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Isospin Pomeranchuk effect in twisted 
bilayer graphene

Yu Saito1,2,7, Fangyuan Yang1,7, Jingyuan Ge1, Xiaoxue Liu3, Takashi Taniguchi4, 
Kenji Watanabe5, J. I. A. Li3, Erez Berg6 & Andrea F. Young1 ✉

In condensed-matter systems, higher temperatures typically disfavour ordered 
phases, leading to an upper critical temperature for magnetism, superconductivity 
and other phenomena. An exception is the Pomeranchuk effect in 3He, in which the 
liquid ground state freezes upon increasing the temperature1, owing to the large 
entropy of the paramagnetic solid phase. Here we show that a similar mechanism 
describes the finite-temperature dynamics of spin and valley isospins in magic-angle 
twisted bilayer graphene2. Notably, a resistivity peak appears at high temperatures 
near a superlattice filling factor of −1, despite no signs of a commensurate correlated 
phase appearing in the low-temperature limit. Tilted-field magnetotransport and 
thermodynamic measurements of the in-plane magnetic moment show that the 
resistivity peak is connected to a finite-field magnetic phase transition3 at which the 
system develops finite isospin polarization. These data are suggestive of a 
Pomeranchuk-type mechanism, in which the entropy of disordered isospin moments 
in the ferromagnetic phase stabilizes the phase relative to an isospin-unpolarized 
Fermi liquid phase at higher temperatures. We find the entropy, in units of 
Boltzmann’s constant, to be of the order of unity per unit cell area, with a measurable 
fraction that is suppressed by an in-plane magnetic field consistent with a 
contribution from disordered spins. In contrast to 3He, however, no discontinuities 
are observed in the thermodynamic quantities across this transition. Our findings 
imply a small isospin stiffness4,5, with implications for the nature of finite-temperature 
electron transport6–8, as well as for the mechanisms underlying isospin ordering and 
superconductivity9,10 in twisted bilayer graphene and related systems.

The best-studied example of moiré flat-band systems2, magic-angle 
twisted bilayer graphene11, is known to host a wide array of low-temperature 
phases3,9,10,12–16. Some among these, notably correlated insulators3,10,12 
and orbital Chern ferromagnets3,13,17,18, are known to unambiguously 
arise from the effects of the Coulomb interaction. However, the origin 
of other phenomena is less clear, particularly superconductivity3,9,10,14–16 
and the large scattering observed in the metallic finite-temperature 
state6,7. The prevalence of Coulomb-driven phases suggests a unified 
origin for all of the phenomenology. In this picture both supercon-
ductivity and the finite-temperature resistivity would arise from the 
interaction of charge carriers with collective modes of the spin and 
valley isospin. However, theoretical efforts based on conventional pho-
nonic mechanisms do appear to capture the basic experimental phe-
nomenology of both the superconducting19–22 and high-temperature 
metallic states23. We report here an entropically driven phase transi-
tion between an isospin-unpolarized Fermi liquid at low temperature 
and a state characterized by large, strongly fluctuating local magnetic 
moments at high temperature. Although no such phenomenology is 
expected from electron–phonon interactions alone, our results imply 

the existence of low-energy collective modes of electronic origin that 
couple strongly to the charge carriers. Such modes probably have a 
crucial role in determining the low-temperature phase diagram as well 
as the finite-temperature transport properties.

Low- and intermediate-temperature transport
Figure 1 shows transport measurements performed on a highly homo-
geneous twisted bilayer graphene device fabricated with inter-layer 
twist angle θ ≈ 1.12° (ref. 24; see Extended Data Fig. 1). Figure 1a shows 
the magnetoresistance measured at 0.4 K, plotted as a function of the 
nominal electron filling ν0 of the superlattice unit cell and an applied 
out-of-plane magnetic field B⊥. We determine ν0 from the geometric 
capacitance, measured from the Hall density near charge neutrality, 
and the positions of the most prominent resistivity features at B⊥ = 0 T, 
which we associate with filling factors ν = −2, +2 and +3. For B⊥ of 1–2 T, 
distinct sets of quantum oscillations are observed at low magnetic fields 
that intersect the B⊥ = 0 axis at ν0 = −3, −2 and 0 and show onefold, two-
fold, and fourfold degeneracy, respectively (see also Supplementary 
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Fig. 1). In graphene systems, spin and valley degeneracy typically give 
rise to quantum oscillations with degeneracy of four. The lower degen-
eracy of the quantum oscillations originating from ν0 = −2 and −3 are 
consistent with ferromagnetism in which the ground states near those 
filling are polarized into one isospin flavour for −4 < ν0 < −3 or two fla-
vours for −3 < ν0 < −2 (ref. 25). No comparable ‘fan’ is observed at low B⊥ 
with intercept at ν0 = −1, and the quantum oscillations originating from 
the charge neutrality point maintain apparent fourfold degeneracy 
for −2 < ν0 < 0, suggesting unbroken flavour symmetry in that regime.

The primary unexplained experimental phenomenology is illus-
trated in Fig. 1b, c, which shows transport data from the same device 
at higher temperatures. Near ν0 = −3 and ν0 = −2, resistivity peaks asso-
ciated with low-temperature correlated phases weaken and depin 
from commensurate ν as the temperature is raised. In addition, they 
are joined by a third resistivity peak near—but not at—ν0 = −1. By 40 K, 
these peaks are indistinguishable, pointing to a universal behaviour 
at this temperature. We observe very similar behaviour in a second 
device with θ = 1.06° (device 2; see Extended Data Figs. 2, 3 and Sup-
plementary Figs. 2, 5). Moreover, this behaviour appears in the pub-
lished experimental literature on twisted bilayer graphene, where its 
origin has remained unexplained6,16. Measurements of the Hall density 
show related behaviour. Figure 1d shows the Hall density νH plotted in 
units of electrons per unit cell and with the density arising after sub-
tracting the nominal filling factor (ν0). The subtracted Hall density, 
νH − ν0, develops a pronounced kink between ν0 = −1 and −2 at high 
temperature, similar to that seen near ν0 = −3 and −2 (see also Extended 
Data Fig. 3). This is seen clearly in plots of ν ν( − )ν

d
d H 00

 (Fig. 1d, inset), 
where the kinks appear as extrema. Similar kinks have been associated 
with symmetry breaking at low temperatures26, specifically a reduction 
in the isospin symmetry of the Fermi surface. The behaviour of the 
Hall density and longitudinal resistivity suggest the existence of an 
isospin-polarized phase at high temperatures that is absent in the 
zero-temperature limit.

In-plane field-induced magnetization
The connection between high-temperature resistivity peaks and 
isospin-symmetry breaking is illustrated by the transport behaviour 
at 20 mK in a magnetic field B∥ applied in the plane of the sample, which 
shows remarkably similar behaviour to that at elevated temperature. As 
shown in Fig. 2a, b, for B∥ ≳ 3 T, an additional resistance peak develops for 
−2 < ν0 ≲ −1, whereas the resistance peak initially at ν0 = −2 depins from 
this filling and decreases in magnitude as it moves to larger absolute 
ν0. The Hall density similarly shows the development of a new step near 
ν0 = −1 that is absent at B = 0 T (Extended Data Fig. 4). The behaviour 
of the resistivity peak is roughly independent of the orientation of the 
magnetic field, showing nearly identical trajectories for in-plane or par-
tially out-of-plane magnetic fields (Supplementary Fig. 3). Tilted-field 
data (Supplementary Fig. 4 and Extended Data Fig. 5) reveal that the 
resistivity peak separates discrete domains of quantum oscillations: 
for ν0 > νpk (where νpk denotes the filling at the peak in −2 < ν0 ≲ −1) the 
oscillation minima remain qualitatively unchanged, extrapolating 
to ν0 = 0, whereas for ν0 < νpk new quantum oscillations emerge that 
extrapolate to ν0 = −1 at B = 0 T. We interpret the resistivity peak as a 
B∥-driven transition from an isospin-unpolarized (IU) paramagnetic 
state at low B to a spin- and valley-polarized isospin ferromagnetic 
(IF3) state at high B in which electrons are polarized into three of four 
isospin flavours. This hypothesis is also consistent with the observa-
tion of a strong Chern insulator state with Chern number C = ±3 in this 
regime in an out-of-plane field24,27,28. The additional resistivity peaks 
associated with ν0 = −2 and ν0 = −3 at low T similarly denote boundaries 
between ferromagnetic phases (IF2 and IF1 phases) with fewer occupied 
isospin flavours.

Near ν = ±1, most proposed ordered ground states are expected to 
have finite spin polarization, making the in-plane magnetization per 
unit cell, M∥, a good proxy for isospin polarization. To determine M∥ we 
use device  2 (ref. 29) the geometry30,31 of which enables direct 
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Fig. 1 | Contrasting transport at low and intermediate temperatures in 
twisted bilayer graphene near ν0 = −1. a, Longitudinal resistivity ρxx in device 1 
as a function of the nominal superlattice filling factor ν0 and out-of-plane 
magnetic field B⊥, acquired at T = 400 mK. No correlated state is observed at 
ν0 = −1 Additional analysis of low-B data, as well as data from device 2, are shown 
in Supplementary Figs. 1, 5. b, ρxx as a function of temperature T and ν0 at 

Btot = 0 T in device 1. Pink circles correspond to the position of the local maxima 
in ρxx. A resistivity peak emerges near ν0 = −1 above T = 5 K. c, ρxx traces at T = 1, 5, 
10, 20 and 40 K and Btot = 0 T. Inset, ρxx traces at T = 1, 3, 5, 7 and 10 K and Btot = 0 T, 
plotted on a logarithmic scale. d, Hall density νH − ν0 as a function of ν0 at T = 
0.5, 2.5, 4.5, 8.0 and 20.0 K and B⊥ = 0.5 T. Inset, d(νH − ν0)/dν0 as a function of ν0.
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measurement of the chemical potential, μ, of the twisted bilayer gra-
phene layer (see Methods and Extended Data Fig. 1b). M∥ is then 
extracted via the Maxwell relation M ν μ B(∂ /∂ ) = − (∂ /∂ )B ν.

Transport is qualitatively similar between devices 1 and 2; in particu-
lar, both devices show a T- or B∥-induced resistance peak near ν0 = −1 
that is absent at low temperatures and field (Fig. 2a, Supplementary 
Fig. 2, Extended Data Fig. 2). In addition, the slightly smaller twist angle 
in device 2 appears to favour a correlated state at ν0 = +1 that is absent 
at B = 0 in device 1 (Extended Data Fig. 2).

∂μ/∂B∥ is shown in Fig. 2e, determined using measurements of μ 
acquired at 3-T intervals. The uncertainty of the repeated scans is shown 
in Supplementary Fig. 6. The integrated ∫M ν= − d

ν μ
B0

∂
∂

0  is shown in 
Fig. 2f (see also Extended Data Fig. 6). Finite M∥ is observed at ν0 ≈ 1 even 
at the lowest magnetic fields in device 2, consistent with the resistivity 
peak seen at the same filling being associated with an isospin ferromag-
net with finite spin polarization. This build-up of magnetization near 
ν0 = 1 is consistent with prior observations25,32. By contrast, near ν0 = −1 
no magnetization is observed in the measurement between B∥ = 0 T and 
3 T; however, finite magnetization develops above 3 T, the same range 
of magnetic fields where the resistivity peak develops (see Supplemen-
tary Fig. 2). We thus associate the resistivity peak with the formation 
of an isospin-polarized state at finite magnetic field. This is consistent 
with the hypothesis that the anomalous resistivity peak that develops 
under an in-plane magnetic field indeed marks the boundary between 
a polarized and an unpolarized phase, similar to the behaviour under 
an out-of-plane magnetic field in this density regime3,24,27,28.

Entropically driven transition at finite temperature
The apparent duality between B∥- and T-dependent transport is sug-
gestive of an entropically driven transition at finite temperature. In this 
scenario, the unpolarized Fermi liquid state has lower ground-state 

energy than the IF3 phase near ν = −1, but the fluctuating moments of 
the IF3 state make it entropically favourable at elevated temperature. 
The characteristic temperature scale at which these moments begin 
to fluctuate strongly, giving rise to a large isospin entropy, is given by 
the stiffness of the collective excitations of the spin, valley and carbon 
sublattice degrees of freedom33, which numerical calculations find to 
be in the few-meV range4,5,34,35. Combined with the expectation that 
ground-state energies differ by similar energy scales, an entropically 
driven transition in the approximately 10-K regime is highly plausible. 
This is analogous to the well known Pomeranchuk effect in 3He, where 
the liquid transforms into a solid upon raising the temperature. In 
our system, the role of the liquid phase is played by the unpolarized 
Fermi liquid, whereas the high-temperature ‘solid’ analogue is the 
high-temperature extension of the IF3 phase, which—though it may 
have only negligible net magnetization—is distinguished by the pres-
ence of local, strongly fluctuating magnetic moments.

The connection between low-T, high-B∥ and high-T B∥ = 0 phases is 
confirmed by variable temperature measurements of the longitudinal 
resistivity ρxx, shown in Fig. 3a, where we plot ρxx as a function of ν0 
and total magnetic field Btot oriented at an angle of 9.1° relative to the 
sample plane, measured at 5 K and 10 K. At the higher temperatures, 
the resistivity peak separating the high-temperature extensions of 
the IU and IF3 phases is visible at Btot = 0 T, and is observed to move 
towards neutrality as a function of Btot (see also Extended Data Fig. 7)—
precisely the expected behaviour if the two high-temperature phases 
differ in their spin polarization or magnetic susceptibilities. As shown 
in Fig. 3b, the resistivity peak can be used to map the boundary between 
the isospin-symmetric phase prevailing at lower B, T and |ν0|, and a 
state of finite spin susceptibility at higher temperatures, as shown in 
Fig. 3b. We note that a similar behaviour of the phase boundary is both 
expected and observed near ν0 = +1, even when the ground state is the 
IF3 phase, as in device 2 (Extended Data Fig. 8).
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(IF1, IF2, and IF3) and an isospin-unpolarized state (IU). b, ρxx as a function of ν0 at 
B∥ = 0, 3, 6, 9 and 12 T. c, Subtracted Hall density νH − ν0 expressed in electrons 
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B⊥ = 0.5 T. d, ρxx as a function of ν0 at B∥ = 0, 6 and 12 T and T = 4.2 K in device 2.  
e, dμ/dB as a function of ν0. Red, orange and black curves are calculated from 
finite differences of μ in Extended Data Fig. 6a. For brevity, the finite difference 
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f, Magnetization per superlattice unit cell as a function of ν0, obtained by 
integrating the data in e with respect to ν0.
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Under an out-of-plane magnetic field, B⊥, the low-temperature mag-
netic transition appears to be first order for at least some range of ν 
(refs. 3,24), showing sharp jumps in experimental observables and hys-
teretic behaviour. A key prediction of the first-order scenario is a jump 
in the entropy between the IU and IF3 phases arising from disordering 
of isospins at finite temperature. We measured the total electronic 
entropy from the response of μ to changes in T via the Maxwell relation 
(∂μ/∂T)ν = −(∂S/∂ν)T, approximating ∂μ/∂T from the finite difference of 
μ measurements at 4.2 K and 12 K. Figure 3c shows the experimentally 
determined entropy, measured relative to the entropy at the charge 
neutrality point, S(ν0) − S0. The uncertainty estimated from the inte-
gration process is shown in Supplementary Fig. 6. The entropy rises 
upon both electron or hole doping, reaching ΔS/kB ≈ 1 (kB, Boltzmann 
constant) per superlattice unit cell near ν0 = ±1, where it levels off or 
even decreases. However, we observed no jump, in effect ruling out 
a first-order transition. This is consistent with the absence of sharp 
features in either temperature-dependent or B∥-dependent transport 
measurements, suggesting that the transition is either of higher order 
or simply a crossover.

Nevertheless, the existence of disordered isospins in the 
high-temperature IF3 phases is supported by the measured behaviour 
of the entropy as a function of in-plane magnetic field. As shown in 
Fig. 3d, ΔS decreases as a function of B∥ for ν0∥ ≳ 1 and ν0 ≲ −1, correspond-
ing to the high-temperature IF3 phases, but gives no experimentally 
detectable change in the IU phase. At temperatures of the order of 
the spin stiffness, the IF3 phase is strongly fluctuating, leading to a 
spin-dependent S ≈ kB ln 2 contribution to the entropy. This entropy 
can be suppressed by a Zeeman energy EZ ≈ kBT. We thus expect ΔS/
ΔB ≈ μB/T ≈ 0.08kB T−1 (μB, Bohr magneton) for the T = 8 K temperature 
of our measurement. We indeed observe an entropy suppression of 
this scale for ν0 ≳ 1, suggesting that the spin stiffness is indeed small, 

and supporting the picture of a spin-entropy-driven Pomeranchuk 
effect. A smaller entropy suppression is observed for ν0 ≲ −1. This could 
arise from a larger spin stiffness in the IF3 phase at hole doping. The 
discrepancy between electron and hole doping highlights the quan-
titative importance of the particle–hole asymmetry of the underly-
ing single-particle wavefunctions, a problem that recent theoretical 
literature has only begun to address4,5,34–37.

Electronic compressibility at high temperature
Our observation of an entropically driven transition suggests that soft 
neutral excitations of the electron system probably have a key role in 
the physics of flat-band moiré systems. Although long-range magnetic 
order may appear only at low temperature or in the presence of a mag-
netic field, much of the phase diagram is dominated by the presence of 
large, strongly fluctuating local moments. A measurement of the com-
pressibility ∂μ/∂ν0 as a function of density for a range of temperatures 
between 4.2 K and 96 K (Fig. 4) shows a sequence of nearly commen-
surate, asymmetric peaks (see also Extended Data Fig. 9). These peaks 
have been interpreted25,32,38 as indicating Fermi surface reconstruction, 
owing to a cascade of isospin-symmetry-breaking transitions. Notably, 
however, our measurements show that the peaks in ∂μ/∂ν0 survive 
even at temperatures well above the scale of the spin stiffness, where 
no magnetic order is found. The compressibility features themselves 
disappear only at T ≈ 100 K, comparable to the scale of the Coulomb 
interaction2. We emphasize that in our thermodynamic measurements, 
the development of finite magnetization is a detectable but subtle 
effect that does not qualitatively impact the structure of the chemi-
cal potential (see Extended Data Fig. 6). It therefore seems probable 
that the peaks in ∂μ/∂ν0 mark the formation of local isospin moments, 
correlated only on length scales comparable to the moiré wavelength.
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The presence of strongly fluctuating isospin moments in much of 
the phase diagram should have a profound effect on the physics of 
twisted bilayer graphene. The small stiffness implied by our measure-
ments may serve as an upper bound on the superconducting critical 
temperature, Tc, in regions of the phase diagram where isospin order is 
observed, either because the isospin fluctuations act as pair-breakers, 
or because the pairing mechanism itself requires isospin order. For 
example, isospin ordering is a prerequisite for the existence of skyrmion 
textures recently proposed to have a role in the superconductivity 
observed in twisted bilayer graphene5.

Thermal disordering of the internal degrees of freedom is also 
expected to strongly scatter electrons at these temperatures. Some 
portion, if not the majority, of the large high-temperature resistivity 
in flat-band moiré systems probably arises from such scattering. This 
appears consistent with the experimentally observed ubiquity of both 
the ferromagnetism across the flat band25,38 and also the large resistivity 
at intermediate temperatures6,7. In addition, the ‘superconducting-like’ 
transition observed in many moiré systems, in which the resistivity 
rises rapidly at temperatures of a few kelvin, probably indicates the 
onset (at high temperatures) of this fluctuation-moment phase. The 
precise temperature dependence of the resistivity is not expected to 
be universal, depending on the details of the collective excitations and 
their coupling to the itinerant conduction electrons. This is consistent 
with experimental observation of the strong ν0 dependence of ρxx(T) 
(see Supplementary Fig. 7).
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Methods

Device fabrication and transport measurements
In this study, we used two twisted bilayer graphene (tBLG) devices: 
device 1 (1.12°) and device 2 (1.06°). Both devices were fabricated using 
a ‘cut-and-stack’ technique, described in ref. 14. Device 1 is the same as 
device 5 in ref. 14 and the device studied in ref. 24. Device 2 is the same 
as the device used in ref. 29. Prior to stacking, we first cut the graphene 
into two pieces using atomic force microscopy to prevent unintentional 
strain in tearing the graphene. We used a poly(bisphenol A carbonate)/
polydimethylsiloxane (PC/PDMS) stamp mounted on a glass slide for 
stacking tBLG heterostructures. The final structure of devices 1 and 2 are 
hBN(40 nm)–tBLG–hBN(40 nm)–graphite and graphite–hBN(30 nm)–
tBLG–hBN(3 nm)–tBLG–hBN(30 nm)–graphite, respectively, as shown 
in Extended Data Fig. 1 (hBN, hexagonal boron nitride). Electrical con-
nections to the tBLG were made by CHF3/O3 etching and deposition of 
the Cr/Pd/Au (2/15/180 nm) metal edge contacts for device 1 and Cr/Au 
(2/100 nm) metal edge contacts for device 2 (ref. 39).

Transport data in Fig. 1a–d (0.5, 2.5, 4.5 K) were acquired with device 1 
in a top-loading cryogen-free dilution refrigerator with a nominal base 
temperature of 10 mK, using a probe with heavy radiofrequency filter-
ing at an excitation current of 2 nA at a frequency of 17.777 Hz. Data 
in Fig. 2a–c were acquired in a different probe without filtering at an 
excitation current of 10 nA at a frequency of 278 Hz. Data in Fig. 1d (8 K 
and 20 K), and Figs. 2d, 3a were acquired using a wet, sample-in-vapour 
variable-temperature system without filtering at an excitation current 
of 10 nA at a frequency of 278 Hz.

We measure the geometric capacitance in device 1 from the Hall 
density near the charge neutrality point to be cg = 58.2 ± 0.3 nF cm−2. 
Separate measurements using quantum oscillations give comparable 
results, cg = 58.5 ± 0.1 nF cm−2. The twist angle θ is determined from the 
values of the charge carrier density n at which the insulating states 
(ν0 = ±2) at nν =±20

 are observed, following n θ a= ± 4 / 3ν =±2
2 2

0
, where 

a = 0.246 nm is the lattice constant of graphene. From these measure-
ments, ν A c e v v= / ( − )0 u.c. g g g

0 , where vg is the gate voltage, v g
0 is the gate 

voltage corresponding to charge neutrality, e is the electron charge 
and Au.c.cg/e = 0.5026 V−1. Here Au.c. is the area of the unit cell (u.c.).

Thermodynamic determination of μ, M and S
The entropy (S) and the magnetization (M) are determined by measur-
ing temperature-dependent and in-plane magnetic-field-dependent 
chemical potential μ and making use of the Maxwell relations:
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where ν is the filling factor. S and M can then be determined by inte-
grating the measured right-hand sides of equation (1) with respect to 
ν. We perform the thermodynamic measurements on device 2, which 
consists of a 1.06°-angle tBLG separated by a 3-nm BN spacer from a 
Bernal-stacked bilayer flake that is separately contacted (Extended 
Data Fig. 1b). Transport data from this device was described in ref. 29.  
To determine the chemical potential, we use the measurement tech-
nique described in ref. 31. In this technique, an excitation current 
(5–50 nA) with frequency f1 = 321 Hz is used to measure the four-terminal 
resistance RBLG of the Bernal bilayer graphene, and a second frequency 
f2 = 123 Hz is used to modulate the top-gate voltage (Vtg) resulting in a 
measurable response at frequency f1 − f2 proportional to dRBLG/dVtg; 
crucially, this response vanishes at a resistivity extremum such as the 
charge neutrality point. A feedback loop is then used to maintain dRBLG/
dVtg = 0 as the bottom gate is changed by applying a feedback voltage 
to the twisted bilayer. The output voltage of this feedback loop is then 

equal to μ/e. In all measurements, the displacement field of the Bernal 
bilayer graphene is maintained at D = 14 mV nm−1.

Strictly speaking, our technique measures μ ν μ( ) −tBLG bBLG
CNP , the dif-

ference in chemical potential between the twisted bilayer and the 
charge-neutral Bernal bilayer detector. Although the change in μbBLG

CNP  
with temperature and magnetic field is small, so are differences in 
μtBLG(ν). To fix the possible offset between curves measured under dif-
ferent conditions, we set dμ/dB∥ and dμ/dT to be zero at ν0 = 0. These 
curves are then integrated from ν0 = 0 filling factors. We thus measure 
S − S0 and M∥ − M∥,0—that is, the changes in S∥ and M∥ relative to their 
values at charge neutrality:
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In the case of M∥, we expect that M∥,0 vanishes, owing to the absence 
of in-plane B dependence of measured quantities as well as from the 
flat behaviour of dM∥/dν in that region. However, in the case of S, charge 
neutrality may well develop a large entropy both from excited quasi-
particles at high temperature or from modes associated with the break-
ing of additional symmetries in the charge neutral state. However, we 
note that for the purposes of correlating the behaviour of transport 
near ν = ±1 with the state surrounding charge neutrality, S − S0 is the 
relevant quantity.

Thermodynamic model
To describe the phase transition between the IU to the IF3 phases, we 
write their free energy per moiré unit cell as:
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where i = 1, 2 corresponds to the IU and IF3 phases, respectively, e is the 
elementary charge, ei is an offset energy, cg is the geometric capacitance 
to the gate per moiré unit cell, μi is an offset chemical potential, γi is 
the specific heat coefficient (both phases are assumed to be metal-
lic, despite the fact that the IF3 phase has large, fluctuating magnetic 
moments), and κi is the compressibility (or quantum capacitance). si is 
a temperature-independent contribution of the entropy. The IU phase 
is a Fermi liquid the entropy of which is proportional to temperature, 
hence s1 = 0. In the IF3 phase, the fluctuating moments give a contribu-
tion s2 > 0 to the entropy at temperatures exceeding spin stiffness.

Because the experiment is carried out at a constant gate voltage, the 
phase transition (assumed to be of first order in the absence of disorder) 
occurs when the Landau grand potential Ωi(vg, T) = fi(ν, T) − evgν of the 
two phases are equal. We minimize the grand potentials of each phase 
with respect to ν, and express the grand potentials in terms of the ref-
erence filling factor, ν c v≡ e0

1
g g. The transition line in the (ν0, T) plane 

is then given by the condition:
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, Δγ = γ2 − γ1, and Δs = 

s2 − s1. Here we have used the fact that in our setup, ≫e
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, and we 

have neglected terms that are suppressed by factors of 
c

e κ
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. At suffi-

ciently low temperature compared to the bandwidth (estimated to be 
of the order of 200–300 K), the quadratic term in T is much smaller 
than the linear term, giving a transition at:

∼
T

e ν
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To determine the entropy Δs from the experiment, we need an estimate 
of Δe(ν0). This can be obtained by examining the magnetic field needed 
to trigger the transition from the IU to the IF3 phase at low temperature 
(below the spin stiffness in the IF3 phase). We consider an in-plane field, 
assuming that it acts primarily through the Zeeman effect. The mag-
netic field induces an additional term in the grand potentials equal to 

∫ m B B− ( ′)d ′
B

i0
, where mi(B) is the magnetic moment per moiré unit cell. 

At sufficiently low temperature, where the excess magnetic entropy s2 
of the IF3 phase is quenched, this phase is spin polarized, and its mag-
netization is nearly field-independent. To the magnetic moment in this 
phase, we assume that one isospin flavour whose spin is antiparallel to 
the Zeeman field is completely empty (that is, this flavour has a filling 
of one hole away from charge neutrality), whereas the other three fla-
vours are equally populated25. These considerations give a magnetic 
moment of m2 = μB(4 + ν0)/3 in the IF3 phase. By contrast, the IU phase 
has no magnetic moment at B = 0. Because the IU phase is a Fermi liquid, 
its magnetization is proportional to the ratio between the Zeeman 
energy and the bandwidth, and is much smaller than that of the IF3 
phase. We therefore neglect the magnetization of the IU phase, m1 ≈ 0. 
The field-driven transition at low temperature occurs when:

∼e ν μ
ν
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4 +

3
* = 0. (6)0 B
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Combining equations (5) and (6) gives:
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We plot the expected entropy in Extended Data Fig. 10.

Data availability
All data that support the plots within this paper and other findings of 
this study are available from the corresponding author upon reason-
able request. Source data are provided with this paper.
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Extended Data Fig. 1 | tBLG devices. a, b, Top, optical images of device 1 (a) and device 2 (b). Scale bars correspond to 5 μm. Bottom, schematic of the tBLG 
heterostructures for device 1 (a) and device 2 (b).
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Extended Data Fig. 2 | Temperature dependence of the resistivity ρxx.  
a, b, d, e, ρxx as a function of the nominal filling factor ν0 at various 
temperatures up to 30 K in device 1 (a, linear scale; b, logarithmic scale) and 
device 2 (d, linear scale; e, logarithmic scale). The traces in a, b are measured at 

T = 1.5, 5, 8, 12, 17, 22 and 30 K and the traces in d, e are measured at T = 1.7, 5, 10, 
15, 20, 25 and 30 K. c, f, Two-dimensional map of ρxx as a function of ν0 and T in 
device 1 (c) and device 2 (f).



Extended Data Fig. 3 | Temperature dependence of the Hall density 
behaviour. a, c, The Hall density νH expressed in electrons per superlattice unit 
cell as a function of ν0 up to 20 K at a fixed B⊥ = 0.5 T. The data of device 1 are 
measured with T = 0.5, 2.5, 4.5, 8 and 20 K (a) and the data of device 2 are 
measured with T = 1.7, 4.3, 6, 10 and 20 K (c). b, d, Subtracted Hall density νH − ν0 

as a function of ν0 at each temperature in device 1 (b) and device 2 (d). Insets, 
d(νH − ν0)/dν0 as a function of ν0 at each temperature around ν0 = −1. d(νH − ν0)/
dν0 is calculated from νH − ν0 using a 20-point moving average (b) and a 40-point 
moving average (d) in ν0.
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Extended Data Fig. 4 | In-plane magnetic field dependence of the Hall 
density in device 1. a, b, Hall density νH (a) and subtracted Hall density νH − ν0 
(b) expressed in electrons per superlattice unit cell, and measured with Btot = 
0.5, 3, 6, 9 and 12 T and fixed B⊥ = 0.5 T. c, νH − ν0 as a function of Btot and ν0 with 
the magnetic field applied at an angle θB = 20.5°, measured at a nominal 

T = 20 mK. Blue and pink circles correspond to the positions of peaks of ρxx and 
the points of maximum descent in νH − ν0, respectively, and denote phase 
boundaries between symmetry-breaking isospin ferromagnets (IF1, IF2 and IF3) 
and an isospin unpolarized state (IU).



Extended Data Fig. 5 | Landau fan diagram at the hole side in a tilted 
magnetic field in device 1. a, ρxx as a function of ν0 and total magnetic field Btot 
oriented at an angle with respect to the plane θB of 4.1°(a), 9.6°(b) and 20.5°(c). 

d–f, Schematics of the Landau fan diagram based on a–c, respectively.  
The numbered labels denote the Bloch band filling index, which encodes the 
number of electrons bound to each lattice unit cell.
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Extended Data Fig. 6 | Thermodynamic measurements in device 2.  
a, Chemical potential μ as a function of ν0 at T = 4.2 K and B∥ = 0, 3, 6 and 9 T.  
b, μ as a function of ν0 at B = 0 T and T = 4.2, 12 and 20 K. c, Inverse 
compressibility dμ/dν as a function of ν0 at T = 4.2 K and B∥ = 0, 3, 6 and 9 T.  

d, dμ/dν as a function of ν0 at B = 0 T and T = 4.2, 12 and 20 K. e, dμ/dB∥ as a 
function of ν0 at T = 4.2 K, calculated from (μ(9 T) − μ(6 T))/3 T, 
(μ(6 T) − μ(3 T))/3 T and (μ(3 T) − μ(0 T))/3 T. f, dμ/dT as a function of ν0, 
calculated from (μ(12 K) − μ(4.2 K))/7.8 K at B∥ = 0, 3 and 6 T.



Extended Data Fig. 7 | High-temperature transport in a tilted magnetic 
field in device 1. a–d, ρxx (top) and d(νH − ν0)/dν0 (bottom) as a function of ν0 at 
T = 5 K (a), 10 K (b), 15 K (c) and 20 K (d) at Btot = 3, 6, 9, 12 and 15 T, oriented at an 

angle of 9.1° relative to the plane. d(νH − ν0)/dν0 is calculated from νH − ν0 using a 
20-point moving average in ν0.
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Extended Data Fig. 8 | Temperature and in-plane magnetic field 
dependence of resistive peak around ν0 = +1 in device 2. a, ρxx as a function of 
nominal filling factor ν0 around ν0 = +1 between 1.7 and 30 K in device 2. b, The 

ρxx peak position as a function of ν0 and T. c, ρxx as a function of nominal filling 
factor ν0 around ν0 = +1 at B∥ = 0, 3, 6, 9 and 12 T. d, The ρxx peak position as a 
function of ν0 and B∥.



Extended Data Fig. 9 | Temperature-dependent chemical potential and 
resistance in device 2. a, Chemical potential μ as a function of ν0 at 4.2, 8.0, 12, 
16, 20, 26, 32, 40, 59, 76 and 96 K. dμ/dν0 in Fig. 4 is calculated by the derivative 

of these data. b, Inverse electronic compressibility dμ/dν as a function of ν0 at 
4.2, 8, 12, 16, 20, 26, 32, 40, 59, 76 and 96 K. c, ρxx as a function of ν0 at 4.3, 8.0, 12, 
16, 20, 26, 31, 40, 59, 76 and 96 K.
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Extended Data Fig. 10 | Entropy change per superlattice unit cell ΔS/kB from 
the transport data. White triangles and black circles are phase boundaries for 
the Zeeman-tuned transition (E k*/ BZ ) and temperature-tuned transition (T*), 
respectively, determined by the ρxx peak near ν = −1. The pink curve is Δs/kB as a 
function of ν0, determined by equation (7).
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