

Germicidal Ultraviolet Light Does Not Damage or Impede Performance of N95 Masks Upon Multiple Uses

3

4 Zhe Zhao¹, Zhaobo Zhang², Mariana Lanzarini-Lopes¹, Shahnawaz Sinha¹, Hojung Rho¹, Pierre
5 Herckes², Paul Westerhoff ^{1*}

6

7 ¹ NSF Nanosystems Engineering Research Center for Nanotechnology-Enabled Water
8 Treatment, School of Sustainable Engineering and the Built Environment, Ira A. Fulton Schools
9 of Engineering, Arizona State University, Tempe, AZ 85008-3005, USA

10

11 ²School of Molecular Sciences, Arizona State University, Tempe, AZ, 85297-1604, USA

12

13 *Corresponding author:

14 Email: p.westerhoff@asu.edu

15 Phone: 480-965-2885

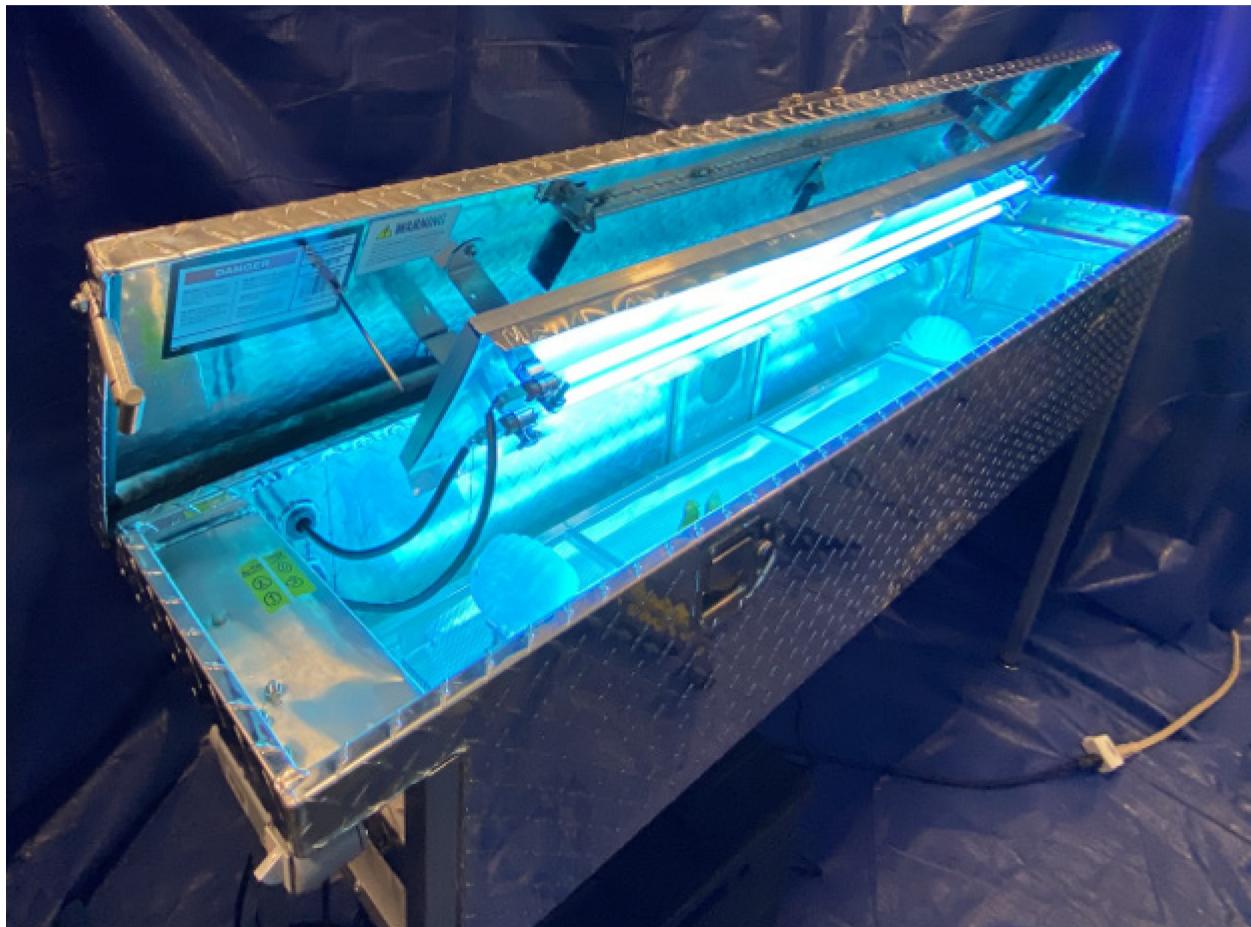
16

17 In preparation: *Environmental Science and Technology – Letters*

18

19

20 Last Revision: May 20, 2020


21

22

23

24

TOC Art

25

26

27

28

Abstract

30 The COVID-19 pandemic is increasing the need for personal protective equipment (PPE)
31 worldwide, including the demand for facial masks used by healthcare workers. Disinfecting and
32 reusing these masks may offer benefits in the short-term to meet urgent demand. Germicidal
33 ultraviolet light provides a non-chemical, easily deployable technology capable of achieving
34 inactivation of H1N1 virus on masks. Working with N95-rated masks and non-rated surgical
35 masks, we demonstrated that neither 254 nor 265nm UV-C irradiation at 1 and 10 J/cm² had
36 adverse effects on the masks' ability to remove aerosolized virus-sized particles. Additional
37 testing showed no change in polymer structure, morphology, or surface hydrophobicity for
38 multiple layers in the masks and no change in pressure drop or tensile strength of the mask
39 materials. Results were similar when applying 254nm low-pressure UV lamps and 265nm light
40 emitting diodes. Based on the input from healthcare workers and our findings, a treatment system
41 and operational manual were prepared to enable treatment and reuse of N95 facial masks.
42 Knowledge gained during this study can inform techno-economic analyses for treating and
43 reusing masks or lifecycle assessments of options to reduce the enormous waste production of
44 single-use PPE used in the healthcare system, especially during pandemics.

Introduction

47 Personal protective equipment (PPE) rose to the forefront of global concern during the recent
48 COVID-19 pandemic. However, while the single-use of PPE has been a common practice to
49 maximize protection of healthcare workers and patients, it generates large tonnage and volumes
50 of biomedical waste annually.¹ For example, the US alone uses 1.5 billion N95 respiratory facial
51 masks per year.² Current disposal practices for biomedical waste, including facial masks,
52 includes disinfection (e.g., injected with steam, shredded, heating to 200 °C in microwaves) and
53 then placing in landfills. While shortages of PPE, including facial masks, have accelerated during
54 the 2019/2020 pandemic caused by SARS-CoV-2, a longer-term strategy for on-site disinfection
55 may allow safe reuse of PPE and provide a reliable disposal alternative, thereby reducing annual
56 waste production.

57 Numerous disinfection strategies for facial masks have been proposed, but it wasn't until the
58 middle of April 2020 that the Center for Disease Control and Prevention (CDC) provided
59 guidelines for three processes targeting decontamination and reuse of filtering facepiece
60 respirators (FFRs).³ The CDC identified ultraviolet (UV) germicidal irradiation, vaporous
61 hydrogen peroxide, and moist heat as the most promising methods to decontaminate FFRs. A a
62 common feature of other disinfection treatments (e.g., liquid or aerosol hydrogen peroxide,
63 autoclave-like treatments with moist air, and various gas treatments (e.g., ozone)⁴⁻⁸) is the need
64 for chemical handling, air monitoring, and centralized treatment. In contrast, UV treatment offers
65 a chemical-free strategy and could take less than 5 minutes to achieve.^{9, 10} UV treatment can be
66 performed anywhere power is available and can be scaled to treat different numbers of masks,
67 and thus UV treatment is the focus of this paper.

68 Germicidal light in the UV-C range (100–280nm) disrupts DNA and RNA, forming
69 pyrimidine dimers, thus inactivating viruses and other microorganisms.¹¹⁻¹⁴ Studies show >
70 99.9% inactivation for several influenza viruses and coronaviruses when applying UV dosages
71 ranging from 0.5 to 1.8 J/cm².^{6, 9, 10, 15-17} For a study with 15 different N95 masks that were soiled
72 with H1N1 influenza virus, 1 J/cm² UV dose incident on the fabric achieved over 3-log reduction
73 in recoverable virus.^{16, 18} On other surfaces, much lower UV-C dosages (< 50 mJ/cm²) are
74 reported to inactivate similar virus types.¹⁷ While most studies evaluated UV treatment's ability
75 to disinfect masks, there is a paucity of information about impacts of UV treatment on polymer
76 properties (chemistry, structure) that influence removal of aerosolized particles during reuse.
77 Therefore, with the eventual aim of understanding the viability of safely reusing facial masks,
78 this paper first quantified the ability of masks to remove virus-sized aerosol particles and then
79 characterized potential detrimental impacts of UV-C exposure on representative N95 and
80 surgical mask material physical and chemical properties (e.g., polymer structure, morphology,
81 surface contact angle). Second, to design and fabricate reactors suitable to irradiate facial masks,
82 we compared commonly-used UV-C light sources (254nm from UV low-pressure mercury lamps
83 as well as 265nm from light emitting diodes (LEDs)) to provide equivalent UV-C dosages to
84 masks. Light source selection and final reactor design is considered based on the comparison
85 results for time to achieve target UV dosage and cost. The exposure dose in this study ranged
86 from 1 – 10 J/cm² to account for CDC recommendation for irradiation dose (1J/cm²) and
87 potential multiple treatment cycles. It should be noted that the 1 J/cm² is at the high end of UV
88 dosages recommended, and is much higher than reported UV dosages required for coronavirus
89 inactivation in water.¹⁷ This paper is not intended to quantify the safety of masks or the ability of
90 UV light to disinfect used masks, but is intended to understand how reported ranges of UV-C

91 dosages required for coronavirus inactivation potentially impact facial mask material properties
92 and performance to remove aerosolized virus-sized particles. Findings from this study contribute
93 to developing shorter-term strategies to safely reuse PPE materials that are in limited supply
94 during pandemics and also provide longer-term strategies to reuse PPE materials with the
95 intended aim of reducing PPE biohazard waste and disposal.

96

97 **Materials and Methods**

98 Figure 1 shows three facial masks containing different polymers: 1) surgical mask (47567, O&M
99 Halyard, Inc., GA); 2) N95 Mask A (1860 N95, 3M, MN); and 3) N95 Mask B (1500 N95,
100 Moldex, CA). The two N95 mask brands were selected because a prior study showed the ability
101 to disinfect influenza virus on the masks with 1 J/cm².¹⁶ Following approaches previously
102 applied during UV irradiation mask testing,⁷ coupons of the masks (4cm x 4cm) were used for
103 physicochemical characterization and aerosol challenge tests; the thickness of the coupons was
104 identical with the as-received new masks.

105 Two UV exposure apparatuses—a collimated beam reactor equipped with 265nm LEDs and
106 a box reactor equipped with 254nm low pressure UV lamps—were used to irradiate mask
107 coupons (Figure SI.1-2). UV dosages of zero (control) plus 1 and 10 J/cm² were selected based
108 on ability to achieve >3 log (i.e., > 99.9%) inactivation of H1N1 influenza.¹⁶ Irradiation
109 experiments were conducted in triplicate on separate coupons. Safety warning: UV-C light can
110 damage eyes and skin. Always wear appropriate eye, facial, and other PPE during
111 experimentation.

112 Challenge aerosols were generated using either 100 nm polystyrene latex spheres
113 (Nanospheres, Duke Scientific, Palo Alto, CA) or a broader distribution of silica particles (see SI

114 for details). The challenge aerosol covers the size range used in National Institute for
115 Occupational Safety and Health (NIOSH) test methods (75±20 nm NaCl particles for N95 type
116 masks¹⁹ and dioctylphthalate (185±20 nm) particles for P99 masks²⁰) and are similar to the
117 reported individual virus particle diameters of 60 to 140 nm.²¹ Material capture efficiency tests
118 were performed on mask coupons using a scanning mobility particle sizer SMPS (TSI
119 3938NL52, USA), and efficiency calculations were based on number concentrations.

120 Details are provided in SI for pressure drop testing and material characterization (Fourier
121 transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), optical
122 microscopy, and surface contact angle measurements) and structural tensile testing (Figure SI.3).

123

124 **Results and Discussion**

125 **Removal of Aerosolized Particles by UV-treated Masks**

126 Figure 2A shows representative data for filter capture efficiency using a broad distribution of
127 silica particles for masks with and without UV treatment (Figures SI.4-5 show distributions for
128 other masks). Particles are well-captured by the mask materials, with only a slight (1-2%)
129 decrease in capture efficiency towards the smaller (< 100 nm) particles. The average capture
130 efficiency for the N95 masks over the test range (50 to 200 nm) was well above 95%, while the
131 efficiency was lower (~82% on average) for the surgical mask; Figure SI.6 shows the filtration
132 efficiency for each measured size range. UV-C doses of 1 or 10 J/cm² did not change (p<0.05)
133 this removal efficiency for any of the masks. Likewise, for an equivalent UV-C dose there was
134 no difference in particle removal efficiency between irradiation with 254 nm (lamp) or 265 nm
135 (LED) light. Separate experiments were performed using a second, more narrowly distributed
136 challenge aerosol composed of different particles (polystyrene latex spheres), and the UV

137 treatment also had no effect on particle removal efficiencies (Figure SI.6-7). Collectively, these
138 observations demonstrate that the applied UV treatments do not significantly reduce the particle
139 capture efficiency of the N95 masks , and the masks would likely pass an official NIOSH test.

140

141 **UV-C Irradiation has Negligible Impact on Material and Physical Properties of Masks**

142 N95 masks are made of multiple layers of polymeric materials. Figure 3 shows optical
143 microscope, SEM, and FTIR data for each layer in Mask A. Based on FTIR vibrational
144 wavelengths,^{22,23} layers 1 and 3 were primarily polypropylene, while layer 2 was polyester. To
145 enhance facial fitting an aluminum nose clip coated with polyurethane foam is used. Elastic
146 straps are composed of braided polyisoprene. Layer 1 differs morphologically from the other
147 layers in mask A (Figure 3A). Layer 1 has a checkerboard configuration of bundled smaller
148 fibers. Similar to layer 1 in Mask A, an inner polymer layer Mask B also exhibited a
149 checkerboard configuration of bundled smaller fibers. Otherwise the polymer fibers were
150 uniform and contiguous (Figure SI.8). Mask B contained multiple polypropylene layers and an
151 additional hard-plastic mesh on its outer layer, intended to resist collapsing. The surgical mask
152 contained 3 layers, two outer cellulose acetate layers and an inner polypropylene layer, which the
153 vendor claims important for aerosol removal.

154 As illustrated in Figures 3 and SI.9, there was no decrease in FTIR peaks or formation of new
155 peaks after irradiation at 1 or 10 J/cm² of UV-C. This is not surprising because photooxidation
156 can only occur when the polymer contains chromophores (e.g., aromatic, C=O, and N=N), which
157 absorb short wavelengths. Even though FTIR showed layer 2 of N95 Mask A contained
158 chromophores (aromatic and C=O vibrations), it could be protected from UV irradiation by layer
159 1 and 3 of Mask B. Optical microscopy and SEM analysis showed no apparent changes in

160 morphology (fiber diameter, distribution, distribution of indentations, etc.) after UV irradiation
161 (Figure SI.8 and SI.10).

162 Virus removal in N95 PPE is not limited to a “sieve” effect (i.e., particle interception). Other
163 processes such as impaction, electrostatic interactions, or diffusion can also be important or even
164 dominant depending on the particle size and filtering material.²⁴ The above morphological and
165 surface chemistry measurements suggest negligible changes to the mask materials at the UV
166 doses applied, consistent with the negligible effect on particle removal. Changes in the
167 morphology of the polymer layers could also manifest in changing the pressure drop across mask
168 materials.⁷ In all cases, relative to the non-irradiated controls, we observed no significant
169 difference in pressure drop across any of the masks after irradiation up to 10 J/cm². Thus,
170 morphological assessment and pressure drop measurements confirmed negligible impacts created
171 by UV-C irradiation.

172 Virus particles tend to be shaded in droplets or present as wet aerosol particles. The
173 hydrophobicity of polymers present in any mask layer may impact aerosol removal. Therefore,
174 surface contact angle measurements were performed as an indicator of hydrophobicity. The outer
175 layers of Masks A ($\theta=125.3 \pm 3.1$ to $\theta=119.3 \pm 4.4$; n=5) and B ($\theta=123.5 \pm 3.1$ to $\theta=124.9 \pm 1.4$;
176 n=5) exhibited surface contact angles greater than 90°, indicating hydrophobic materials. The
177 inner layers of Masks A and B and the surgical mask were hydrophilic and wetted easily ($\theta <$
178 90°). After 10 J/cm² of UV-C irradiation, the surface contact angle measurements were not
179 significantly different (p<0.05).

180 Mechanical strength and deformation testing of the masks and elastics were conducted.
181 Results (summarized in Figure SI.11) showed that 10 J/cm² UV irradiation had negligible impact
182 on mechanical properties for N95 and surgical masks. Mask A had a higher strength (110–125

183 lbf) than Mask B (50–52 lbf), and both were stronger than the surgical mask (18–20 lbf). Mask B
184 had a higher deformation (4–5 in) compared with Mask A (2–3 in) and surgical mask (<0.5 in).
185 Prior work using a bursting strength test with N95 masks similarly concluded that 11 of 13
186 masks showed no change in strength at a UV-C dose of 120 J/cm², but 90% of the masks showed
187 differences between new and UV-C treated masks at very high dosages (950 J/cm²).⁷ Compared
188 with the mask itself, the elastic straps failed at a much lower strength (5–15 lbf). However, there
189 was no effect of UV irradiation of the strength or deformation of elastic straps.

190

191 **Design considerations for UV-light disinfection reactors to enable reuse of N95 masks**

192 Based upon the a) feasibility to disinfect masks with UV light from literature, b) validation of
193 virus-size aerosol removal by the masks after UV treatment in this study, and c) confirmation
194 that material characteristics, morphology, and strength were unchanged by UV treatment, we
195 concluded reuse of masks following UV treatment should be viable. During our testing it was
196 clear that all surfaces of the N95 mask could be exposed to UV light, albeit perhaps not equal
197 dosages on all surfaces. Because the pleated folds in the surgical mask (Figure 1) resulted in
198 sections of the mask not being directly exposed to UV-C light, UV-C treatment was deemed
199 appropriate for the N95 masks tested but not for masks with pleated folds. The curved surfaces
200 and metal grating (Figure SI.1) impart some reduction in UV dose. We based the delivered UV
201 dose on a spatially averaged series of measurements using a radiometer across multiple locations
202 in the reactor. Future work could use ray-trace modeling in the reactor or use photo-sensitive
203 “paper test-patches” to quantify the minimum UV dosage reaching any surface of N95 masks.

204 The next step was to design and fabricate a “reactor” suitable to deliver the germicidal UV
205 dose. A “treating room” has been suggested,²⁵ where large numbers of hanging masks are treated

206 by mobile towers of UV-C lamps. We conducted individual discussions with physicians and first
207 responders who suggested desirable characteristics of a mask treatment system would be: 1) a
208 treatment time of <5 minutes, 2) the ability to treat 5 to 25 masks at a time during shift-changes,
209 and 3) ability to treat and reuse masks multiple times. Ten daily treatment and reuse cycles were
210 considered reasonable, along with weekly disposal of the masks, as other factors (sweat,
211 humidity, etc.) would likely limit additional use of current N95 masks.

212 Achieving 1 J/cm² dose within 5 minutes requires >3 mW/cm² of UV-C light to all surfaces of
213 a between 5 to 25 N95 masks. While 265 to 280nm LEDs can disinfect¹⁴ SARS-CoV-2 and they
214 are rapidly improving in output, efficiency, and cost,²⁶⁻²⁸ preliminary assessments of reactor
215 designs to meet end-user treatment time and number of masks treated in a reactor deemed LEDs
216 to be less feasible at this time than the lower cost, higher output, and readily-available 254nm
217 low-pressure mercury lamps. A benefit of LED technology could be their ability to be placed in
218 unique, non-linear, geometries that could more effectively provide uniform irradiation of all
219 surfaces on curved masks.¹⁴ Figure SI.12 illustrates a metallic tool storage box “reactor” (30cm x
220 152cm x 30cm) equipped with four 120W 254nm lamps with a grated metal rack that supports
221 roughly twenty N95 masks. The mask-treatment prototype reactor includes several safety
222 features and was fabricated in less than 1 week during the pandemic using materials readily
223 available from home-supply stores. Figure SI.12 shows irradiance measurements using a
224 radiometer throughout this reactor, confirming > 9 mW/cm² was achieved everywhere. This
225 design enabled delivery of at least 1 J/cm² UV-C to both the top and bottom of masks within ~2
226 minutes. Supplemental information includes designs for the system and safety features and also
227 includes an operational manual.

228 Assuring the system delivers the intended UV-C dose was, and remains, a challenge.

229 Although it would technically provide additional assurance consistent UV-C dose was delivered,

230 the cost to purchase and install sensor electronics was nearly equivalent to the entire UV-C

231 reactor cost, and thus precluded installation of a real-time radiometer. A lower cost option was to

232 include a timer and thermometer attached to the reactor surface, which heats by 4 to 8 °C when

233 all four lamps are operating properly. The temperature measurements serve as an assessment of

234 system performance. Additionally, we recently procured color-change paper test strips for

235 germicidal light (Intellego Technologies) and validated them against radiometer based

236 measurements for 50 to 200 mJ/cm² using irradiation times of 1 to 20 seconds, using the reactor

237 shown in Figure SI.1b. To our knowledge there have been few studies on the validation of UV-C

238 paper “test-strips” that could meet this need, but these appear limited to UV-C dosages < 200

239 mJ/cm².²⁹ A research need is a low-cost strategy to measure surface UV-C dosage.

240 Reusing facial masks will help reduce biomedical waste tonnage. Future research should fill

241 critical technical gaps and conduct both techno-economic (TEA) and life cycle analysis (LCA) to

242 understand the extent to which treating and reusing facial masks is beneficial and sustainable in

243 normal healthcare operations (i.e., non-shortage situations). With a functional unit of a facial

244 mask, one critical factor includes the energy associated to deliver a disinfecting UV-C dose and

245 the number of times a mask can be reused.¹⁸ There remains considerable uncertainty in the

246 required UV-C dosage, ranging from 1–10 J/cm² to achieve >99.9% reduction in recoverable

247 virus using N95 masks to < 50 mJ/cm² for similar inactivation reported for other surfaces.^{13, 14, 30}

248 Research is needed to quantify surface effects and determine if higher UV-C dosages penetrate

249 the polymer layers used in the N95 masks. Some papers suggest UV-C exposures exceeding 950

250 J/cm² impart little change in N95 mask pressure drops⁷ and thus could be an upper limit on the

251 cumulative life-time of exposures before masks need to be disposed. Studying effects of
252 multiple, sequential UV-C treatments is needed for LCA to be conducted. Robust LCAs would
253 likewise contrast UV-C treatment against other disinfection modalities (e.g., heat, aerosolized
254 H₂O₂, ClO₂). As an alternative to masks designed *a priori* for single-use, numerous creative
255 designs emerging during the pandemic suggest that N95 masks could be redesigned for
256 intentional treatment and reuse. LCAs on strategies to decrease biomedical waste would lessen
257 the environmental impacts of PPE.

258

259 **Acknowledgements**

260 The authors acknowledge Peter Goguen, Barzin Mobasher, and Subramaniam Rajan for
261 conducting tensile tests and data analysis. We thank Stan Klonowski for obtaining optical
262 microscope images and Laurel Passantino for technical editing. This work was partially funded
263 by the National Science Foundation Nanosystems Engineering Research Center on
264 Nanotechnology-Enabled Water Treatment ((EEC-1449500)) and RAPID program (CBET-
265 2028074).

266

267 **Supporting Information**

268 Supplementary methods, experimental reactor designs and light flux measurements, tensile
269 strength testing, filtration efficiency data, SEM images, FTIR spectra and data interpretation,
270 Figures S1-12, and UV-Disinfection system operation manual.

271

272

273 **References**

274 1. Nichols, A.; Manzi, S., Physical space and its impact on waste management in the
275 neonatal care setting. *Journal of Infection Prevention* **2014**, *15*, 134-138.

276 2. Patel, A.; D'Alessandro, M.; Ireland, K.; Burel, W.; Wencil, E.; Rasmussen, S., Personal
277 Protective Equipment Supply Chain: Lessons Learned from Recent Public Health Emergency
278 Responses. *Health Security* **2017**, *15*, 244-252.

279 3. CDC Decontamination and Reuse of Filtering Facepiece Respirators.

280 [https://www.cdc.gov/coronavirus/2019-ncov/hcp/ppe-strategy/decontamination-reuse-
281 respirators.html](https://www.cdc.gov/coronavirus/2019-ncov/hcp/ppe-strategy/decontamination-reuse-respirators.html) (May 1, 2020),

282 4. Bergman, M. S.; Viscusi, D. J.; Heimbuch, B. K.; Wander, J. D.; Sambol, A. R.; Shaffer,
283 R. E., Evaluation of Multiple (3-Cycle) Decontamination Processing for Filtering Facepiece
284 Respirators. *Journal of Engineered Fibers and Fabrics* **2010**, *5*, 33-41.

285 5. Fisher, E. M.; Williams, J. L.; Shaffer, R. E., Evaluation of Microwave Steam Bags for
286 the Decontamination of Filtering Facepiece Respirators. *Plos One* **2011**, *6*, e18585.

287 6. Heimbuch, B. K.; Wallace, W. H.; Kinney, K.; Lumley, A. E.; Wu, C. Y.; Woo, M. H.;
288 Wander, J. D., A pandemic influenza preparedness study: Use of energetic methods to
289 decontaminate filtering facepiece respirators contaminated with H1N1 aerosols and droplets.

290 *American Journal of Infection Control* **2011**, *39*, E1-E9.

291 7. Lindsley, W. G.; Martin, S. B.; Thewlis, R. E.; Sarkisian, K.; Nwoko, J. O.; Mead, K. R.;
292 Noti, J. D., Effects of Ultraviolet Germicidal Irradiation (UVGI) on N95 Respirator Filtration
293 Performance and Structural Integrity. *Journal of Occupational and Environmental Hygiene*
294 **2015**, *12*, 509-517.

295 8. Viscusi, D. J.; Bergman, M. S.; Eimer, B. C.; Shaffer, R. E., Evaluation of Five
296 Decontamination Methods for Filtering Facepiece Respirators. *Ann. Occup. Hyg.* **2009**, *53*, 815-
297 827.

298 9. Moore, G.; Ali, S.; Cloutman-Green, E. A.; Bradley, C. R.; Wilkinson, M. A. C.; Hartley,
299 J. C.; Fraise, A. P.; Wilson, A. P. R., Use of UV-C radiation to disinfect non-critical patient care
300 items: a laboratory assessment of the Nanoclave Cabinet. *BMC Infectious Diseases* **2012**, *12*,
301 174.

302 10. Rowan, N. J.; Laffey, J. G., Challenges and solutions for addressing critical shortage of
303 supply chain for personal and protective equipment (PPE) arising from Coronavirus disease
304 (COVID19) pandemic – Case study from the Republic of Ireland. *Sci. Total Environ.* **2020**, *725*,
305 138532.

306 11. Beck, S. E.; Hull, N. M.; Poeppling, C.; Linden, K. G., Wavelength-Dependent Damage
307 to Adenoviral Proteins Across the Germicidal UV Spectrum. *Environmental Science &*
308 *Technology* **2018**, *52*, 223-229.

309 12. Beck, S. E.; Wright, H. B.; Hargy, T. M.; Larason, T. C.; Linden, K. G., Action spectra
310 for validation of pathogen disinfection in medium-pressure ultraviolet (UV) systems. *Water*
311 *Research* **2015**, *70*, 27-37.

312 13. Tseng, C. C.; Li, C. S., Inactivation of viruses on surfaces by ultraviolet germicidal
313 irradiation. *Journal of Occupational and Environmental Hygiene* **2007**, *4*, 400-405.

314 14. Inagaki, H.; Saito, A.; Sugiyama, H.; Okabayashi, T.; Fujimoto, S., Rapid inactivation of
315 SARS-CoV-2 with Deep-UV LED irradiation. *bioRxiv* **2020**, 2020.06.06.138149.

316 15. Fisher, E. M.; Shaffer, R. E., A method to determine the available UV-C dose for the
317 decontamination of filtering facepiece respirators. *J. Appl. Microbiol.* **2011**, *110*, 287-295.

318 16. Mills, D.; Harnish, D. A.; Lawrence, C.; Sandoval-Powers, M.; Heimbuch, B. K.,
319 Ultraviolet germicidal irradiation of influenza-contaminated N95 filtering facepiece respirators.
320 *American Journal of Infection Control* **2018**, *46*, E49-E55.

321 17. Silverman, A. I.; Boehm, A. B., Systematic Review and Meta-Analysis of the Persistence
322 and Disinfection of Human Coronaviruses and Their Viral Surrogates in Water and Wastewater.
323 *Environmental Science & Technology Letters* **2020**, doi.org/10.1021/acs.estlett.0c00313.

324 18. Fisher, E. M.; Noti, J. D.; Lindsley, W. G.; Blachere, F. M.; Shaffer, R. E., Validation
325 and Application of Models to Predict Facemask Influenza Contamination in Healthcare Settings.
326 *Risk Analysis* **2014**, *34*, 1423-1434.

327 19. NIOSH *Determination of particulate filter efficiency level for N95 series filters against*
328 *solid particulates for non-powdered, air-purifying respirators, Standard Testing Procedure*
329 (STP); National Institute for Occupational Safety and Health: Pittsburgh, PA, December 13,
330 2019.

331 20. NIOSH *Determination of particulate filter efficiency level for P99 series filters against*
332 *liquid particulates for non-powdered, air-purifying respirators, Standard Testing Procedure*
333 (STP); National Institute for Occupational Safety and Health: Pittsburgh, PA, 2019; p 8.

334 21. Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.;
335 Lu, R.; Niu, P.; Zhan, F.; Ma, X.; Wang, D.; Xu, W.; Wu, G.; Gao, G., A Novel Coronavirus
336 from Patients with Pneumonia in China, 2019. *New England Journal of Medicine* **2020**, *382*,
337 727-733.

338 22. Hedrick, S. A.; Chuang, S. S. C., Temperature programmed decomposition of
339 polypropylene: in situ FTIR coupled with mass spectroscopy study. *Thermochimica Acta* **1998**,
340 *315*, 159-168.

341 23. Abdel-Hamid, H. M., Effect of electron beam irradiation on polypropylene films—
342 dielectric and FT-IR studies. *Solid-State Electronics* **2005**, *49*, 1163-1167.

343 24. Mittal, R.; Ni, R.; Seo, J. H., The flow physics of COVID-19. *Journal of Fluid
344 Mechanics* **2020**, *894*.

345 25. Hao, L.; Wu, J.; Zhang, E.; Yi, Y.; Zhang, Z.; Zhang, J.; Qi, J., Disinfection efficiency of
346 positive pressure respiratory protective hood using fumigation sterilization cabinet. *Biosafety and
347 Health* **2019**, *1*, 46-53.

348 26. Chen, J.; Loeb, S.; Kim, J. H., LED revolution: fundamentals and prospects for UV
349 disinfection applications. *Environ. Sci.-Wat. Res. Technol.* **2017**, *3*, 188-202.

350 27. Prasad, A.; Du, L. H.; Zubair, M.; Subedi, S.; Ullah, A.; Roopesh, M. S., Applications of
351 Light-Emitting Diodes (LEDs) in Food Processing and Water Treatment. *Food Engineering
352 Reviews* **2020**.

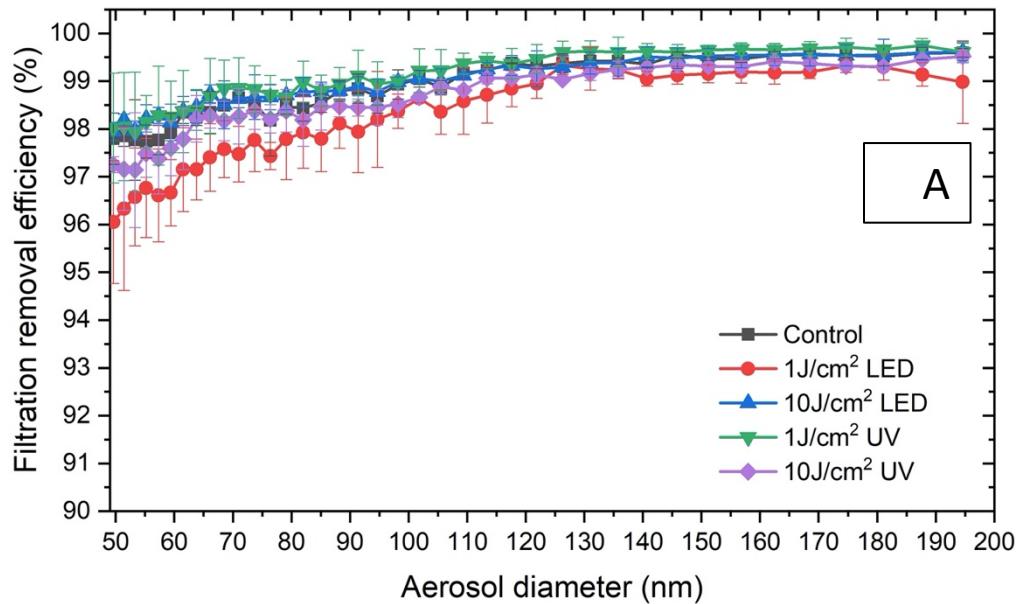
353 28. Matafonova, G.; Batoev, V., Recent advances in application of UV light-emitting diodes
354 for degrading organic pollutants in water through advanced oxidation processes: A review.
355 *Water Research* **2018**, *132*, 177-189.

356 29. Lindblad, M.; Tano, E.; Lindahl, C.; Huss, F., Ultraviolet-C decontamination of a
357 hospital room: Amount of UV light needed. *Burns* **2020**, *46*, 842-849.

358 30. Woo, H.; Beck, S. E.; Boczek, L. A.; Carlson, K. M.; Brinkman, N. E.; Linden, K. G.;
359 Lawal, O. R.; Hayes, S. L.; Ryu, H., Efficacy of Inactivation of Human Enteroviruses by Dual-
360 Wavelength Germicidal Ultraviolet (UV-C) Light Emitting Diodes (LEDs). *Water* **2019**, *11*,
361 1131-1138.

362

363

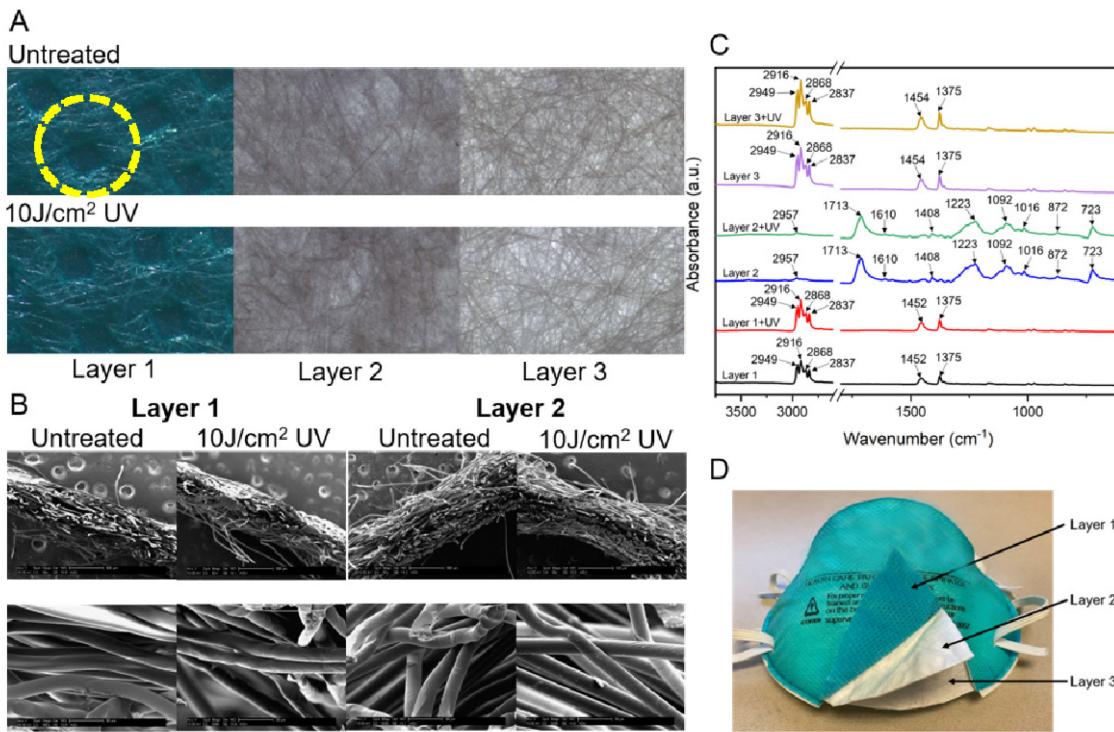


365

366

367

Figure 1. Photographs of the three masks studied in this research.



368

369

370 **Figure 2.** Filtration efficiency comparisons using aerosolized silica particles for three facial
 371 masks without UV treatment or with 1 and 10J/cm² UV dose delivered by 265nm LED or 254nm
 372 mercury lamps. A) shows data for particle removal efficiency between 5 and 220 nm for Mask B.
 373 B) shows particle removal efficiencies for all particles between 5 and 220 nm. Error bars show
 374 one standard deviation in each direction from the average. Different letters (a, b, c, d) above each
 375 bar identify experiments that are statistically different ($p>0.05$) based upon a two-tail paired
 376 Student's t-test.

377

378 **Figure 3.** Material characterization for different layers in Mask A using A) optical microscopy
 379 where the yellow dashed circle shows a checkerboard pattern of bundled fibers, B) SEM, and C)
 380 FTIR, and D) photograph of Mask A showing three polymer layers that were separately
 381 characterized.

382