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We describe an experimental technique to measure the chemical potential μ in atomically thin layered
materials with high sensitivity and in the static limit. We apply the technique to a high quality graphene
monolayer to map out the evolution of μ with carrier density throughout the N ¼ 0 and N ¼ 1 Landau
levels at high magnetic field. By integrating μ over filling factor ν, we obtain the ground state energy per
particle, which can be directly compared to numerical calculations. In the N ¼ 0 Landau level, our data
show exceptional agreement with numerical calculations over the whole Landau level without adjustable
parameters as long as the screening of the Coulomb interaction by the filled Landau levels is accounted for.
In the N ¼ 1 Landau level, a comparison between experimental and numerical data suggests the
importance of valley anisotropic interactions and reveals a possible presence of valley-textured electron
solids near odd filling.
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Partially filled Landau levels (LLs) are a paradigmatic
example of flat band systems where dominant Coulomb
interactions lead to a rich phase diagram of correlation
driven electron states. Theoretically, the partially filled LL
provides a compromise between phenomenological rich-
ness and computational tractability. However, quantita-
tively benchmarking numerical methods with transport
measurements is typically limited to a discrete set of LL
filling factors: ν. Thermodynamic quantities such as the
chemical potential μ are more closely related to theoreti-
cally calculable quantities. Owing to recent progress in
improving sample quality [1] and the fact that the single
particle band structure is known to a high degree of
accuracy, graphene is an ideal venue to pursue a quanti-
tative understanding of partially filled LLs. In this Letter,
we report precise measurements of μ in a high quality
monolayer graphene at zero and high magnetic fields.
Typical measurements of thermodynamic quantities in
graphene probe the compressibility ∂n=∂μ at finite fre-
quency [2–5], hindering accurate measurements in the
quantum Hall regime where equilibration times can become
long. Our measurements probe μ directly [6] in the static
ω → 0 limit. This allows us to determine μ across a
continuous range of ν and subsequently the total energy
per flux quantum E where μ ¼ ∂E=∂ν.
Our heterostructure consists of two graphene monolayers

embedded between top and bottom graphite gates [see
Figs. 1(a), 1(b) and Fig. S1 in the Supplemental Material
[7]), with each conducting layer separated by a hexagonal
boron nitride (hBN) dielectric of approximately 40 nm

thickness. The dual graphite-gated structure ensures low
charge inhomogeneity on both graphene monolayers while
allowing independent control of their respective carrier
densities through the static gate voltages applied to the top
gate (vt), bottom gate (vb), and top monolayer (vd). Internal
contacts [21–25] are attached to the top monolayer—
designated the “detector”—and are used to measure its
bulk conductivity σd. To measure μ of the bottom
(“sample”) graphene, we keep it grounded, and control μ
by sweeping vb. For each fixed vb, we adjust the vt to null
the effect of changes in μ on the detector layer density.
Under these conditions, the change in detector layer density
δnd ¼ 0 implies δμ ¼ −ctδvt=c0 [26]. δμ is then deter-
mined by recording δvt and calibrating the geometric
capacitance lever arm ct=c0 (see Fig. S2).
Functionally, δnd ¼ 0 is enforced by choosing a “target”

density nd such that σd is at a conductance minimum
corresponding to the Dirac point at B ¼ 0 T or a weak
fractional quantum Hall (FQH) state at high B. Figure 1(b)
shows the schematic of our measurement circuit, which
uses a digital feedback loop to maintain σd at its minimum
as other parameters are swept. While the current measure-
ment is done at finite frequency to allow low noise readout,
it does not require charging of the sample layer at these
frequencies. This allows us to access regimes where the
sample layer conductivity is very small and equilibration
times are very large. In practice, measurements are typically
done with equilibration times of τ ≈ 1 sec.
Figure 1(d) shows μ measured at B ¼ 0 T and 200 mT,

plotted as a function of the sample carrier density
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n ¼ c0ðvd − μÞ þ cbðvb − μÞ, where cb is the capacitance
between the sample and the bottom gate. μðnÞ shows theffiffiffi
n

p
dependence expected for the linearly dispersing bands

of monolayer graphene [2], as well as steps associated with
LL formation when a small magnetic field is applied. To
quantitatively model the data, we take μ2 ¼ ðΔAB=2Þ2 þ
ðℏvF

ffiffiffiffiffiffiffiffi
πjnjp Þ2, where ΔAB is the sublattice splitting that

arises mostly due to alignment of the graphene with one of
the encapsulating hBN layers [27,28] and vF is the Fermi
velocity. We determine ΔAB ¼ 6.9 meV from the splitting
of the zero energy LL (ZLL) centered at μ ¼ 0, which is
evident in Fig. 1(e) where we plot dnðμÞ=dμ as determined
by numerical differentiation of the μðnÞ data (see also
Fig. S3). Figure 1(f) shows vFðnÞ, determined by fixing
ΔAB but allowing vF to be a free n-dependent parameter.
vF is enhanced at low densities, consistent with past
experiments [32,33], and well fit by theoretical models
of Fermi velocity renormalization [29–31], as shown by the
red curve in Fig. 1(f) and described in the Supplemental
Material [7].
The LLs of monolayer graphene are approximately

fourfold degenerate due to the spin and valley degrees
of freedom, but this degeneracy is spontaneously broken at
high magnetic fields via quantum Hall ferromagnetism.
Figure 2(a) presents μðνÞ at B ¼ 14 T across the ZLL that
spans −2 < ν < þ2, where ν ¼ 2πl2

Bn is the LL filling

factor. The high quality of the detector layer is crucial for
achieving high experimental μ resolution, as FQH con-
ductivity minima in the detector layer provide sensitive
transducers for the sample layer chemical potential (see
Fig. S4). Over large regions of density, μðνÞ decreases as a
function of ν (negative compressibility) despite the naive
expectation that μ should increase monotonically with ν
due to Coulomb repulsion. The decrease occurs because the
chemical potential measured here is actually relative to that
of a classical capacitor, which subtracts off the q ¼ 0 part
of the Coulomb interaction 1

2
Vðq ¼ 0Þn2. It is well under-

stood [26,34] that negative compressibility then arises
because correlations lower the energy of quantum Hall
states relative to that of a uniform charge distribution. μ
jumps at each integer ν, which indicates incompressible
integer quantum Hall states arising from the broken
symmetry of the spin and valley components of the isospin.
Additional jumps are observed at a series of fractional ν
associated with incompressible FQH states at ν� ¼
p=ð2p� 1Þ (p ¼ 1; 2; 3;…) and ν� ¼ p=ð4p� 1Þ (with
p ¼ 1 and 2) [3–5,35]. Here ν� ¼ jν − ν0j indicates the
filling relative to an adjacent integer filling ν0 ∈ Z. At high
B, the regions around integer ν (shaded in blue) are good
insulators and so are no longer accessible at low temper-
atures due to the hours-long or days-long equilibration time
of the sample layer (see Fig. S5).
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FIG. 1. Measurement setup. (a) Optical image of the device; scale bar is 10 μm. (b) Measurement schematic. Static gate voltages are
applied to the top gate (vt), bottom gate (vb), and detector monolayer (vd). σd is measured by applying an ac voltage ṽd at frequency
f1 ¼ 13.77 Hz to one of the internal contacts and measuring the current at another with a DL1211 amplifier. An additional ac voltage
ðṽtÞ is applied to the top gate at f2 ¼ 110 Hz. Demodulating the current at f2 − f1 with an SR860 lock-in amplifier produces a signal
proportional to dσd=dvt, which vanishes at a conductivity minimum independent of contact resistance. We use a feedback loop to
continuously adjust a static voltage δvt in order to maintain dσd=dvt ¼ 0. Under these conditions, δμ ¼ −ctδvt=c0. (c) σd (blue) and
δσd=δvt (red) as a function of δvt. (d) μðnÞ at B ¼ 0 T (red) and 0.2 T (blue), measured at T ¼ 15 mK. (e) Density of states dn=dμ
calculated by numerical differentiation of data in panel (d). The ZLL is split by a sublattice gap [27,28] of ΔAB ¼ 6.9 meV.
(f) n-dependent vF measured by fitting B ¼ 0 T data to μ2 ¼ ðΔAB=2Þ2 þ ðℏvF

ffiffiffiffiffiffiffiffi
πjnjp Þ2 with ΔAB fixed and vF a free function of n. The

red curve is a fit to theoretical models [29–31] of Fermi velocity renormalization by Coulomb interactions.

PHYSICAL REVIEW LETTERS 126, 156802 (2021)

156802-2



The four copies of the ZLL are nearly identical apart from
anoffset in chemical potential, suggesting that theLL is close
to being fully spin and valley polarized at this magnetic field.
This is expected based on the measured value ofΔAB, which
splits the valley degree of freedom in the ZLL. In combi-
nation with the Zeeman energy, FQH physics is expected
to be predominantly single component [24] in this regime of
magnetic fields. We begin our quantitative analysis at low ν�
where electron Wigner crystal phases [37,38] are the
expected ground state. In transport measurements, the
Wigner crystal manifests as a low-temperature insulator that
undergoes a metal-insulator transition at finite temperature
due to pinning of the crystal byweak disorder, as observed in
GaAs/AlGaAs quantum wells [39] and more recently in
graphene [40]. The largely classical nature of the correlations
in this regime make thermodynamic modeling tractable, and
quantitative agreement obtains between theory [41] and
compressibility measurements in GaAs/AlGaAs quantum
wells [26,35].
Figure 2(b) shows μ plotted as a function of ν� near

different integer fillings within the ZLL. For comparison,

we also show theoretical calculations of μ in the Wigner
crystal phase developed for the case of unscreened Coulomb
interactions [38], where μðν�Þ ¼ −1.173jν�j1=2EC. Here
EC ¼ ðe2Þ=ðϵhBNlBÞ is the Coulomb energy. The model
has only one parameter, the dielectric constant ϵhBN ¼ffiffiffiffiffiffiffiffiffi
ϵkϵ⊥

p
, which is the geometric average of the in-plane

and out-of-plane dielectric constants of the hBN substrate.
ϵ⊥ ¼ 3.0 can be determined in situ, but ϵk is not precisely
known, though it is thought to be ϵk ≈ 6.6 [42]. Even
accounting for uncertainty in this parameter, the model
does not agree with experiment. Quantitative agreement is
achieved, however, by considering the screening of the
Coulomb interactions by the graphite gates, which are
accounted for using standard electrostatic calculations and
by the filled Dirac sea, which we account for within the
random phase approximation [43]. This approximation takes
as an additional input parameter the graphene fine structure
constant αG. Still treating the electrons as a classical Wigner
crystal, we numerically evaluate the Madelung-type energy
for the screened interaction VscrðrÞ to obtain μðν�Þ [7]. To
reflect uncertainty in the input parameters, we show a range
spanning ϵhBN ∈ ð4.0; 4.5Þ and αG ∈ ð1.75; 2.2Þ, in addition
to reference curves for ϵhBN ¼ 4.0 and αG ¼ 1.85.
The screened Coulomb interaction provides an excep-

tionally good match to the experimental data, suggesting
that no additional effects are present and that accounting for
the screening is sufficient to achieve a quantitative under-
standing of this regime. We note that based on spin-wave
transmission measurements [40], spin skyrmions appear to
play a role in the Wigner solid phases near ν ¼ �1. We do
observe a small but systematic discrepancy between μ near
even and odd integer ν in the Wigner crystal regime. This
suggests that the large Zeeman energy, EZ ≈ 0.03EC,
restricts the skyrmion size to the point where they do
not generate significant corrections to μ at low ν�.
Closer to the center of the LL, correlations become

quantum in nature and even numerical calculation of μ is
not tractable for arbitrary ν. However, numerical methods
can accurately calculate the “total energy” per flux quan-
tum EðνÞ at many rational values of ν, as has long been the
focus of exact diagonalization and density matrix renorm-
alization group (DMRG) studies. Figure 2(c) shows the
ground state energy calculated using infinite DMRG [36]
(iDMRG) on a circumference L ¼ 18lB cylinder for a
number of rational ν, assuming wave functions are
restricted to a single spin and valley component and making
use of the screened interaction Vscr.
The calculated E is dominated by a linear back-

ground, μ0ν�, that is proportional to the exchange-correlation
energy of the integer quantum Hall effect; the
correlations underlying the FQH effect are reflected in
the deviations of the calculated E from this background.
In Fig. 2(d), we subtract off the linear contribution by instead
plotting Ẽ¼E−ν�Eðν� ¼1Þ [Fig. 2(d)], which ensures
Ẽð0Þ¼ Ẽð1Þ¼0. This can be compared to experiment by
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FIG. 2. Chemical potential and energy per flux quantum in the
N ¼ 0LL. (a) μðνÞ within the ZLL measured at B ¼ 14 T and
nominal T ¼ 15 mK. Blue regions indicate domains of ν where
the charging time of the sample exceeds the measurement time of
∼1 sec (see Fig. S5). (b) μ at B ¼ 18 T and nominal T ¼ 40 mK
for low ν�, measured relative to ν ¼ −1 (orange), ν ¼ 0 (blue), and
ν ¼ 1 (red). The cyan and purple curves are calculated μ for a
Wigner crystal with screened and unscreened Coulomb inter-
actions, respectively, taking ϵhBN ¼ 4.0 and αG ¼ 1.85; shaded
ranges reflect uncertainty in those parameters as described in main
text. The data are offset so that μðν�Þ ¼ 0. (c) Numerically
calculated [36] total ground state energy of the N ¼ 0 LL after
accounting for the screened Coulomb interactions. (d) Comparison
of experimentally determined (solid lines) and numerically calcu-
lated (dark blue crosses) Ẽ. Both experimental and numerical data
have a linear-in-ν� background subtracted so that Ẽ vanishes at
integer ν�. Data were taken at B ¼ 18 T and T ¼ 40 mK.

PHYSICAL REVIEW LETTERS 126, 156802 (2021)

156802-3



integrating μðνÞ, Ẽðν�Þ ¼ R
ν�
0 ½μðνÞ − μ0�dν, where μ0 is

chosen to ensure Ẽð0Þ ¼ Ẽð1Þ ¼ 0. To aid in fixing μ0
accurately, the experimental data is extrapolated to integer ν
by using the Wigner crystal model. Numerical and exper-
imental data agree to within experimental uncertainty in αG
and ϵhBN without additional adjustable parameters. Similarly,
the measured thermodynamic gap at charge neutrality
53 meV agrees with the theoretically calculated jump in μ
to within 4% [7]. These results constitute a remarkably good
quantitative agreement for a many-body system.
Figure 3(a) shows μmeasured across the first excited LL,

corresponding to orbital quantum number N ¼ 1 and
spanning ν ∈ ð−6;−2Þ. In contrast to the N ¼ 0 level,
both the size of the chemical potential jumps associated
with FQH gaps [24] and the magnitude of the negative
compressibility systematically decrease with increasing jνj.
This trend arises naturally due to the nature of the screened
Coulomb interaction Vscr [43]: in the ZLL, particle-hole
symmetry makes the screening ν independent, but within
the N ¼ 1 LL screening smoothly interpolates between the
N ¼ 0 and N ¼ 2 values as the four-component LL fills.
Indeed, applying this interpolation to the Wigner crystal
regime near even filling factors produces an excellent
quantitative match between the data and theory [Fig. 3(b)].

The N ¼ 1 LL and ZLL are further distinguished by the
effect of the sublattice symmetry breaking ΔAB, which
splits the valleys in the ZLL but has negligible effect on the
energies of theN ¼ 1 LL. This manifests most obviously in
our data in the low-ν� regimes around near odd integer
filling, shown in Fig. 3(c). In contrast to the comparable
regimes of ν� near even integers, and throughout the ZLL,
the data are not matched by the predictions of Vscr for a
single electron Wigner crystal. To understand this data,
we note that tilted field magnetotransport experiments [45]
find evidence for a spin polarized state at ν ¼ �4 in
which excitations are either single spin flips or small
skyrmions similar to the situation at ν ¼ �1 in the ZLL.
At ν ¼ �3;�5, in contrast, activated gaps show minimal
tilted field dependence, which is consistent with the
lowest energy charged excitations being valley textures.
Theoretically, the ground state of a spin-polarized but
valley-unpolarized LL applicable to ν ¼ �3;�5 is then
expected to be a solid of such valley textures [44], with
resulting corrections to E and consequently to μ. Notably,
the corrections to the energy will be largest when the valley
textures are most extended. The observed anomalous μðνÞ
supports the idea that the low single-particle valley
anisotropy in the N ¼ 1 LL stabilizes a solid of extended
valley textures. This could be tested in the future by
extending numerical calculations [44] of such solids to
include the screened Coulomb interaction.
The multicomponent nature of the N ¼ 1 LL is further

evidenced in Fig. 3(d), where iDMRG simulations of a
single component system fail to reproduce the experimen-
tally determined Ẽ when using the same model parameters
that produce good agreement in the ZLL. Interestingly,
iDMRG finds a significantly lower total energy compared
to experiment. This suggests a missing contribution to the
energy, since adding degrees of freedom to a variational
parameter space can only lower the numerically calculated
energy, increasing the discrepancy. An appealing can-
didate is the anisotropy of the Coulomb interactions at
small length scales, which breaks the valley-SUð2Þ sym-
metry and can be expected to provide corrections of Eani ∼
ða=lBÞEC ≈ 1.75 meV at B ¼ 13 T, where a ¼ 0.246 nm
is the graphene lattice constant. Though known to be
important in the ZLL [1] near ν ¼ 0, evidence for short-
range anisotropy in the N ¼ 1 LL has been limited to the
observation of a possible valley-ordered state at ν ¼ 4 for
low magnetic fields [24], and they have not received much
attention in the theoretical literature [46,47].
To model their effect, we analyze the interactions that

arise when projecting a short-range Hubbard-U interaction
into the N ¼ 1 LL. For simplicity we assume full-spin
polarization so that electrons are described by a two-
component field ψr indexed by valley τz. It is convenient
to express the result as the continuum interaction that
would produce the same Hamiltonian if the electrons were
in the N ¼ 0 LL. Taking into account the interplay of the
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FIG. 3. Multicomponent effect and lattice scale interaction in
the N ¼ 1LL. (a) μ in the N ¼ 1 LL at T ¼ 15 mK and
B ¼ 13 T. (b) μ measured near ν0 ¼ −2, −4, and −6. Solid
lines are μ calculated from the Wigner crystal model with
parameters identical to those used in Fig. 2(b). (c) μ near
ν0 ¼ −3 and −5. The solid lines showing the Wigner crystal
model do not match the data, suggesting the importance of valley
merons [44] near these fillings. (d) Comparison of experimentally
determined Ẽ with numerical simulations for −3 < ν < −2.
One-component numerical calculations underestimate the experi-
mental result by a significant margin. Including both valley
components as well as the contribution of lattice scale anisotro-
pies as in Eq. (1) with gz ¼ gxy ¼ 0.1ða=lBÞEC can restore
agreement to within 100 μeV ≈ 2.5 × 10−3EC.
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form factors of the N ¼ 1 LL and the sublattice structure,
we find the general form [7]

Hani ¼
1

2

Z
d2r1=2½gzψ†

r1τ
zψ r1l

4
B∇4δðr1 − r2Þψ†

r2τ
zψ r2

þ gxyψ
†
r1τ

xψ r1l
2
B∇2δðr1 − r2Þψ†

r2τ
xψ r2 þ ðx → yÞ�;

ð1Þ
where gi ∼ ða=lBÞEc. Note that the interactions are deriv-
atives of δ functions; in contrast, the same exercise in the
ZLL would find contact interactions [47,48]. Because the
FQH effect around density ν� ¼ 1

m attaches zeros ðzi − zjÞm
to the interelectron wave function, a ∇2mδ inter-
action effectively “turns off” for densities below 1

mþ1
. In

the ZLL, this means the anisotropies only operate for
−1 < ν < 1, while in the N ¼ 1 we predict the anisotropies
act for all 2þ 1=3 < ν < 6 − 1=3. This is indeed the
region where our one-component numerics deviate from
experiment.
Treating gz; gxy as adjustable phenomenological para-

meters, we perform two-component iDMRG numerics
that include Hani. Figure 3(d) shows the results for
gxy ¼ gz ¼ 0.1ða=lBÞEC, which agree with experiment
to within 100 μeV, comparable to the discrepancies
observed in the ZLL. In both LLs, these discrepancies
amount to 2 × 10−3 of the bare Coulomb energy EC.

In conclusion, we have developed an experimental
technique to measure μ to high precision in van der
Waals heterostructures and applied it to high-quality
graphene monolayers in the fractional quantum Hall
regime, achieving remarkable agreement between experi-
ment and numerical many-body simulations. Our tech-
nique paves the way for measuring thermodynamic
quantities, such as entropy, which may shed light on more
subtle questions such as those related to quasiparticle
statistics [49].
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