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Constrained-path auxiliary-field quantum Monte Carlo for coupled electrons and phonons
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We present an extension of constrained-path auxiliary-field quantum Monte Carlo (CP-AFQMC) for the
treatment of correlated electronic systems coupled to phonons. The algorithm follows the standard CP-AFQMC
approach for description of the electronic degrees of freedom while phonons are described in first quantization
and propagated via a diffusion Monte Carlo approach. Our method is tested on the one- and two-dimensional
Holstein and Hubbard-Holstein models. With a simple semiclassical trial wave function, our approach is
remarkably accurate for w/(2dtA) < 1 for all parameters in the Holstein model considered in this study where d
is the dimensionality, w is the phonon frequency, 7 is the electronic hopping strength, and A is the dimensionless
electron-phonon coupling strength. In addition, we empirically show that the autocorrelation timescales as 1/w
for w/t < 1, which is an improvement over the 1/w? scaling of the conventional determinant quantum Monte
Carlo algorithm. In the Hubbard-Holstein model, the accuracy of our algorithm is found to be consistent with
that of standard CP-AFQMC for the Hubbard model when the Hubbard U term dominates the physics of the
model, and is nearly exact when the ground state is dominated by the electron-phonon coupling scale A. The ap-
proach developed in this work should be valuable for understanding the complex physics arising from the

interplay between electrons and phonons in both model lattice problems and ab initio systems.
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I. INTRODUCTION

The coupling of electrons to nuclear lattice distortions is
responsible for myriad important physical phenomena in bulk
materials [1]. In particular, the thermodynamic and transport
properties of solids are crucially influenced by electron-
phonon (el-ph) interactions. Perhaps the most spectacular
consequence of el-ph interactions is the emergence of super-
conductivity as described by the Bardeen-Cooper-Schrieffer
(BCS) theory. Here, the el-ph interaction mediates an effec-
tive electron-electron (el-el) attraction which results in the
Cooper pairing of electrons of opposite spin [2]. The BCS
theory provides a quantitative framework for the description
of conventional superconductivity such as that found at low
temperatures in simple metals.

A simple microscopic picture is unfortunately not avail-
able for unconventional superconductors such as the cuprates,
whose critical temperature (7;.) can be above 90 K at ambient
pressure [3,4]. It is believed that the el-ph interaction alone
cannot give rise to these high-7, values [5]. However, exper-
imental evidence exists which indicates that non-negligible
el-ph interactions are present in these materials [6—24]. It re-
mains unclear what role el-ph interactions play in the cuprates
and related materials, and if a potentially delicate interplay
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between el-el and el-ph interactions may influence their su-
perconducting properties.

The canonical model Hamiltonian used to capture the
physics of the cuprates is the two-dimensional (2D) repulsive
Hubbard model [25]. The ground state of the hole-doped 2D
Hubbard model has been thought to support d-wave super-
conductivity for many years [26]. A recent joint numerical
study using two state-of-the-art approaches, density matrix
renormalization group (DMRG) and constrained-path (CP)
auxiliary-field quantum Monte Carlo (AFQMC), indicates
that the ground state of the standard 2D repulsive Hubbard
model with near-neighbor hopping supports modulated phases
(e.g., stripes) that are not superconducting over a range of
repulsion strengths and doping levels [27] expected to de-
scribe the cuprates. This suggests that features beyond those
included in the simple Hubbard model, such as the effects of
multiple bands, longer-ranged Coulomb interactions, and/or
the role of el-ph interactions, may be needed to tip the balance
of the ground state towards superconductivity for realistic
values of doping levels and the magnitude of el-el repulsions.

Our work is motivated by precisely these considerations,
namely, the development of a scalable and accurate numerical
approach that can treat el-ph effects on the same footing
as el-el correlations. This is a challenging task, as treating
the complex electronic degrees of freedom in the pure 2D
Hubbard model is already difficult, even with state-of-the-art
numerical approaches [27-29]. The addition of el-ph effects,
as contained in, e.g., the 2D Hubbard-Holstein model, thus
requires nontrivial extensions of these approaches in order to
treat electrons and phonons on an equal footing.
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Several methods have been formulated or extended to cou-
pled el-ph problems, including DMRG [30-35], variational
exact diagonalization [36], variational Monte Carlo [37-39],
dynamical mean-field theory [40—44], density matrix em-
bedding theory [45,46], and coupled-cluster theory [47-49].
There are difficulties facing each approach. For example,
large el-ph couplings and/or small phonon frequencies are
challenging to handle in most methods based on a second-
quantized representation of phonons because of the necessity
of truncating the phonon Hilbert space. When a large number
of phonons per site are required, the computational cost asso-
ciated with treating them can grow prohibitively expensive. In
addition to the demand of treating the phononic Hilbert space,
there is of course the interacting many-electron problem.
Clearly, the treatment of correlated el-ph coupled systems in
two and higher dimensions over a wide range of the parameter
space in an exact or near-exact manner is a forefront chal-
lenge.

The method that we propose here is an extension of the
CP-AFQMC method developed and popularized by Zhang
and coworkers [50,51]. For purely electronic problems, the
CP-AFQMC approach is similar to the determinant quantum
Monte Carlo (DQMC) method [52-59] in the sense that the
two-body propagation is aided by the Hubbard-Stratonovich
transformation [60] and is formulated in the space of de-
terminants. There, however, are several key differences.
CP-AFQMC reformulates the imaginary-time propagation by
working with open-ended random walks. An exact boundary
condition is introduced in auxiliary-field space, which can be
approximately imposed using a trial wave function, to avoid
the notorious fermion sign problem. The open-ended random-
walk approach allows easy access to zero-temperature results,
and is often much less prone to ergodicity problems in the
Monte Carlo sampling. Moreover, CP-AFQMC can be nat-
urally extended to ab initio Hamiltonians while coping with
the fermionic phase problem associated with these more
complex models using the phaseless approximation instead
of the constrained-path approximation [61,62]. Because of
the constraint imposed on walker trajectories, CP-AFQMC
is no longer exact, unlike DQMC. Furthermore, due to the
constraint, the ground-state energy computed via the usual
mixed estimator is not variational [63]. On the other hand,
CP-AFQMC can be used to access a wider range of interaction
strengths and doping regimes in which DQMC cannot be used
due to the inherent sign problem. It should be noted that, in
addition to its flexibility, CP-AFQMC has been shown to yield
excellent accuracy for strongly correlated electrons [27,29].

In this work we devise an extension of CP-AFQMC to treat
both electrons and phonons on an equal footing, while retain-
ing its benefits for electrons. Our framework is similar to the
extension of Green’s function Monte Carlo (GFMC) as for-
mulated by McKenzie and others [64], where the phonons are
treated in a first quantized space. We present the formulation
of this new CP-AFQMC approach, provide thorough bench-
mark results on the one-dimensional (1D) and 2D Holstein
and Hubbard-Holstein models for various phonon frequencies
and el-ph couplings, and discuss the current scope and limita-
tions of the proposed approach.

The paper is organized as follows: In Sec. II we outline the
model we study and the important parameters that control its

physics. In Sec. III we outline our algorithm. Section IV is
devoted to a discussion of trial wave functions. Sections V A
and V B discuss distinct perturbative approaches to the prob-
lem outlined in Sec. II. Sections VI and VII present results for
the Holstein and Hubbard-Holstein models, respectively. Sec-
tion VIII discusses the extension of our approach to realistic
ab initio problems. In Sec. IX we conclude.

II. MODEL
A. Hubbard-Holstein Hamiltonian

Although the approach we outline is general, we focus
on a paradigmatic model of a correlated system coupled to
phonons, namely, the Hubbard-Holstein model [25,65]. The
Hubbard-Holstein model is defined by the following Hamilto-
nian:

/lfl = 7‘1211) + 7:[;) + ﬂph + ﬂel-ph’ (1)
where
fa=HY + AT, ©)
Ay =—1 D a4, 3)
oe{t.} (i))
HY =0 i, @)
Hon = @) blbi, )
and
Hapn = —g Y _ Ailbi + b)) (6)
with
A = A, . (N
oe{t. !}

dj is the annihilation operator for electrons with spin o on
site i, 13,- is the annihilation operator for bosons on site i, and
7i; is the electronic number operator on site i. The nearest-
neighbor electronic hopping is controlled by ¢ and the onsite
repulsion is characterized by the parameter U. The phonons
are treated as harmonic oscillators with a single frequency w.
The electronic density is coupled to the phonon degrees of
freedom characterized by a coupling constant g.

There are three relevant dimensionless parameters to de-
fine. The first is the adiabaticity ratio in units of the hopping
parameter

®)

1)
o=—
t

The second is the effective onsite repulsion in units of the
hopping parameter

U
e ©)]

Lastly, we define the dimensionless el-ph coupling A,

g

= — 10
2dtw (10)
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where d is the dimensionality of the system. When U is the
dominant parameter, a spin density wave (SDW) phase similar
to that found in the Hubbard model is expected to arise. When
A dominates, a charge density wave (CDW) phase similar
to that found in the Holstein model arises. A metallic or
superconducting phase can arise when the system transitions
between these two phases [58,66].

B. Phonons in first quantization

Since the Hamiltonian in Eq. (1) does not commute with
the phonon number operator 13;!'5,-, the number of phonons in
the system is not conserved. Therefore, one needs to work
with an infinitely large phonon Hilbert space in order to study
eigenstates of the Hubbard-Holstein model. Methods working
in a second-quantized space such as DMRG [30] generally
require a specification of the maximum number of phonons
a priori for the sake of computational tractability. Limiting
the maximum number of phonons effectively truncates the
infinite Hilbert space, which may introduce significant errors,
particularly when « is small and/or X is large.

For this reason we work within the framework of first
quantization, namely, with position and momentum operators
on each site i,

X T .. .

Xi =/ —(b; + b)), (11
2mw

P= i\ Z2 6~ by, (12)

and thus reexpress

. mw?* 1 4 w
= (—X? 5P - —), a3

i

Heoph = —gv2mo Y X (14)

in the Hubbard-Holstein Hamiltonian in Eq. (1). Here, we
introduced a fictitious mass m and throughout this work we
use m = 1/w. Working in a first-quantized space allows one
to work directly at the complete basis set limit for the phonons
and avoids the issues posed by a truncated phonon Hilbert
space.

III. CONSTRAINED-PATH AUXILIARY-FIELD QUANTUM
MONTE CARLO

AFQMC for mixed fermions and bosons was first for-
mulated and studied by Rubenstein, Zhang, and Reichman
[67]. In their formulation, bosons are treated within a second-
quantized framework. Therefore, their approach would natu-
rally suffer from the truncation of the infinite bosonic Hilbert
space if applied to the Hubbard-Holstein model. In this work,
we will reformulate the procedure to treat fermions in a
second-quantized space and bosons in a first-quantized space.
Such a formulation is closely related to that of Ref. [64],
however, our work allows the control of the sign problem and
introduces the full advantage of the CP-AFQMC approach in
treating the electronic degrees of freedom.

In AFQMC, as in other projector QMC methods [68], we
obtain the ground state via

W) o lim e 7| dy), (15)
T—>00

where |Wy) is the true ground state, T denotes imaginary
time, and |®) is a trial wave function with nonzero overlap
with the true ground state. Since # involves both fermions
and bosons and so do the wave functions |¥y) and |®g), we
represent these global vibronic wave functions as a function
of imaginary time 7 in a mixed basis

WD) =D wxly(r). Xe(0)), (16)
k

where |;) is the electronic wave function and |X) is a set of
coordinates that represents the phonon degrees of freedom. In
our algorithm, these basis states each take a product form

[V (7)), Xa (7)) = [ (7)) @ [Xi(T)) a7

where | ) is a single Slater determinant. We will show below
that the projection process in Eq. (15) can be turned into
a random walk in the space of product states of the form
defined in Eq. (17). We note that it is also possible to work in
momentum space (|P;)) [69], however, it is more convenient
to work in position space here since it makes the application
of the e-ph coupling term straightforward.
We write the propagator for a finite time step At as

A 7y (2) (1) ’y Y
exp(—ATH) = e ATH o= AT o+ Heam) o= ATHm 4 O(AT?)

(18)

using the standard first-order Trotter approximation. By virtue
of the Thouless theorem [70], |1 (7)) remains a single Slater
determinant after propagation via ’)Qf,j) and 7—Ale1,ph (note the
latter is diagonal in |Xj) space). ’Hg) is represented as a
one-body operator coupled to Ising variables and, therefore,
a single Slater determinant remains in the same manifold after
. _A@ .
propagation by e~#77i . The phonon propagation generated
by ﬁph follows a commonly used diffusion MC (DMC) algo-
rithm [71,72].

Before elaborating on the propagation more concretely, let
us introduce importance sampling, using a trial vibronic wave
function |\Wr). We rewrite the global vibronic wave function
in Eq. (16) in the following form [61]:

V(7). Xy (7))

e = ;‘”" (Wr (). Xe () 1

to perform imaginary-time propagation, namely,

[W(t + A7) = e AT o AT+ ) =7 on gy 7)),
(20)

In the propagation of the phonon degrees of freedom we
sample from the distribution
(Ur|y (7). X(1 + A1))
(Wr |y (7), X(7))

x (X(t + At)|e_AT7:£ph X)), @D

fIX(z + A1)]

where we have omitted the walker index k in the subscript.
One can derive the following MC move for the updating of
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the variable X(7) = X

A
X(7 + A1) = X(t)—l—./\/(u, —0,0 = —T>
m
AT Vx(Ur| (1), X(2)
m  (Yr|y(r), X(r))
Here N (1, o) is a normally distributed random number with

mean u and variance o2, and the last term is the so-called drift
term. Updates for the walker weights are carried out as

(22)

w(t + A1) = w(-[)e_%[Eph(T+AT)+Eph(r)_2Eshlﬂ] (23)

where Eg,;re is a constant shift that can be adjusted to control
walker weight fluctuations, and we define

(W7 Hpnl ¥ (1), X (7))
(Wrly(7), X(7))
This algorithm is the same as the standard diffusion Monte

Carlo algorithm [71-74]. A
Propagation arising from Hejpy is straightforward to im-
plement since

Y akily(v), X(1)) =

Epn(7) = (24)

Do AXi(OW (1), X(0). (25

> . 7;Xi(t) is thus a diagonal matrix in the single-particle
space with its ith entry being X;(7). It is then straightforward
to exponentiate this matrix and apply it along with ’H(l) to the
Slater determinant.

Lastly, propagation generated by 7—1;2) is the same as that
for the standard AFQMC algorithm for the Hubbard model.
We employ the discrete Hirsch spin decomposition for the
two-body propagator [60]:

_ % (ARG SN et (06
X,‘::l:l

e_ATUan"‘L

where the constant y is determined by
cosh(y) = e 27V/2, (27)

For a given x, the action of Eq. (26) on a single Slater deter-
minant keeps the Slater determinant in the single determinant
manifold. In AFQMC we keep track of the overlap between
the walker wave function and a chosen trial wave function.
More specifically, we measure the overlap ratio of the kth
walker

= (Wr [ (r + A1), Xy (7 + A1) (28)
(Wr |y (), Xe(r + AT))
If r; is negative, the constraint condition is invoked and we set
the weight wy to zero, which then causes the walker to be re-
moved from the simulation. Furthermore, we apply heat-bath
sampling [51] using this ratio to importance sample the Ising
variables. This completes the description of our algorithm for
the Hubbard-Holstein Hamiltonian.
The local energy evaluation at T with the Hubbard-Holstein
model is straightforward via the one-body walker Green’s
function

(Wrlal aj, 19 (1), X(1))

Ciese () = 4, [y (0. X))

, (29)

and the two-body walker Green’s function
oo lrladasal g v (), X ()
e (Wrly (1), X(7))

We will also need the mixed estimator for the phonon dis-
placement

(30)

(WrXily (), X(1))
(Wrly(r), X(7))

and for the squared phonon momentum

(Wr|V3 ¥ (7). X(1))
(Wrly(0), X(7))

where V,Z(i can be applied to the left on |Wr). Using these
mixed estimators, the local energy can be evaluated as

E, = —t ZZG,-J_;U + Uzrim

moyr gy @
+Z( X4 i) 2)
— gV2mw Z(Gim + Gi,i )X (33)

(Xi)(0) = = Xi(7), €1V}

(P?)@) = - : (32)

IV. TRIAL WAVE FUNCTIONS

The choice of the trial wave function can affect the quality
of the CP approximation in treating the electronic degree of
freedom. It can also affect the computational efficiency in
treating the electronic and especially the phononic degrees
of freedom; in particular, a poor choice of the importance
function can magnify or even introduce additional ergodicity
issues, especially in an el-ph system when multiple phonon
modes are pronounced. It is highly advantageous if an accu-
rate trial wave function allows the overlap ratio in Eq. (28),
and the local energy in Eq. (33), to be efficiently evaluated.

A. Semiclassical state

The simplest variational trial wave function that we employ
in this work takes a simple product form between electronic
and bosonic degrees of freedom,

Wr) = [Yr) ® |¢r), (34)

where |Y7) is a single determinant and |¢7) is a coherent state
(or a shifted harmonic oscillator state). This wave function
has been referred to as a “semiclassical state” in literature
[75,76]. Due to its simple product form, there is no explicit
entanglement between electrons and phonons. The electronic
trial wave function |{r) is parametrized by orbital rotation 6,

[Yr(0)) = 1), (35)

k=16 -

i

where

0;)"1ala;, (36)

and |yp) is some initial determinant (normally obtained by
diagonalizing the one-body electronic Hamiltonian). Single
determinant trial wave functions have been widely used in pre-
vious AFQMC studies of the Hubbard model [28,29,77,78].
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The phonon trial wave function |¢7) is parametrized by
coherent state displacements g,

r(B)) = eXiAP=Fibi0) = D(B))0), 37)

where D(B) is the displacement operator. We optimize the en-
ergy of |Wr) in Eq. (34) variationally over 6 and 8 and use this
as the final trial wave function. |¢7(8)) technically contains
infinitely many bosons, but it has a convenient property which
allows for an efficient AFQMC algorithm

bilgr(B)) = Bilor (B)). (38)

Using this fact, one can show that the projection of (¢7(8)|
on to |X) is

@rpIX) =[] (%)Ze-’"ff’%—x/%ﬂf. (39)

Similarly, the numerator of Eq. (32) is straightforward to
evaluate as well using

—(¢r(B)|Vz [X) = =V (¢r(B)IX). (40)

This semiclassical trial wave function therefore can be effi-
ciently combined with the AFQMC algorithm.

We elaborate here on formal properties of this state. We
first note that the operator £ is anti-Hermitian, and thus the
orbital rotation operator e* is a unitary operator. Because &
is an anti-Hermitian operator, the variational parameters in 6
are not all independent. Formally, one can represent the same
wave function with only M (M — 1)/2 parameters, where M is
the number of lattice sites. Similarly, the displacement opera-
tor is also a unitary operator. While 6 and § are in principle
complex valued, we assume them to be real valued for the
rest of this paper. A complex valued 6 can be useful for the
description of certain strongly correlated systems [79-81],
but we do not focus on these cases here. A complex valued
B introduces an average momentum to the coherent state
through its imaginary component. However, with variational
optimization the imaginary component of 8 is found to be
Zero.

The variational energy of the semiclassical state can be
obtained within the Born-Oppenheimer (BO) approximation.
After some algebra, it can be shown that the lowest energy of
a semiclassical state can be obtained by minimizing

Y N
(He) — ;<Z ; (41)

over the variational parameters in |{7). For a fixed A, varia-
tions in « do not change the energy of the semiclassical state.

The semiclassical state is exact in (1) the limit g — oo,
(2) the adiabatic limit w — 0 (for a fixed A) with U — O,
and (3) the atomic limit U — co. When A — oo (or g — o0
for a fixed w), the use of a single semiclassical state is not
problematic even though the BO potential develops into a
well-separated double-well potential. This situation is phys-
ically similar to that of the atomic limit of the Hubbard model
(U — o0) where spin flips do not cause an energy penalty and
a degeneracy occurs amongst all possible 2V spin flips where
N is the number of electrons. Similarly, in the Holstein model,
charge swapping does not cause an energy penalty and the

same macroscopic degeneracy occurs. In other words, any one
of the degenerate semiclassical states is equally well suited as
an approximate wave function.

Aside from these limits, the semiclassical state itself can
be inaccurate, but we find that the subsequent AFQMC cal-
culation with the semiclassical trial wave function is often
numerically exact. The most difficult parameter regime for our
AFQMC framework is when the Holstein coupling strength g
takes an intermediate value. That is, g is large enough that
the el-ph correlation is strong but is small enough that the
macroscopic degeneracy does not occur. A straightforward
way to probe these situations is to increase w for a fixed A
value. In this case, g can be much larger than ¢ but is always
smaller than w as long as 2dfA < w. In these situations, the
semiclassical state can be a poor choice of a trial wave func-
tion in AFQMC, as we shall see. This is because no correlation
between electronic and bosonic degrees of freedom is built
into this trial wave function.

From a different point of view, the difficulty of semiclassi-
cal states was noted in the work of Proville and Aubry, who
defined the “quantumness” of the phonons as [82]

0)2 w

@ " 2an 2

¢ =
As ¢ increases, the semiclassical state qualitatively fails [82].
This is consistent with the picture described above in that for a
given A, both g and ¢ increase as w increases. We attribute the
difficulties associated with semiclassical states to the increase
in correlation between electrons and phonons instead of the
quantal effect associated with the phonons alone.

B. Multivibronic state

A linear combination of multiple semiclassical states can
be used to correlate electrons and phonons

Wyis) = Y celrr (60) ® Ier (Bo)). (43)
k

where one may determine ¢, 6, and § variationally. We refer
to this wave function as a multivibronic (MV) wave function,
similar to the multi-Slater determinant trial states employed to
study purely electronic systems [77]. The MV wave functions
of this form would need exponentially many states for large
systems. Nevertheless, due to their simplicity, multivibronic
states can be valuable for the study of small systems.

A particular flavor of MV wave function that we focus on
in this work is closely tied to the underlying order encoded in
the semiclassical states themselves. Let us consider the two-
electron, two-site Holstein model. It is well known that for the
Holstein model at large coupling A, the BO surface develops
into a double-well potential [65,83]. For the two-site problem,
the BO potential energy surfaces (PESs) are characterized by

Hyo(X1, Xo) = Ha — gV 2ma (i X, + aXo)
+ m(,()z
2

where X; and X, are constant scalars denoting the coordinates
of the classical phonons. We can find the ground-state elec-
tronic wave function of the Hamiltonian in Eq. (44) by exactly

(X2 +X5). (44)
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FIG. 1. Born-Oppenheimer potential energy surfaces in units of ¢ for the two-electron and two-site Holstein model: (a) w =1, A = 0.1,
and g = 0.447¢ and (b) w = ¢, 2 = 1, and g = 1.414¢. The minimum in (a) is £ = —2.40¢ at (X; = 0.63, X, = 0.63), while the two minima in
(b) are E = —8.25¢ at (X; = 3.90, X, = 0.10) and (X; = 0.10, X, = 3.90), respectively.

diagonalizing it and forming a potential energy surface for
each combination of (Xj, X;). In Fig. 1, a representative exam-
ple of the BO PESs is given. Figure 1(a) illustrates an example
of the weak coupling case, where the coherent states have the
same centers for all sites and no charge modulation occurs.
In such cases, the minimum BO state (i.e., the semiclassical
state) is an excellent variational wave function. In Fig. 1(b)
there are two distinct minima with equal BO energies. Here, a
wave function of a single semiclassical state with a Gaussian
function centered at one of the two BO minima in position
space would not provide a good description of the system.
When used as an importance function, it can introduce or
exacerbate ergodicity problems in the Monte Carlo sampling
and induce a large or even infinite variance in the energy
fluctuations.

We propose the following improved variational wave func-
tion in this situation for the Holstein model on a bipartite
lattice. At half-filling there are two exactly degenerate semi-
classical states. In particular, one state is characterized by

B = {,Be, if i on A sublattice

B,, if i on B sublattice (45)

where i is a site index. B, and B, are determined by varia-
tionally optimizing semiclassical states. The pertinent orders
in 2D are stripe orders, checkerboard orders, etc. One can
easily identify the bipartite sublattice sites in such orders. The
other degenerate solution is given by switching the A and
B sublattices. One can smoothly interpolate between the two
states by defining a convex combination

Ble) =afV + (1 —a)p® (46)

fora € [0, 1]. For each 8(«), we find a single determinant that
minimizes the energy of a single semiclassical state. One can
take a linear combination of all of these semiclassical states
along the line that interpolates two solutions to form a MV
wave function. We refer to this as the Thouless path (TP) wave
function |Wrp),

[Wrp) = Y cal Wr(B(e))), (47)

where ¢, is determined by variationally minimizing the en-
ergy. The construction of the TP wave function can be

generalized to arbitrary filling fractions and number of sites
because different filling fractions simply give rise to ordered
states with different wavelengths. The cost for its construction
is negligible compared to the optimization of a semiclassical
state. Its use in AFQMC as a trial wave function simply
introduces a prefactor depending on the number of states
included in Eq. (47). We will refer to a TP wave function with
n interpolation values of « as TP(n). While TP wave functions
provide a simple and accurate importance function for double-
well potential energy surfaces, they also become inaccurate
when the correlation between electrons and phonons becomes
strong.

C. Variational Lang-Firsov trial wave functions

A simple, widely used way to incorporate correlation ef-
fects between electrons and phonons is to use the polaron
transformation or the Lang-Firsov (LF) transformation [84]

|Wie) = Oir(®)[¥7(0)) @ g7 (B)), (48)
where
Oie(E) = 3 2500, (49)

and the set & are referred to as the LF amplitudes which are
variational parameters along with 6 and . From the wave-
function viewpoint, (48) provides a way to explicitly build a
wave function with nonperturbative el-ph correlation on top of
semiclassical states via a unitary transformation. Typical LF
implementations involve the phonon vacuum state as opposed
to the coherent state in (48). We find that having the coherent
state provides additional variational flexibility and thereby
yields lower energies compared to those that use the vacuum
state. Since it does not complicate the underlying optimization
problem, we use the coherent state as written in (48).

While the details of the LF transformation and its varia-
tional optimization have been well documented [84-87], we
briefly summarize them to provide a self-contained descrip-
tion. Our goal is to simultaneously determine &, 6, and 8
variationally. To carry this out, we find that it is simpler to
work with the unitary-transformed Hamiltonian A, based
on Urp, and optimize the variational energy of H'F evaluated
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with the semiclassical wave function. We start from
N . A (b —bVE (B —b
Uir() aj”aj,,ULF(E) — a:_fﬁajne[ &i(bj —bi)+§;(b;—bj)] (50)

and

Ore(@) b0 (&) = b] — &, (51)
Ore€) b0 (&) = bi — &l (52)

The LF transformed Hamiltonian reads as

_ f L] - b+ £ bi=b))]
=L
o

+U Z i, i, (53)
iy =0) (bT + S—n) (13,- + im), (54)
’ i V2 V2
and
ALy == b + b} + V2&m;). (55)

All of the energy terms are straightforward to evaluate with
semiclassical trial wave functions. The electronic kinetic en-
ergy is more complex than its bare Hamiltonian counterpart
due to the presence of exponential bosonic operators, so we
provide more details here. To utilize Eq. (38), we write the
exponential term in the kinetic energy operator as

e% [Sj(l;j —bj)—&(b} —b)1

= o &b EbD 5 bty [ 4ED) (56)
where we have used
e Eb) _ g8b) o 5t i) (57)

The expectation value of Eq. (56) is simple to evaluate with
the semiclassical state of Eq. (34):

(W |ev3 G800 o G b8 |y =7 4ED)
— e%(Efﬂj*&'ﬂi)e%(fiﬂiffjﬁf)e—%(éiz-&-éjz)' (58)

The variational LF wave function is expected to be more
accurate than the semiclassical state due to the explicit corre-
lation between electrons and phonons. Furthermore, the limit
of w — oo which is difficult for simple semiclassical wave
functions to treat, can be exactly treated by the LF wave func-
tion, because the el-ph coupling term in H'F can be removed
by setting & = +/2g/w. Due to the fact that phonon displace-
ments are significantly penalized in this limit, the variational
optimization over 8 naturally yields g = 0. Therefore, the
bosonic operators in the hopping amplitude in Eq. (53) all
vanish. Provided that one can handle the remaining electronic
Hamiltonian terms exactly, the variational LF wave function
should be exact in this limit. We note that for many-electron
systems in the w — oo limit, the LF Hamiltonian takes the
same form as the attractive Hubbard model, which is another
sign-free lattice model that can be efficiently simulated in
AFQMC [88,89].

Despite these desirable properties, there seems to be no
simple and general way to use this wave function in AFQMC

without invoking a major increase in scaling. As an exception
to this, we mention here the work of Hohenadler and cowork-
ers [69] where a QMC algorithm with the LF Hamiltonian
was formulated for single-electron problems. It was demon-
strated, however, that the transformed electronic Hamiltonian
in Eq. (53) creates a complex phase problem.

Therefore, we briefly investigate a simpler linearized LF
(LLF) wave function of the form

|WLLe) = (1 +—= Zéz 7 ) vr(9)) ® |¢r(B)),  (59)

where we have omitted a term that is proportional to A;b; since
the action of b; on |¢r(B)) is trivial due to Eq. (38). We varia-
tionally optimize £ in Eq. (59) to maximize the accuracy of the
LLF trial wave function. The AFQMC algorithm presented in
Sec. III can be efficiently implemented for Eq. (59).

It is possible to formulate a simple extension of the LLF
wave function in the spirit of the TP wave function:

n

> ca| WiTE), (60)

a=1

|WrpLLE) =

where each of the |\P£°£)F) terms has its own variational param-
eters. Following the discussion of the TP trial wave function,
it may be possible to determine these variational parameters
via a convex interpolation of § and £ as in Eq. (46). We refer
to this wave function as the TP-LLF(n) wave function which
goes beyond both the TP(n) and the LLF wave functions in
sophistication.

In contrast with the LF form, a trial wave function with
an el-ph Jastrow factor can be used more straightforwardly
in AFQMC since X; operators are involved in the exponent
instead of P, as in LE. The unitary transformation in the LF
wave function can be thought of as a simple Jastrow factor
that encodes correlation between the electronic density and
the phonon momentum on a site. However, Uip(€) is unitary
and we thus expect this transformation to behave differently
from Jastrow factors in el-ph problems [37-39]. (It is also
different from the coupled-cluster operators considered in re-
cent studies of el-ph problems [47-49].) Nonetheless, when
linearized both Jastrow and ULp(é ) yield identical results.
Given the performance improvement with the LLF trial wave
function (as discussed below), we expect an el-ph Jastrow
trial wave function will greatly reduce the difficulties in pa-
rameter regimes with strong el-ph coupling, and result in a
major improvement in our AFQMC approach. We leave the
implementation and systematic studies using an el-ph Jastrow
trial wave function in AFQMC for future work.

D. Additional details

The semiclassical state in Eq. (34) can describe two com-
peting phases, SDW and CDW. To obtain the variational wave
function for these two distinct states, we employ the following
protocol:

(1) For a CDW state, we perform a variational optimiza-
tion of a semiclassical state with spin restriction. Due to the
spin restriction, any states that arise from minimization are not
capable of describing SDW order.
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(2) For an SDW state, we perform a variational optimiza-
tion of a spin-unrestricted Hartree-Fock (UHF) wave function
to minimize the electronic energy. Once a UHF state is ob-
tained, we determine the shift vector B variationally while
fixing the electronic degrees of freedom. As long as the UHF
state exhibits SDW order, such a coupled el-ph semiclassical
state will exhibit the same SDW order. We have used an ad
hoc effective repulsion strength (Ueg/t) of 0.5 [77] in our
UHF calculations to obtain SDW trial wave functions for
the Hubbard-Holstein model in this work. The CP-AFQMC
results are not sensitive to this particular choice. (We note that
it is possible to determine this effective repulsion strength via
a self-consistent procedure with CP-AFQMC [90].)

V. PERTURBATION THEORY
A. Coherent state Mgller-Plesset perturbation theory

It is instructive to consider low-order perturbation theory
for comparison to numerically exact approaches. We first note
that

D(B)'b]D(B) = b} + B, (61)
D(B)'bD(B) = bi + Bi. (62)
Using this property, we write

Hon = DB HmDB) = 0 Y (0] + )b + B (63)

and
Herpn = DB HapnD(B) = — Y wulbi + b + 2).
i (64)
Thus, we have
H = Fet + Hon + Herpn. (65)

We note that the following zeroth-order Hamiltonian naturally
has the semiclassical state of Eq. (34) as its ground state

ALA

Ho = ]—'—i—wz (B + bib;), (66)

where F is the Fock operator defined as (for spin o = 1 or )
By =Fd—2¢> iy, B, (67)

with the electronic Fock operators
= Z aj aj, +U Y i (i) g, (68)
=t Z ajaj, +U Y i i)y, (69)

where
. (Y, [Yr)
i)y, = ol
r (Yrlvr)
It is straightforward to show that |W7) is an eigenstate of Ho.

From this starting point, one can develop an order-by-order
perturbation theory to capture all of the correlation effects

(70)

among electrons and between electrons and phonons built
through

V="7-T
= (Ha— Fa)+ Y_(wp; — ghi)(b; + B)).  (71)

We note that such a partitioning of the Hamiltonian resembles
the widely used Mgller-Plesset (MP) perturbation theory in
quantum chemistry [91]. We refer to this perturbation the-
ory as ‘“coherent state Mgller-Plesset perturbation theory”
(CSMP) since a coherent state (or a semiclassical state) is
an eigenstate of the zeroth-order Hamiltonian. This was also
recently discussed in the work of White and coworkers in the
context of coupled-cluster theory [49].

Similar to MP, CSMP recovers the energy of the semiclas-
sical state with the first-order perturbation correction

Vor + @Y BL—28) (i)y, B (72)

where we have defined

(i) g, = (Yr i, + i |Yr). (73)

In this work, we are interested in comparing the second-order
perturbation theory (CSMP2) with AFQMC. The evaluation
of the CSMP2 energy is most natural in the molecular orbital
(MO) basis rather than in the site basis. The MO basis is
defined by a set of orbitals {1, } that satisfy

Fobp, = €p, ¥, (74)

where €, is the pth MO energy and the pth MO, v, , is
expanded via a set of site orbitals {¢,, }:

Z e P (75)

EO gD = <7:[el

We then transform Eq. (71) from the site basis to the MO basis
using the coefficient matrix C for each spin

V=Y 33 (@B — 8}, a4, b, + Hee.)

oe{tl} pg K
AT AT oA A
+ E :Umtumsramaqﬂwasw (76)
pqrs

where

8pg = gZ(CMP) uaq» an

Upygyrisy =U Z(Cum)*(cum )*mecu«-w' (78)

n

The CSMP2 energy expression follows in a spin-orbital
MO basis

[0 = X Cur G’ gl
E®=— [0 — 8 3G Cuil” _ 8ai
l; @ ; W+ € — €

|UiT/'¢b¢aT|

2
-2 ' : (79)

€ €p — €, — €5
ivay jib, M ten " N
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where the orbital energies {€,} are eigenvalues of the Fock

operator F. We note that the first term in Eq. (79) is zero if
the semiclassical reference state is fully optimized.

B. Lang-Firsov perturbation theory

It may be useful to develop a second-order perturba-
tion theory from a reference state given by the Lang-Firsov
transformation [84] in (48). In the spirit of the original LF
transformation [84], we set

V2g

§i=—, (80)

w
which removes the Holstein coupling in the transformed
framework. With this choice of the LF amplitudes instead of
the variational LF amplitudes, the transformed Hamiltonian is
simplified to

LE =wZ[31TISi - %Zﬁﬁ— (U - —) Znhn,¢

P, F
_IZZ&LaJ el= 5 Gbi=b+Lb;=bp1 (81)
o (i)
For convenience, we rewrite
T Y &2
SGI=bo+ 51D — o=l =BG EBi-b) (g2

Based on the approach of Bonca, Trugman, and coworkers
[92,93], we choose the zeroth-order Hamiltonian as

LF =a)ZbTb — —Zn, (U — —> Zn”nu,

(83)
with the perturbing Hamiltonian

Fo fo ZZ e — &b - b‘) £ (b b) (84)

o (ij)

For concreteness, we consider the specific case of second-
order perturbation theory for a two-electron, two-site problem.
The ground state of HF is either [1,],) ® |0, 0) or [1,1,) ®

|0, 0) with an energy U — %. We start from an unperturbed
state,

1
[¥”) = —=(11141) ®10,0), +1542) ®10,0)),  (85)
V2
noting that an excited state which can be connected to the
unperturbed ground state via VLF takes the form

1
W) = —= (o) = 1) ® Im,m). (86)
| ) «/5 1v2 112
It is then easy to show that the first-order energy correction
to the unperturbed state is zero. The second-order energy
reads as

2(m+n)
© _ (8/0))
1+(_1)in+n

o &7

(m+nw—U +2%
We numerically evaluate this expression in a brute-force
manner, observing that a maximum »n of 200 is sufficient
to converge the energy to machine precision. We note that
this expression differs from that of Bonca, Trugman, and

coworkers [92,93] since in their work a single bipolaron was
considered in the continuum limit (infinite lattice) whereas
in our work we focus on a two-site problem. This approach
is referred to as the second-order Lang-Firsov perturbation
theory (LFPT2).

VI. HOLSTEIN MODEL

To study the behavior of the proposed AFQMC algorithm
with simple trial wave functions such as the semiclassical,
LLF, and TP wave functions, we shall investigate the 1D and
2D Holstein models first, namely, we set U = 0 in Eq. (1).

For the Holstein model, the sign problem is absent, as
is well known in the determinant quantum Monte Carlo
(DQMC) approach [94]. Similar to DQMC, the overlap func-
tion (Wr|Yr(7), Xi(7)) in Eq. (19) remains non-negative
throughout the imaginary-time propagation since the phonon
component ¢7(X(7r)) (omitting the walker index again) is
positive everywhere, and the electronic component (Y |Y) =
[, 4 1Yrp) |> with a spin-restricted form is also non-negative.
Thus, in the Holstein model the difference between our ap-
proach and DQMC is primarily in the way the Monte Carlo
sampling is conducted. AFQMC uses a branching random
walk with a population of walkers to construct the imaginary-
time path iteratively, as we have described, while DQMC
treats the entire path as a path integral or world line, and
updates it by sweeping different imaginary-time locations via
a Metropolis-like algorithm. A second difference is the in-
troduction of an importance function in our approach via the
similarity transformation, as indicated in Egs. (21) and (28).
These factors can affect the behavior of the Monte Carlo sam-
pling, and yield different performances in different regimes
of the parameter space, including efficiency, autocorrelation
time, and possibly different levels of difficulty with ergodicity.
The examples in the Holstein model below serve as a first test
of the AFQMC method in this context.

A. Two-electron two-site model

We start with this small problem where we easily can com-
pare results against exact diagonalization (ED). Since there
are only two sites in our model, we compute energies with
open boundary conditions (OBCs). In Fig. 2, we present the
error in the total energy of CSMP2, LFPT2, and AFQMC
compared to ED. Understanding the behaviors of the two
flavors of perturbation theory helps gauge nonperturbative
effects in our system. In Fig. 2(a), it is clear that the CSMP2
energy becomes more inaccurate as we increase w. This is
because the zeroth-order wave function, a semiclassical trial
wave function, starts to degrade when increasing el-ph corre-
lation. Perhaps the most striking behavior to note concerning
CSMP2 is that this approach performs worst for intermediate
A values (e.g., A = 0.5) and is in fact more accurate for larger
A values such as & = 2.0. This can also be understood in terms
of the increase in el-ph correlation as explained in Sec. IV A.
On the other hand, LFPT2 in Fig. 2(b) is comparatively more
accurate than CSMP2 for A values larger than A = 0.5. The LF
reference state (namely, two electrons occupying one site and
with a phonon vacuum state) is qualitatively incorrect when
the el-ph coupling is small. In such cases, we cannot treat
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FIG. 2. Error in the total energy in units of ¢ for the two-site two-electron Holstein model as a function of w for various A values: (a) CSMP2,
(b) LFPT2, and (c) AFQMC results. For A = 0.1, LFPT2 energy errors lie outside the plotted range. In (c), for & > 0.5 AFQMC/TP(11) results
are shown, while for A = 0.1 we present AFQMC/S results. Note the different vertical scales in (c).

the hopping term perturbatively. This is clearly reflected in
Fig. 2(b) as LFPT2 exhibits large errors for small A values. As
LFPT2 is well known to produce accurate results for strong
coupling, it is remarkable that a weak coupling perturbation
theory, CSMP2, performs equally well even at A = 2.0.

We also show the performance of AFQMC for the same
two-site Holstein dimer. The error of AFQMC is shown on
a much smaller (100 times) scale. We have tested both the
single semiclassical state and TP(11), i.e., the TP state with a
superposition of 11 semiclassical states, as trial wave function.
These are referred to as AFQMC/S and AFQMC/TP(11),
respectively. Results are shown in the figure, with AFQMC/S
for smaller A and AFQMC/TP(11) for A > 0.5. Near-exact
energies are obtained for all parameters examined here.
We observed that results can become severely biased with
AFQMCY/S for large A, as a consequence of a poor importance
function causing large, or even diverging, variances. Even
with an improved importance function TP(11), small residual
effects can be present (via underestimation of the statistical
error, or bias from population size). We also note a large sta-
tistical error at w = 2t which is maximized at an intermediate
value of A =0.5 (or g = \/zt). Nevertheless, with TP(11),
the bias (if any) is smaller than 0.001 ¢ for the Holstein
dimer, which highlights the accuracy and sampling efficiency
of AFQMC/TP(11). We discuss the issue of bias in AFQMC
in sign-problem-free models further in Secs. VIB and VIE.

B. 1D four-site model at half-filling

To further investigate the effect of the importance func-
tion on the sampling result and any potential bias, we
consider a 1D four-site Holstein model employing periodic
boundary conditions (PBCs), at half-filling with A = 0.5,
o = 4t, and g = 2t. We compute the ground-state energies

with AFQMC using the following trial wave functions: a
single semiclassical state (S); the TP wave function with
13 semiclassical states [TP(13)]; the LLF wave function;
and the TP-LLF wave function with two LLF states [TP-
LLF(2)]. With AFQMC/TP-LLF(2), a ground-state energy
of —10.293(2) is obtained, compared to the exact result of
—10.292 (obtained from DMRG using ITENSOR [95], although
ED can also be done here). In contrast, a biased result is seen
with each of the other forms of the trial wave function. The
bias is about 0.4% relative to the exact result, using the com-
putational parameters specified in Sec. X, and is essentially
independent of whether bifurcation is accounted for or not
in the trial wave function. These results suggest that, to re-
move the sampling bias in this parameter regime, it is critical
to have in the importance function a means to both over-
come the adiabatic potential bifurcation issue and treat el-ph
correlation.

C. 1D 20-site model at half-filling

Next, we discuss a 20-site 1D Holstein model at half-filling
employing PBCs. ED is no longer feasible for systems of this
size so we used the ITENSOR [95] package to perform DMRG
calculations [30]. The DMRG calculations were carried out by
placing alternating fermionic and bosonic sites on a 1D lattice
so that overall there are twice the number of sites compared
to the physical lattice problem. While it is possible to use an
optimized phonon basis [96] to handle larger el-ph coupling
cases, here we employed the most primitive version of DMRG
for simple comparisons. The bond dimension we used was
fixed at 1000 and the maximum number of bosons for each
site was taken to be 60.

We compare the total energy per site within DMRG,
CSMP2, variational LF, AFQMC/S, and AFQMC/TP(11) in
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FIG. 3. Total energy per site in units of ¢ for the 20-site 20-electron 1D Holstein model as a function of w for various values of A: (a) A = 0.1
results, (b) A = 0.3 results, (¢c) A = 0.8 results, and (d) A = 2.0 results. Note that all error bars for AFQMC are too small to be seen on the
plotted scales, DMRG reference values are unavailable for @ < 0.8 when A = 0.8 and all values of w when A = 2.0, and AFQMC/TP(11) is
not presented for A = 0.1 because the results for this trial wave function are nearly identical to those of AFQMC/S. The inset shows energy
differences from DMRG for AFQMC/S (blue) and AFQMC/TP(11) (red) (Earqmc — Epmro)-

Fig. 3 for various A and w. Given the discussion of Sec. VI B,
it is desirable to employ the TP-LLF(n) wave functions in
general, but we leave a more detailed study with this trial wave
function for a future study. Here, we focus on AFQMC with
simpler and less accurate trial wave functions [AFQMC/S and
AFQMC/TP(11)].

Similarly to the two-site problem, we observe that CSMP2
follows the (near-exact) answers given by DMRG and
AFQMC closely at small A (e.g., A = 0.1) as the frequency of
the phonon mode is varied. However, we see a clear quantita-
tive deviation of CSMP2 from the other curves as w increases.
The deviation is again maximized at an intermediate coupling
A =0.8 and is smaller at weak and strong couplings. The
variational LF wave function works better than CSMP2 for
all A > 0.1. Its strength over CSMP2 is highlighted as w
increases. This clearly suggests that the variational LF wave
function includes el-ph correlation beyond the second-order
contribution provided in CSMP2.

The performance of AFQMC/S is very good at all coupling
strengths considered here for w < 2.0. Similar issues with
biased final estimates from poor importance functions are
seen at A = 0.3 and 0.8. AFQMC/TP(11) shows improve-
ment over the simplest semiclassical importance function in
the case of A = 0.3. However, its improvement for A = 0.8 as
w becomes larger is very small. For example, the residual bias

is still visible at w = 2.0. This points to the need to improve
the importance function over the forms we have used. We
expect that incorporating el-ph correlation directly, as in the
LF-type wave functions, will ameliorate this sampling bias
greatly, as observed in Sec. VIB. For the rest of the paper,
we focus on AFQMC with the simplest trial wave function,
namely, a single semiclassical trial wave function, because the
observed sampling bias is small enough that it does not affect
the conclusions of this work.

D. 2D 4 x 4 model at half-filling

We have established the expected behavior of AFQMC
with semiclassical wave functions as importance functions
from studying one-dimensional problems such as the Holstein
dimer and a 1D chain. Here, we explore higher dimensions by
investigating a 2D square lattice problem with a 4 x 4 geom-
etry. We employed PBCs along the x axis and OBCs along the
y axis. The main reason for choosing this boundary condition
is to ease the convergence of the DMRG calculations. We
were able to converge DMRG calculations only for 0.8 > w
and A < 0.5 where we used a bond dimension of 2500 and a
maximum number of bosons of 25.

In Fig. 4, the energy per site as a function of w for various A
values is presented for this 2D model. We observe conclusions
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FIG. 4. Total energy per site in units of # for the 4 x 4 2D Holstein model at half-filling as a function of w for various A values: (a) A = 0.1
results, (b) A = 0.3 results, (c) A = 0.5 results, and (d) A = 2.0 results. Note that all error bars of CP-AFQMC/S are too small to be seen on the
plotted scales, The inset shows energy differences between CP-AFQMC/S and DMRG (Esrgmc — Epmre), for w > 0.8 when A < 2.0 where

DRMBG results are available.

similar to our previous one-dimensional examples. CSMP2
quantitatively fails as w increases. Furthermore, for a fixed
w, CSMP2 performs worst for intermediate A values and is
more accurate for small and large A values. Similarly to the
1D 20-site case, the variational LF energy is more accurate
than CSMP2 for A > 0.1 and its improvement over CSMP2
becomes larger as w increases. AFQMC/S is well behaved in
the range w € [0.1, 2.0]. Its maximum error occurs at A = 0.3
and w = 2.0, where clear indications of sampling bias arises.
Nevertheless, the range of parameters where AFQMC/S can
be reliably performed with the simplest possible semiclassical
trial wave function is quite broad even in 2D, highlighting the
utility and potential of this approach.

E. Autocorrelation time and variance control

As we mentioned at the beginning of this section, in the
Holstein model the difference between our AFQMC approach
and DQMC is mainly in the details of the Monte Carlo sam-
pling algorithm. The two methods can thus have different
behavior in terms of efficiency in different regimes of the
parameter space. Here, we look into this to help understand
the domain of applicability. We note that this is not the focus
of our study since in the most general case where electron
interactions are present, the branching random-walk approach
must be adopted in order to control the sign or phase problem.

The standard DQMC algorithm based on local updates
exhibits a long autocorrelation time in the Holstein model
for w < 0.5 and for low temperatures. It has been found that
this is a consequence of an ergodicity problem. A careful
mathematical analysis of the causes of this problem can be
found in the work of Hohenadler and coworkers [69,97,98].
These authors have shown that the condition number of the
bosonic action sampled in DQMC for small values of At
scales as 1/(wAt)?. This poorly conditioned action leads
to a long autocorrelation time that scales quadratically with
increasing w~!. There have been attempts to ameliorate this
problem based on global moves such as the Langevin dy-
namics approach [57,94,99] and the self-learning Monte Carlo
approach [100]. We also mention that the work of Hohenadler
and coworkers removed the autocorrelation problem using the
Lang-Firsov transformation along with a principal component
analysis [69].

Since AFQMC applies a projector to the entire set of
electronic and phonon degrees of freedom using a population
of random walkers, it is less prone to ergodicity problems.
The Monte Carlo time coincides with the imaginary-time
direction, with open-ended random walks evolving along the
world lines, which makes them less likely to become trapped
in particular configurations of the phonon paths. There is a
deep connection between this fact and the necessity to resort
to this sampling approach in order to impose a CP or phaseless
gauge condition [51,61]. To quantify this, we directly compute
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FIG. 5. Log-log plot of autocorrelation time 7,./At and phonon
frequency w/t for A = 0.1 and 1.0 for the 4 x 4 2D Holstein model.
The black dotted lines are linear fits for each curve. For A = 0.1,
the slope is —0.9876 with R* = 0.9993 and for A = 1.0, the slope is
—0.8617 with R? = 0.9942.

the energy autocorrelation function
N—t
1
ep(0) = o ) (En— (ED(Ense = (E)),  (89)
n=1

which gives an estimate of the integrated autocorrelation time
via

_ — (1)
Toe = Z 0 (89)

The summation in Eq. (89) needs to be performed within
some window instead of over the entire set of samples since,
for t > t,, the summed noise becomes comparable to the
actual signal. We follow Sokal’s prescription of the automated
windowing procedure to handle this issue [101,102]. In Fig. 5,
we present estimates of autocorrelation times for A = 0.1 and
1.0 for the 4 x 4 2D Holstein model. For both values of A, we
observe a near linear behavior in the log-log scale correlation
between 1, and w as in Fig. 5. Empirically, we find that
the autocorrelation time scales as 1/w%%7® for A = 0.1 and
1/%817 for A = 1.0. This scaling is a significant improve-
ment over that of the standard DQMC algorithms where 7,
scales as 1/w? [69].

On the other hand, in AFQMC we use an importance
function to guide the random walks. If the quality of the im-
portance function is very poor, the variance can grow and even
become infinite [88]. In cases where the trial wave function
suppresses certain regions of the Hilbert space being sampled
with a qualitatively incorrect functional form, the autocorre-
lation time and thus the variance can diverge, as mentioned
earlier in this section. This situation was seen in the examples
with the semiclassical wave function where there is a strong
bifurcation of the adiabatic potential in the Holstein dimer.
Another example occurs with the use of semiclassical trial
wave functions where the lack of explicit el-ph correlation
leads to large sampling biases. In extreme cases, calculations
will be seemingly well behaved in “normal-sized” runs, as
the Monte Carlo sampling is strongly biased by the wrong
importance function and the autocorrelation time grows ex-
ponentially. These situations require careful analysis of the

T=—00

variance and study of the dependence on the details of the
importance function to reveal the problem [88]. Separate but
related to the quality of the importance function is the is-
sue of efficiently sampling of multimodal landscapes in the
el-ph models, as we have only incorporated local moves in
our random walks. In the worst cases, AFQMC can, even
with reasonable choices of importance functions, experience
difficulties with long autocorrelations as occurs in DQMC.
In AFQMC the use of a population of open-ended random
walkers with branching can help avoid the sampling being
stuck.

VII. HUBBARD-HOLSTEIN MODEL

The focus of our CP-AFQMC method is on doped systems
and more realistic Hamiltonians, where the sign problem or
phase problem will be present. In the previous section, we
studied the 1D and 2D Holstein models with simple trial
wave functions. In this section, we present benchmark data
using the same approach for the Hubbard-Holstein model
with U/t = 4. Because of the competition between U and g,
we carefully study trial wave functions with both CDW and
SDW order. Note that the CP-AFQMC algorithm is no longer
exact because the el-el repulsion will lead to a sign problem.
Karakuzu, Seki, and Sorella have presented an efficient QMC
algorithm which is free of the sign problem at half-filling as
long as U > 2g*/w [57]. Within CP-AFQMC, we can simu-
late any parameter regime efficiently by controlling the sign
problem at the expense of introducing a constraint bias. Since
CP-AFQMC has been extensively benchmarked for electronic
systems in the past [ 78], we focus on any additional biases that
may arise from the interplay between electrons and phonons
in this section. We use an ad hoc U = 0.5t in the electronic
mean-field part to generate all the SDW trial wave functions
for CP-AFQMC in this section.

Below, we first examine the behavior of our algorithm in
1D, and then in 2D both at half-filling and % doping. We
will focus on benchmarking the accuracy of the computed
ground-state energies. We note that for the purely electronic
cases with A = 0, all of our models in 1D and at half-filling in
2D are sign-problem free. However, CP-AFQMC can incur
a systematic error in the energy in these cases because of
an “artificial node” in auxiliary-field space [51]; this error
can be removed straightforwardly [77,78]. Instead of invoking
the scheme to remove this artificial bias, we will perform
the CP-AFQMC calculation in the generic way as described
above since our main focus in this work is the most general
situation of a doped Hubbard-Holstein model where the sign
problem is present.

A. 1D 20-site model at half-filling

We benchmark CP-AFQMC against DMRG for the 20-site
1D Hubbard-Holstein model at half-filling with PBCs. Unlike
for the case of the pure Holstein model, CSMP2 and the
variational LF approach are quantitatively and qualitatively
inaccurate for all parameters examined here. This is not sur-
prising because the onsite repulsion term for U/t = 4 is not
small, so the failure of mean-field theories and a low-order
perturbation theory on the el-el interaction is expected. For
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FIG. 6. The total energy per site in units of 7 for the 20-site 1D Hubbard-Holstein model at half-filling with U = 4¢ as a function of A for
various w values: (a) w = 0.1, (b) w = 0.4, (¢c) @ = 1.0, and (d) w = 2.0. Note that all error bars of CP-AFQMC are too small to be seen on
the plotted scales. Note that the DMRG results are unavailable for v = 0.1 and 0.4 as well as for A > 2.

this reason we do not discuss CSMP2 and variational LF
results here.

To study the CDW and SDW phases and the possibility of
a phase transition between them, we carry out CP-AFQMC
calculations using two different mean-field trial wave func-
tions with the corresponding broken symmetry. Comparison
of the computed energies indicates which one is the ground
state at each Hamiltonian parameter choice as well as the
existence and location of a transition, although the fact that
our CP-AFQMC energies computed from the mixed estimate
are not variational [63] adds a subtlety to this procedure. Here,
the calculation leading to the higher energy can be thought of
as the constraint acting to “hold” the projection to an excited
state compatible with the broken symmetry of the trial wave
function. In actual applications, we could use a self-consistent
CP-AFQMC procedure [90] to tune the trial wave function
and reduce its effect on the result, but for the purpose of
benchmarks we will only perform one-shot calculations here
using UHF trial wave functions generated with a fixed Ue,
and rely on comparison with DMRG results to gauge the
accuracy.

In Fig. 6, we compare two sets of CP-AFQMC results
at different w values, one set with SDW trial wave func-
tions (denoted by CP-AFQMC/SDW) and another with CDW
trial wave functions (denoted CP-AFQMC/CDW). The trial
wave functions themselves show a SDW to CDW transition
at A ~ 0.5, given our ad hoc choice of U = 0.5. We see

that CP-AFQMC/CDW leads to higher energies than CP-
AFQMC/SDW for A < 1.0. The energy differences are large
enough to make it straightforward to identify the correct
phase.

We next make more quantitative comparison of the total
energy per site obtained from CP-AFQMC and DMRG in
Fig. 6. DMRG calculations are performed with a bond dimen-
sion of 1000 and with the maximum number of bosons of 40.
In Figs. 6(c) and 6(d), we observe that CP-AFQMC/SDW
closely follows the DMRG energies from A = 0.1 to 1.0.
At A = 2.0, the energy obtained from CP-AFQMC/SDW is
significantly higher than that from CP-AFQMC/CDW, with
the latter in good agreement with DMRG. The procedure de-
scribed above of combining the lowest-energy curves between
CP-AFQMC/SDW and CP-AFQMC/CDW produces quanti-
tatively accurate results across the full range of parameters
that we study. Variations in the value of the phonon frequency
do not change the qualitative conclusions.

In Fig. 7 we show a magnified view of the absolute dis-
crepancies between CP-AFQMC and DMRG energies. As a
comparison, for the purely electronic Hubbard model (A =
0), CP-AFQMC exhibits an error per site of 0.00245(8)t
with respect to the DMRG reference values. Similarly in
the Hubbard-Holstein model, CP-AFQMC/SDW energies
exhibit an error per site of approximately 0.002—-0.003¢ for
A =0.1,0.3,0.8. When the system reaches values as large
as A = 1.0, we observe a small increase in the error as w
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FIG. 7. Error in total energy per site compared to DMRG in units of 0.0017 for the 20-site 1D Hubbard-Holstein model at half-filling with
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CP-AFQMC energy error (i.e., A = 0.0). In (b), DMRG energies are only available for v = 1.0, 1.5, 2.0.

increases. The largest error found for A = 1.0 is 0.0064(2)z
at w = 2.0, which is slightly larger than the constraint bias
found in the purely electronic problem. The point at which the
largest error was observed coincides with the expected phase
transition point between SDW and CDW (see below). At
A = 2.0, the discrepancy between CP-AFQMC and DMRG
is an order of magnitude smaller, with a maximum deviation
of CP-AFQMC per site of —0.00040(2)r at w = 2.0.

It has been shown by several methods [37,46,57,58] that in
the thermodynamic limit the Hubbard-Holstein model under-
goes a transition between SDW and CDW at

2¢°

U — =4dth.
w

(90)

This value of U is where the effective onsite interaction
changes sign as shown in Eq. (81). For U/t =4 andd = 1, we
expect the phase transition to occur at approximately A = 1.0.
We find that in the 20-site model, despite the expected finite-
size effects, the onset of the phase transition is captured quite
well. In particular, the crossover between CP-AFQMC/SDW
and CP-AFQMC/CDW occurs roughly at A = 1.0 in Fig. 6.
While this is encouraging, detailed phase diagram studies
with CP-AFQMC should be carried out in the future. We
note that CP-AFQMC often restores the symmetry breaking
of the underlying mean-field trial wave function [103,104],
as would be expected of an exact many-body computation.
Therefore, a proper phase diagram study with CP-AFQMC
should involve a direct measurement of correlation functions
[105] or order parameters with explicit symmetry breaking
induced [27]. Furthermore, there may be intermediate phases
such as metallic or superconducting phases near the onset
of the phase transition between the SDW and CDW phases.
Studying these putative intermediate phases is of great interest
[58].

B. 2D 4 x 4 model at half-filling and é hole-doping

Instead of comparing CP-AFQMC with other methods for
2D Hubbard-Holstein systems, we simply report the com-
puted total energy per site using PBCs along both the x and y
directions, as shown in Fig. 8. Based on the benchmark studies
in the previous sections and on experience from the purely
electronic model, we expect that our results will be of similar
accuracy (or better because of effective reduction of the el-el
interaction from the el-ph coupling) to that in the Hubbard
model for most parameters considered in this work. In Fig. 8,
we see that CP-AFQMC/CDW has a lower energy for A > 0.5
at both frequencies (w = 0.1 and 2.0) at both half-filling and
% hole doping. Based on Eq. (90), it is expected that the onset
of the crossover occurs around A = 0.5 in 2D, consistent with
our numerical results. (Note that our definition of A includes
dimensionality, hence the change in the crossover value from
1D to 2D.)

Consistent with our previous results, for A = 0.1 and
0.3 at all frequencies up to w = 2.0, the CP-AFQMC er-
ror per site is approximately 0.009¢ or slightly larger. At
the onset of the crossover between CP-AFQMC/CDW and
CP-AFQMC/SDW (1 ~ 0.5), we expect the error to be max-
imized and larger than that of the CP-AFQMC bias for the
electronic problem, similar to the 1D 20-site model at half-
filling. For A = 0.8 and 2.0, we expect that our results will be
nearly exact for the w values studied. For the purely electronic
Hubbard model (A = 0), CP-AFQMC exhibits an error per
site of about 0.00901(9)r at half-filling and 0.004 69(4 )t at é
hole doping, using a UHF trial wave function. As mentioned,
the error at half-filling is “artificial” and can be removed
[77,78], but this is not done here. For A < 1 at half-filling
we expect an error of comparable size. Comparing two differ-
ent fillings, we do not see qualitative differences in physical
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behavior in our finite-sized lattice, and the value of the phonon
frequency does not appear to make qualitative differences
as well. We note that the energy difference between CP-
AFQMC/SDW and CP-AFQMC/CDW noticeably shrinks as
the phonon frequency w increases.

VIII. TOWARDS AB INITIO HAMILTONIANS

We briefly discuss the extension of the presented algorithm
for general ab initio Hamiltonians. The ab initio Hamilto-
nian that describes el-ph problems typically involves linear
el-ph coupling. Therefore, the most widely used ab initio
Hamiltonian has the same form as Eq. (1) with more general
Hamiltonian matrix elements:

Y = D" D hpa )y, 1)
oe{t i} pq
A =5 > > (porolgerss ) &) as,a,,, (92)
o,0’e{t,l} pqrs
ﬁph = ZCWB}LB/, (93)
1
and
/}qel-ph = Z 2:gp(,q(,la;a&qtT (l;}' +i7[), (94)

ot} pql

where we have suppressed other quantum numbers such
as k-point dependencies and have expressed everything in
terms of the electronic ({p, g, r, s, ...}) and phononic bands
({1,J,K,L,...}). The computation of these matrix elements
at the level of density functional theory has been well doc-
umented [1,106,107] so here we focus on briefly describing
the phaseless AFQMC (ph-AFQMC) algorithm [61] for these
realistic el-ph problems.

The walkers take the same form as in Eq. (19). There-
fore, the essence of the propagation algorithm remains
unchanged. The only complication arises from the general-
ized form of 7—2? which necessitates the use of a continuous
Hubbard-Stratonovich transformation [108,109]. The contin-
uous transformation leads to the fermionic phase problem
which can be removed via the phaseless constraint [61]. The
propagation is carried out the same way with appropriate mod-
ifications to the constraint to account for the phase problem.
The ab initio generalization of semiclassical states used in
this work is also straightforward. The trial wave function still
takes the form of Egs. (34), (35), and (37). A variational
minimization of the total energy then leads to a trial wave
function that can be used in ph-AFQMC. The projection of the
trial wave function onto phonon displacements |X) is identical
to Eq. (39) except that the phonon mass and frequency now
depend on band indices {I}. The ab initio generalization of the
LF wave function may also be carried out straightforwardly
by extending the LF generator in Eq. (49). We expect that
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the ab initio ph-AFQMC approach will become a valuable
tool for understanding polaronic physics in realistic correlated
materials in the future.

IX. CONCLUSIONS AND OUTLOOK

In this work, we have introduced an extension of CP-
AFQMC to describe correlated systems with el-ph coupling.
Our approach utilizes a mixed first- and second-quantized
representation where the phonons are propagated in first
quantization following the commonly used diffusion MC
algorithm, and the electronic degrees of freedom are han-
dled in second quantization via AFQMC. The resulting
algorithm is compared with numerically exact DMRG and
low-order perturbation theories for the Holstein model as
a first test of the basic algorithm. We have demonstrated
that the autocorrelation time problems that arise in the
commonly used DQMC methods are greatly ameliorated in
AFQMC, with autocorrelation time that scales roughly as
1/w.

While the Holstein model is sign-problem free, AFQMC
with the simplest trial wave functions, namely, semiclassical
states, is found to introduce a small bias when the underlying
adiabatic surface develops into a double-well potential surface
and/or g is larger than ¢ but smaller than » (e.g., ® — 00
for a fixed A). Based on a four-site model, we have shown
that this bias can be removed by using an improved trial wave
function where both bifurcations and increased el-ph correla-
tion are accounted for. We have demonstrated the remarkable
accuracy of AFQMC for both 1D and 2D Holstein models
over a reasonably broad set of coupling and phonon frequency
parameters via direct comparison with DMRG.

We have tested CP-AFQMC on the finite-sized versions
of the 1D and 2D Hubbard-Holstein models with U/t = 4,
using the simplest form of trial wave functions consisting of
a semiclassical state with a single Slater determinant. For the
1D Hubbard-Holstein model, we have compared CP-AFQMC
against numerically exact DMRG results. When A is small
and the ground state is dominated by the Hubbard U term,
we find that the error of our algorithm is roughly the same
as that expected from standard CP-AFQMC applied to the
purely electronic Hubbard model. Furthermore, when the
ground state is dominated by the el-ph coupling term and
exhibits charge density wave order, we find that the overall
error becomes remarkably small (smaller than that expected
in purely electronic systems). These facts have motivated the
production of what we believe are benchmark results for the
finite-sized 2D Hubbard-Holstein model for various values of
X and w at half-filling and % hole doping.

For U < 2g*/w at half-filling and for all parameter regimes
at any hole doping, standard QMC approaches suffer from the
sign problem [57]. Therefore, our AFQMC approach should
become an essential tool for producing accurate results scal-
able to large system sizes for this model. We have investigated
the competing spin and charge density wave orders in the
Hubbard-Holstein model. At the onset of the phase transi-
tion between these phases, we observe a crossover in the
energies between two AFQMC calculations targeting the two
phases. Lastly, we have briefly discussed the extension of
the presented algorithm to ab initio Hamiltonians that can be

easily formulated based on the phaseless AFQMC method for
general electronic Hamiltonians [61].

Some immediate future directions include using this frame-
work to provide a detailed study of the phase diagram of the
Hubbard-Holstein model and other lattice models, and ex-
tending this framework to finite-temperature problems based
on the constrained-path approximation [110]. As mentioned,
a trial wave function with an el-ph Jastrow factor can be
implemented straightforwardly in AFQMC, which is expected
to further reduce the bias and improve sampling efficiency
in antiadiabatic regimes with 2dt) < w. It will also be valu-
able to further investigate the implementation of the full LF
trial wave function. Furthermore, application of the proposed
AFQMC approach to ab initio systems will be of great in-
terest as well. While there are several algorithmic aspects
that can be further improved, including improved forms of
importance functions and better sampling in large phonon
frequency regimes, we believe that the algorithms and insights
presented in this work will serve as stepping stones towards
simulating model as well as ab initio systems with a nontrivial
interplay between electronic correlation and el-ph couplings,
which continue to be of great importance in modern con-
densed matter physics.

X. COMPUTATIONAL DETAILS

Our algorithm was implemented in a public open-source
auxiliary-field quantum Monte Carlo package called PAUXY
[111]. The blocking analysis was performed with PYBLOCK
[112]. The pair-branching algorithm was used for popula-
tion control [113]. Variational calculations were aided by
automatic differentiation using JAX [114]. A total of 640
walkers and a time step of 0.005:~! were used in all cal-
culations except for the Holstein dimer and the four-site 1D
Holstein model. For the Holstein dimer, we used a time step
of 0.0005¢~! for w < 1.6 and 0.00025¢~! for w > 1.6 with
6400 walkers. For the four-site 1D Holstein model, we used
6400 walkers and a time step of 0.0005¢~'. The population
control bias and time-step error were found to be smaller than
0.001¢ in the absolute total energy per site. In calculations
for = 0.1, we used a very long 8 (~3000:") due to the
long autocorrelation time in this regime. This yielded about
100 statistically independent samples after the blocking anal-
ysis. For the DMRG calculations, we gradually increased the
number of bosons on each site to make sure that the reported
DMRG energies are converged up to 0.001¢ per particle in
that increasing the number of bosons by 10 showed an energy
change smaller than 0.001¢ per particle. This is an energy
scale that is small enough for the discussion in this work.
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