand we showed that when m -approximate NE
are considered, the problem remains PPAD-hard just like the case
of general two-player games. We in fact showed that computing a
#-approximate NE is PPAD-hard, for any ¢ > 0. In showing this
result we also showed PPAD-hardness of finding a %—approximate—
well-supported NE in both symmetric and imitation games, for any
¢ > 0. While the above results rule out smoothed complexity of
the problem being in P (unless PPAD c RP), in the average case,
quite like general games, the fully uniform strategy is with high
probability an O(1/+/n)-approximate NE of an imitation game.
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