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Metamorphosis of Goldstone and soft fluctuation modes in polariton lasers
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For a driven-dissipative quantum many-body system prepared in a spontaneous broken-symmetry steady

state, in addition to the Goldstone mode, the soft fluctuation modes provide important insight into the system’s

dynamics. Using a microscopic polariton laser theory, we find a rich transformation behavior of discrete and

continuum soft modes in a two parameter (pump density and cavity dissipation rate) space. Our theory yields

a unified picture of a variety of seemingly disconnected physical concepts including Mott transition, Mollow

spectra or relaxation oscillations, polaritonic Bardeen-Cooper-Schrieffer gaps, and Goldstone companion modes.

In particular, transformation paths connect the Goldstone companion modes with the Mollow analog modes

across a line of exceptional points.

DOI: 10.1103/PhysRevB.103.085304

I. INTRODUCTION

Electrons, holes, and photons in an excited semiconductor
microcavity have been studied extensively (e.g., Refs. [1–28]).
They form a quantum many-body system that can orga-
nize itself into configurations that support coherent order
parameters. A semiconductor microcavity laser is a prime
example. Being a many-body system with strong photon-
matter and Coulomb couplings, it can undergo the lasing
transition through more than one physical mechanisms. While
the conventional mechanism, with the photons as the main
coherent field, is valid for many semiconductor lasers, in
some cases lasing is found to be the result of a transition
to a state in which polaritons form a nonequilibrium ana-
log of a Bose-Einstein (BEC) or Bardeen-Cooper-Schrieffer
(BCS) condensate [18,29–31]. Much insight on these broken-
symmetry states can be gained by probing their fluctuation
modes. Of particular interest is the Goldstone mode, which
is a phase mode of the coherent laser field, and the dissi-
pative modes that are associated with it. It was shown in
previous theoretical works on atomic lasers [32] and pumped-
dissipative exciton-polariton condensates in quantum-well
microcavities [29,33,34] that at zero momentum, the Gold-
stone mode is accompanied by a damped mode that shares
its frequency (here called Goldstone companion mode), and
the dispersion of the Goldstone mode at low momentum is
diffusive [29,33]. Absent in equilibrium BEC or BCS, this
second mode is characteristic of the nonequilibrium char-
acter of the laser. It coincides with the Goldstone mode at
the lasing threshold and acquires a growing decay rate with
further (small) increase in the lasing intensity. Since the
laser is a spatially extended many-particle system, it should
be expected that the two modes, Goldstone and compan-
ion, are in the vicinity, energy-wise, of a large (possibly
infinite) number of fluctuation modes with discrete energies
or in spectral continua. However, not much is known about
this complex landscape of modes and how they transform

as external parameters are varied. As we show below, our
theoretical analysis provides a unified picture for the trans-
formation of discrete and continuous sets of linear excitation
modes, from below threshold (polariton modes and electron-
hole continua) to above threshold (Goldstone and companion
modes), thus clarifying the relation of seemingly disconnected
physical concepts including Mott transition [16], as well as
light-induced gaps [35], Mollow-like spectra and sideband
emission [13,36–38], polaritonic BCS gaps [29,30], and Gold-
stone modes [33,34]. Relaxation oscillations in semiconductor
lasers [39] have been interpreted as dynamical Stark effect
(Mollow) sidebands in Ref. [40], and relaxation oscillations
in polariton condensates have been observed [41,42]. Further-
more, we find that above threshold the mode transformations
include exceptional points [43].

II. THEORETICAL APPROACH

We use a semiclassical microscopic theory detailed in the

Supplemental Material [44] (see, also, Refs. [45,46], and ref-

erences therein), with electrons, holes, and photons as degrees

of freedom, to analyze an incoherently pumped GaAs quan-

tum well inside a microcavity, and to calculate the steady state

configurations and their linear response to an interband optical

probe.

The fluctuation modes underlying the response are ob-

tained by formulating the response as an eigenvalue problem

which is solved numerically. The probe is normal to the quan-

tum well’s plane, and hence the probed fluctuations are those

of zero wave vector q in the plane (we do not consider the

dispersion of the modes as a function of q).

The eigenvalue set generally consists of continua and dis-

crete modes distributed on the complex energy plane. We

follow the evolution of the eigenvalues as we vary the pump

density np and the cavity loss rate γcav. The dissipative Gold-

stone companion mode [29,33,34], alluded to above, is seen
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FIG. 1. A map of the discrete modes. Each region is marked by

the modes present. Changes in the set of modes occur at the regional

boundaries. G0: Goldstone mode, G1, G2: damped modes at the same

frequency as G0, H,M: Mollow analog modes. The meaning of G1,

G2, H, and M will be clarified in the following figures. Each point on

the red curve separating the blue and yellow regions is an exceptional

point.

to undergo some nontrivial transformations in this parameter

space. At sufficiently high np, and sufficiently large γcav, it

meets another laser-frequency, dissipative mode at an excep-

tional point [43,47–53], where the two modes turn into two

others of finite frequency. These latter modes evolve upon

further parameter change to Mollow-like modes.

To provide a unifying picture for this and other interest-

ing relations among the subset of discrete soft modes, we

show in Fig. 1 a map of the discrete modes. The details of

this figure and also the role of continua of modes will be-

come more clear throughout this paper. The response spectra

governed by the fluctuation modes are also calculated and

shown below. We find the spectral features to be generally

consistent with experimental photoluminescence data found

in the literature [36,38]. Our fluctuation analysis provides de-

tailed understanding of these spectra and identifies parameter

regimes where interesting effects may be observed.

Our theory is based on the semiconductor Bloch equations

[39] amended by a single-mode equation for the light field

in the cavity E . The equations are of the form ih̄Ȧ = F(A)

where the dynamical variables A = (P(k), f (k), E )T contain,

in addition to E , the complex-valued interband polariza-

tion P(k) and real-valued carrier distribution f (k) as a

function of wave vector k, and F(A) is a nonlinear func-

tion that contains Coulomb interaction, relaxation, decay,

and source (incoherent pump) terms. We solve the equa-

tions numerially until steady state is reached. The steady

state solution, A(0) = (P(0)(k), f (0)(k), E (0))T is nonzero

above threshold. A small external perturbation field Epert

can probe the steady state by inducing small changes x =

(δP(k), δP∗(k), δ f (k), δE , δE∗)T . Linearizing the function

F(A(0) + x) then yields an equation of the form ih̄ẋ = M̂x +

spert where the complex-valued nonsymmetric matrix M is a

nonlinear function of A(0), and spert is proportional to Epert.

The right-eigenvalue equation is M̂x(n)= ε(n)x(n). In all the

figures displaying eigenvalues, the zero of the real frequency

axis is set at the lasing frequency when the system is above

the lasing threshold and at the lower polariton (LP) frequency

below threshold. We refer to all the discrete modes that

oscillate at the laser frequency collectively as G modes, and

label them by Gn, n = 0, 1, 2, ..., with G0 being the Goldstone

mode. These modes have zero real parts in our plots. We

define the complex-valued linear-response function χ (ω) =

δPtot (ω)/Epert(ω) where δPtot (ω) ∝
∑

k δP(k, ω).

III. RESULTS AND DISCUSSION

Figure 2 illustrates the evolution of the eigenvalue set as

a function of pump density, from near zero to 0.8a−2
B , for

a fixed cavity decay rate of γcav = 0.2 meV. Part (a) gives

an overview. At vanishing density (C1 in the figure), the

eigenvalue set consists of a two-fold degenerate LP mode

and a highly degenerate (HD) mode on the imaginary axis,

two upper polariton (UP) modes and two spectral (along the

real energy direction) continua. The spectral continua show

a gap at low frequency due to exciton binding. The modes

with nonzero frequency are symmetrically placed. When the

system is below threshold, the positive-energy modes are

associated with δP, δE , and the negative-energy modes with

their complex conjugates. As the pump density np increases,

the LP modes move up towards zero damping, and the

continuum gap closes, ionizing the UP in a Mott transition.

As the density crosses the threshold, shown in part (b) to

be at np ≈ 0.435a−2
B , the LP modes transform [29,33] to the

Goldstone mode G0 and its damped counterpart G1, the con-

tinuum spectral gap closes completely, and the degenerate HD

mode spreads into a decay continuum (along the imaginary

energy direction). As the density increases further, the lasing

field forces a reopening of the spectral gap via a mechanism

similar to that in BCS theory. These trends are shown in

more detail in parts (c) and (d). The BCS gap will be further

clarified in Fig. 3. Regarding the physical nature of the modes,

HD is a pure nonradiative density fluctuation, the decay con-

tinuum modes are radiative (involving density, polarization

and light field fluctuations), the spectral continua do not

contain density oscillations and their polarization oscillations

are sharply peaked as a function of k (similar to ionization

continuum wave functions of excitons or hydrogen), G0 (G1)

is a collective mode with a smooth variation of the polariza-

tion fluctuation as a function of k and without (with) density

fluctuation.

Figures 3(a)–3(d) show the spectral features that emerge at

higher pump densities. Parts (a) and (b) compare the response

spectra Imχ (ω) at np = 0.8a−2
B , which is the upper limit in

Fig. 2, and np = 3.2a−2
B . γcav has the same value as in Fig. 2.

The modes underlying the features in the response spectra

are shown in Fig. 3(c). A discrete mode, in addition to G0

and G1, emerges and becomes separated from the spectral

continuum (a discrete mode at the edge of a continuum,

rather than inside the continuum, could be called semi-Fano

resonance). We label this mode M and identify it as an analog

to the Mollow sideband modes (cf. Refs. [13,36,37,40,42]).

To support this interpretation, we note that the real part of

M’s energy, denoted by εM, is comparable in value to twice

the effective Rabi energy in the rotating-wave approximation

�(k) = acE +
∑

k′ V (k − k′)P(k′), where V (k − k′) is the

Coulomb interaction and ac a coupling constant (see Eq.
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FIG. 2. (a) Eigenenergies obtained from the diagonalization of the linear response matrix M̂ for equidistantly spaced pump densities from

almost zero, np = 1 × 10−4a−2
B , (C1) to 0.8a−2

B (C65), at T = 50 K and cavity decay γcav = 0.2 meV. Number of k points is Nk = 300, linear

dimension of M̂ is 3Nk + 2. At zero density we see a damped twofold degenerate lower polariton (LP) state, two upper polariton (UP) states

(symmetric above and below LP), and a highly-degenerate (HD) damped state, with a degeneracy of Nk . The arrows indicate the evolution of

eigenvalues with increasing pump density. (b) Input-output curve (photon density vs pump density), with threshold approximately at 0.435 a−2
B .

(c) Same as (a) but only showing two pump densities (almost zero and just below threshold). Spectral gap closing through merging of spectral

continua is indicated. (d) Same as (c) for two pump densities just below (above) generation of decay continuum and (BCS-like) spectral gap

opening. Here and in all figures showing eigenenergies εn, the zero of the real axis is at the LP (below threshold) or the laser frequency (above

threshold). The zero of the imaginary axis separates decay (Imεn < 0) from growth (Imεn > 0).

(15) in the Supplemental Material [44]). For example, for

np = 3.2a−2
B , εM = 11.6 meV, and 2�(k = 0) = 15 meV.

Note that
∑

k′ V (k − k′)P(k′) is the standard BCS gap func-

tion, and �(k) can be viewed as a composite gap function for

polariton systems, see, e.g., Ref. [54]. The BCS-like spectral

gap grows with np and its numerical value, marked by the

vertical dashed lines, agrees very well with an estimate of the

pair-breaking energy Ẽ
pair
gap , see Eq. (34) in the Supplemental

Material [44]. The lasing field couples the δP, δE components

of the perturbed polariton field to their complex conjugates in

a manner similar to four-wave mixing (this coupling is absent

in linear response below the lasing threshold). The resulting

sideband continuum is, as shown in Fig. 3(c), much more

pronounced at high np. In parts (a) and (b), the central peaks

show the sharp spikes of the Goldstone mode G0, regularized

by a small damping width, and the broader contribution from

G1. To assess the effect of the M modes, we mark the magni-

tudes of εM and 2�(0) on the plots. While it is not visible at

np = 0.8a−2
B , the M modes appear to produce features remi-

niscent of Mollow sidebands in atomic physics at the higher

density. This density, np = 3.2a−2
B , may, however, be too high

for experimental verification with stationary lasers. For com-

parison, we also show in Fig. 3(d) gain spectra calculated for

an isolated quantum well, but with the distribution functions

obtained from the full calculation in which all G modes are

missing (cf. Refs. [54,55]). Far above threshold, they develop

signatures of spectral hole burning. In Fig. 3(e) we show a

sequence of spectra |χ (ω)|2, which is everywhere positive (as

are photoluminescence spectra) and allows us to follow the

position of the various resonances over a large variation of

pump densities. This shows how the Fermi edge absorption

grows out of the UP, which was conjectured in Ref. [36], and

how the blue shift of the Fermi edge absorption levels off

at high densities, consistent with the experimental findings

in Ref. [38].

Figures 4(a), and 4(b) in more detail, show the evolution of

the eigenvalues for a fixed pump density np = 1a−2
B (indicated

by the red arrow in Fig. 1) as the cavity decay varies. As

γcav increases, G1 moves down and merges with the decay

continuum at γcav ≈ 1.1 meV. At this point, two modes come

out of the continuum acquiring finite frequency. This progres-

sion is indicated by the red arrows in part (b). Upon further

rise in γcav, the Mollow analogs M modes cross over to low

frequencies, where we rename the modes as H to indicate that
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FIG. 3. (a),(b) Calculated linear response spectra, Imχ (ω), for

two different pump densities (above and far above threshold). G0

and G1 resonances and peak due to Fermi edge (FE) absorption are

indicated. BCS-like gap 2�(0) (value taken from numerical solution)

and Mollow-like states εM [value taken from part (c) of this figure]

are indicated. (c) Eigenenergies corresponding to spectra in (a),(b).

The vertical dashed lines indicate the estimate of the pair excitation

gap Ẽ pair
gap . (d) For comparison, the spectra obtained from conventional

gain-spectra calculations, using same distribution functions as in

(a),(b) but without coherent light and interband polarization fields.

(e) Calculated linear response spectra, |χ (ω)|2, for pump densities

equidistantly spaced from almost zero to np = 3.2a−2
B . Except for

the lowest pump density, the spectra are shifted vertically for clarity.

For clarity, the Fourier transform from time to frequency contains an

additional phenomenological broadening γa = 0.04 meV, since the

Goldstone mode would diverge otherwise.

the modes’ characteristics have changed. As indicated by the

black arrows in part (b), the two H modes meet at an excep-

tional point [43,47–53], where the two eigenvectors become

one state which is self-orthogonal with respect to the inner

product using right and left eigenvectors, and turn into two

G modes, G1 moving up the imaginary axis and G2 moving

down. The bottom panels of Fig. 4 show the generation of the

H/M modes as density increases by a transformation from G1

and G2 at an exceptional point Fig. 4(c)] and by separating

from the spectral continuum [Fig. 4(d)]. In order to identify

the exceptional point in our numerical analysis, we applied

three numerical criteria. First, we zoomed-in, so to speak,

closer and closer to the annihilation-creation point and find

no signatures of anticrossing, which is associated with usual

degeneracy. Second, we also tested the self-orthogonality, and

find that it improves as we zoom in to the point (in any

practical numerical calculation, the norm of an eigenvector

can become small but cannot assume a value of exactly zero).

Third, we verified that there is only one eigenfunction for the

two states.

As noted above, we have performed the eigenvalue com-

putation over a region of the (γcav, np) parameter plane and

constructed a map of discrete fluctuation modes shown in

Fig. 1. The lines separate regions of different numbers of

discrete G modes (unlike lines in phase diagrams that separate

regions of different numbers of stable and unstable solutions

to a nonlinear set of equations). The specific cases discussed

above are instances on this diagram: the blue arrow marks the

cases in Figs. 2 and 3(a)–3(c) and the red arrow marks the

cases in Figs. 4(a) and 4(b). The three (color-coded) regions

above the lasing threshold are defined and labeled by the

Goldstone and discrete soft modes that are present, and some

modes are transformed when a curve between two regions

is crossed. The (red) curve separating the blue and yellow

regions is made up of exceptional points at which G1 and G2

meet and turn into two H modes or vice versa, as illustrated

in Figs. 4(a) and 4(b) and in detail in 4(c). In the pink region,

as np increases from the lasing threshold, G1 separates from

the Goldstone mode G0 and moves down along the imaginary

axis in the complex energy plane. When the boundary curve

with the blue region is crossed, the mode G2 emerges from the

decay continuum and moves up towards G1 along this axis.

G2 does not appear at small γcav, and at the curve marking the

crossing from the pink region to the yellow region, G1 merges

with the decay continuum and ceases to be a distinct mode.

The steady state solutions for γcav = 0.2 meV, at the left

boundary in Fig. 1, have been discussed in Ref. [30]. Above

the threshold, they can be classified as polariton-BCS states.

With increasing γcav, the states above threshold gradually

and smoothly depart from the polariton-BCS state at γcav =

0.2 meV. For the range shown in the figure, they become

more similar, but do not fully reach the photon-laser case,

because their emission frequencies remain about 2 meV below

the cavity resonance, and the distribution function at k = 0,

which is 0.57 in the polariton-BCS case of γcav = 0.2 meV,

increases only to 0.72 at γcav = 1.2 meV, and stays below

Fermi degeneracy, defined as f (0) = 1, at the right boundary

of the figure, i.e., at γcav = 1.7 meV, where f (0) = 0.8 at

threshold and f (0) = 0.82 at the red EP line [56].

IV. CONCLUSION

In summary, we have studied in detail the low-frequency

fluctuation modes of an incoherently-pumped polariton laser

at the long-wavelength limit. The set of mode eigenvalues

generally consists of both continuous and discrete subsets

in the complex energy plane. Tracing the evolution of this

eigenvalue set when two parameters (pump density and cav-

ity loss rate) vary, reveals interesting features. The onset of

lasing spreads a highly degenerate dissipative mode into a

decay continuum along the imaginary energy axis. Further

increase in pump density creates a new sideband continuum.

The behavior of the discrete subset is summarized in a phase

085304-4



METAMORPHOSIS OF GOLDSTONE AND SOFT … PHYSICAL REVIEW B 103, 085304 (2021)

FIG. 4. (a) Eigenenergies for equidistantly spaced cavity rates γcav from 0.9 meV (C1) to 1.7 meV (C65) at fixed pump density np = 1a−2
B .

(b) Same as (a) but zoomed in to smaller frequency interval. The arrows indicate the evolution of eigenvalues with increasing decay rates. The

transformation marked by the red arrows happens at a lower γcav than that marked by the black arrows. In the transformation indicated by the

black arrows, the two converging modes meet at an exceptional point. (c) Collision, as np increases, of two damped G modes (G2, G3) at an

exceptional point generating two H modes. (d) Example of Mollow-like modes (M) rising above decay continuum.

diagram in the (np, γcav) parameter space (Fig. 1). A curve

of exceptional points are present which link the Goldstone

companion G1 to Mollow modes. The overall picture of the

low-frequency fluctuation modes that we have found here may

also be more generally applicable to other lasers and driven

quantum symmetry-broken systems, e.g., Refs. [57–60]. We

finally note that all figures in our manuscript present physical

observables and thus can, in principle, be directly measured

in experiments. This, in particular, includes the signatures of

the exceptional point: there is no avoided crossing in the plane

of the complex eigenenergies. In an experimental study of an

atomic cavity [61] the complex emission energies of an atomic

cavity have been directly observed from those measurements

and the critical behavior of the exceptional point, including

its topological properties, inferred. Similar measurements are,

in principle’ possible in the our case, although the details of

the experiment would be more complicated. Our exceptional

point is at the frequency of the condensate, and there is a

continuum of more strongly damped modes at the same fre-

quency. Hence, a careful line-shape analysis would be needed

to isolate the effects of the exceptional point. Furthermore, the

continuous variation of the cavity decay time may be more

difficult to implement in the semiconductor cavity.
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