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Abstract
A large number of massive crystal-plasticity-finite-element (CPFE) simulations are performed and post-processed to reveal
the effects of element type and mesh resolution on accuracy of predicted mechanical fields over explicit grain structures. A
CPFE model coupled with Abaqus/Standard is used to simulate simple-tension and simple-shear deformations to facilitate
such quantitative mesh sensitivity studies. A grid-based polycrystalline grain structure is created synthetically by a phase-
field simulation and converted to interface-conformal hexahedral and tetrahedral meshes of variable resolution. Procedures
for such interface-conformal mesh generation over complex shapes are developed. FE meshes consisting of either hexahedral
or tetrahedral, fully integrated as linear or quadratic elements are used for the CPFE simulations. It is shown that quadratic
tetrahedral and linear hexahedral elements are more accurate for CPFE modeling than linear tetrahedral and quadratic hexa-
hedral elements. Furthermore, tetrahedral elements are more desirable due to fast mesh generation and flexibility to describe
geometries of grain structures.

Keywords Solids · Finite element methods · Plasticity · Micromechanics · Mesh sensitivity

1 Introduction

Modeling of polycrystalline metals often employs spatio-
temporal domains of constituent grains interacting explicitly
with each other, while achieving the state of stress equi-
librium and strain compatibility [1–4]. Such modeling is
referred to as full-field. The full-field microstructural mod-
eling, especially in three-dimensions (3D), accounts for
topological effects of microstructural evolution on microme-
chanical fields defined in term of stress and strain and facili-
tates better understanding of complex phenomena pertaining
to material behavior. The stress equilibrium governing equa-
tions of mechanics in conjunction with a constitutive law
describing the material behavior under deformation can be
solved numerically using the finite element method (FEM) in
terms of a work-conjugated stress–strain measures [2]. For
the FEM, themicrostructural domainmust be discretized into
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finite elements. If a crystal plasticity-based constitutive law
is embedded at every FE integration point, the mechanical
fields are governed by crystallography including deforma-
tion mechanisms and crystal lattice orientation as well as the
evolution of inter- and intra-granular misorientation, grain
shape, and grain-boundary-character-distribution (GBCD).

Beginning from the research reported in [5], the crystal
plasticity FE (CPFE) models have been extensively used to
predict mechanical fields, typically with a sub-grain mesh
resolution [6–11]. In early CPFE modeling, the morphol-
ogy of grains has not been considered [12–18]. Subsequent
studies have considered simplified geometries representing
grains such as rhombic dodecahedrons, cuboids, and trun-
cated octahedrons [19–21]. As these geometries were gross
approximations of real grain structures and unable to repre-
sent grain boundaries, the intra-granular and inter-granular
fields were also gross approximations [22]. Recent devel-
opments in the field have facilitated accurate representation
of individual grains to elucidate the role of grain structure
in determining heterogeneous deformation [9, 10, 23–30].
Such heterogeneous deformation as a function ofmicrostruc-
tural evolution and inherent anisotropy even under uniform
macroscopic deformation conditions can be predicted by
CPFEmodels. The plasticitymodeling at grain scale is essen-
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tial for understanding and attempting to predict mechanical
extremes such as void nucleation driven by local strain con-
centrations. While full-field models can be used to obtain
homogenizedmaterial response,more oftenmean-fieldmod-
els are used for such purpose. However, the mean field
models do not account for explicit grain-to-grain interactions
[31–44].

An essential building block pertaining to theCPFEmodel-
ing of explicit grain structure is generation of polycrystalline
domain. To this end, voxel-based microstructures are con-
verted into finite element meshes. One methodology to gen-
erate a synthetic voxel-based microstructure is the Voronoi
tessellation [24, 25, 45–48]. A software, DREAM.3D (the
digital microstructure analysis environment in 3D) has been
developed by U.S. Air Force Research Laboratory and Blue
Quartz as a more sophisticated tool to generate voxel-based
microstructures [49]. Grain size and shape statistics, ori-
entation and misorientation distributions can be used as
inputs to generate voxel-based models of microstructure.
A convenient output of the software for subsequent mesh
generation is surface mesh over individual grains. Synthetic
microstructures representedbyvoxels can further be obtained
bymicrostructural evolutionmodels such as phase-field grain
growth [50], Potts (Monte-Carlo) grain growth [51, 52], and
cellular automata [53, 54]. In addition to synthetic gener-
ation of voxel-based microstructures, several experimental
techniques have been advanced/developed to acquire real
3D grain structure data. These techniques include, robotic
serial sectioning complemented with electron backscatter-
ing diffraction (EBSD) [55, 56], focused ion beam (FIB)
EBSD serial sectioning [57–62], and non-destructive near
field high energy X-ray diffraction microscopy (nf HEDM)
[63–67]. DREAM.3D offers various features to post-process
such experimental data producing triangular surface mesh
for grains for subsequent volume mesh generation.

In polycrystalline CPFE simulations, microstructural data
is converted into a finite element mesh. A voxel grid-based
description of the microstructure requires a significant num-
ber of voxels to capture the complex geometry of the grains
accurately. If every voxel is converted to a hexahedral (brick)
finite element [68], the mesh may contain a very large num-
ber of finite elements, increasing the computational cost
of such simulations beyond practical levels. In addition,
it is shown that voxelated meshes could develop artificial
stress/strain localizations at interfaces or triple junctions due
to stair-case instead of smooth/flat grain boundaries present
in such meshes [28, 69]. In summary, while a microstructure
obtained directly from experimental images in voxel format
may be the easiest way to initialize simulations with hex-
ahedral elements, large number of voxels equivalent to the
number of hexahedral elements may make such simulations
computationally inefficient and the intrinsic stair-stepped
grain boundaries may make the simulations inaccurate.

In recent works [70, 71], we have developed procedures
relying on the surfacemesh of individual grain to create tetra-
hedral volumemesh,which is conformal between grains. The
conformal mesh implies that neighboring grains share nodes
at grain boundaries. Several subsequent works have uti-
lized the developed tools to study shear band formation [72]
and explicit twins [8, 73]. These procedures have also been
advanced to create polycrystalline meshes for various speci-
men geometries other than cubes suitable for microforming
[74, 75] and micromechanical testing [46] simulations. Also,
mesh generation software package Cubit, developed at San-
dia National Laboratories [76], can generate 3D interface
conformal meshes using not only tetrahedral but also hexa-
hedral elements.

In this work, we investigate effects of element types
and mesh resolution for CPFE modeling of explicit grain
structures. The study complements the recent work of mesh
sensitivity of single crystal with grains represented by simple
cubic shapes and polycrystalline representative volume ele-
mentswhile varying factors such as initial textures, hardening
models and boundary conditions [27]. In addition to account-
ing for the effect from complex grain features in realistic
microstructures, the present study considers four element
types including linear tetrahedral (tet), quadratic tet, linear
hexahedral (hex or brick), and quadratic hex of various reso-
lutions in predicting themechanical fields. A large number of
massiveCPFE simulations are performed and post-processed
to reveal the effects of element type and mesh resolution on
accuracy of predicted mechanical fields. An initial voxel-
based polycrystalline grain structure (microstructural cell) is
created synthetically by a phase field grain growth simula-
tion and converted to interface-conformal hex and tet meshes
at various levels of discretization. Considering that bound-
ary conditions may affect the mesh sensitivity in addition to
grain structure, two types of boundary conditions involving
simple tension (ST) and simple shear (SS) are imposed over
the microstructural domain for the given number of elements
i.e. their degrees-of-freedom. Since these simulations require
significant memory size and computational time, a parallel
computing infrastructure is utilized. Comparisons of CPFE
results in terms accuracy and computational efficiency are
presented and discussed in the paper. It is anticipated that the
main conclusion from this studywill serve as useful guidance
in polycrystalline CPFE modeling.

2 Modeling framework

2.1 Summary of CPFE and a hardeningmodel

Astandard single crystal elasto-visco-plastic constitutive law
is used to relate a pair of work conjugated stress and strain
measures at each integration point, in every finite element
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[13]. This formulation is briefly summarized below. The total
deformation gradient tensor, F, at every integration point
obtained from the finite element solver is multiplicatively
decomposed into an elastic stretching and lattice rotation
part,F∗, and the plastic part,Fp , embedding the plastic defor-
mation carried out by crystallographic slip

F � F∗Fp. (1)

The stress–strain relations are

T∗ � CE∗,T∗ � F∗−1{(detF∗)σ
}
F∗−T ,E∗ � 1

2

{
F∗TF∗ − I

}
,

(2)

where C is the elastic stiffness tensor, T∗ is the second
Piola–Kirchhoff stress, E∗ is the Green-Lagrangian strain
tensors, and σ is the Cauchy stress. The flow rule for Fp is

Ḟp � LpFp,Lp �
∑

α

γ̇ αbα
o ⊗ nα

o , (3)

where γ̇ α is the shearing rate per slip system α, while bα
o ,

and nα
o denote the slip system geometry i.e. the slip direction

and the plane normal, respectively, in the total Lagrangian
manner denoted by the subscript ‘o’. The power-law relation
is used for the shearing rate [77–79].

γ̇ α � γ̇ α
0

( |τα|
τα
c

)1/m
sign

(
τα

)
, (4)

where τα is on the driving force (τα � T∗ · bα
o ⊗ nα

o ) on the
slip systemα, τα

c is the resistance to slip, γ̇ α
0 is a reference slip

rate of 0.001 s−1, and m is the strain rate sensitivity constant
of 0.01. To complete the theory, the crystal lattice spin,W∗,
is

W∗ � Wapp − Wp,Wp � 1

2

(
Lp − LpT

)
, (5)

whereWapp is the applied spin over the polycrystal andWp is
the plastic spin. The numerical implementation of the above
theory is described in detail in [13].

The constitutive model summarized above has been cou-
pled with a hardening model for the evolution of slip
resistance. Themodel has been presented and applied to poly-
crystalline Cu in [7]. The model considers statistically stored
dislocations (SSDs) governing the threshold stresses for the
activation of each slip system. The densities of dislocations
evolve based on a thermally activated rate law with shear-
ing on slip systems [80]. The slip resistance, τα

c , for all
{111}〈110〉 slip systems α, is the isotropic over all slip sys-

tems, i.e.,τα
c � τc,∀α. However, it varies from grain to grain.

The τc is the sum of three contributions as follows [81–85]

τc � τ0 + τ f or + τsub, (6)

with τ0 being a friction stress that embeds the Peierls stress,
barrier effect due to grain size, and any content of initial
dislocation density. This term does not evolve with plastic
strain but decays exponentially with temperature as is the
case for many metals [38, 86].

τ0 � Aexp

(
−T − 298

B

)
. (7)

here A and B are fitting constants and T is the temperature in
K. The remaining two contributions to slip resistance are the
forest and substructure/debris interaction stresses, τ f or and
τsub, respectively. These two terms evolve with dislocation
densities, i.e. the forest and substructure dislocation densities
ρ f or and ρsub according to the Taylor-type relations [87–89].

τ f or � χbμ
√

ρ f or , (8)

τsub � 0.086μb
√

ρsublog

(
1

b
√

ρsub

)
, (9)

where b is the Burgers vector (2.5563×10−10 m for Cu), μ
is the shear modulus (4.8×104 MPa for Cu) and χ is a dis-
location interaction factor [90] that varies with temperature
as follows.

χ � χ0 − K1ln

(
T

K2

)
. (10)

At room temperature,χ(T � 298K ) is 0.9541. The initial
density of statistically stored forest dislocation density is set
to 1012 m−2, which is an annealed state of the material and
ρ f or is determined by the balance between the rate of gener-
ation and the rate of removal i.e. dynamic recovery [87, 91,
92],

∂ρ f or

∂γ
� ∂ρgen, f or

∂γ
− ∂ρrem, f or

∂γ

� k1
√

ρ f or − k2(ε̇, T )ρ f or ,

	ρ f or � ∂ρ f or

∂γ

∑

α

∣∣	γ α
∣∣, (11)

with ks1 as a coefficient for statistical trapping and ks2 as a
rate-sensitive coefficient defined by

k2
k1

� χb

g

(
1 − kT

Db3
ln

(
ε̇

ε̇o

))
. (12)
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Fig. 1 a A microstructure
produced using a phase field
grain growth code. The original
phase field data is shown on the
left with red regions (grain
boundary regions) representing
locations where multiple phase
fields exist. The middle image
shows grain boundaries. The
image on the right is a section
through the microstructure
showing the internal structure.
b Pole figures showing the
distribution of crystal
orientations, which will be
assigned to the model in a

In Eq. (12), k, ε̇o, g, and D are a Boltzmann constant, a
reference strain-rate of 107 s−1, an activation enthalpy, and
a drag stress, respectively. The last two are fitting constants.

The rate of debris density of dislocations evolves using

	ρsub � qb
√

ρsubk2ρ f or

∑

α

∣∣	γ α
∣∣, (13)

with q as a rate coefficient defined by

q � q0ln

(
1 +

T

q1

)
. (14)

The factor q determines a fraction of dislocations that
leads to debris formation, while the rest is annihilated. Equa-
tion (13) is based on thermally activated processes, such as
cross slip and climb, which are responsible for pattern forma-
tion [93–96]. In themodel, a smaller fraction of the recovered
forest dislocations contributes to debris formation.

The hardening law parameters for polycrystalline Cu have
been presented in [7]. The parameters have been calibrated
and validated to mechanical tests on Cu over a range of
strain-rates and temperatures. However, only quasi-static
deformation at room temperature is considered in the present
work.

2.2 Mesh generation procedures

To generate an interface conformal hexahedral mesh of poly-
crystals, the Sculpt meshing tool [97, 98], a companion
application to the Cubit Meshing and Geometry Toolkit
developed at Sandia National Laboratories [76] is used. A
phase field data of microstructure is used to define volume

fractions of grains and locate the center of the grain inter-
faces (grain boundaries) at every grid. Cartesian grid nodes
near the interfaces are moved to approximated grain inter-
faces from volume fractions and one or more hexahedra are
inserted on both sides of the grain interfaces. A smooth-
ing step is then performed to improve both smoothness of
the interface planes and the quality of the hexahedra. More
detailed description of interface conformal meshing proce-
dures can be found in [28, 97].

The initial voxelatedmicrostructure generated by a phase-
field grain growth simulation is shown in Fig. 1a. The grain
growth simulation was performed on a uniform grid of 96×
96×96 until approximately 50 grains were achieved. The
simulation relied on a coarse-grained free energy functional
of a polycrystalline system, which is solved for structural
order parameters that describe individual grains. The spatio-
temporal evolution of the order parameter was based on
Allen–Cahn equation [99]. More detailed description of the
model can be found in [28, 100, 101]. The snapshot of the
microstructure is chosen to resolve interfaces/triple junctions
of grains. Edge length of the cube is a unity. The voxels
that make up the phase-field model create stair-stepped grain
boundaries. If such hexahedral meshes with the stair-case
grain boundaries are used in CPFE simulations, mechanical
fields at the grain boundary regions are over predicted. Such
differences in the local plasticity values between the stair-
case and the smooth/flat grain boundaries have been studied
in [69]. The work revealed that the grain boundaries repre-
sented by the stair-case morphology are sources for extreme
plasticity and should be replaced with locally smooth/flat
morphology.
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Fig. 2 a Polycrystalline
microstructure consisting of 52
grains discretized into voxels,
hexahedral elements, and
tetrahedral elements. The
images on the right show
internal boundaries revealing the
stair-stepped morphology of the
grain boundary voxels in the
voxel-based microstructure,
which are smoothed to squares
(hexahedral elements) and
triangles (tetrahedral elements)
representing grain boundary
planes/curvatures shared
between volume elements of
neighboring grains. b Finite
element meshes of variable
resolution for the explicit grain
structure from a along with
C3D4, C3D10, C3D8, and
C3D20 element schematics. The
edge length of the cubes is taken
as a unity. The total number of
elements is given in Table 1

This voxel-based geometrywasmeshedwithCubit/Sculpt
to create six initial hexahedral meshes of various mesh den-
sities. The stair-stepped grain boundaries are smoothed by
meshing (Fig. 2a). Considering both linear and quadratic ele-
ment types/formulations, a total of eightmesheswere created
for simulations as shown in Fig. 2b. Table 1 lists the total

number of elements per finite element mesh from Fig. 2b,
while Table 2 and 3 shows the average number of integration
points per grain and the average element edge length rep-
resenting averaged element size per mesh. After selecting
the microstructural cell consisting of a sufficient number of
grains governing heterogeneous deformation in ST and SS,
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Fig. 2 continued

the grades of meshes are selected for the numerical study.
These are defined based on the number of integration points
and termed as fine, medium, coarse and extra-coarse. The
medium grade meshes had element size similar to mod-
els used in several of our prior successful studies in which
mesh sensitivity studies were performed [70, 102, 103]. The
simulations were performed first with these medium grade
meshes. Subsequently, coarse and fine mesh grades were
created by reducing and increasing the number of integra-
tion points by a factor of approximately two. The fine grade
meshes intended to further improve the accuracy of the simu-

lations approached the limit of our computational resources,
particularly in terms of the memory requirements. Four com-
puter workstations of Intel(R) Xeon(R) Gold 6130 CPU @
2.10 GHz with 32 physical cores and 772 GB RAM per node
were recently acquired specifically for CPFE modeling and
used in the present study. After performing the simulations
using fine and coarse meshes, we observed that the mesh
refinement slightly improved accuracy for<1%, while the
mesh coarsening decreased accuracy for<5%. To decrease
the accuracy more appreciably, the extra-coarse mesh grade
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Table 1 Number of elements per finite element mesh from Fig. 2 categorized by an approximate number of integration points (IPs) for each mesh
density (Fine, Medium, Coarse, and Extra-Coarse)

Mesh Linear Tet (C3D4) Quadratic Tet (C3D10) Linear Hex (C3D8) Quadratic Hex (C3D20)

Fine~4,300,000 IPs 4,477,664 964,865 480,464 215,714

Medium~2,140,000 IPs 2,651,248 559,708 215,714 107,356

Coarse~900,000 IPs 964,865 206,049 107,356 60,058

Ex-Coarse~200,000 IPs 206,049 57,142 24,856 10,193

The number of IPs per element type C3D4, C3D10, C3D8, and C3D20 is 1, 4, 8, and 27, respectively
Italic instances indicate the same mesh used in conjunction with two element types. Bolditalic instances indicate similar mesh density over all
element types

Table 2 Average number of
integration points (IPs) per grain
in the explicit grain structure
models

Mesh Linear Tet Quadratic Tet Linear Hex Quadratic Hex

Fine~4,300,000 IPs 86,109 74,220 73,918 112,005

Medium~2,140,000 IPs 50,986 43,054 33,187 55,743

Coarse~900,000 IPs 18,555 15,850 16,516 31,184

Ex-Coarse~200,000 IPs 3,962 4,396 3,824 5,293

Table 3 Average element edge length per mesh. Abaqus provides this
distance as in between elemental nodes

Mesh Linear Tet Quadratic
Tet

Linear Hex Quadratic
Hex

Fine 0.013413 0.009182 0.012629 0.008264

Medium 0.014774 0.012966 0.016528 0.010431

Coarse 0.018365 0.016961 0.020863 0.023644

Ex-Coarse 0.033921 0.026474 0.034753 0.032699

Considering that the quadratic elements have a node in the middle of
every edge, their average edge length is split in half

was introduced by substantially reducing the number of inte-
gration points.

Pole figures showing the distribution of crystal orienta-
tions assigned to the model are shown in Fig. 1b, while
“Appendix 1” lists Bunge-Euler angles and corresponding
weights. There are 52 grains treated as separate element sets
and each grain is randomly assigned with initially identical
crystal orientation. Note that a representative volume ele-
ment must have sufficient number of constituent grains to
homogenize the variability arising from localmicrostructural
features such as micro-texture, defects and phases. However,
the 52 grains model used in this work is not intended to be
a representative volume element but a microstructural cell
facilitating the numerical study of local fields.

To create the tetrahedral meshes, a procedure described in
[70] and later refined in [71] is followed. First, the surface
meshes of the grains were extracted as STLs from the ini-
tial hexahedral meshes. As STLs are inherently triangular,
Abaqus splits each rectangular element of the surface mesh
on its diagonal to make the triangles. These STLs were then
meshed in MSC Patran [104] with the internal element size

coarsening enabled. Internal coarsening increases the size of
the elements inside the grains, reducing the total number of
elements. The total of six tetrahedral meshes with different
resolutions were selected for either linear or quadratic ele-
ment types. These meshes are also shown in Fig. 2b. The
corresponding element counts for each mesh are shown in
Table 1 along with the average number of integration points
per grain and average element edge per mesh in Tables 2 and
3, respectively.

The meshes are categorized by an approximate number
of IPs for each mesh density (Fine, Medium, Coarse, and
Extra-Coarse). Diagonal of Table 1 (italic, bold numbers)
has mesh density of approximately 200,000. Furthermore,
two instances of linear and quadratic elements whether hex
or tet in Table 1 have the same number of elements (italic
numbers). In summary, the selected meshes of variable res-
olution and four element types can facilitates a variety of
comparisons, which will be presented in subsequent sections
of the paper. In particular, local and global mechanical fields
upon deformation are compared as functions of element type
and resolution of meshes i.e. degrees of freedom. Moreover,
the fields are compared for a given number of integration
points or a given number of elements. Finally, the simula-
tions are compared in terms of computational time.

2.3 Boundary conditions

A simple tension boundary conditions were defined by pre-
scribing a displacement on the top surface in the normal
direction (positive Y), while ensuring the lateral surfaces to
be stress-free. The simple shear case was defined similar to
the simple tension case, but the prescribed displacement was
along the Y-direction on the positive Z face, and the nega-
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Table 4 Nodes × CPUs per node/total CPUs/total CPU time [h]/time per CPU [h] for the simple tension simulations

Mesh Linear Tet Quadratic Tet Linear Hex Quadratic Hex

Fine~4,300,000 IPs 1×30/30/101.5/3.38 3×30/90/129.2/2.44 1×16/16/73.9/4.62 3×24/72/239.7/3.33

Medium~2,140,000 IPs 1×16/16/32/2 1×30/30/119.8/4 1×30/30/17.6/0.59 1×30/30/76.1/2.54

Coarse~900,000 IPs 1×16/16/5.8/0.36 1×30/30/12/0.4 1×30/30/4.5/0.15 1×16/16/29.8/1.86

Ex-Coarse~200,000 IPs 1×16/16/0.8/0.05 1×30/30/2.0/0.07 1×30/30/0.7/0.02 1×30/30/1.4/0.05

Simulations were carried out on a workstation or multiple workstations: Intel(R) Xeon(R) Gold 6130 CPU@ 2.10 GHz with 32 physical cores and
772 GB RAM per node using various numbers of CPUs

Table 5 Nodes × CPUs per node/total CPUs/total CPU time [h]/time per CPU [h] for the simple shear simulations

Mesh Linear Tet Quadratic Tet Linear Hex Quadratic Hex

Fine~4,300,000 IPs 2×30/60/57.3/1.0 2×16/32/78.6/2.5 1×30/30/50.0/1.7 2×16/32/256.6/4.0

Medium~2,140,000 IPs 1×30/30/16.7/0.6 1×30/30/109.0/3.6 1×30/30/15.2/0.51 2×30/60/58.7/0.98

Coarse~900,000 IPs 1×30/30/3.6/0.12 1×30/30/11.2/0.37 1×30/30/3.8/0.13 1×30/30/22.0/0.73

Ex-Coarse~200,000 IPs 1×30/30/0.7/0.02 1×30/30/2.9/0.10 1×30/30/0.7/0.02 1×30/30/1.4/0.05

Simulations were carried out on a workstation or multiple workstations: Intel(R) Xeon(R) Gold 6130 CPU@ 2.10 GHz with 32 physical cores and
772 GB RAM per node using various numbers of CPUs

Table 6 Approximate memory
usage in GB per simple tension
simulation

Mesh Linear Tet Quadratic Tet Linear Hex Quadratic Hex

Fine~4,300,000 IPs 552.9 2,508.9 266.2 1,684.9

Medium~2,140,000 IPs 185.3 613.7 212.4 385.6

Coarse~900,000 IPs 93.4 221.3 173.8 133.4

Ex-Coarse~200,000 IPs 32.2 185.8 61.2 185.3

Table 7 Approximate memory
usage in GB per simple shear
simulation

Mesh Linear Tet Quadratic Tet Linear Hex Quadratic Hex

Fine~4,300,000 IPs 993.6 968.9 432.2 870.1

Medium~2,140,000 IPs 305.4 613.7 212.4 687.4

Coarse~900,000 IPs 175.1 221.4 173.7 216.4

Ex-Coarse~200,000 IPs 173.7 185.3 61.2 185.3

tive Z face was constrained in the Y direction. Prescribed
displacement was U � 0.22 for both tension and shear at
approximate strain rate of 0.001/s and at room temperature.
(Note that the polycrystalline domain has a size of 1). In all
simulations, direct sparse solver in Abaqus was used and the
initial time stepwas0.0001 s, themaximumand theminimum
time steps of 4 s and 0.00002 s were assigned, respectively.

3 Simulation results

A CPFE model coupled with the implicit finite element soft-
ware Abaqus/Standard is used to solve the boundary value
problem corresponding to simple tension (ST) and simple
shear (SS) of the microstructural cell. A total of 32 sim-
ulations have been performed and post-processed for this
paper. The simulations performed were demanding in both
RAM size requirement as well as computational time. Com-
putational time required to complete the jobs is presented

in Tables 4 and 5 given the number of elements and their
degrees-of-freedom and the boundary conditions. As is indi-
cated in the table, the MPI parallel computing infrastructure
available inAbaquswas utilized.Given theCPFEmodel stor-
ing variables pertaining to the crystallography such as crystal
orientations, Schmid tensors etc. in addition to stress–s-
train measures and underlying state variables pertaining to
the hardening law such as slip resistance and dislocation
densities, Table 6, 7 shows the memory requirement per sim-
ulation. Note that the memory usage is a function of the
number of used CPUs per simulation (Tables 4, 5).

Figures 3 and4 showvonMises stress,while “Appendix2”
presents equivalent strain and pressure contours after ST and
SS to adisplacement ofU �0.22.Minor sensitivity ofmodels
to the boundary conditions ST vs SS can be observed. Qual-
itative comparison reveals that the models predict strong/hot
versus weak/cold spots in the microstructure independent
on the level of discretization. Nevertheless, the predicted
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Fig. 3 Von Mises stress contours after simple tension to a displacement of U � 0.22

contours are different for most of the models with the extra-
coarse models exhibiting the obvious deviations.

Further consideration of the fields as a function of ele-
ment type shows that the discontinuities in the fields and the
largest heterogeneities are present in the quadratic hexahe-
dral extra-coarse model. Large deviations are also present
across the linear tet models. Interestingly the largest range
of values in pressure as well as heterogeneity in pressure
fields exhibits the extra coarse quadratic hexahedra mesh.
The fields become smoother with mesh resolution but still
hot/cold spots are present. Linear tetrahedral element also

exhibits a large range of values in pressure. Fields predicted
by quadratic tetrahedral and linear hexahedral appear to be
similar, especially for medium and fine mesh resolutions.

To further investigate internal fields, Fig. 5 shows con-
tours over the surface for a central grain. Figure 6 compares
models quantitatively, in terms of stress versus strain com-
ponents for the central grain using stress–strain curves and a
suitably defined error measure at the middle and at the end
of deformation for both ST and SS. While the overall trends
in the stress–strain curves are similar, the linear tet elements
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Fig. 4 Von Mises stress contours after simple shear to a displacement of 0.22

deviate from the predictions using the other element types.
The error is defined as

%Error(meshi ) �
∣∣∫V σi j (meshi ) − ∫V σi j (QTet964865)

∣∣

∫V σi j (QTet964865)
,

(15)

where V is the volume of central grain, while σi j � σ22 is
for ST and σi j � σ23 is for SS. The error is relative to the
fine Qtet-964,865 model (Fig. 2b). As is evident, the quan-
titative comparisons reveal that linear tet elements introduce
a large error in CPFE calculations, even with substantially

increased mesh resolution. Interestingly the linear brick ele-
ments develop the smallest rate of deviation in the fields
with mesh coarsening amongst the studied element types. In
contrast, the quadratic brick elements develop the greatest
amount of deviation with mesh coarsening. The use of extra-
coarse meshes leads to inaccuracy, as expected independent
on the element type. While the figure quantifies errors as a
function of the simulation method for the central grain only,
similar trends are predicted for any other individual grain or a
group of grains or the overall model. Importantly, predictions
of grain averaged stresses as calculated here can be validated
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Fig. 5 Contours of selected
mechanical fields for the central
grain deformed in a ST and b SS
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Fig. 5 continued
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Fig. 6 a Stress component—strain component curves for the central grain. The insert shows the location of the central grain. b Error plots defined
using Eq. (15) after the displacement of U � 0.11 and U � 0.22

using high energy synchrotron x-rays. The methodology is
being used to measure such grain averaged quantities.

4 Discussion

This work presents results from 32 large-scale simulations
with four element types at various mesh resolutions to under-
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stand discretization errors in polycrystalline CPFE models.
To authors knowledge, this is the first study comparing quan-
titatively the solution accuracy and computational time as
a function of element type and mesh resolution in CPFE
simulations of polycrystalline grain structures. The start-
ing model is a voxel-based polycrystalline grain structure
(microstructural cell) created synthetically by a phase field
grain growth simulation, which is then converted to inter-
face conformal hexahedral and tetrahedral meshes. In doing
so, procedures for interface-conformal mesh generation over
complex shapes for tetrahedral and hexahedral elements are
advanced. The procedures rely on software packages Patran
and Cubit/Sculpt, respectively. Note that while interface con-
formal FE meshes are preferred, especially for predicting
localized behavior such as damage formation and failure, it
is very challenging to rapidly generate 3D conformal meshes
of polycrystalline microstructures. The inherent difficulties
in describing complex shapes with hexahedral elements as
opposed to relatively flexible tetrahedral elements make the
latest version of Cubit/Sculpt very successful mesh gener-
ation tool to obtain interface-conformal hexahedral meshes
of polycrystalline microstructures. Also note that the time to
generate hexahedral mesh is significantly longer and is semi-
automatic, mainly due to additional operations (inclusion of
elements and smoothing) to maintain good mesh quality, rel-
ative to automatic and rapid mesh generation of tetrahedral
mesh starting from the surface mesh of constituent grains.

Given the element type and the number of elements i.e.
their degrees-of-freedom, the computational time involved
in simulations varied. A parallel computing infrastructure is
utilized to run the jobs on a single or multiple workstations
working concurrently. CPFE simulations with various finite
element meshes show the trend that the computational time
per CPU scales with the degrees of freedom for every ele-
ment type. As expected, models with more elements require
more time per CPU than smaller sized models. As the time
per CPU scaleswith the number of degrees of freedom, linear
elements are faster per CPU than the corresponding quadratic
elements. Since brick elements show faster convergence rate
than tetrahedral elements, even the linear brick elements
approach at an equivalent solution accuracy at cheaper com-
putational cost relative to the quadratic tetrahedral elements.

The study of element type andmesh resolution is essential
for attempting to predict the evolutions of local fields dur-
ing plastic deformation, i.e. local stress–strain developments,
especially while predicting phenomena such as void forma-
tions and propagation. Such studies are challenging in crystal
plasticity modeling as these models are not only computa-
tionally intensive but also rely on explicit meshing of grain
structure using a large number of elements of an appropriate
type. Resolving every grain within a grain structure domain
complicates mesh convergence study as the convergence is
strongly influenced by the initial shape and size of grains,

crystallography, global and local loadings as a consequence
of applied boundary conditions and also the hardening law to
a smaller extent. Figure 7 shows locations of the peak stress
localizations upon ST and SS simulations performed in the
presentwork.As is evident, the ‘hot spot’ is at a triple junction
for the model deformed in ST and at a grain boundary for the
model deformed inSS.The actual location is therefore depen-
dent on the imposed boundary condition and also varies with
the element type andmesh refinement. Specifically,while lin-
ear/quadratic hex and quadratic tet consistently predict the
same locations of the hot spots in stress, the liner tet ele-
ments deviate and vary with mesh resolution. Additionally,
quadratic hex elements over predict the level of pressure and
resulting stress triaxiality. As a result, these elements are not
recommended for studying voiding in polycrystals.

Simulation results in this work suggest that linear tetrahe-
dral element is not appropriate for CPFE modeling of grain
structures, although a number of studies utilized it in grain
structure modeling, including the works of present authors
[70, 72]. These elements are overly stiff requiring extremely
fine meshes to arrive at accurate solutions [105]. Moreover,
these elements are susceptible to volumetric locking in mod-
eling of incompressible solids (pressure plots in Figs. 3 and
4). Mesh refinement to about 4.5×106 linear tetrahedral ele-
ments requires large RAM memory. Such refinement only
reduced the error to about 10% (Fig. 6). Further refinement
becomes impractical because of enormous CPU memory
and # of cores requirements. Key advantages of tetrahedral
elements are their geometric adaptability and suitability for
rapid and automatic meshing algorithms. These elements are
very convenient to discretize complex shapes. However, it is
possible to take these advantages only for quadratic tetrahe-
dral elements, as will be discussed shortly.

The discussion above has focused primarily on the perfor-
mances of linear tetrahedral elements for modeling of grain
structures. We now focus on the performances of the hexa-
hedral elements. Quadratic hexahedral elements are not rec-
ommended for severe element distortions as a consequence
of large plastic strains or very high strain gradients [105].
According to the Abaqus User Manual [105], second-order
reduced-integration elements in Abaqus/Standard are likely
to be more accurate than the corresponding fully-integrated
elements. Considering that C3D20 has 27 IPs, while the cor-
responding C3D20R reduced integration element has only 8
IPs, the simulations are faster by approximately a factor of
three. However, these simulations are not performed in the
present work because the linear brick elements and C3D20R
yield similar results. For the first-order reduced integration
(C3D8R) hexahedral element is not recommended primarily
due to its propensity to the hourglass effect [105]. In con-
trast, while the fully integrated elements do not show the
hourglass effect, they are susceptible to volumetric locking.
As stated above, the volumetric locking can appear for fully

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



Computational Mechanics (2021) 67:33–55 47

Fig. 7 Locations of the
mechanical extremes per model
indicated by red dots after (a)
ST and (b) SS

integrated elements while modeling incompressible solids.
Spurious pressure fields can arise at IPs, causing the element
to behave as very stiffly while enforcing the volume con-
servation. Quadratic fully integrated elements are the most
susceptible to lock at larger plastic strains. However, the
reduced-integration of quadratic elements eliminates vol-
umetric locking. In contrast to quadratic elements, linear
hexahedral elements selectively use reduced integration and
do not lock. Mesh refinement helps to reduce volumetric
locking of quadratic elements. Pressure fields in Figs. 3
and 4 show a checkerboard pattern, especially for quadratic
hexahedral elements. The checkerboard pattern is a sign of
volumetric locking. As is evident, mesh refinement helps in
reducing the pattern. Moreover, quadratic hexahedral ele-
ments are the element type first to introduce error greater
than 5% relative to the fine Qtet-964,865 mesh with coarsen-
ing the resolution for a given number of integration points.
The error comes at the expense of losing some geometry
features with coarsening hexahedral elements.

Our results suggest that quadratic tetrahedral and linear
hexahedral elements are recommended for CPFE modeling
of grain structures. According to the pressure maps, linear
hexahedral elements are least prone to volumetric locking.
Also, hexahedral elements usually converged to a solution
of equivalent accuracy at less computational cost compared
to quadratic tetrahedral elements. Considering that shape of
the grains is very complex and far from being rectangular
for hexahedral elements, tetrahedral elements are far more
flexible and desirable. Therefore, although structured hexa-
hedral elements in 3D analyses are desirable, since they give
the best results with the minimum computational cost, tetra-
hedral elements are recommended. Extra coarse tetrahedral
elements still describe the geometry reasonably well while
hexahedral elements fail to capture the geometry (Fig. 2b).

Excluding linear tetrahedral elements, CPFE simulations
show that the deviation between model predictions with

about 200,000 elements performed using different element
typeswould bewithin 5%.Furthermesh refinements improve
the accuracy at the expense of increasing the computa-
tional time andmemory requirements. This strongly suggests
that quadratic tetrahedral elements are the best compromise
between accuracy and computational speed in CPFE simu-
lation of polycrystals.

5 Conclusions

Suitability of the four most commonly used element types
along with varying mesh resolution in CPFE modeling
of grain structures are investigated using large-scale sim-
ulations. A voxel-based polycrystalline grain structure is
generated by a phase field grain growth simulation and
converted to interface conformal hexahedral and tetrahe-
dral element meshes of variable resolution. Procedures for
such interface-conformal mesh generation over complex
shapes relying on Patran for tetrahedral and Cubit/Sculpt
for hexahedral elements are described. CPFE simulations of
simple tension and simple shear deformation conditions are
performed. Minor sensitivity of models to these boundary
conditions is observed. The computational time per CPUwas
measured to scale with the degrees of freedom for every ele-
ment type. As the time per CPU scales with the number of
degrees of freedom, linear elements are faster per CPU than
the corresponding quadratic elements. However, hexahedral
elements exhibit a better convergence rate than quadratic
tetrahedral elements and arrive at a solution of equivalent
accuracy to quadratic tetrahedral elements at less computa-
tional cost. Simulation results suggest that linear tetrahedral
element is not appropriate for CPFEmodeling of grain struc-
tures as these elements are overly stiff. Mesh refinement
only moderately improve such simulation results. Results
also show that quadratic brick elements are not suitable for

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



48 Computational Mechanics (2021) 67:33–55

large plastic straining of complex geometries due to their
propensity to volumetric locking. Similarly, mesh refinement
only reduces the checkerboard pattern in pressure fields. The
mesh resolution studies in capturingmechanical fields shows
that brick elements are more sensitive than tetrahedral ele-
ments, which can be associated to geometric adaptability
of tetrahedral elements. Geometry features can be lost with
brick element coarsening.Moreover, tetrahedral elements are
suitability for rapid and automatic meshing algorithms. In
summary, quadratic tetrahedral and linear hexahedral ele-
ments are more accurate for crystal plasticity finite element
modeling than linear tetrahedral and quadratic hexahedral
elements. Furthermore, tetrahedral elements are more desir-
able due to fast mesh generation and flexibility to describe
complex grain structure geometries. It is anticipated that the
results from this study provide useful guidance for future
CPFE modeling of grain structures. These guidance should
be applicable to other crystal plasticity models as constitu-

tive models and hardening formulations have minor effects
on mesh sensitivity.
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Appendix 1

See Table 8.

Table 8 Bunge-Euler angles
(φ1, Φ, φ2) in degrees and
corresponding volume fraction
(VF) of crystals used to
initialize the model

# φ1 Φ φ2 VF # φ1 Φ φ2 VF

1 285.4 78.7 30.5 0.005631 27 285.4 78.2 21.5 0.024535

2 39.5 60.7 12.8 0.070512 28 351.2 62.8 30.5 0.003533

3 338 86.1 21.5 0.155554 29 188.8 50.7 12.8 0.000113

4 250.2 50.7 12.8 0.012342 30 127.3 86.1 21.5 0.038058

5 144.9 86.1 21.5 0.001854 31 4.4 77.7 4.3 0.012009

6 153.7 61.5 21.5 0.087928 32 22 64.8 40.1 0.00757

7 180 78.7 30.5 0.061393 33 57.1 78.2 21.5 0.063121

8 285.4 53.3 30.5 0.012954 34 22 51.7 21.5 0.024633

9 188.8 86.1 21.5 0.000647 35 232.7 60.7 12.8 0.011798

10 180 86 12.8 0.031774 36 285.4 50.3 4.3 0.003005

11 294.1 60.7 12.8 0.000082 37 223.9 51.7 21.5 0.001046

12 232.7 64.8 40.1 0.009366 38 118.5 72.3 40.1 0.041698

13 65.9 86.2 30.5 0.004408 39 259 70.1 21.5 0.004197

14 136.1 77.7 4.3 0.001502 40 48.3 86.5 40.1 0.001065

15 162.4 53.3 30.5 0.000314 41 250.2 86.1 21.5 0.001816

16 338 50.7 12.8 0.021943 42 101 77.9 12.8 0.000527

17 294.1 50.3 4.3 0.036506 43 223.9 86.2 30.5 0.003741

18 144.9 77.9 12.8 0.025753 44 30.7 62.8 30.5 0.002037

19 92.2 79.5 40.1 0.000605 45 22 86 12.8 0.001655

20 351.2 64.8 40.1 0.002333 46 109.8 50.7 12.8 0.001142

21 144.9 78.2 21.5 0.000108 47 320.5 85.9 4.3 0.025865

22 13.2 78.2 21.5 0.026761 48 30.7 86 12.8 0.010391

23 48.3 62.8 30.5 0.006717 49 22 69.3 4.3 0.03423

24 171.2 72.3 40.1 0.010872 50 329.3 78.2 21.5 0.04146

25 241.5 60.7 12.8 0.000311 51 57.1 86.2 30.5 0.01531

26 153.7 60.7 12.8 0.027493 52 136.1 86.5 40.1 0.009783
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Appendix 2

See Figs. 8 and 9.

Fig. 8 a Equivalent strain and b pressure contours after simple tension to a displacement of U � 0.22
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Fig. 8 continued
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Fig. 9 a Equivalent strain and b pressure contours after simple shear to a displacement of 0.22
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Fig. 9 continued
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