
Contents lists available at ScienceDirect

Mechanics of Materials

journal homepage: www.elsevier.com/locate/mechmat

A comparative study between elasto-plastic self-consistent crystal plasticity
and anisotropic yield function with distortional hardening formulations for
sheet metal forming

Zhangxi Fenga, Seong-Yong Yoonb, Jae-Hyun Choib, Timothy J. Barretta, Milovan Zecevica,
Frederic Barlatb, Marko Knezevica,⁎

a Department of Mechanical Engineering, University of New Hampshire, 33 Academic Way, Durham, NH 03824, United States
bGraduate Institute of Ferrous Technology, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea

A R T I C L E I N F O

Keywords:
Polycrystalline material
Numerical algorithms
Finite elements
Deep drawing
AA6022-T4

A B S T R A C T

A comparative study between micro- and macro-mechanical constitutive models is carried out while predicting
deformation behavior of an aluminum alloy (AA) 6022-T4 during several loading scenarios of increasing
complexity including monotonic tension, large strain cyclic deformation, and drawing of a cylindrical cup. The
micro-model is a recently developed implicit formulation of the elasto-plastic self-consistent (EPSC) crystal
plasticity, which is coupled with the implicit finite element method (FEM) through a user material subroutine in
Abaqus. In the coupled formulation, every finite element integration point embeds the implicit EPSC constitutive
law that accounts for the directionality of deformation mechanisms and microstructural evolution. The crys-
tallography based EPSC model integrates a dislocation-based hardening law and accounts for inter-granular and
slip system level back-stresses, which make it capable of capturing non-linear unloading and the Bauschinger
effect. The macro-model is a recently developed anisotropic yield function incorporating distortional hardening
using the homogeneous anisotropic hardening (HAH) approach. The model is also implemented as a user ma-
terial subroutine in Abaqus. Parameters pertaining to the micro and macro models are identified using experi-
mental data from a set of monotonic and cyclic tests performed for AA6022-T4. Additional experimental data for
the alloy in terms of flow stress curves, R-value, and anisotropic yield surface evolution are used to verify the
models. Finally, the cup drawing simulations are carried out in the FEM using the two constitutive formulations
and geometrical changes including the earing profile and sheet thinning/thickening are compared against each
other and with experiments to further verify the predictive characteristics of the models. The two formulations
and results are discussed in terms of accuracy and computational efficiency.

1. Introduction

The balance of linear momentum governing equations of solid me-
chanics can be solved numerically using the finite element method
(FEM), provided a constitutive law (i.e. a material model) describing an
elasto-plastic material behavior under deformation is available
(Ardeljan and Knezevic, 2018; Bathe, 1996). The numerical solution to
the governing equations is a pair of work-conjugate stress and strain
measures for each FE integration point. The accuracy of the solution is
primarily driven by the accuracy of the selected material model. As
metal forming operations usually impart non-monotonic, multiaxial
deformation conditions to forming parts (Barrett and Knezevic, 2020;

Hosford and Caddell, 2011; Jahedi et al., 2015; Wagoner et al., 2013;
Zare et al., 2016), material models describing the material behavior in
simulations of such forming operations must be strain path change
sensitive (Knezevic et al., 2013a, 2013b; Li et al., 2002; Poulin et al.,
2019b; Zecevic and Knezevic, 2018b). Sophistication of material
models scales not only with the applied deformation but also with the
microstructural complexity of novel alloys. AA6022-T4 is an aluminum
alloy introduced for improving strength and light-weighting of struc-
tures (Henn et al., 2017; Hirsch, 2014; Hirsch and Al-Samman, 2013;
Miller et al., 2000; Zarei, 2008). Simulations for predicting formed
shapes and accompanied springback are essential the optimization of
sheet forming processes (Engler and Hirsch, 2002; Rabahallah et al.,
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2009; Yoon et al., 2005). Predictive characteristics of such simulations
require an experimental verification. The data allowing for a detailed
validation of a cup drawing simulation for the alloy have been provided
in (Tian et al., 2017).

Crystallographic glide accommodates the plastic deformation of the
alloy while inducing anisotropy of the plasticity response by texture
and dislocation structure evolution. Moreover, inter- and intra-granular
back-stress fields develop contributing to the deformation process,
particularly in unloading/reloading. The material typically exhibits
nonlinear unloading, while after continuous loading in the opposite
direction, the yield stress reduces relative to that at the end of the prior
loading. The phenomenon is known as the Bauschinger effect (BE)
(Bauschinger, 1886; Cantara et al., 2019; Zecevic et al., 2016b). The
hardening rate with the continuation of loading in the reverse direction
is also different from that during prior loading (Hasegawa et al., 1975).
These deformation phenomena pertaining to the material behavior are
governed by the evolution of microstructure and texture.

Macro-mechanical models involving 3D yield functions have been
able to represent such material behavior. In particular, the Yld2004-18p
yield function (Barlat et al., 2005) incorporated in the FEM predicts 6
and 8 ears on simulated cups after drawing of anisotropic materials
(Yoon et al., 2006). However, a large number of model parameters must
be fit to an experimental data set to facilitate the representation of the
phenomena. In contrast, micro-mechanical models like an elasto-plastic
self-consistent (EPSC) crystal plasticity formulation allow for micro-
structurally-based incorporation of the phenomena since the mechan-
isms of plastic deformation are considered by such models (Zecevic and
Knezevic, 2015). The EPSC model has been coupled with the FEM using
a user material (UMAT) subroutine in Abaqus to predict geometry of
parts during metal forming (Zecevic et al., 2017; Zecevic and
Knezevic, 2017). In the coupled formulation termed FE-EPSC, every
finite element integration point embeds the implicit EPSC constitutive
law that accounts for the directionality of deformation mechanisms and
microstructural evolution.

The present work carries out a detailed comparison between micro-
and macro-mechanical constitutive formulations in predicting me-
chanical behavior of the alloy AA6022-T4 during several loadings in-
cluding monotonic tension, large strain cyclic deformation, and
drawing of a cylindrical cup. Specifically, the micro-model is a recently
developed implicit formulation of the EPSC model running within the
FEM framework (Zecevic and Knezevic, 2019), while the macro-model
is the anisotropic yield function yld2004-18p in conjunction with an
update of the homogeneous anisotropic hardening (HAH) approach
(Barlat et al., 2011). Parameters pertaining to the models are identified
using experimental data from a set of monotonic and cyclic tests per-
formed for AA6022-T4. The calibrated models are then verified by
predicting additional flow stress curves, R-value, and anisotropic yield
surfaces and finally used to simulate geometrical changes including the
earing profile and sheet thinning during drawing of a cylindrical cup.
We show that both models are capable of capturing linear followed by
non-linear unloading, the BE, and anisotropy in hardening rates as well
as the directionally dependent cup height and thinning of the sheet in
drawing. The two formulations are discussed in terms of accuracy,
practicality, and computational efficiency.

2. Material and experimental data

The material is a 1 mm thick AA6022-T4 sheet provided by (Alcoa).
The chemical composition of the alloy is provided in Table 1. In this Al-

Si-Mg alloy the content of Si and Mg is balanced to create Mg2Si pre-
cipitates (Jaafar et al., 2012). Supersaturated solution of α forms GP
zones, which further transform to β” needles followed by β’ rods and Q’
laths, which could finally form large β + Si precipitates (Miao and
Laughlin, 1999). These precipitate are barriers to dislocation glide, with
the β” precipitates proving the most effective hardening (Eskin and
Kharakterova, 2001). Unlike in artificially aged materials, the naturally
aged T4 treated AA6022 contains GP zones and only tiny precipitates.
In the modeling framework that follows, size and distribution of the
precipitates is not considered explicitly. Considering their size, the ef-
fects of precipitates can be embedded in the initial slip resistance for the
micro-model, while in the yield function parameters for the macro-
model.

Microstructure of the alloy has been presented in our earlier works
(Barrett and Knezevic, 2019). Grains were characterized as ellipsoids
with average 50:34:20 µm dimensions along RD: TD: ND (rolling di-
rection, transverse direction and normal direction), respectively. Pole
figures showing texture are shown in Fig. 1. The texture is represented
using 220 weighted crystal orientations for simulations based on the
procedure presented in (Barrett et al., 2019; Eghtesad et al., 2018;
Knezevic and Kalidindi, 2007; Knezevic and Landry, 2015). Measured
and compacted pole figures are visually indistinguishable as well as is
the predicted mechanical response based on full and compacted tex-
tures.

The alloy has been tested in earlier works (Tian et al., 2017;
Zecevic et al., 2016c). True stress-true strain response in simple tension
has been measured using the ASTM E8 standard along every 15° in-
crements between the TD and RD. At least three specimens were pulled
to fracture to ensure the accuracy. As will be shown in the results
section, the alloy shows moderate anisotropy from the hardest RD to
the softest TD direction. The origin of such behavior has been described
in (Zecevic and Knezevic, 2018a). This data is used for calibration of the
models.

The R-value (or R-ratio), as a measure of the sheet formability and
plastic anisotropy, was inferred from the full-field strain measurements
in simple tension using the digital image correlation (DIC) procedure. In
this procedure, the through-thickness strain is inferred using the axial
strain and the width strain measured by DIC, while the in-
compressibility was assumed. The strain fields were used until they
were approximately uniform in the calculation of the R-value, which is
defined as the plastic width-to-thickness strain ratio. The quantity is a
strong function of crystallographic texture (Barrett and Knezevic, 2019;
Ghosh et al., 2015). The data will be presented in the results section of
the paper for multiple loading directions in two ways: (i) R-value versus
orientation at 20 MPa of plastic work ensuring an equivalent amount of
plasticity among specimens and (ii) R-value versus true strain. This data
is used for verification of the models.

In order to calibrate the deformation characteristics pertaining to
large strain cyclic plasticity such as non-linear unloading, the BE, and
changes in the hardening rates upon load reversal, the response under
large strain cyclic deformation along RD was measured. The data will
be shown in the results section of the paper.

Finally, cylindrical cup drawing experimental data from (Tian et al.,
2017) is used to evaluate predictive characteristics of the models in
terms of geometrical features. In this experiment, the cup drawing was
performed from a 170 mm diameter cylindrical blank of 1 mm in
thickness. The punch was 100 mm in diameter, with a 12 mm radius,
while the die opening was 102 mm, with a 6 mm die radius. Appendix A
shows a solidworks drawing of the setup. The punch force versus dis-
placement curve was measured during the experiment. Furthermore, a
coordinate-measuring machine was used to record the geometry after
drawing and springback. A height gauge was used to measure the cup
height as a function of orientation from the RD. The cup thickness was
recorded in TD and RD using an ultrasonic thickness gauge. The re-
levant data will be shown in the results section along with the predic-
tions.

Table 1
Composition of AA6022-T4 in wt%.

Si Fe Cu Mn Mg Cr Zn Ti Tin Al

0.90 0.10 0.045 0.053 0.57 0.027 0.016 0.025 <0.02 balance
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3. Material models

This section summarizes material models for completeness of the
work. Specifically, the micro-model is a recently developed implicit
formulation of the EPSC model running within the FEM framework
(Zecevic and Knezevic, 2019), while the macro-model is the anisotropic
yield function yld2004-18p in conjunction with the HAH20 hardening
approach, an update of the HAH model (Barlat et al., 2011), also run-
ning within the FEM framework

3.1. Micro-model (EPSC)

The polycrystalline Jaumann rate of Cauchy stress, σ̂ , and the
polycrystalline strain rate, ɛ̇, are related in EPSC using
(Ghorbanpour et al., 2020; Nagtegaal and Veldpaus, 1984; Neil et al.,
2010; Zecevic et al., 2015)

= = + −σ ɛ σW σL σ W^ ˙ · . (1)

Eq. (1) is the same whether a material point is a single crystal or a
polycrystalline aggregate. The superposed dot indicates local/Eulerian
time derivative. Tensorial quantities, σ, W, and L are the Cauchy stress,
spin, and tangent stiffness, respectively. The same quantities at the
crystal level are denoted with the superscript c i.e. σ̂ c, ɛ̇c, σc,Wc, and Lc.
Starting from the crystal volume average = < >σ σ^ ^ c and = < >ɛ ɛ˙ ˙ c , L can
be evaluated using the standard self-consistent homogenization proce-
dure (Eshelby, 1957; Ghorbanpour et al., 2017; Lipinski and
Berveiller, 1989; Neil et al., 2010; Turner and Tomé, 1994). A dot
product and a tensor product are denoted with · and ⊗, respectively.

Hooke's law is used at the crystal level

= = − −σ ɛ ɛ ɛ σ ɛtrL C^ ˙ ( ˙ ˙ ) ( ˙ ).c c c c c pl c c c, (2)

In Eq. (2), Cc and ɛ̇ pl c, are the stiffness tensor and the plastic strain
rate per crystal c, respectively. The plastic strain is a sum of the pro-
ducts between the sharing rates, γ̇ s and Schmid tensors

= ⊗ + ⊗m b n n b( )s s s s s1
2 defined by the slip system geometry (bs -

the Burgers vector and ns - the slip system normal)

∑=ɛ γm˙ ˙ .pl c

s

s s,

(3)

The index, s, spans over available slip systems in a grain c. The
model incorporates a strain-path sensitive dislocation density-based law
for the evolution of slip system resistance, τc

s, and a slip system level
back-stress law to influence the resolved shear stress for activation.
These laws along with latent hardening are aimed at predicting the
anisotropic mechanical response of the alloy during monotonic loading
as well as the particularities pertaining to the load reversal deformation
such as non-linear unloading, the BE, and changes in the hardening
rates. The model naturally accounts for the inter-granular stresses.
Activation per slip system is determined using the two conditions

− =σ τ τm· ,c s
bs
s

c
s (4a)

− =σ τ τm^ · ˙ ˙ ,c s
bs
s

c
s (4b)

where, τbs
s is a slip system back-stress governing the kinematic hard-

ening effects (Wollmershauser et al., 2012). The condition 4a implies
that the stress state is on the crystal yield surface. The condition 4b
implies the consistency providing that the stress state stays on the
crystal yield surface (Knockaert et al., 2000; Zecevic et al., 2019). The
slip system resistance and back-stress evolve using

∑=
′

′ ′τ h γ˙ ˙ ,c
s

s

ss s

(5a)

∑=
′

′ ′τ h γ˙ ˙ ,bs
s

s
bs
ss s

(5b)

where ′hss and ′hbs
ss are a hardening matrix consisting of partial deriva-

tives, =′ ∂

∂ ′hss τ

γ
c
s

s , and a back-stress matrix consisting of partial deriva-

tives, =′ ∂

∂ ′hbs
ss τ

γ
bs
s

s . To evaluate the partial derivatives, the equations for τc
s

and τbs
s will be given shortly, while the actual expressions can be found

in (Zecevic and Knezevic, 2018a). Next, we summarize the slip re-
sistance and the back-stress laws for defining these partial derivatives.

In the description that follows, s+ and s- are used to define a po-
sitive and a negative slip directions for every s belonging to a slip family
(mode) α. Resistance to slip consists of three terms (Knezevic et al.,
2014, 2013c; Zecevic et al., 2016a)

= + +τ τ τ τ ,c
s

forest
s

debris0 (6)

with τ0 denoting an initial fixed value of slip resistance, while τforest
s and

τdebris are evolving terms with statistically stored forest dislocations and
debris dislocations, respectively. τ0 embeds the contributions from the
Peierls stress, solid solution strengthening, initial grain size barrier ef-
fect, precipitates, and initial content of dislocations. The remaining two
terms are defined as

∑=
′

′ ′τ bχG L ρforest
s

s

ss
tot
s

(7a)

= ⎛

⎝
⎜

⎞

⎠
⎟τ Gb ρ log

b ρ
0.086 1

debris deb
deb (7b)

In Eq. (7), b is the Burgers vector magnitude ( = −b 2.86 10 m10 for
Al), χ is an interaction constant (Lavrentev, 1980; Mecking and
Kocks, 1981) ( =χ 0.9), ρtot

s is the total density of forest dislocation for
the sth slip system, ρdeb is the density of debris dislocation population, G
is the shear modulus taken to be 26.1 GPa, and ′Lss is a latent hardening
interaction matrix (Franciosi and Zaoui, 1982; Khadyko et al., 2016)
(for coplanar slip systems =L 1ss and for the latent hardening interac-
tions ′ =L 1.4ss (Kocks and Brown, 1966; Zecevic and

Fig. 1. Pole figures showing the initial texture of AA6022-T4 based on 220 weighted crystal orientations. These orientations are embedded at each integration point
for FE-EPSC simulations.
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Knezevic, 2018a)).
The total density of forest dislocation consist of

= + +
+ −

ρ ρ ρ ρ ,tot
s

for
s

rev
s

rev
s

(8)

where ρfor
s is the forward and

+
ρrev

s and
−

ρrev
s are the reversible densities of

dislocations associated with the s+ and s−system directions. These
densities of dislocations evolve with shearing as follows
(Kitayama et al., 2013; Zecevic and Knezevic, 2019)

>

= − ∑ −
∂

∂ ′
′ ′

+dγ

p k g ρ k ε T ρ

(If 0)

(1 ) ( ˙, ) ,

s

ρ

γ s
ss

tot
s

for
s

1 2
for
s

s (9a)

∑
∂
∂

= −
′

′ ′
+

+ρ
γ

pk g ρ k ε T ρ( ˙, ) ,rev
s

s
s

ss
tot
s

rev
s

1 2
(10a)

∑
∂
∂

= − ⎛

⎝
⎜

⎞

⎠
⎟

′

′ ′
− −

ρ
γ

k g ρ
ρ
ρ

,rev
s

s
s

ss
tot
s rev

s

s

m

1
0 (11a)

>

= − ∑ −
∂

∂ ′
′ ′

−dγ

p k g ρ k ε T ρ

(If 0)

(1 ) ( ˙, ) ,

s

ρ

γ s
ss

tot
s

for
s

1 2
for
s

s (9b)

∑
∂
∂

= −
⎛

⎝
⎜

⎞

⎠
⎟

′

′ ′
+ +

ρ
γ

k g ρ
ρ
ρ

,rev
s

s
s

ss
tot
s rev

s

s

m

1
0 (10b)

∑
∂
∂

= −
′

′ ′
−

−ρ
γ

pk g ρ k ε T ρ( ˙, ) ,rev
s

s
s

ss
tot
s

rev
s

1 2
(11b)

with = = −ρ γ m( 0) 10for
s s 11 2, = =

+
ρ γ( 0) 0rev

s s and = =
−

ρ γ( 0) 0rev
s s . In the

above expressions, k1 is a fitting parameter controlling the rate of dis-
location generation, while k2 is calculated as a rate-sensitive term
controlling dynamic recovery of dislocations (Beyerlein and Tomé,
2008), p is a reversibility parameter in the range from 0 to 1, ′gss is an
interaction matrix (Khadyko et al., 2016; Kocks et al., 1991;
Teodosiu and Raphanel, 1991), m is a parameter controlling the rate of
recombination of dislocations (the value is set to 0.5 (Wen et al.,
2015)), and ρ s

0 is the total density of dislocation at the local path re-
versal on the system, sth (Kitayama et al., 2013).

The rate-sensitive term, k2, is calculated using

⎜ ⎟⎜ ⎟= ⎛
⎝

− ⎛
⎝

⎞
⎠

⎞
⎠

k
k

χb
g

k T
Db

ln ε
ε

1 ˙
˙

,B2

1
3

0 (12)

with the Boltzmann constant, kB, a reference strain rate, =ε̇ 100
7, a drag

stress, D, and an effective activation enthalpy, g. The debris density of
dislocation is incremented using

∑ ∑∂
∂

=
ρ
γ

dγ qb ρ k ε T ρ dγ( ˙, ) ,
s

deb
s

s

s
deb tot

s s
2

(13)

with a fitting parameter for the rate of dislocation recovery, q.
Next, we turn our attention to a back-stress law for defining the

back-stress matrix, ′hbs
ss . Back-stress has intra-granular and inter-gran-

ular sources in polycrystalline metals governing primarily the BE and
unloading characteristics of deformation behavior. Interactions be-
tween individual grains of different crystal orientation as well as any
presence of incompatibility between hard regions of dislocation cell
walls and soft regions of cell interiors within grains give rise to back-
stress in polycrystals (Kassner et al., 2013; Mughrabi, 1983). A harder
grain surrounded by softer grains will undergo lower plastic deforma-
tion than its surrounding neighbors. Incompatibility of accommodated
plastic strain between the grains causes accumulation of dislocations
around the strong grain, which results in the plastic strain gradient. The
dislocations creating the gradient are referred to as the geometrically
necessary dislocations (GNDs) (Bayley et al., 2006; Fleck et al., 1994).

The built up of back-stress acts against the applied stress during forward
loading (Withers and Bhadeshia, 2001). Upon loading in the reverse
direction, the applied stresses combine with the back-stress, which re-
sults in a drop of the reverse yield stress. While the EPSC model ac-
counts for the elastic interactions between the individual inclusions and
HEM, the intra-granular sources at the slip system level are modeled
using a phenomenological back-stress law mimicking the physics of its
origin. In particular, we consider an evolution law for back-stress per
slip system based on the work presented in (Beyerlein and Tomé, 2007;
Zecevic et al., 2016b). The slip system sources of back-stress evolve
with shear strain. All sources of back-stress on individual slip systems
are superimposed to form the back-stress tensor as proposed in
(Harder, 1999). The back-stress tensor is then projected on individual
slip systems to arrive to the final expression of back-stress. The ex-
pression for back-stress on a slip system, τbs

s , is

∑= = +
′

′ ′στ τ τm m m· 2 · *,bs
s s

bs
c

bs sys
s

s

s s
bs sys
s

, ,
(14)

where

=
⎧
⎨
⎩

>

<
′

′ ′

′
τ

τ if τ

if τ*
0

0 0
.bs sys

s bs sys
s

bs sys
s

bs sys
s,

, ,

, (15)

In Eq. (14), σbs
c is the back-stress tensor based on the contribution

from the slip system level sources over s′ when s′ ≠ s.
The slip system level back-stress is

> >

= − −

+ +

+ +

dγ τ

τ τ νγ

(if 0 and 0)

(1 exp( )),

s
bs sys
s

bs sys
s

bs
sat s

,

, (16)

= −
− +

τ Aτ ,bs sys
s

bs sys
s

, , (17)

> <

= − + − +

+ +

+ −( )
dγ τ

τ A τ τ

(if 0 and 0)

( 1) exp ,

s
bs sys
s

bs sys
s

bs
sat γ

γ bs
sat

,

,
s

b (18)

= −
− +

τ
A

τ1 .bs sys
s

bs sys
s

, , (19)

The fitting constants for the back-stress law are a saturation value,
τbs

sat, a parameter governing an asymmetric evolution in s+ and s-, A,
the denominator, γb, and a multiplier, ν. A is a calibration constant
enabling an asymmetric evolution of back-stress in s+ and s-. The
constant provides more flexibility to capture the macroscopic data. For
example, the deformation of individual single crystals may results not
only from the resolved shear stress along the direction of slip but also
from shear stresses resolved along directions orthogonal to the slip di-
rection as well as the three normal stress components inducing asym-
metry in back-stress. The shearing strain, γs, is a value measured re-
lative to the latest load reversal.

To complete the theory, crystal lattice reorientation for texture
evolution must be defined. The rate of crystal spin is

= −W W W ,c c app pl c, , (20)

with an applied spin Wc,app and a plastic spin Wpl,c. The latter is
= ∑ γW q˙pl c

s
s s, , with = ⊗ − ⊗q b n n b( )s s s s s1

2 .
In the brief summary of FE-EPSC that follows, the subscript FE de-

notes quantities passed to or returned from the FEM software. Every FE
integration point embeds initially the same 220 weighted crystal or-
ientations. The EPSC constitutive law computes stress at the end of each
strain increment, +σFE

t tΔ , for a given increment in total strain, ΔɛFE. The
total strain is determined by the applied boundary conditions imposed
to an FE mesh. At the end of the increment this quantity is

= ++ɛ ɛ ɛΔ .FE
t t

FE
t

FE
Δ (21)

This strain, +ɛFE
t tΔ , is accommodated by the EPSC constitutive law for

each FE integration point to calculate +σFE
t Δt for the Abaqus FE solver. In
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addition to Cauchy stress, the implicit FEM solver requires a Jacobian
matrix, ∂

∂
σ
ɛ

Δ
Δ

FE
FE
, for a new estimate in the displacement field. This deri-

vative is (Zecevic and Knezevic, 2019)

∂
∂

=
∂ −

∂
= ∂

∂
= ∂

∂
=

+σ
ɛ

σ σ
ɛ

σ
ɛ

ɛ
ɛ

L LΔ
Δ

( )
Δ

Δ
Δ

( Δ )
Δ

,FE

FE

FE
t t

FE
t

FE

inc
inc

Δ

(22)

where L̄inc is the tangent stiffness relating the increments in strain and
Cauchy stress. The bar denotes that a variable is in the configuration at
the beginning of time increment with respect to the crystal rotation, i.e.
the crystal orientation is not updated with the crystal spin acting during
the current time increment.

3.2. Macro-model (HAH)

In sheet metal forming simulations, plasticity is traditionally de-
scribed using an anisotropic yield condition of the type =ϕ σ ε¯ (¯)r , where
ϕ̄ is an effective stress associated with the work-conjugate effective
strain ε̄, and σ ε(¯)r a reference flow curve, not necessarily uniaxial ten-
sion. This approach has been successful for a number of simulations, in
particular, when the deformation is monotonic or pseudo-monotonic.
However, when the material is subjected to abrupt strain path changes
such as strain reversal, the Bauschinger and transient hardening effects
cannot be captured accurately. In order to account for non-linear strain
path effects on the material response, kinematic hardening and distor-
tional plasticity approaches are necessary in the context of macroscopic
continuum modeling. The homogenous anisotropic hardening (HAH)
model is one of such models based on distortional plasticity but without
a back-stress (no kinematic hardening). The HAH model was developed
to distort any anisotropic yield condition when the strain path changes
while, for monotonic loading, to provide the same material response as
if the assumption of isotropic hardening was employed.

Recently, a modified version of the homogenous anisotropic hard-
ening model called HAH20 (Barlat et al., 2020), was proposed

= + =− + − +σ f f ξ ϕ f f σ εs h s s h¯ ( , , , ^) { ¯ ( ) ( , , , ^)} (¯)q
h R

q
1

(23)

where s is the stress deviator, q a coefficient, and −f , +f and ĥ are three
state variables. ξ̄ and σR are the effective and reference flow stresses
that respectively reduce to ϕ̄ and σr mentioned above for monotonic
loading. When reverse loading occurs, ϕh is the function that describes
the amount of distortion and ĥ, the so-called microstructure deviator,
controls the distortion orientation. ξ̄ contains other state variables that
affect the material response when cross-loading occurs. Cross-loading is
a change such as two uniaxial tension steps with about 60° between the
two longitudinal directions that is, when new slip systems are activated.
In the HAH framework, it is assumed that any strain path change affects
the material constitutive response by a combination of the effects due to
reverse loading and cross-loading only.

In the present work, the amount of distortion due to reverse loading
ϕh, as compared with isotropic hardening, is defined as

= − + +− + − +ϕ f f f fs h h s h s h s h s( , , , ^) ^ · ^ · ^ · ^ ·h
q q q q

(24)

The yield function ϕ̄ corresponds to Yld2004-18p (Barlat et al.,
2005), which is valid for a general stress state, and the reference flow
curve is described by (Hockett and Sherby, 1975) relationship

= − −σ ε σ σ σ ε ε(¯) ( )exp(¯ / )r s s y
η

η (25)

where the saturation stress σs, the yield stress σy, ɛη and η are material
coefficients. There are 16 independent anisotropy coefficients in
Yld2004-18p (16 independent out of total 18 parameters, as described
in (van den Boogaard et al., 2016)) and four hardening coefficients in
Hockett-Sherby, which are all determined in a standard fashion before
the distortion is considered, that is, using the results of monotonic
loading experiments. Yld2004-18p requires the use of an optimization
algorithm and Hockett-Sherby of a least-square approximation. These

coefficients are determined only once.
An additional feature was added in HAH20, namely, the influence of

the hydrostatic stress on plastic flow as demonstrated by (Spitzig et al.,
1975). This effect, although small, can lead to substantial strength-
differential (S-D) effect in metals and can affect the modeling of ten-
sion-compression load cycles. Therefore, the approach proposed by
Richmond and Spitzig (1980) was adapted to the present constitutive
description, using an overall effective stress Σ̄ defined as

= + =σ σ σσ αcI cΣ( ) ( ) ( )1 (26)

with the stress tensor σ and the function c given by

=
− σ

c σ ε
αI
( )

1 ( )
r

r
1 (27)

In the last two equations, σ̄ and σr were already defined, σr is the
stress tensor associated with the flow stress σr, I1(σr) the first invariant
of σr and α the pressure coefficient. α was measured for a number of
metals and takes values between 15 and 50 −TPa 1 (Richmond and
Spitzig, 1980).

All the HAH coefficients are optimized after the yield function and
the hardening curve are completely identified. Some state variables in
HAH20 that describe specific effects were not introduced here for the
sake of simplicity, in particular, those corresponding to permanent
softening, latent hardening and cross-loading contraction. However, the
reader is referred to the original paper (Barlat et al., 2020) for more
details about these variables and to Yoon et al. (2020) for the finite
element implementation of HAH20. In the present work, only the Bau-
schinger effect and permanent softening are accounted for, which re-
duces the number of necessary coefficients to only five. The influence of
the hydrostatic pressure on plastic flow was also considered in this
work by fixing the value of α to 20 −TPa 1.

4. Results

This section presents modeling results, starting with the calibration
and verification of the models with experimental data followed by an
application case study of cup drawing.

4.1. Calibration and verification

In EPSC modeling, a polycrystalline aggregate is represented by a
statistically significant set of weighted crystal orientations having el-
lipsoidal geometries. In the case of the AA6022-T4 sheet, 220 grains
were used. Every grain is treated as an elasto-plastic inclusion within
the homogeneous-equivalent-medium (HEM) representing the overall
properties of the polycrystalline aggregate.

Calibration and verification of the models are performed using a one
element model in Abaqus. The model is one linear element C3D8
(continuum 3D 8-nodal) undergoing a simple tension/compression
boundary conditions, i.e. displacement along the loading direction and
stress-free laterally.

The models are calibrate using monotonic and cyclic data for
AA6022-T4. The parameters for both models are adjusted to achieve a
good approximation of the experimental data as well as to achieve a
good match between the model predictions, as shown in Figs. 2 and
Fig. 3. Tables 2 and 3 present the parameters pertaining to the hard-
ening law and the back-stress law in EPSC, while table 4 presents the
parameters for the HAH20 model. Derails pertaining to calibration
procedures have been described in earlier works, in e.g. (Eghtesad and
Knezevic, 2020) for the dislocation density-based hardening law and in
(Barlat et al., 2005, 2020) for the macro-scale model. For the macro-
model, isotropic hardening is fitted first using the monotonic tension
data, followed by fitting of the yield function for anisotropy using a
procedure presented in (Barlat et al., 2005). The HAH20 model para-
meters are fitted last with the procedure described in (Barlat et al.,
2020). Here, the BE and permanent softening effects are accounted for
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based on the load reversal data. Significantly, the models reproduce
anisotropic hardening along the RD, TD, and 45° directions seen ex-
perimentally. As the strain levels during drawing are expected to exceed
the onset of necking in a simple tension test, the curves are extrapolated
using the experimental data based on the bulge test and continuous
bending under tension testing (Barlat et al., 2002; Poulin et al., 2019a).
Moreover, the models capture the nonlinear unloading, the BE, and
changes in the hardening rates during load reversal.

Fig. 3 also shows the predictions of R-value versus strain and versus
orientation. Evidently, the magnitude and trends are captured by both
models. The figure also shows uniaxial tensile flow stress at a plastic
work 20 MPa normalized by the value along RD versus the angle from
RD in increments of 15°. Finally, the iso-shear contours at 20 MPa of
plastic work are predicted well, with slightly better predictions by the
EPSC model. The adjusted models are used to simulate drawing of a
cylindrical cup, as will be presented in the next section.

4.2. Predictions

We begin by summarizing the simulation setup, which is consistent
with the setup used in (Barrett and Knezevic, 2019). Fig. 4 illustrates
the simulation setup along with the FE mesh used to model the drawing
of the cylindrical cup. The setup includes the blank, a blank holder, a
die and a punch. As the rolled blank exhibits the orthotropic symmetry,
the setup is a quarter model with the mirror symmetry imposed in the
TD and RD of the blank. The punch, blank holder, and die were mod-
eled as analytically rigid objects. The reduced integration elements,
C3D8R, were used for the blank as the fully integrated C3D8 elements
can suffer from volumetric and shear locking in bending and are 8 times
more computationally intensive. The FE mesh for the blank contained a
total of 14,564 elements with 4 elements through thickness. Mesh
sensitivety study was performed to converge for the in-plane element
dimensions of 1.25 mm in the radial direction, while the element size
varies circumferentially. Rows of elements converge to tri/wedge ele-
ments at the blank center, which is expected to experience the least
amount of plastic deformation. Coulomb friction was used in the si-
mulations. The coefficient of friction was set to μ= 0.1.The simulations
were performed using both hard and soft contact conditions and similar
results were obtained. It is also observed that increasing the coefficient
of friction results in taller and thinner cups requiring larger forming
forces. The blank holder was modeled with some compliance to better
resemble the experimental setup. During drawing, the rim region of the
cup thickens causing the blank holder to lift off. To this end, a spring
with a stiffness of 1.25 × 106 N/mm was attached to the holder. After

drawing, the springback is simulated by removing the contact con-
straints and fixing the center node. The cup re-equilibrates in two steps.
In the first step, a damping coefficient of 0.02 is used to prevent ex-
cessive deformation, while in the second step a damping coefficient of
2 × 10−4 is used for relieving any remaining residual stress.

R-value is an important property of a sheet governing the cup height
during forming.The earing profile at the end of drawing can be esti-
mated using (Yoon et al., 2006)

⎜ ⎟= − − +
+

− + ⎛
⎝

⎞
⎠

+

+
h θ r r r R

R
r r r r

r
( ) ( )

1
(( ) ln ).p c b

θ

θ
c b b

b

c

90

90 (28)

In Eq. (28), h(θ) is the cup height at a given θ from RD, rb is the
radius of the blank, rc is the radius of the die opening, rp is the radius of
the punch profile, and Rθ+90 is the R-value at 90° from the given θ.
Fig. 5 shows these results based on the data presented in Fig. 3b. These
calculations suggest that the models should be able to predict cup
height during forming.

A photo of the cylindrical cup after forming experimentally is shown
in Fig. 6. The figure qualitatively compares the photo and simulated
cups using the models. The earing formed around the cup rim in si-
mulations resemble those observed in the experiment.

Fig. 7a shows the comparison between measured and predicted
punch force versus displacement curves. After approximately 18 mm of
the displacement, the cup thickens while the blank holder lifts off re-
sulting in a change of the curvature. The cup is drawn after about
50 mm displacement. The evolution of plastic strain contours and un-
derlying work hardening under the complex mechanical fields during
drawing is influenced by texture evolution in EPSC making the response
more compliant with strain, while the HAH model remains stiffer im-
parting higher strain levels for a given punch displacement (Fig. 8). As a
result, the punch force predicted by the HAH model is higher than that
predicted by the EPSC model. Thinning of the cup is slightly over
predicted by the HAH model, while slightly under predicted by the
EPSC model. Fig. 7b shows a comparison in the thinning of the cup
measured from the center to the rim along TD and RD. The plot is
normalized by the total distance. These predictions also show that the
HAH model imparts more strain for a given punch displacement than
the EPSC model. As is evident, there is slightly more thinning in the TD
than the RD, which is associated with the difference in the magnitude of
the R-value along TD (smaller) from that along RD (larger). Due to
complex distribution of mechanical fields in the sheet during drawing,
the R-value, as a measure of the sheet formability defined directionally
in uniaxial tension, does not completely describe such thinning beha-
vior but partially and only for the axial component of the fields.

Fig. 2. (a) Comparison of measured (exp.) and simulated true stress-true strain curves along three sample direction as indicated in the legend under a strain rates
0.001 s−1 at room temperature. The simulations were performed using FE-EPSC and HAH on one C3D8 element model to a greater strain level than the measured
data. (b) Comparison of simulated curves along RD from (a) with the extrapolated curve using the bulge test (Barlat et al., 2002) and the CBT-FEM method
(Poulin et al., 2019a). The latter method facilitates the extrapolation along a particular sample direction.

Z. Feng, et al. Mechanics of Materials 148 (2020) 103422

6



Fig. 3. Comparison of experimentally (exp.) measured and simulated using EPSC and HAH: (a) R-value versus true strain, (b) R-value for 20 MPa plastic work versus
the angle from RD in increments of 15°, (c) uniaxial tensile flow stress at a plastic work 20 MPa normalized by the value along RD versus the angle from RD in
increments of 15°, (d) large strain cyclic response along RD with a strain amplitude of 0.02 and a mean strain increase of 0.02 per cycle to failure (i.e., 0 – 0.02 – 0 –
0.04 – 0.02 – 0.06 – 0.04 – 0.08 – 0.06 – etc.), and (e) iso-shear contours for 20 MPa plastic work normalized by the yield stress along RD (σo). The numbers in the
legend of (e) indicate the shear stress at 20 MPa plastic work divided by the σo.

Table 2
Fitting parameters for the evolution of slip system resistance for < >{111} 110
slip mode in EPSC.

τ0 [MPa] k1 g D [MPa] q

56 5 · 107 0.025 100 4

Table 3
Fitting parameters for the evolution of slip system back-stress in EPSC.

τbs
sat [MPa] v γb A

12 560 0.001 0.01
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Additionally, sheet thickening occurs in the rim area, as is evident from
the figure (Fig. 7b). The rim is the last portion of the material that flows
from the flat blank (between die and blank-holder) into the wall of the
cup. The rim experiences compression acting in the circumferential
(hoop) direction. Given that this compression promotes the equivalent
anisotropy to that in tension (with more thinning in a given direction
under tension is equivalent to more thickening in the same direction
under compression), slightly more thickening occurs in the TD. The
circumferential compression in TD is in the sheet RD direction. Thus,
slightly more thickening of the blank occurs in the RD, while slightly
more thinning is in the TD. Fig. 7c and d show a comparison of the
earing profiles. Such predictions can determine the portion of cup
needing to be trimmed. The peak to valley difference experimentally is
about 2.4 mm, while the EPSC model slightly over predicts and the
HAH model slightly under predicts the cup height. The difference in
strain levels accumulated by the models is also evident here from the
total cup heights.

The strain contours after drawing and stress contours before and
after springback predicted by the models are compared in Figs. 8 and 9,
respectively. While the predicted trends are similar, the HAH model
predicts a slightly higher strain and stress as well as the cup a bit
thinner. While both models reveal a significant amount of stress re-
laxation and springback, the higher stress predicted by the HAH model
is expected to lead to a slightly larger amount of springback as com-
pared with the EPSC model.

5. Discussion

This work used two classes of plasticity models capable to simulate
deformation characteristics of AA6022-T4 sheet, one based on the
crystal plasticity theory and another based on the continuum plasticity
theory. The former model is an EPSC formulation linking the grain-level

Table 4
Fitting parameters for the macro-model.

Hockett-Sherby

σs[MPa] σy[MPa] 1/ɛη η

429.9 174.3 4.676 0.7369
Yld2004-18p
a ′c12 ′c13 ′c21 ′c23 ′c31 ′c32 ′c44 ′c55
8 1 1 0.4396 0.4322 0.7910 1.1356 1.0723 1.0599

′c66 ″c12
″c13

″c21
″c23

″c31
″c32

″c44
″c55

0.3736 1.4533 1.1995 0.9938 1.1294 1.0336 1.0901 0.8794 0.8921
″c66

1.3795
HAH20

q p k k′ ξr k1 k2 k3 ξb
3 3 250.0 125.0 8.0 250.0 50.0 0.3 4.0
′ξb k4 k5 kS C kC ′kC L kL
1.5 0.9 15.0 250.0 1.0 50.0 250.0 1.0 500.0
ξL α [TPa−1]
0.25 20

Fig. 4. (a) Simulation setup and (b) mesh representing the blank for deep drawing of a cup.

Fig. 5. Cup height based on the R-values from Fig. 3b using Eq. (28) versus the
angle from RD along with the experimental data.
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response to a response of a polycrystalline aggregate, which is then
embedded et each finite element integration point as a constitutive law
to simulate part-level macroscopic behavior. The latter model is an
anisotropic yield function incorporating distortional hardening using
the homogeneous anisotropic hardening (HAH20) approach also em-
bedded in implicit finite elements. While the EPSC model accounts for
the evolution of microstructure and deformation mechanisms operating
at the grain level, the macro model is capable of representing these
effects in a less explicit way. The work experimentally verified both
models embedded in finite elements. Parameters pertaining to the
models are identified using a set of monotonic and cyclic tests per-
formed for AA6022-T4. The models are verified by predicting data for
R-value and the yield surfaces. The adjusted models are then used

within the FEM software Abaqus to simulate deep drawing of a cy-
lindrical cup. Both formulations achieve acceptable accuracy in terms
of simulating geometrical changes of the cup during forming. In parti-
cular, the models predict experimentally measured force versus dis-
placement, cup height, and cup thinning with good accuracy.

The work has shown that both models can be used to predict phe-
nomena pertaining to the behavior of alloy AA6022-T4. Moreover, the
models can predict geometrical changes important for optimization of
the sheet metal forming processes. The overall computational time in-
volved in the simulations is presented in Table 5. The FE-EPSC model is
regarded as accurate and easy to adjust but also as computationally
intensive. In contrast, the HAH20 model is fast but more involved re-
quiring more mechanical tests to adjust the parameters for a given

Fig. 6. (a) A photo of the formed cup (Tian et al., 2017). Predictions using (b) FE-EPSC and (c) HAH.

Fig. 7. Comparison of measured and simulated: (a) punch load versus punch displacement curve during drawing, (b) change in sheet thickness after drawing in TD
and RD, (c) relative cup height with the lowest/minimum point set to zero, and (d) actual cup height. The simulations are based on the soft contact conditions.

Z. Feng, et al. Mechanics of Materials 148 (2020) 103422

9



material. Future work will explore computational schemes and plat-
forms to accelerate the EPSC model (Kalidindi et al., 2006;
Knezevic et al., 2009; Knezevic and Kalidindi, 2007, 2008;
Knezevic and Savage, 2014; Mihaila et al., 2014; Savage and
Knezevic, 2015).

6. Conclusions

In this paper, we presented a comparative study between micro- and

Fig. 8. Equivalent plastic strain (PEEQ) fields predicted by (a) FE-EPSC and (b) HAH models.

Fig. 9. Von Mises stress fields predicted using FE-EPSC on the left and HAH on the right (a) before springback and (b) after springback.

Table 5
Computational time involved in the simulation using FE-EPSC and HAH. The
jobs were run on a computer workstation IntelⓇ XenonⓇ Gold 6130 CPU @
2.10 GHz with system memory of 192 GB using parallel processing with 20
CPUs.

EPSC HAH

Wall clock time in hours: minutes 127: 47 10: 26
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macro-mechanical constitutive models in predicting mechanical beha-
vior of the AA6022-T4 sheet. The micro model is a recently developed
implicit formulation of EPSC, which is coupled with the implicit finite
elements. In the coupled formulation, every finite element integration
point embeds the implicit EPSC constitutive law that accounts for the
directionality of deformation mechanisms and microstructural evolu-
tion. The crystallography based EPSC model integrates a dislocation-
based hardening law and accounts for inter-granular stresses and slip
system level back-stresses, which make it capable of capturing non-
linear unloading and the Bauschinger effect. The macro model is a re-
cently developed anisotropic yield function incorporating distortional
hardening using the HAH approach. Parameters pertaining to the micro
and macro models are identified using experimental data from a set of
monotonic and cyclic tests performed on a AA6022-T4 sheet sample.
Data of increasing complexity such as R-value and anisotropic yield
surfaces are then used to verify the models. Finally, geometrical
changes including the earing profile and sheet thinning/thickening
during drawing predicted using the two constitutive formulations are
used to further evaluate the predictive characteristics of the models. It
is demonstrated that both models are capable of capturing non-linear
unloading, the BE, and anisotropy in hardening rates as well as the
directionally dependent cup height and thinning/thickening of the
sheet in drawing. The FE-EPSC model is regarded as easy to adjust but
also as computationally intensive. In contrast, the HAH20 model is fast
but more involved to adjust for a given material.
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