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In a recent publication (Eghtesad et al., 2018), we have reported a message passing interface
(MPI)-based domain decomposition parallel implementation of an elasto-viscoplastic fast Fourier
transform-based (EVPFFT) micromechanical solver to facilitate computationally efficient crystal plastic-
ity modeling of polycrystalline materials. In this paper, we present major extensions to the previously
reported implementation to take advantage of graphics processing units (GPUs), which can perform

Keywords: floating point arithmetic operations much faster than traditional central processing units (CPUs). In
Crystal plasticity particular, the applications are developed to utilize a single GPU and multiple GPUs from one computer
Microstructures as well as a large number of GPUs across nodes of a supercomputer. To this end, the implemen-

Parallel computing tation combines the OpenACC programming model for GPU acceleration with MPI for distributed
GPU computing. Moreover, the FFT calculations are performed using the efficient Compute Unified Device
SA%?HACC Architecture (CUDA) FFT library, called CUFFT. Finally, to maintain performance portability, OpenACC-
CUDA interoperability for data transfers between CPU and GPUs is used. The overall implementations
are termed ACC-EVPCUFFT for single GPU and MPI-ACC-EVPCUFFT for multiple GPUs. To facilitate
performance evaluation studies of the developed computational framework, deformation of a single
phase copper is simulated, while to further demonstrate utility of the implementation for resolving
fine microstructures, deformation of a dual-phase steel DP590 is simulated. The implementations and

results are presented and discussed in this paper.
© 2020 Elsevier B.V. All rights reserved.

1. Introduction the material models must take into account a large number of
physical details at multiple length and temporal scales [7-11].
Indeed, one of the main deterrent to the use of crystal plasticity
theories in place of the continuum plasticity theories presently
used in practice, is that the implementation of crystal plasticity
theories in a full-field modeling framework requires a prohibitive
increase in computational effort. This paper is concerned with
the development of an efficient computational framework while
emphasizing the cutting-edge, high-performance algorithms for
full-field crystal plasticity models. Efficient numerical schemes at
the level of the microstructural cell as a representative volume
element (RVE) of a polycrystalline aggregate presented here are
aimed at rendering possible the future accurate multi-level sim-
ulations of deformation in metallic materials by embedding this
microstructural cell constitutive models within macro-scale finite
element (FE) frameworks at each FE integration point.

Effective properties of a microstructural cell embedding crys-
tal plasticity can be solved using finite elements with sub-grain
mesh resolution [12-19]. Subsequently, these FE calculations

Polycrystal plasticity models can be used for predicting ma-
terial behavior in simulations of metal forming and evaluation
of component performances under service conditions. In metal
forming, material typically undergoes large plastic strains while
developing spatially heterogeneous stress—strain fields [1-6].
Crystallographic slip while accommodating plastic strains in-
duces anisotropy in the material response by evolution of texture
and microstructure, which play important roles in the local and
overall deformation processes of a material. Local deformation
behavior can be captured using complex full-field crystal plastic-
ity models, where the constituent grains explicitly interact with
each other. The ability to perform such complex numerical simu-
lations is recognized as a large computational challenge, because
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of microstructure sensitive material behavior can be embedded
within macroscopic FE model [20]. Since both the cell and macro-
scale calculations are carried out simultaneously, the strategy
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is known as the FE?> method. The FE?> method is not practi-
cal because it is extremely computationally intensive. A Green
function method has been developed as an alternative to FE for
solving the field equations over a spatial microstructural cell do-
main [21-24]. It relies on the efficient fast Fourier transform (FFT)
algorithm to solve the convolution integral representing stress
equilibrium under strain compatibility constraint over a voxel-
based microstructural cell, as opposed to finite element mesh.
The elasto-visco plastic FFT (EVPFFT) formulation is the most
advanced of several known Green’s-based solvers for crystal plas-
ticity simulations [25]. Nevertheless, numerical implementations
of EVPFFT within FE would also demand substantial computa-
tional resources. Thus, acceleration of the full-field FFT-based
computations is an essential task.

Several approaches involving efficient numerical schemes and
high performance computational platforms have been explored
to accelerate numerical procedures [26-35]. Some of the most
promising approaches rely on building databases of
pre-computed single crystal solutions in the form of a spec-
tral representation [36-44], or storing the polycrystal responses
calculated during the actual simulation and using them in an
adaptive manner [45,46]. The single crystal solutions are used
within homogenization models as well as FE full field models
to represent the overall behavior of the polycrystal [41,42,47-
55]. In a recent work [56], we have reported a message passing
interface (MPI)-based domain decomposition parallel implemen-
tation of the EVPFFT model. The domain decomposition was per-
formed over voxels of a microstructural cell. Moreover, we have
evaluated the efficiency of several FFT libraries like FFTW [57].
Depending on the hardware at hand, significant speedups have
been achieved using MPI-EVPFFTW.

In this work, we present major extensions to the previously
reported implementation to take full advantage of graphics pro-
cessing units (GPUs). GPUs can perform floating point arithmetic
computations much faster than the traditional central processing
units (CPUs). With the advent of GPUs, the era of high perfor-
mance computing (HPC) has been revolutionized [58-60]. While
there are many large clusters using conventional CPUs to run a
job in parallel, the operating cost for running CPU-only clusters
is significantly higher comparing to GPUs [61]. As an example,
an ExaFLOP supercomputer operating on CPU, was estimated to
demands electric power equal to the amount needed to initiate
the Bay area power system [62]. GPUs are accelerators origi-
nally designed for 3D visualization and optimized for parallel
processing of millions of polygons with massive data sets [63].
Hardware-wise, GPUs are much more computationally powerful
than CPUs when it comes to massive parallelism. While the
memory bandwidth for CPU is not more than 68 GB/s for systems
with PC3-17000 DDR3 modules and quad-channel architecture,
the NVIDIA Tesla K80 and Tesla P100 own memory bandwidths’
of up to 480 GB/s and 720 GB/s, respectively. While the cutting-
edge Intel Xeon phi processor 7250 is composed of up to 68 cores,
the Tesla K80 and Tesla P100 are composed of 4992 (i.e. 2 x 2496)
and 3584 computing cores, respectively, resulting in computing
power of up to 2910 (i.e. 2 x 1455) and 4670 GFlops. It is notable
that GPU cores (Compute Unified Device Architecture (CUDA)
cores) are weaker comparing to conventional CPU cores, however,
thousands of them working together will result in significantly
higher computational power.

The implementation developed here combines OpenACC [64]
and MPIL. First, the single crystal Newton-Raphson (NR) solver is
accelerated using OpenACC to run on single and multiple GPUs.
The latter is MPI-OpenACC. Next, the FFT calculations are per-
formed using the CUDA FFT library, CUFFT [65]. OpenACC-CUDA
interoperability is used to control the data transfer between
CPU and GPU when interfacing with native CUDA code. Finally,

the remaining subroutines, except read and write, are ported to
GPU for ultimate speed up gains. The overall implementation
is termed ACC-EVPCUFFT for execution on a single GPU and
MPI-ACC-EVPCUFFT for execution on multiple GPUs. We present
speedups obtained using NVIDIA Tesla K80 and P100 GPUs rel-
ative to the original serial implementation and a recent MPI
implementation of the code [56]. The proposed computational
algorithms have been successfully applied to crystal plasticity
modeling of pure copper and a dual-phase steel.

2. Summary of the EVPFFT model

In our notation, tensors are denoted by non-italic bold letters
while scalars are italic and not bold. In the crystal plasticity
framework, the viscoplastic strain rate, €°(x) is related to the
stress a(X) at a single-crystal material point x through a sum over
the N active slip systems, of the form [66,67]

N N S . n
0 = Ym0 = 7o Ym0 (M) en
s=1 s=1

(
— — 75(X)
x (m¥(x): 6(x)) , (1)

where ps(x), t.°(x) and m’(x) are, respectively, the shear rate,
the critical resolved shear stress (CRSS) and the Schmid tensor,
associated with slip system (s) at point x. Parameter j, is a nor-
malization factor and n is the power-law exponent representing
the inverse of the material rate-sensitivity.

The Hooke’s law is implemented to represent the elasto-plastic
decomposition of stress—strain constitutive relation:

0" A (x) = €(x): €A (%) = €(x): ("4 (x) — P (x)
_ép,tJrAt(x’ 0.[+At)At) , (2)

In Eq. (2), o(x) is the Cauchy stress tensor, C(x) is the elastic
stiffness tensor, and &(x), €°(x), and €”(x) are the total, elastic, and
plastic strain tensors, respectively. Using Eq. (2), the total strain
can be defined as

8t+At(X) — Cfl(x): 0t+At(x) + Sp,t(x) + ép.t+At(x’ 0t+At)At. (3)
2.1. Green'’s approach as a full field solver

Using the elastic strain-stress constitutive relation we can
write
0i(X) = 03i(X) + COig e 1(X) — COjg e 1(X), (4)

where uy (x) represents the displacement gradient tensor. With
a slight modification of Eq. (4) we obtain

03j(X) = COlja Uk 1(X) + Byi(X), (5)
where the term ¢;(X) is called polarization field represented as
Pi(X) = 0j(X) — CO4jg U 1(X). (6)

Using the equilibrium equation oy j(X) = 0 in combination with
Eq. (5) results in the following equation:

COja g (X) + 3 j(x) = 0. 7)

Using Green’s approach for solving the PDE (Partial differential
equation) [68] by introducing Green’s function Gy, (X) correlated
with the displacement u(x) we can write

C%ia Grm (X — X') + 8imd(x — X') = 0. (8)

With applying the convolution theorem [69] we obtain

Uy (X) = / Griji(x — X (X )dx'. (9)
R3
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Solving for Eq. (9) in Fourier space and then performing the
inverse transform to get back to the real space, we can represent
the strain by the following equation

ei(x) = By + FT~" (sym (5,00 du®) (10)

where the symbols “A” and FT~! indicate direct and inverse
Fourier transforms, respectively, and k is a point (frequency) in
Fourier Space. The fourth order tensor I} ukl (K) is written as

L (k) = Gir(k) =

—kiki G (K); [ (11)

2.2. Newton Raphson solver for single crystal stress

Solution of Eq. (7) necessitates an iterative procedure to obtain
the stress and strain field. If we consider A;” and e; to be the
initial guess for the strain and stress fields, respectively, using
Eq. (6) we have

¢ (x) = 2V (%) — COuen® (x), (12)
The next guess for the strain field is obtained using Eq. (10)
ey "00) = £y 17 (sym (7 10) 8700 (13)

In order to use directly the stress field rather than the polarization
field, Eq. (13) can be written as [70]

O (KA (K)). (14)

An augmented lagrangian scheme is used [71] to nullify the
residual R as a function of the stress tensor ¢+ and strain
tensor &lit1)

Rk(a(i+l)) — Ok(i-H)+C’<108’(i+1)(0(i+1)) (x) Ck §i+1) =0, (15)

e, (%) = By + FT~'(&” + sym(I"

In above equation the Voigt notation has been used to express
the symmetric tensors oj and Gy as vectors of size 6

oj > o, k=16 6
Gju = Gk, 1=1,6. (16)
Solving Eq. (15) using the NR solver gives us
o o oR
o 1D = 5, (1) —( k ‘,,(HU)) TR (l+]])) (17)

801

where a,("“j“) is referred to as the (j + 1)-guess for the stress
field a,fm Note that “j” enumerates the NR iteration for stress.
Coupling Egs. (3) and ( 7) results in finding the Jacobian (i.e.
Strain derivative relative to the stress)

IR
Aoy

The critical resolved shear stress 7.°(x) used in Eq. ( ) is itself a
function of stress 7.* (¢/*1/)(x)). The Jacobian term 2.
Eq. (18) therefore can be defined as

8 qm 1
8 a(:+1]) = nyp Z o I)(x

_ 09&4P
‘a(wu =8+ Cig’Ca ' + At G BT ’0(””) : (18)
1

| (+14) In
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) 75 (0(i+1,j)(x))

Incorporating Eq. (19) into Eq. (18) gives

(19)

8Rk
8

0 N méym’
1) = 8+ Cg®Cq ™" + (AL 1) —_—
|a q Lq q 5221 .5 (0-(1+1,J)(x))

n—1
m’(X): o(X)
x (TCS (0(i+1,j)(7x)) ) . (20)

By minimizing the residual R, over the iterative NR solver,
the stress solution for each FFT sampling point is obtained as
the next guess for Eqs. (12) and (14). The procedure is continued
until convergence is achieved by reaching a pre-defined tolerance
(TOLpg ) for single crystal stress defined as

(0 LHD — g (H1D)) (g {11 _ g i+1)

A @ ;D

< TOLyg = 1077

(21)

The stress and strain field tolerance (TOLstress_field » TOLstrain_field

) after solving Eq. (15) can be expressed according to Egs. (22a)
and (22b)

((or1) = 2,®) (oD —

3 /) 52/
Vi i

(™D = D) (81 — ¢, D))

2B OE;®

where, X and Ej denote the macro deviatoric stress and strain
response of the whole polycrystal by taking the average of the
fields over the RVE domain.

)\k(i)))

< TOLstress,ﬁeld = 1076 (22&)

< TOLstrain,ﬁeld = ]076 (22b)

3. Simple compression and plain strain compression of oxygen
free high conductivity (OFHC) copper

In order to compare the accuracy of the developed parallel
implementations, we performed a plain strain compression (PSC)
case study, in which the deformation behavior and texture evo-
lution of an oxygen free high conductivity (OFHC) polycrystalline
copper are simulated. The sample RVE underwent PSC with ap-
plied strain rate of 0.001 (1/s) up to the accumulated equivalent
strain level of 0.5. The copper polycrystal is composed of face-
centered cubic (FCC) grains with random orientation distribution.
Crystals are represented using VORONI Tessellation, in which,
the unit cell of polycrystalline is partitioned into subdomains
or grains [72,73]. The simulations are performed for different
number of FFT sampling points of 163 (4096 voxels), 323 (32,768
voxels), 64° (262,144), and 1283 (2,097,152). The elastic material
properties for OFHC copper at room temperature were set to be
Cy; = 170.2 (GPa ), Cy3 = 114.9 (GPa) and C44 = 61.0 (GPa) [74].
A nonlinear voce type hardening law was used to generate the
stress—-strain curves and can be expressed as follows [75]

) w

‘L']S

where, I' = Y  Ay*® is the accumulated shear in the grain;
70°, 6o°, 01°, (to® + t1°) are the initial critical resolve shear stress
(CRSS), initial hardening rate, the asymptotic hardening rate, and
the back-extrapolated CRSS. The values used for the harden-
ing parameters in our simulations were calibrated to be 7° =
14.5 MPa, 7 = 99 MPa, 6,° = 250 MPa, 6 = 14 MPa.
Another type of hardening is a dislocation density (DD) hardening
law which is more involved than the Voce type. Readers are
referred to [76-78] for detailed information about DD hardening.

Fig. 1 represents the true stress-true strain curve for this
simulation for both serial, MPI, and GPU versions of the EVPFFT.
Results show that, as expected, both serial and parallel solvers
are on top of each other, and the calculation closely resembles
the measured stress. Further validation is provided by evaluating
the evolved texture (i.e. evolution of crystal orientations relative
to the sample axis) and the stress and strain fields represented
in Fig. 2, where the contours of equivalent plastic strain and von
Mises stress are shown over the RVE at the accumulated strain of
0.5. The fields for both serial and parallel versions of the code are
indistinguishable.

=1+ (i  +6:,°T) <1 — exp <—F
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Fig. 1. True stress-strain curves calculated using the original serial EVPFFT and parallel versions of the code for simple compression of oxygen free high conductivity
(OFHC) copper (Cu) to a strain of 1.0. The experimentally measure curve is included to compare the quality of the fit.

4. EVPFFT intensive computations — the hotspot analysis

The EVPFFT code was profiled using the Portland Group Inc.
(PGI) performance profiler 2018 v18.30 [79]. This was done for
four different problem sizes of 16%, 323, 643, and 128 repre-
senting the total number of FFT points (voxels) in the represen-
tative volume element (RVE). Fig. 3 represents the distribution
of hotspots (i.e. intensive computations) throughout different
parts of the code. Evidently, the NR iterative solver for Eq. (17)
including the elasto-plastic decomposition and the Jacobian cal-
culation, accounts for up to 85% of the code for all problem sizes.
With increase in problem size, the FFT function becomes more
computationally expensive taking a higher percentage of the total
CPU time.

In high performance computing, the objective is to focus on
accelerating the dominant routines (i.e. most time consuming
portions). That is because according to Amdahl’s Law, there is
little benefit in speeding up a small portion of a code (e.g. less
than 10%), because even if infinitely accelerated, the total perfor-
mance gain will be small and generally not worth the effort. The
NR (i.e. Egs. (17)-(20)) hotspot accounts for the largest portion of
the processing time, making it the most crucial part to parallelize.

In the next section, we elaborate on using OpenACC to port the
NR solver to run in parallel on GPU. The environment used for this
purpose is provided in Table 1. Note that NVIDIA PGI compiler
2018 v18.30 is used to generate all the data presented in this
work. GPU architectures of Kepler (K80 and k20X), Pascal (P100)
and Volta (V100) used in this research are compared in detail in
Table 2.

5. Background on GPU, OpenACC, and CUDA

OpenACC, originally developed by major vendors CAPS [80],
CRAY [81], and NVIDIA PGI [82], is a high level performance-
portable parallel programming model based on directives/
pragmas to enable scientists and programmers to accelerate their
codes without changing the code structure significantly [64]. The
main reason behind using OpenACC is to maintain performance
portability of a given code. In some cases, OpenACC can result in a
better efficiency compared to its peers CUDA and OPENCL [83,84]

due to the high level of available optimizations provided with the
OpenACC compiler.

OpenACC directives tell the compiler to translate the Ope-
nACC region/loops into kernels that run either on CPU or GPU.
In the NVIDIA PGI compiler for instance, passing “-ta—=tesla”
utilizes the GPU while “-ta=multicore” utilizes the CPU cores
for a multithreaded execution. In case of GPU utilization data is
copied from CPU (also called “host” in OpenACC) local memory
to the GPU (also called “device”) dedicated memory and then the
calculations are performed on the GPU. The GPU programming
model employs a grid of blocks of threads. Both OpenACC and
CUDA will map loop statements to kernels launching on blocks
of threads [85].

5.1. ACC routines

In order to call a routine or function from the device code,
all of the routines should include the OpenACC directive “!$ACC
routine X", in which, “X” is chosen to be “seq”, “vector”, “worker”
or “gang”. The “!$ACC routine seq” tells the compiler to put a
serial copy of the routine on the GPU, while the two later ones
imply thread and block parallelism level of the routine on the
device. The most common practice for inner loops and routines
inside a device code is to use the “!$ACC routine seq”, however,
in order to improve the efficiency, the inner loops should be
optimized to run on groups of thread blocks.

5.2. Tuning the performance using number of threads and thread
blocks

The NVIDIA GPU architecture incorporates several streaming
multiprocessors (SM). When an OpenACC or CUDA program runs,
grid blocks are distributed to multiprocessors. Thread blocks are
executed by SM that are designed to execute several threads
concurrently. Threads are executed in groups of 32 that are called
a warp. NVIDIA GPUs exploit a unique architecture called SIMT
(single instruction multiple thread) to manage large amount of
threads running in groups of warps.

In order to tune the loop level parallelism using OpenACC,
the “gang”, “worker” and “vector” features are used to control
the total number of thread blocks and threads per block used
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Fig. 2. (a) Initial microstructure of polycrystalline RVE. (b) Von Mises stress and equivalent total strain fields simulated under plain strain compression at an
accumulated strain 0.5 of OFHC. Cutting planes at different locations of RVE illustrate different response in field contours due to the microstructure anisotropy
(i.e. heterogeneity of grain orientation distribution). (c) Texture evolution of OFHC copper under plain strain compression measured at accumulated strain of 0.5.

Table 1
Hardware specs of the workstation.
Compiler oS CPU Kepler GPU Pascal CUDA toolkit System # of # of threads # of # of cores
(s) GPU (s) version memory (GB) CPUs per core sockets per socket
NVIDIA Centos Intel(R) NVIDIA NVIDIA 9.1 512 36 2 2 18
PGI v 7.0 Xeon(R) CPU Tesla K80 Tesla
2017 E5-2695 v4 @ (2 GPUs) P100
v17.5 2.10 GHz
Table 2

NVIDIA Tesla K20x and K80 (Kepler) vs. Tesla P100 (Pascal) and Tesla V100 (Volta): hardware specs and performance.
GPU Architecture  Streaming multiprocessors (SM)  CUDA cores  Frequency (MHz) GFLOPS (double) Memory (GB) Memory bandwidth (GB/s)

K20X  Kepler 14 2688 732 1310 6 250
K80 Kepler 2 x 13 2 x 2496 562 2 x 1455 2 x 12 2 x 240
P100 Pascal 56 3584 1126 4670 16 720

V100 Volta 84 (80 usable) 5120 1355 7800 16 900
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NR
FFT

|:| Other

85.43%

()

for running CUDA kernels. For the GPU architectures invented
so far, the NVIDIA PGI compiler maps “gang” with thread-blocks
(“gridDim”), “workers” with threads “blockDim.y”, and “vector”
with threads “blockdim.x”. Note that this is currently the type of
binding observed by using the compiler flag “~-Minfo=accel”. This
type of binding is prone to possible changes for future generation
of GPUs.

While the “1$ACC kernels” and “!$ACC parallel” both perform
the same task (i.e. compile the code to launch on GPU), they
do not necessarily result in identical compiler outcome. When
the “I$ACC kernels” is used, the compiler decides if it is safe
(i.e. ensure correctness of parallel run on GPU compared to run on
CPU) to parallelize a loop. In other words, if the compiler decides
(i.e. whether right or wrong) there is any potential dependency
of the data inside the loop parallelism is going to be avoided.
In contrast, the “!$ACC parallel” is used to enforce the compiler
what the developer intends to do. Therefore, using the later one
demands a careful implementation and to ensure no data depen-
dencies exist (e.g. the value of an array in the next iteration does
not depend on its value obtained from the previous iteration)
before moving forward, otherwise, it may result in wrong results.

In order to map the loops on blocks and threads, depend-
ing on whether “I$ACC kernels” or “I$ACC parallel” is used,

14.89%

75.26%

(b)

9.87%

60.97%

(d)

Fig. 3. Workload distribution within EVPFFT solver for RVE domain sizes of: (a) 163, (b) 323, (c) 64°, and (d) 1283.

the “I$ACC gang(gang_size)” and the “!$ACC vector(vector_size)”
are used for the “I$ACC kernels” implementation, while the
“I$ACC num_gangs(gang_size)” and the “!$ACC vector_length
(vector_size)” are utilized for the “!$ACC parallel” implementa-
tion. In our code, we use the “!$ACC parallel” and the correspond
directive for mapping the loops into threads and thread blocks.
Like mentioned before, the “!$ACC parallel” gives us full control
over the code allowing us to determine which loops need to be
run sequentially, on multiple threads, on thread blocks or on
a combination of both (i.e. running on both thread blocks and
threads). We managed to tune the code using the “!$ACC parallel”
together with “I$ACC num_gangs” and “!$ACC vector_length”
by running the inner loops with higher compute intensities on
multiple threads instead of running them sequentially on the
GPU.

5.3. OpenACC-CUDA interoperability

When CUDA libraries (e.g. CUFFT, CUBLAS, ...) [65,86] are
called from the host (i.e. CPU) code, the data transfers from
GPU memory to CPU memory (and vice versa) are performed
using the CUDA built-in functions (i.e. CudaMemcpy() ). Our
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ISACC update device(..)

I'SACC& private(..)
ISACC& reduction (+:..)

[NR solver per voxel]
enddo
enddo
enddo
enddo
!SACC end data

!SACC data create(..) present(..)

!SACC parallel num gangs(..) vector length(..)
ISACC loop independent gang vector collapse(3)

Do i=1, Number of voxels in X direction (e.g. ,32, , )
Do j=1, Number of voxels in Y direction (e.g. , , , )
Do k=1, Number of voxels in Z direction (e.g. : . : )

[Write global data of all voxels to local data per voxel]
Do while convergence met for single crystal stress

Fig. 4. Pseudo code for GPU NR single crystal stress solver. The actual NR iteration loop (i.e. Do While loop) is called for all RVE voxels through the three tightly
nested outermost loops. The OpenACC kernel directives tell the compiler to run the NR solver on the device (i.e. GPU) rather than host (i.e. CPU). The ACC data
directives control the data transfer (i.e. Memcopy) between CPU and GPU. In our final implementation, most of the data is already present on the GPU, removing

the need for copying back and forth between CPU and GPU memories.

goal is to maintain performance portability as much as possible.
With the advent of OpenACC-CUDA interoperability [87], calling
CUDA functions in OpenACC regions is viable. It is also worth
mentioning that using OpenACC-CUDA interoperability, we are
able to use OpenACC directives for CPU-GPU data transfers more
conveniently and consistently specially when using unstructured
OpenACC data regions [84], in which, “ACC enter/exit data” as
heterogeneous data structures are used to keep track of data copy
among different routines running on GPU [84].

6. Porting NR to GPU using OpenACC

The NR solver was ported to the GPU using OpenACC direc-
tives. Fig. 4 describes a Pseudo code for NR representing the
GPU implementation using OpenACC parallel and data directives.
Readers can refer to [84] for detailed information about OpenACC
and how to employ it efficiently for porting a code to run on a
GPU-based hardware.

Note that the NR solver includes several subroutine calls inside
the three nested loops iterating over all the voxels. Calling sub-
routines from device code, necessitates a GPU copy of the routine
to run on the device.

Supplementary material presents the NR subroutine on GPU
illustrating where the internal loops are located and targeted for
“I$ACC routine”. Indeed, calculation of shear stress, Jacobian, and
tensor rank conversions (i.e. 6 x 6 Voigt notation to 3 x 3 x
3 x 3 and vice versa) are the major computations for these inner
loops. In order to ensure maximum performance, a combination
of “I$ACC routine seq” and “!$ACC routine vector” was used. The
former one is aimed for small loops with few iterations, since, it
is not efficient to run few iterations parallel on a GPU.

6.1. Matrix inversion routine in NR: LU vs. GJE

6.1.1. LU decomposition and its drawback for NR device code

Calculation of(% |0.(i+1‘j) y~'in Eq. (17), which is the inversion

of the Jacobian matrix, is the hotspot in the NR solver. The orig-
inal inversion routine used in EVPFFT is the LU decomposition,
which due to data dependency runs sequentially on each thread.
Here, each thread performs one LU inversion for its respective
voxel while the LU itself is sequential. Therefore, we investigate
alternatives in order to find a more efficient matrix inversion

method for the NR solver running on the GPU. In order to avoid
using ACC sequential routine for the LU inversion being called
from the device code, an alternative matrix inversion algorithm of
Gauss Jordan Elimination (GJE) is explored. In the next section we
elaborate on performance benchmark of such inversion method
and compare to the traditional LU.

6.1.2. Gauss Jordan elimination (GJE)

An alternative to the LU decomposition is GJE algorithm
[88-92], which is known as efficient for smaller matrix dimen-
sions comparing to its former version named Gaussian Elimina-
tion. The fact that GJE is faster than its alternatives for small
matrix dimensions, makes it a good candidate for our NR code
in which most of arrays have a size of 3 x 3 (e.g. stress and
strain tensors) and 6 x 6 (e.g. Jacobian tensor) per voxel. In order
to evaluate the performance of GJE over the LU inversion, we
performed a benchmark in which square matrixes with dimen-
sions of 3 x 3, 6 x 6 are inverted repeatedly over voxels of RVE
resolutions of 163, 323, 643, and 1283. The reason behind this
is to mimic what happens in NR solver structure (see Fig. 4.)
Fig. 5 represents the performance benchmark for GJE and LU.
We find that for matrix dimensions of 3 x 3 and 6 x 6 which
are frequently used in NR, the GJE inversion performs several
times faster than the LU method for the RVE size of 1283, running
standalone (i.e. outside of EVPFFT solver) on a single CPU core.

Next, we incorporate the GJE into the NR subroutine to evalu-
ate how it impacts the performance of the overall code. The call
to GJE is from the device since the NR is running on GPU using
OpenACC. We found that replacing the LU inversion with GJE can
improve the NR performance by 42% for the RVE size of 1283
After incorporating GJE, the next step is to further tune the GPU
NR by further loop optimizations.

6.2. Loop collapse optimization

In most cases, merging the iterations of the tightly nested
loops into a single united large loop providing more iterations, re-
sults in performance improvement for any kind of parallel imple-
mentation whether on CPU cores or GPU (i.e. OpenMP/OpenACC).
This is due to the higher degree of parallelism and potentially
better balancing of the work distributed over threads. Note that
we apply this optimization to all nested loops within NR to ensure
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Fig. 5. Speedup of the GJE matrix inversion algorithm over the LU running
standalone on single CPU for different RVE sizes of 163, 323,643, and 1283 and
square matrix sizes of 3 x 3 and 6 x 6.

maximum performance. We find that collapsing loops results
in up to 91% NR kernel speedup (for RVE resolution of 1283)
compared to the case that only the outermost loop is parallelized.

6.3. Tuned NR scalability running on GPU

Fig. 6 represents the final NR speedup obtained running on
P100 and K80 (single) NVIDIA Tesla GPUs after incorporating all
improvements and optimizations discussed earlier in the text.
The performance on NVIDIA Tesla P100 is significantly higher
than K80 due to its innovative Pascal architecture [93], speeding
up the NR solver for 36.42x over the serial version. As a next step,
we compare the performance of P100 with the multicore CPU
implementation of the NR subroutine in the EVPFFT code [56]
on up to 64 MPI processes on Intel Xeon 2695 v4. Results of
this benchmark are summarized in Fig. 7. We find that P100
outperforms the MPI multicore version for all RVE resolutions
running on any number of MPI processes up to 64.

A total speedup achieved by the ACC-EVPFFT implementation
gained by accelerating the NR routine is possible to estimate
using Amdahl’s law. This is illustrated in Fig. 8, where the net per-
formance of EVPFFT is shown after accelerating the NR subroutine
only. Even if we infinitely speedup the NR solver, a maximum net
gain for the whole code is not more than 6.86x, 4.04x, 3.17x, and
2.56x for RVE resolutions of 163, 323, 64°, and 1283, respectively.
Such a trend is largely due to a growing importance of the FFT
calculations, as shown in Fig. 3. In the next section, we focus
on accelerating the FFT calculations on GPUs using the CUDA
libraries.

7. FFT libraries: GPU vs. multicore CPU

One of the common FFT solvers used in a wide variety of sci-
entific codes, including the original EVPFFT solver, is the “FOURN”
routine, presented in Numerical Recipes in FORTRAN and C++ [94,
95]. Although this routine is commonly used, more advanced
libraries have been recently developed to perform FFTs with
a higher level of efficiency. FFTW and its MPI version [57,96-
99] and CUFFT [65,100,101] are currently among the fastest FFT
libraries, running on a single CPU core, multiple CPU cores (i.e. for
the MPI version of FFTW3), and GPUs, respectively. FFTW is an
efficient FFT library developed at Massachusetts Institute of Tech-
nology (MIT) for computation of discrete Fourier transforms (DFT)

25+ -#-K80 single
20 ~®-P100
1

5 ./I-——-I“-.

1'6-” 3'23 6I43
# of FFT voxels

Fig. 6. Speedup of GPU NR solver in EVPFFT code running on NVIDIA Tesla
K80 (single) and NVIDIA Tesla P100 devices over the scalar version for RVE
domain sizes (i.e. voxel resolution) of 163, 323, 643, and 128>. As is evident, the
P100 GPU outperforms the K80 significantly due to its high performance Pascal
architecture.
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Fig. 7. Performance benchmark of GPU NR solver in EVPFFT code running on
NVIDIA Tesla P100 device vs. MPI multicore CPU version running on up to 64
MPI processes on Intel Xeon 2695 v4 for RVE domain sizes (i.e. voxel resolution)
of 16, 323, 643, and 128>. The NVIDIA Tesla P100 outperforms the MPI multicore
version for all RVE resolutions running on any number of MPI processes up to
64.

128°

in 1D, 2D, and 3D space [97]. FFTW supports both real and com-
plex data input with arbitrary size transformations. In the present
work, we have used FFTW 3.3.6, which is the latest release of
the FFTW library. FFTW3 supports all of the SSE (i.e. Streaming
SIMD (Single Instruction Multiple Data) Extensions)/SSE2/AVX
(i.e. Advanced Vector Extensions)/ARM (i.e. Advanced RISC (Re-
duced Instruction Set Computer) Machines) instructions for CPU
hardware optimizations [102].

On the other hand, CUFFT (i.e. CUDA FFT) is the NVIDIA CUDA
FFT library developed after FFTW and is able to speedup the FFT
computations drastically running on the thousand CUDA cores.
However, the CUFFT performance may vary depending on the
GPU hardware architecture and specifications (i.e. CUDA cores,
memory speed, etc.). CUFFT supports similar capabilities to FFTW
and large data sets of up to 128 million elements. The CUFFT
library is accessible as a part of the NVIDIA CUDA toolkit [103]. In
what follows, we discuss and compare the performance of CUFFT
vs. FFTW library.

In order to benchmark the performance of CUFFT and FFTW
libraries, a study, comparing standalone FFTs with a complex
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Fig. 8. Theoretical ACC-EVPFFT speedup as a function of NR speedup generated
by Amdahl’s law for RVE domain sizes of 163, 323, 64°, and 1283. Speeding up
the NR infinitely, maximum net gain for the whole code is up to 6.86x, 4.04x,
3.17x, and 2.56x for RVE resolutions of 163, 323, 64°, and 1283, respectively.
This is due to dominant computational expense in FFT calculations running on
larger RVE sizes as indicated in Fig. 3.

data type input is conducted. Note that the benchmark tests and
the following result are specific to our implementations and the
hardware specifications we use in this research (Table 1).

Fig. 9 illustrates this benchmark comparing different RVE reso-
lutions in 3D transformations on Intel Xeon 2695 (FFTW3) v4 and
single K80 GPU (CUFFT). We find that, starting from the RVE size
of 2563, the CUFFT library outperforms the FFTW. This behavior is
justified by the fact that GPU works more efficiently than a CPU
for large data sets and massive parallel tasks due to its hardware
architecture with thousands of built-in computing cores. It is also
worth mentioning that a significant part of a GPU runtime is spent
on data transfer (if not possible to avoid) to and from the CPU.
Eliminating this data transfer, i.e. making the data always resident
on the GPU, should result in a considerable performance gain.
Such data management is feasible using OpenACC data regions
to keep the data present on GPU as much as possible [84]. We
will elaborate on such data interoperability in detail in the next
section.

Fig. 10 represents the scalability of CUFFT on K80 (single) and
P100 GPUs inside the EVPFFT solver, normalized to the original
FOURN running on single Intel Xeon 2695 v4 core. Increasing the
total number of FFT points result in better speedup for the GPU
case due to more parallelism potential available for GPU threads.
We find that single K80 and P100 NVIDIA GPUs perform up to
145.7x and 545.6x, respectively, faster than the original FOURN
subroutine. It is also important to observe that the Pascal archi-
tecture outperforms the Kepler hardware for 3.74x for the largest
domain size of 1283. We also assess a more rigorous performance
benchmark for CUFFT, by a comparison against the MPI version
of FFTW3 (MPI-FFTW3), which was reported on in detail in our
previous work [56]. The results are provided in Fig. 11. We find
that CUFFT outperforms the MPI-FFTW3 drastically starting form
RVE size of 323 with a growing scalability as a function of RVE
size.

8. GPU acceleration of remaining routines
Running NR and FFTs on GPU using OpenACC and CUDA,

the main portion of the code is GPU accelerated according to
the workload distribution provided early in the text in Fig. 3.
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presented in the figure.

600 1 -=-K80 single
300 | “®P100

1 . :
16° 32° 64°
# of FFT voxels

Fig. 10. CUFFT scalability running on NVIDIA Tesla K80 (single) and P100 relative
to FOURN for RVE domain sizes of 163, 323, 643, and 1283. The single K80
and P100 NVIDIA GPUs perform 145.7x and 545.6x, respectively, faster than
the original FOURN subroutine. The Pascal architecture outperforms the Kepler
hardware 3.74x for the largest domain size of 128>,

1283

However, since other routines of the code are not running on
GPU, the data transfer between CPU and GPU back and forth is
unavoidable. This becomes more important when the invocations
occur frequently due to highly nested iterations of NR inside
the FFT equilibrium field iterations. Same analogy fits for the
data copy required for the FFT calculations. In order to mitigate
this issue, we ported other routines to the GPU, except the I/O
subroutines that read and write data. While some data copies
are still inevitable, the fraction of data transfer time compared
to the kernel compute time is small. Fig. 12 represents the com-
pute (i.e. kernel launch on GPU) and Memcpy (i.e. memory copy
between host and device) for the ACC-EVPCUFFT running on the
P100 device, provided by NVIDIA PGI performance profiler 2018.
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Fig. 11. Performance of CUFFT library running on NVIDIA Tesla P100 compared
to the MPI version of FFTW3 library (i.e. MPI-FFTW3) running on 1-64 CPU cores
of Intel Xeon 2695 v4 for RVE domain sizes of 163, 323, 64°, and 1283. The data
is normalized with the original FOURN FFT. As is evident, CUFFT outperforms
the MPI-FFTW3 drastically with a growing scalability as a function of the RVE
size.

128°

It is clear from the profiler that GPU is kept busy most of the time
to ensure minimum gaps generated by un-accelerated regions
(routines running on the host). Note that the remaining small
data copies are owing to unavoidable data copies into GPU (“ACC
update device”) for small local arrays of size 6 x 6, which take
orders of micro seconds and originated from MPI communications
owing to their use in the MPI reduction and the overall control

flow of parallelization. The major focus on keeping data present
on GPU is related to the global large arrays for which the infor-
mation is stored per voxel. Maximum achievable performance is
gained by porting most of the code to the GPU as indicated by the
profiler. It is also worth mentioning that the profiler reveals NR
still as the major hotspot of the calculations even after porting all
to the GPU. This is clear comparing the compute duration of NR
relative to FFTs or other kernels launching on GPU.

The final net speedup for ACC-EVPCUFFT after porting all
routines to GPU (except those performing read and write) is
represented in Fig. 13 running on single K80 and P100 devices
normalized over the serial version running on single Intel Xeon
2695 v4 core for RVE domain sizes of 163, 323, 643, and 1283.
As expected, the P100 GPU performs up to 2.94x faster than K80
with a net speedup of up to 27.3x for the RVE size of 1283. The
result of P100 performance benchmark against the MPI version of
the code running on up to 64 CPU cores is illustrated in Fig. 14.
We find that P100 GPU slightly outperforms running the code
with MPI decomposition over 64 Intel Xeon 2695 v4 processes
for the RVE size of 128>, This again has to do with the capability
of GPUs in running massive data sets more efficiently comparing
to CPUs.

In summary, while single GPU operated by a single CPU per-
forms significantly better than MPI for the NR (see Fig. 7) and FFT
(see Fig. 11) calculations, this is not the case for other subroutines.
This is due to the fact that those subroutines are less favorable
for GPU acceleration due to less arithmetic intensities and being
compute bound. However, porting all routines to GPU is vital to
ensure minimizing the data transfer between CPU and GPU as
indicated in Fig. 12. Nevertheless, P100 GPU still outperforms 64
Intel Xeon 2695 v4 processes for the RVE size of 128> and greater.
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Fig. 13. ACC-EVPCUFFT net scalability running on NVIDIA Tesla K80 (single) and
P100 GPUs normalized over the serial version running on single Intel Xeon 2695
v4 core for RVE domain sizes of 163, 323, 64°, and 128°. The P100 GPU performs
up to 2.94x faster than K80 with a net speedup of up to 27.3x for the RVE size

of 1283
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Fig. 14. Performance benchmark of ACC-EVPCUFFT code running on NVIDIA
Tesla P100 device vs. MPI multicore CPU version (MPI-EVPFFTW) running
on up to 64 MPI processes on Intel Xeon 2695 v4 for RVE domain sizes
(i.e. voxel resolution) of 163, 323, 64°, and 128>. The NVIDIA Tesla P100 slightly
outperforms running the code with MPI decomposition over 64 Intel Xeon 2695
v4 processes for the RVE size of 1283 and this is due to the capability of GPUs
in running massive data sets more efficiently than CPUs.

It is also worthwhile noting that NVIDIA has released the most
recent Tesla architecture, called Volta (i.e. Tesla V100 ) [104]
which is claimed to be up to 3.133x faster than Tesla P100. Table 2
represents the hardware specs and performance of NVIDIA Tesla
V100. If the ACC-EVPCUFFT code is run on a single V100, speed
ups could potentially improve up to approximately 3x.

9. Multi-GPU implementation combining OpenACC with MPI
(MPI-ACC-EVPCUFFT)

In order to run ACC-EVPCUFFT on multiple GPUs, we leverage
our previous work that used the domain decomposition approach
and the message passing interface (MPI) standard [105-107] to
provide capability of utilizing many GPUs in a GPU cluster. To
this end, the very outermost loops over the FFT voxels (see Fig. 4)
are split into chunks of data (i.e. domain decomposition). Fig. 15

shows a schematic view of this domain decomposition for 4 GPUs
in one direction.

In order to enable the code with multi-GPU computation, one
needs to detect and switch between different devices any time
needed. To this end, the OpenACC built-in functions included
in OpenACC library headers are utilized by adding the “USE
OpenACC” statement right after the routine declaration. This is
important in a FORTRAN code with modules, for which, interfaces
are made implicitly by the compiler. Appendix A illustrates how
to use OpenACC functions to determine the total number of GPUs
for run and how to select specific GPUs using their IDs. Choosing
the device type (i.e. NVIDIA or AMD RADEON graphics) is also
possible using the “acc_set_device_type()” which allows us to
implement different device types on a cluster with heterogeneous
installation of GPUs.

It is worth noting that besides MPI-OpenACC, there are other
methods that implement multiple GPUs including asynchronous
kernel computation using 1 CPU (i.e. master CPU-GPU) or mul-
tithreaded GPU using OpenMP (OpenMP + GPU), however, they
prove to be less efficient alternatives [84].

Fig. 16 represents the multi-GPU speedup for the
ACC-EVPCUFFT. We name the multi-GPU version as MPI-ACC-
EVPCUFFT. With an increase in problem size from 163 to 128> and
afterwards, the multi-GPU scalability is improved considerably.
For the RVE resolution of 1283, using 4 GPUs, speedups of 3.24x
and 3.69x over the single GPU is achieved for the whole code and
NR, respectively.

In order to simulate massive data sets (RVE sizes larger than
1283), more GPUs are required to provide enough GPU dedicated
memories for data allocation on the device. Running the code for
RVE resolutions of 5123 afterwards demands at least 220 GB of
GPU memory which necessitates utilizing at least 20 GK210 chips
of NVIDIA Tesla K80 (i.e. 10 T K80 GPUs) or 14 NVIDIA Tesla P100
GPUs to be able to run the code on GPU. Since these number of
GPUs are not accessible on a single workstation, a cluster of GPU
nodes should be utilized. In the next section we describe running
our code on a distributed cluster of GPUs facilitating simulation
of massive microstructure data sets.

10. MPI-ACC-EVPCUFFT benchmark on Cray Titan: Cluster of
distributed GPU nodes

In order to benchmark the code on distributed GPU nodes, the
Titan super computer [ 108] located at Oak Ridge National Labora-
tory (ORNL) is used to facilitate our crystal plasticity simulations.
This supercomputer is equipped with NVIDIA Tesla K20X GPUs.
Table 2 provides the hardware specs for NVIDIA Tesla K20X.

Note that NVIDIA Tesla K20X is older than its more recent
peers K80 and P100 resulting in noticeable lower performance
due to the hardware architecture. It is notable that a new super-
computer released by ORNL called Summit [ 109] uses Tesla Volta
V100 GPUs instead of K20X. Performance benchmark of the code
on this supercomputer is postponed for the future research when
authors become users of Summit. It is important to mention that
the MPI-FFTW3 is used for the FFT part to maintain the scalability
while all other parts run on GPU using OpenACC. This is because
running CUFFT concurrently on all nodes is not possible. A multi-
GPU version of CUFFT called CUFFTXT is provided by NVIDIA
CUDA toolkit [85], however, it is restricted to a maximum of 8
GPUs. This limitation hinders us to use it for desired number of
GPU nodes. Running CUFFT on any desired number of devices
using an alternative approach will be studied in a future research.

In order to study the RVE size effect on the elapsed CPU time,
the EVPFFT solver for the RVE domains of 64°, 1283, and 2563 is
executed on 1, 8, and 64 NVIDIA Tesla K80 GPUs, respectively,
while the FFTs run using MPI-FFTW. This version of implemen-
tation is termed MPI-ACC-EVPFFTW. Moving from RVE resolution
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GPUs using MPI. Every GPU works on its own chunk of data.
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Fig. 16. MPI-ACC-EVPCUFFT speedup using 2 and 4 GK210 GPU chips of Tesla K80 (a) Total net scalability (b) NR scalability. With an increase in problem size from
16° to 128° and afterwards, the multi-GPU scalability is improved considerably. For the RVE resolution of 1283, using 4 GPUs, speedups of 3.24x and 3.69x over the

single GPU is achieved for EVPFFT (a) and NR (b), respectively.
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Fig. 17. Multi-GPU NR and multi-GPU EVPFFT scalabilities benchmarked on Titan

Cray supercomputer utilizing distributed GPUs (a) Strong scalabilities of RVE

resolution of 128 running on 8, 16, 32, 64, and 128 GPUs (b) Weak scalabilities of RVE resolutions of 64°, 1283, and 256 running on 1, 8, and 64 GPUs, respectively.

Strong scalability of NR is perfect regardless of number of GPUs being utilized. The
128 GPUs and this is because the MPI-FFTW responsible for FFT calculations do not

of 64° to 2563, the total number of voxels is increased 8 times.
Therefore, scaling the total number of GPUs to 8x elucidates how
perfect the weak scalability of the Multi-GPU code is. In the case
of perfect weak scalability, elapsed CPU time should be identical
for all cases [110].

EVPFFT however starts to deviate slightly from perfect scalability using 64 and
scale perfect on Titan after 64 processes for the RVE size of 1283.

Fig. 17 represents multi-GPU NR and multi-GPU EVPFFT
(i.e. MPI-ACC-EVPFFTW) strong and weak scalabilities bench-
marked on Titan Cray supercomputer utilizing distributed GPUs
running simple compression of Cu for 10 strain increments under
applied strain rate of 0.001 s~'. RVE resolution of 128 running
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m— Ferrite

Fig. 18. Effect of RVE voxel resolution in capturing small martensitic islands within ferrite in DP 590: (a) 16% (b) 323 (c) 64 (d) 1283 (e) 2563 (f) 5123. The first 4 rows
show the grain structure, while the second 4 rows indicate the phase fields for ferrite and martensite. For resolutions lower than 256°, the grain/phase boundaries
become jagged which is physically spurious. Moreover, in RVEs smaller than 643, the small features disappear hindering us from representing the microstructure
accurately. The DREAM3D software package is used to generate the synthetic microstructure.

on 8, 16, 32, 64, and 128 GPUs were implemented for strong scal-
ability benchmark. Strong scalability of NR is perfect regardless
of number of GPUs being utilized. The EVPFFT however starts to
deviate slightly from perfect scalability using 64 and 128 GPUs
and this is because the MPI-FFTW responsible for FFT calculations
does not scale perfect on Titan after 64 MPI processes for the
RVE size of 1283, This analogy holds true for the weak scalability
as well. The NR weak scalability is perfect (i.e. almost identical
elapsed CPU times for all configurations), however, since the FFTs
scale as order of n log(n) (i.e. where n is the RVE size), moving to
larger RVE resolutions does not scale linear resulting in growing
trend for the multi-GPU EVPFFT running on MPI-FFTW.

11. Application of ACC-EVPCUFFT to resolving fields in a dual
phase steel DP 590 microstructure

To demonstrate another utility of the implementation we use
it for resolving fine microstructural features. A large RVE sizes are
desirable for understanding behavior of multi-phase alloys. Un-
derstanding the strain and stress gradients varying at interfaces
is crucial for performance design of polycrystalline multi-phase
alloys. In a ferrite-martensitic dual phase steel, the master phase
is ferrite matrix in which martensitic phase in a reinforcement.
Phase fractions depend on the alloy type. We study the DP 590 in
which the martensitic phase fraction is 7.7% [111,112]. In addition
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Fig. 19. Stress and strain fields over DP 590 microstructure predicted by the ACC-EVPCUFFT model for an RVE size of 256°.

to phase fraction, an attempt is made to create a microstructure
resembling the ratio in grain size. We show the effect of RVE
resolution and its significant importance in capturing the very
small martensitic grains more realistically. Moreover, we show
how resolution is vital for defining the grain boundaries to be
smooth. Fig. 18 presents the effect of RVE voxel resolution go-
ing from 163 to 5123. The DREAM3D software package [113] is
used to generate the synthetic microstructure. It is clear that for
resolutions lower than 2563, the grain/phase boundaries become
jagged and not realistic. Moreover, in RVEs smaller than 64°, the
small features of the martensitic phase disappear hindering us
from representing the dual phase microstructure accurately.

Fig. 19 represents the stress and strain gradients at inter-
granular boundaries of ferrite and martensite phases in DP 590
steel under monotonic simple compression up to a macroscopic
strain of 0.16 with applied strain rate of 0.001 s~!, captured
by ACC-EVPCUFFT using RVE size of 2563. Such resolution is
mandatory to capture the very sharp and narrow field gradients
observed around the Martensitic islands. More careful examina-
tion of the figure reveals very detailed traces of stress and strain
concentrations (hotspots) indicating the crack incubation regions
and sources of inter-granular fracture. These features cannot be
captured unless a very high resolution is used. Note that we are
not able to run the RVE resolution of 5123 due to insufficient

memory per node while reading/initializing the data concurrently
on all MPI processes. A Parallel I/O implementation would help
which is going to be addresses in future research.

12. A flowchart summarizing the developed parallel imple-
mentations of the EVPFFT solver

In order to sum up all of the parallel implementations of the
EVPFFT solver developed so far, a comprehensive flowchart is
provided in Fig. 20, illustrating the flow of the code for all parallel
implementations including the features from previous work [56]
as well. This schematic will help the reader significantly to review
all the performance improvements presented here in a nut shell.

13. Conclusions

In this work, we develop a computationally efficient imple-
mentation of a full-field crystal plasticity solver for predicting
micromechanical behavior of crystalline materials taking advan-
tages of GPUs. While porting the NR subroutine on GPU, it was
found that using GJE in NR solver results in an improvement
over the LU decomposition because the GJE linear equation solver
suppresses sequential runs on GPU threads. Next, the GPU imple-
mentation executes the FFT calculations using the CUFFT library
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i. Initialize: set material parameters, set crystallographic texture and slip
systems, apply initial conditions (i.e. Taylor guess for total strain field)

15

Parallel options :{

CPU : OpenMP / MPI / MPI + OpenMP
GPU : OpenACC / MPI + OpenACC

¥

ii. Begin time evolution -

y

iii. Begin stress and strain field evaluation

v

Parallel options : )
GPU : CUFFT

iv. Perform FFT of the stress field
CPU : FOURN / FFTW / OpenMP - FFTW / MPI - FFTW

¥

Parallel options : {

v. Establish the polarization field 4, (k) and calculate fg.k,(k), and G, (k)

CPU : OpenMP / MPI / MPI + OpenMP
GPU : OpenACC / MPI + OpenACC

2

Parallel options : {

vi. Perform FET™! of the strain field

CPU : OpenMP / MPI / MPI + OpenMP
GPU : OpenACC / MPI + OpenACC

.2

Parallel options : {

vii. Calculate strain field
CPU : OpenMP / MPI / MPI + OpenMP
GPU : OpenACC / MPI + OpenACC

v

Parallel options :{

viii. Solve iterative NR to obtain single crystal stress
CPU : OpenMP / MPI / MPI + OpenMP
GPU : OpenACC / MPI +OpenACC

A

7
ix. Check for convergence of single crystal stress (NR convergence for all X
voxels in RVE)
v
x. Check for stress and strain field convergence X
v
xi. Update hardening, evolve texture (i.e. reorient crystals)
. CPU : OpenMP / MPI / MPI + OpenMP
Parallel options :
GPU : OpenACC / MPI + OpenACC
X X
xii. Check if the desired accumulated strain is obtained
v
xiii. Write output (evolved texture, stress-strain fields, etc.) €

s : [ntensive calculations running parallel on CPU/GPU

Fig. 20. All-in-one flowchart summarizing the developed parallel implementations of the EVPFFT model.

utilizing CUDA resulting in further computational gains. Further-
more, the remaining code is accelerated on GPU, except the
I/O subroutines to ensure minimal data transfer between CPU
and GPU. Finally, a combination of MPI through the domain de-
composition for multi-GPU execution and the OpenACC standard
is exploited for the multi-GPU version of the implementation.

The overall implementations are termed ACC-EVPCUFFT for sin-
gle GPU and MPI-ACC-EVPCUFFT for multiple GPUs. Significant
speedups over the original EVPFFT model and the recent MPI-
EVPFFTW are achieved using the GPU versions on multi core
computer workstations and Cray Titan cluster. The GPU perfor-
mance benchmarks were carried out on NVIDIA Tesla Pascal and
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Kepler architectures (i.e. Tesla P100 and Tesla K80). For example,
using a single P100 GPU on a single CPU core outperforms running
the code with MPI decomposition over 64 Intel Xeon 2695 v4
processes for the RVE size of 1283,

Having the multi-GPU version of the code provides us with the
capability to run high performance crystal plasticity simulations
involving high resolution microstructures i.e. tens of millions of
FFT sampling points for resolving local mechanical fields and mi-
crostructural evolution highly efficiently on an appropriate hard-
ware. Additionally, the performance gains represent a significant
incentive to integrating these models into macroscopic FE com-
putational tools to enable more accurate simulations of material
behavior during metal forming processes and in-service condi-
tions. The implementation will be a CPU-GPU hybrid, where finite
element mesh is domain distributed over CPUs and underneath
microstructural cell calculations are performed on GPUs.
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Appendix A. Openacc functions for multi-GPU framework
setup

The functions “acc_get_num_devices” and “acc_get_device
_num” are used to determine the total number of available GPUs
and the GPU number (i.e. device id), respectively. The function
“acc_set_device_num” sets the device id (i.e. GPU number) for the
current MPI process (i.e. selects the GPU to be controlled by the
specific CPU defined by MPI_rank). For example, if we consider 4
GK210 GPU chips of 2 T K80 graphics cards, running the program
built by the PGI MPI compiler (i.e. mpif90) using the “mpirun -n
4 .[executable” command initializes 4 CPU cores each responsible
to control one of the 4 GPUs. Note that since the GPU id is set by
MPI rank, then the device ids of 0, 1, 2, and 3 account for GPU
numbers 1, 2, 3, and 4, respectively.

1 USE mpi

2 USE openacc

3 call MPI COMM SIZE(MPI COMM WORLD, size, ierror)
4 call MPI COMM RANK(MPI COMM WORLD, rank, ierror)
5 num_devices=acc_get_num_devices(acc_device_nvidia)
6 devicenum=mod (rank,num_devices)

7 call acc_set_device num(devicenum,acc_device nvidia)
8 if(rank.eqg.(0) then

9 print*, "Number Of GPUs:",num_devices

10 endif

11 devicenum=acc_get_device num(acc_device nvidia)
12 print*,"#CPU rank:",rank,"GPU number:",devicenum
13 print*, "Number Of GPUs:",num devices

14 call acc_set device num(0,acc_device nvidia)

15 call acc init(acc device nvidia)

Appendix B. Supplementary data

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.cpc.2020.107231.
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