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Key Points: 

• Alfvén wave field line resonances are described in a model of Jupiter’s magnetosphere 

based on empirical distributions of the magnetic field and plasma density 

• These resonances occur with periods of 10-40 minutes 

• These waves are consistent with measurements of magnetic fluctuations in Jupiter’s 

magnetosphere, as well as with oscillations in auroral luminosity 

  



Abstract 

The arrival of the Juno satellite at Jupiter has led to an increased interest in the dynamics of the 

Jovian magnetosphere.  Jupiter’s auroral emissions often exhibit quasi-periodic oscillations with 

periods of tens of minutes.  Magnetic observations indicate that ultra-low-frequency (ULF) waves 

with similar periods are often seen in data from Galileo and other satellites traversing the Jovian 

magnetosphere.  Such waves can be associated with field line resonances, which are standing shear 

Alfvén waves on the field lines.  Using model magnetic fields and plasma distributions, the 

frequencies of field line resonances and their harmonics on field lines connecting to the main 

auroral oval have been determined.  Time domain simulations of Alfvén wave propagation have 

illustrated the evolution of such resonances.  These studies indicate that harmonics of the field line 

resonances are common in the 10-40 minute band. 

Plain Language Summary: 

The magnetic field lines of planets like Earth and Jupiter can act like the strings of a musical 

instrument, and can support waves at specific frequencies in the same way that a guitar or violin 

string has a particular frequency.  The rapid rotation of Jupiter causes its field line to be stretched 

out, and Jupiter’s moon Io produces a dense cloud of ionized gas (plasma) that populates these 

stretched field lines.  By making a numerical model of Jupiter’s magnetic field and plasma, we 

have calculated the frequencies of these field lines, which have much lower frequencies than a 

musical instrument so that the periods are tens of minutes.  This period corresponds to oscillations 

in the visible aurora (northern and southern lights) at Jupiter. 

Index terms: 2752 MHD Waves and Instabilities, 2756 Planetary Magnetospheres, 5734 

Magnetic Fields and Magnetism, 2753 Numerical Modeling 
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1. Introduction 

One goal of the NASA Juno mission, in polar orbit around Jupiter, is the investigation of auroral 

processes in the magnetosphere of this giant planet (e.g., Bagenal et al., 2017).  One of the features 

of the Jovian magnetosphere is the appearance of quasi-periodic variations in auroral intensity with 

periods of tens of minutes.  Variations with a period of 10-60 minutes have been observed by the 

Hubble Space Telescope (Nichols et al., 2017) in the ultra-violet, by the Japanese Subaru satellite 

(Watanabe et al., 2018) in the infrared, and in X-rays from Chandra and XMM-Newton (Dunn et 

al., 2017).  In situ observations at Jupiter have indicated that magnetic fluctuations in the 10-20 

minute range were present in Voyager 2 data (Khurana & Kivelson, 1989).  Similar observations 

were made by Galileo (Manners et al., 2018; Manners & Masters, 2019; Wilson & Dougherty, 

2000).  In addition, Alfvén waves have long been associated with the coupling of the moon Io with 

the ionosphere of Jupiter (e.g., Acuña et al., 1981; Bagenal, 1983; Belcher et al., 1981; Chust et 

al., 2005; Crary, 1997; Goertz, 1980; Gurnett & Goertz, 1981; Hinton et al., 2019; Neubauer, 

1980); however, the focus of this letter will be on the main auroral oval. 



Modeling of the Jovian Alfvén waves was first considered using a simplified box model (Khurana 

& Kivelson, 1989) or a cylindrical model (Glassmeier et al., 1989) in which the magnetic field 

lines are “straightened out” and the two conjugate ionospheres are planes perpendicular to the field 

lines.  In these models, the plasma sheet of Jupiter, or the Io plasma torus in the Glassmeier et al. 

(1989) model, was considered to be a region of enhanced density in the equatorial plane.  

Otherwise the background magnetic field was constant and the density is constant outside of the 

plasma sheet.  This type of model has recently been taken up by Manners et al. (2018) and Manners 

and Masters (2019) who compared the results of the box model calculations to data from Galileo 

by adjusting the Alfvén speed and the plasma sheet thickness to fit the data. 

However, the box model is oversimplified in that it does not include the realistic geometry and 

distribution of plasma along the field line.  In the terrestrial magnetosphere, models using a dipole 

geometry have been used to calculate the resonant periods of magnetospheric field lines (e.g., 

Cummings et al., 1969).  Furthermore, finite difference time domain models using dipole geometry 

have also been used (e.g., Lee & Lysak, 1989, 1990, 1991; Streltsov and Lotko, 1997; Rankin et 

al., 1999; Tikhonchuk & Rankin, 2000) to model ultra-low-frequency (ULF) waves in the 

magnetosphere.  However, the field lines connecting to the main auroral oval at Jupiter are clearly 

on field lines that are far from dipolar, due to the magnetodisk of plasma that is emitted from the 

moon Io (e.g., Bagenal, 1994). 

The purpose of this letter is to study ULF waves in the Jovian magnetosphere in a more realistic 

model of the magnetic field.  The box model calculations described above indicate that frequencies 

consistent with the periodicities of the auroral emissions can be found for reasonable parameters, 

but those models do not consider the geometry of the Jovian magnetosphere or a more realistic 

density profile.  The present work will provide a fundamental improvement over these earlier 

models by placing the ULF waves in the context of magnetic field and plasma models based on 

spacecraft data.  Global MHD models of the Jovian magnetosphere have also been performed (e.g., 

Ogino et al., 1998; Walter & Ogino, 2003; Chané et al, 2013; Sarkango et al., 2019); however, 

these models generally address the large-scale structure of the magnetosphere rather than the more 

rapid ULF wave perturbations.  In addition, these models generally have an outer boundary far 

from the true ionosphere; in the Sarkango et al. (2019) model, the inner boundary is at 3 RJ.  Thus, 

these models cannot describe the magnetosphere-ionosphere coupling in detail.  Therefore, the 

model presented here is the first model with a realistic magnetic field and plasma distribution to 

study the faster dynamics of the Jovian magnetosphere. 

The magnetic field in this model is based on Connerney et al. (1981) who considered the field due 

to a current sheet of finite thickness and radial extent in addition to the internal, dipolar magnetic 

field of the planet.  It should be noted that close approach of Juno to Jupiter have allowed for the 

modeling of the higher order multipoles of the magnetic field (Connerney et al., 2018); however, 

these higher multipoles fall off faster than the dipolar contribution at large distances from Jupiter.  

We also assume that the  dipole moment is perpendicular to the plane of the current sheet, despite 

the fact that it is tilted with respect to the rotation axis.  This may lead to an asymmetry in the 

mode structure, but may have a minor effect on the eigenfrequencies of the field line resonances.  



Since the frequency of the field line resonance is largely controlled by the outer parts of the field 

line, a dipole model for the internal contribution to the magnetic field will suffice for our study. 

In addition to a magnetic field model, we require a model of the plasma mass density to calculate 

the Alfvén speed.  We have adopted the model of Bagenal and Delamere (2011) based on Voyager 

and Galileo data.  This model describes the plasma density and temperature profile beyond Io’s 

orbit, assuming a constant average ion mass.  The plasma sheet density in this work is assumed to 

decrease with distance from the center of the plasma sheet as a Gaussian with a scale height 

dependent on the temperature, which increases with radial distance from Jupiter.  

The remainder of this letter is organized as follows: First, we will discuss details of the background 

magnetic field and density models used in this work.  Then, we will describe the coordinate system 

used and the equations used to calculate the field line resonant frequencies.  After showing the 

results, we will show initial results from time-domain simulations of the propagation of the Alfvén 

waves along the Jovian magnetic field lines.  We will conclude with a discussion of the results and 

plans for future work. 

 

2.  Magnetic Field and Plasma Models 

The CAN81 model (Connerney et al., 1981) starts by assuming a current sheet extending outward 

for radial distances ρ > a from the dipole axis (using cylindrical coordinates ρ, φ, z), and extending 

from z = − D to z = D.  Here a represents in the inner edge of the plasma sheet (assumed to be near 

the radial distance of Io) and D gives the half-thickness in the z direction. The current density in 

this sheet is assumed to vary as 1/ρ.  Then the Green’s function G for a current sheet at z′ is given 

by  
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Here J0 and J1 are Bessel functions, and λ is an effective wave number in a Fourier-Bessel 

expansion (Connerney et al., 1981).  Then the vector potential can be written as 
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As a further refinement, the current sheet can be assumed to extend from ρ = a1 to ρ = a2, which 

modifies equations (3) and (4) to read: 
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This field is added to the vector potential for a dipole, which is given in cylindrical coordinates 

as 
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In this expression, B0 = 430 μT is the equatorial surface field at Jupiter and RJ = 71,492 km is the 

1 bar radius of the planet (e.g., Bagenal et al., 2017). Then the magnetic field components can be 

computed by taking the curl of the vector potential as usual.  Explicit forms for the magnetic field 

are given by Connerney et al. (1981). 

This vector potential can be used to create a coordinate system using the so-called Euler potentials 

(Stern, 1970), =B , where β = φ is the azimuthal coordinate and α = ρAφ is sometimes 

called the flux function, since it is proportional to the amount of magnetic flux enclosed by the 

field line.  Following Connerney et al. (1981), we will adopt this model with a1 = 5 RJ, a2 = 50 RJ 

and D = 2.5 RJ, with a current of I0 =25.6106 A/RJ, corresponding to μ0I0 = 450 nT.  These 

parameters were chosen by Connerney et al. (1981) to fit measurements from Voyager 1 and 

Pioneer 10. 

With the magnetic geometry being defined, we next need to adopt a model for the plasma mass 

density, which is necessary to compute the Alfvén speed.  As a first model, we will adopt the 

plasma sheet model described by Bagenal and Delamere (2011) based on Galileo data.  In their 

model, the equatorial density outside of Io’s orbit (at about 6 RJ) is given by 

 ( ) ( )
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Here r is measured in Jovian radii.  Since the plasma density is expected to fall off rapidly inside 

Io’s orbit, we have taken the density in this region to vary as  
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At a distance z above the central plane of the plasma sheet, Bagenal and Delamere (2011) 

assume a Gaussian fall-off to the density: 
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Where 0 (eV)/iH H T M=  with H0 = 0.64 RJ and M is the average ion mass in units of the proton 

mass.  The log of the scale height is assumed to follow 

 2 3 40.116 2.14 2.05 0.491 0.126h r r r r= − + − + +  (11) 

Here 10logh H= and 
10 / 6logr =  and again, H and ρ are measured in Jovian radii.  The average 

mass of the plasma sheet ions is taken to be 20 amu, in agreement with Bagenal and Delamere 

(2011).  Finally, the ionosphere is assumed to be composed of protons, with an exponential profile: 
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With nI0 = 2105 cm−3 and HI = 4200 km, as in the work of Su et al. (2006).  In addition to these 

populations, the background density in the magnetotail is restricted to a minimum value of 0.01 

cm−3.  Figure 1a shows the magnetic field profile in the model runs, with Figure 1b being the mass 

density profile and Figure 1c showing the Alfvén speed determined from the magnetic field and 

density.  Each of these plots also includes representative field lines at M = 10, 15, 20, 25, 30 and 

35, where M gives the equatorial crossing of the field line in units of Jovian radii (Allegrini et al., 

2017). 

3.  Calculation of the field line resonance frequencies 

Using the background parameters given in the previous section, we can then calculate the resonant 

frequencies on each field line.  This is a well-established procedure in terrestrial magnetospheric 

physics, going back to the seminal work of Cummings et al. (1969).  Here we assume that the 

waves are governed by the ideal MHD equations for shear Alfvén waves.  The Euler potentials α 

and β serve as coordinates that define a field line, and we take the length s along the field line to 

be the third coordinate.  We write the wave equations in the rotating frame of reference; however, 

since the rotation frequency is much less than the wave frequency, the effect of centrifugal and 

Coriolis forces can be neglected (e.g., Glassmeier et al., 1989).  We will focus on toroidal modes 

(in which the velocity and magnetic perturbations are in the azimuthal direction), since the 

observations of Manners and Masters (2019) indicate that this mode is dominant.  The toroidal 

mode has only two non-zero fields, Eα and Bβ, which correspond to the radial and azimuthal 

components, respectively, at the equatorial plane.  Then the equations for the shear Alfvén mode 

can be written as 
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In these equations, ( )2 2 2 2/ 1 /A A Ac V V c= + , where 2 2

0/AV B nM=  is the non-relativistic MHD 

Alfvén speed and hα and hβ are scale factors.  Since α and β define field lines, the area of a flux 

tube is proportional to hαhβ, and so hαhβ ~ 1/B.  The azimuthal coordinate β has a scale factor hβ = 



rsinθ in spherical coordinates or hβ = ρ in cylindrical coordinates, so the other scale factor 
2

0 /Jh R B h B = . 

To determine the field line resonances, equations (13) and (14) are Fourier transformed in time 

and integrated from one ionosphere to the other.  It is convenient to incorporate the scale factors 

into the fields and to recognize that in a standing wave the electric and magnetic fields are in 

quadrature, so we define the variables as E h E =  and B ih B = .  In terms of these variables, 

these equations become 
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Next we must introduce boundary conditions. The ionosphere is estimated to have a Pedersen 

conductance in the auroral zone of 0.5 S (e.g., Yates et al., 2014), while the characteristic Alfvén 

impedance, 0A AZ c=  , is 377 Ω since cA approaches the speed of light.  In the terrestrial 

magnetosphere, it is well known that the ionospheric electric field becomes very small when ZAΣP 

>> 1 (e.g., Mallinckrodt & Carlson, 1978), and so we can assume the electric field goes to zero at 

the boundary.  So equations (15) are integrated starting at one ionosphere with 0E = and B

arbitrarily set to 1.  Then the equations are integrated for varying values of ω until a solution with 

0E = at the other ionosphere is satisfied using a shooting method (e.g., Press et al., 1992). 

Results for the first 12 modes are shown in Figure 2.  Figure 2a shows the eigenfrequencies, in 

milliHertz, for these modes as a function of the M-value.  Figure 2b shows the same information, 

but in terms of the periods of the waves in minutes.  Note that the fundamental mode, which has a 

period greater than 80 minutes for all values of M, is not shown in Figure 2b, so that the longest 

period shown, with a period of 25 minutes at M = 10, is the second mode (or the first harmonic).  

It can be seen from this figure that there are multiple modes in the 10-40 minute range typical of 

the quasi-periodic oscillations in the aurora.  It is interesting to note that while the periods tend to 

increase with increasing M, which is not surprising since these field lines are longer, at the largest 

values of M, the period decreases somewhat.  This is due to the fact that these field lines have a 

greater path length in the region where the Alfvén speed approaches the speed of light, which can 

be seen in Figure 1c. 

Next, we should consider the wave forms associated with these eigenmodes.  Since there are 

multiple harmonics in the region of interest and a wide variety of field lines to consider, we will 

be guided by the observations of Manners and Masters (2019), who observed a number of resonant 

modes by the Galileo satellite.  Their observations occurred near the equatorial plane at a radial 

distance of 23 RJ, so the M = 23 field line is appropriate.  They observed resonant toroidal modes 

with periods of about 22, 14, 7 and 4 minutes.  In the model magnetosphere considered here, these 

correspond roughly to the mode numbers 6 (22.4 min); 10 (13.0 min), 18 (7.1 min), and 32 (3.9 

min).  The wave forms for these modes are shown in Figure 3.  In this figure, the magnetic 

perturbation is given by the solid curve and the electric field by the dotted curve, plotted as a 

function of path length along the field line.  The scale is normalized so that the magnetic field at 



the equator is 1 nT, roughly consistent with the observations of Manners and Masters (2019).  

These are all even modes (odd harmonics) with an antinode in the magnetic field at the equator, 

again consistent with their observations.  The electric field is given in mV/m for a wave with 1 nT 

magnetic field at the equator.  Of course, these are linear eigenmodes and so the scales can be 

multiplied by an arbitrary amount.  The dashed line in this figure gives the local cylindrical radial 

distance ρ corresponding to each point in the plot. 

It is perhaps a coincidence that our particular model produces periods consistent with these 

observations.  While the model is based on spacecraft observations of the magnetic field and 

plasma density, it is doubtful in any particular case that the model gives an exact description of the 

magnetic field and density in any particular case.  Nevertheless, the fact that resonant modes in the 

range of periods that are commonly observed lends support to the idea that these resonant modes 

are associated with the quasi-periodic pulsations observed in the Jovian magnetosphere. 

4. Time domain simulations 

To support and verify these eigenmode calculations, we have performed time-domain simulations, 

again focusing on the M = 23 field line.  These simulations integrate equations (13) and (14) 

directly.  We perform runs in which there is an initial perturbation in the equatorial electric field, 

which can be thought of as an imposed perturbation in the azimuthal EB flow, corresponding to 

an electric field of 10 mV/m.  The ionospheres in both hemispheres are set to a Pedersen 

conductance of 1 S.  We consider two runs: one in which the initial electric field is a simple pulse, 

indicating a localized flow channel, and another in which there is a bipolar pulse in the electric 

field, corresponding to a flow shear.  The first case imposes symmetry in the electric field and 

antisymmetry in the magnetic field, leading to the excitation of odd modes, while in the second 

case the symmetry of the electric and magnetic fields is reversed and even modes are excited.  The 

advantage of doing an initial value problem is that the system will then be free to oscillate at its 

natural resonance frequencies. 

Figure 4 shows snapshots every 8 minutes into a run that was initialized with a localized flow 

channel modeled as a Gaussian with a scale of approximately 0.4 RJ.  The full run is shown as 

Movie S1 in the Supporting Material.  The amplitude is 10 mV/m, mapped to the ionosphere.  Both 

the electric and magnetic fields are mapped to the ionosphere in both this figure and the movie.  

Figure 5 shows the Fourier transform of the fields for this run.  In this figure, the solid curves give 

the magnetic field spectrum and the dashed curves are the spectrum of the electric fields.  The 

black, blue and red curves are at path lengths of 10, 20, and 30 RJ from the northern ionosphere.  

Figure 1 shows that 10 RJ corresponds to the high Alfvén speed region above the ionosphere, 20 

RJ is at the edge of the dense plasma sheet and 30 RJ is at the equator.  The asterisks in the figure 

correspond to the eigenfrequencies as given in Figure 2.  As Figure 5 shows, the symmetry in the 

initial conditions allows only for the excitation of odd modes.   

It should be recognized that this run was done over an artificially long time of 400 minutes, over 

half the Jovian rotation period, in order to get good spectral resolution; however, it is very unlikely 

that conditions would be stable over that period of time.  With that consideration, the fundamental 

mode, at 189 minutes, is also unlikely to be strongly excited.  On the other hand, the third, fifth 



and seventh modes, with periods of 49, 27 and 19 minutes, are in the range of quasi-periodic 

emission.  It can also be seen that in the high Alfvén speed regions, the electric fields are much 

stronger than the magnetic fields, while the opposite is true near the equator.  As a reference point, 

it should be noted that for a purely propagating Alfvén wave with a magnetic field amplitude of 1 

nT would have an electric field of 1 mV/m if the Alfvén speed is 1000 km/s.  Of course these are 

standing waves in which the ratio of Eα/Bβ is not always equal to the Alfvén speed, as can be seen 

in Figure 4. 

Figure 6 shows a similar run in which a shear flow channel is modeled by a bipolar pulse in the 

electric field.  Snapshots are given at each 8 minutes for comparison with Figure 4, with the full 

movie included as Movie S2 in the Supporting Material.  Now it can be seen that this initial 

condition gives a symmetric magnetic field and an antisymmetric electric field.  Plots of the spectra 

are given in Figure 7, using the same color and linestyle patterns as in Figure 5.  Now it is clear 

that the even harmonics are excited by this type of impulse.  It is interesting to note that the 6th and 

the 10th modes correspond to the 22 and 14 minute waves observed by Manners and Masters 

(2019). 

These runs give only a few examples of the dynamics of this system.  The number of harmonics 

excited is a function of the width of the input flow channel in the plasma sheet.  This occurs since 

the Alfvén speed in this region times the wave number spectrum of the flow channel defines the 

range of frequencies that can be excited.  For example, a run in which the channel was one-third 

the size of the input for the run of Figures 4 and 5 produced stronger fields at the higher harmonics, 

while a broader channel only excited the low harmonics.  The results from these runs are given in 

Figure S1 in the Supporting Material.  Further work, including multi-dimensional simulations, will 

be required to fully explore the dynamics of these resonances on Jovian field lines. 

5. Discussion and Conclusions 

The results presented here represent the first model of ULF wave propagation in the Jovian 

magnetosphere based on realistic magnetic field and plasma parameters.  Our conclusions support 

and extend the suggestions of Nichols et al. (2017), Manners et al. (2018) and Manners and Masters 

(2019) that resonant Alfvén waves can result in the quasi-periodic oscillations in the 10-40 minute 

range.  Our model, based on the magnetic field model of Connerney et al. (1981) and the plasma 

model of Bagenal and Delamere (2011), shows a rich spectrum of wave modes in this range.  Time-

domain simulations of a magnetic field line in Jupiter’s magnetosphere show that a single pulse in 

the electric field, corresponding to a flow channel in the plasma sheet, can produce odd modes 

with electric fields symmetric about the equator and magnetic fields that are antisymmetric.  

Similarly, a bipolar electric field pulse, corresponding to a shear flow in the plasma sheet, produces 

even modes with the symmetries reversed.  It should be recognized that the exact symmetry and 

antisymmetry of these fields is the result of our assumption that the dipole axis is perpendicular to 

the current sheet.  It will be a goal of future work to incorporate the dipole tilt into the model in 

order to get a more realistic structure for the eigenmodes. 

However, the richness of the resonances in this range of frequencies raises the question of why 

particular periods seem to be favored in any given observation.  The results of the time-domain 



simulations indicate that the spatial scales of flow channels in the plasma sheet may be responsible 

for picking out specific frequencies.  Saur et al. (2003) have considered the formation of weak 

turbulence in the plasma sheet as a potential generator of field-aligned currents and Alfvén waves.  

Their estimate of scale lengths of 1.7 RJ is about 4 times larger than what was assumed in our 

simulations, which would suggest that only long-period lower harmonics would be excited.  On 

the other hand, if wave energy cascaded to smaller scale lengths as is often the case, the shorter-

period waves may come into play.  Such cascades may proceed down to the ion gyroradius scale, 

which is estimated by Saur et al. (2018) as being about 1000 km at distances of 20-30 RJ.  Such 

scales could produce a broad spectrum of harmonics. 

As new data comes in from Juno, we will be able to refine our models of the magnetic field and 

plasma density.  Analysis of the Voyager data by Dougherty et al. (2017) has provided a detailed 

breakdown of the heavy ions in the system, and has shown an electron density about a factor of 4 

higher than the Bagenal and Delamere (2011) results.  Since the Alfvén speed and thus the 

frequencies of the field line resonances vary inversely as the square root of the plasma density, this 

would lead to a factor of 2 decrease in the resonant frequencies.  Including this more detailed 

model of the plasma distribution will be the focus of future work. 

Another question is how these FLR frequencies relate to the periodicities in auroral emission that 

are observed.  The calculations presented here assume ideal MHD, in which the parallel electric 

field is always zero.  However, kinetic effects lead to the development of parallel electric fields 

when the perpendicular wavelength becomes comparable to the electron inertial length or ion 

acoustic gyroradius (e.g., Lysak & Lotko, 1996) or when strong magnetic shears require field-

aligned currents stronger than can be carried by the particles (Song & Lysak, 2006).  Such scales 

may develop through turbulent cascade, as assumed by Saur et al. (2003, 2018); however, they 

may result from the propagation of the waves along the field lines.  As can be seen in Figure 2, 

adjacent field lines have different resonant frequencies, which leads to phase mixing causing the 

perpendicular wavelength to decrease (e.g,. Lysak & Song, 2008; Mann et al., 1995).  This can 

produce the time-dependent parallel electric fields that are necessary to explain the Juno 

observations of broadband acceleration of electrons at low altitudes above the auroral zone (e.g., 

Clark et al., 2018; Mauk et al., 2017). 

While the present work confirms the existence of multiple field line harmonics with periods of 

tens of minutes, the mechanism for excitation of these waves is still an open question.  As noted 

above, turbulence in the plasma sheet may play a major role in the development of these currents.  

On the other hand, in contrast to the Earth, the Jovian upper atmosphere itself can have structured 

flows (e.g., Yates et al., 2014) that can couple to the ionosphere through collisions and drive 

currents.  In a dynamic situation, such flows may drive Alfvén waves that could propagate out into 

the magnetosphere.  Given that the co-rotation of Jupiter is the major energy source for driving 

magnetospheric dynamics, it is reasonable to assume that the ionosphere can contribute to the input 

of Alfvén wave energy that can excite the field line resonances.  Exploring these possibilities will 

be the focus of future work. 

Finally, while the focus of this paper has been on the main auroral oval of Jupiter, it is well known 

that Alfvén wave propagation is important on the Io flux tube.  Recent modeling efforts (e.g., 



Jacobsen et al., 2007; Damiano et al., 2019; Hinton et al., 2019) have shed light on the propagation 

paths and kinetic effects on Alfvén waves produced by Io.  These studies indicate that the multiple 

auroral bright spots in the tail of the Io auroral emission (e.g., Szalay et al., 2018) may be associated 

with a standing wave pattern produced by the reflection of Alfvén waves between the ionospheres 

and the Io plasma torus.  Further investigations in this area would also be useful. 

In summary, we have modeled the propagation of resonant Alfvén waves on magnetic field lines 

associated with the main auroral oval at Jupiter.  Our results show that multiple harmonics in the 

10-40 minute range can be excited and may be associated with quasi-periodic auroral emissions.  

New observations from Juno will help us refine our model.  Understanding of the dynamics of 

Alfvén wave propagation in the Jovian magnetosphere will enable new understanding of the 

physical processes in this corotation-driven magnetosphere. 
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Figure Captions 

Figure 1.  Background parameters for the eigenfrequency calculation.  (a) Magnetic Field; (b) 

Mass density; (c) Alfvén speed.  Contours in each plot are magnetic field lines. 

Figure 2.  Eigenfrequencies as a function of M-shell for first 12 eigenmodes.  (a) Frequencies in 

mHz; (b) Periods in minutes.  Note that the fundamental mode, which has periods greater than 80 

minutes for all values of M, is not shown in this panel. 

Figure 3.  Eigenfunctions for selected modes at M = 23 as a function of length along the field 

line.  Solid curves give magnetic perturbations and dashed curves are electric field perturbation.  

The fields are normalized so that the wave magnetic field at the equator is 1 nT.  The dotted 

curve gives the radial distance of each point, referenced to the right-hand scale.  (a) Mode 6, 

period of 22.4 min; (b) Mode 10, period of 13.0 min; (c) Mode 18, period of 7.1 min; and (d) 

Mode 32, period of 3.9 min). 

Figure 4.  Snapshots of a run initialized by an electric field pulse of 10 mV/m (mapped to the 

ionosphere), exciting modes that are symmetric in the electric field and anti-symmetric in the 

magnetic field.  Solid curves give magnetic perturbations and dashed curves are electric field 

perturbation.  Panels show fields at (a) 8, (b) 16, (c) 24, (d) and 32 minutes.  Note all fields are 

mapped to the ionosphere.  A full movie of this run is in the Supplemental Material as Movie 1. 

Figure 5.  Spectra of the magnetic (solid curves) and electric (dashed curves) fields on the M = 

23 field line.  These spectra are taken at distances of 10 RJ (black), 20 RJ (blue), and 30 RJ (red).  

Asterisks give the eigenfrequencies for this field line, showing that odd modes are excited. 

Figure 6.  Snapshots from a run on the M = 23 field line in which a bipolar electric field is 

imposed at the equator, exciting a symmetric magnetic field and an antisymmetric electric field.  

The panels show the fields at times of 8, 16, 24, and 32 minutes, as in Figure 4. 

Figure 7.  Spectra of the magnetic (solid) and electric (dashed) fields for the run shown in Figure 

6 at distances of 10 RJ (black), 20 RJ (blue), and 30 RJ (red).  In this case the even modes are 

excited. 
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