IEEE TRANSACTIONS ON BIOMETRICS, BEHAVIOR, AND IDENTITY SCIENCE, VOL. 2, NO. 3, JULY 2020 279

Error-Corrected Margin-Based Deep Cross-Modal
Hashing for Facial Image Retrieval

Fariborz Taherkhani
Matthew C. Valenti

Abstract—Cross-modal hashing facilitates mapping of hetero-
geneous multimedia data into a common Hamming space, which
can be utilized for fast and flexible retrieval across differ-
ent modalities. In this paper, we propose a novel cross-modal
hashing architecture-deep neural decoder cross-modal hashing
(DNDCMH), which uses a binary vector specifying the presence
of certain facial attributes as an input query to retrieve relevant
face images from a database. The DNDCMH network consists of
two separate components: an attribute-based deep cross-modal
hashing (ADCMH) module, which uses a margin (m)-based loss
function to efficiently learn compact binary codes to preserve sim-
ilarity between modalities in the Hamming space, and a neural
error correcting decoder (NECD), which is an error correcting
decoder implemented with a neural network. The goal of NECD
network in DNDCMH is to error correct the hash codes gener-
ated by ADCMH to improve the retrieval efficiency. The NECD
network is trained such that it has an error correcting capability
greater than or equal to the margin (m) of the margin-based
loss function. This results in NECD can correct the corrupted
hash codes generated by ADCMH up to the Hamming distance
of m. We have evaluated and compared DNDCMH with state-
of-the-art cross-modal hashing methods on standard datasets to
demonstrate the superiority of our method.

Index Terms—Cross-modal hashing, attributes, facial images,
error-correcting code, decoder, deep learning.

I. INTRODUCTION

UE TO the rapid development of the Internet and
Dincreasing usage of social media over the last decade,
there has been a tremendous volume of multimedia data,
which is generated from different heterogeneous sources and
includes modalities like images, videos, and text. The approx-
imate nearest neighbor (ANN) search has attracted significant
attention from machine learning and computer vision com-
munities as it guarantees retrieval quality and computing
efficiency for content based image retrieval (CBIR) in large-
scale multimedia datasets. As a fast and advantageous solution,
hashing has been employed in ANN search for CBIR due to

Manuscript received December 22, 2019; revised March 5, 2020; accepted
March 16, 2020. Date of publication April 1, 2020; date of current ver-
sion June 23, 2020. This work was supported in part by the Center for
Identification Technology Research and in part by the National Science
Foundation under Grant #1650474. This article was recommended for publi-
cation by Associate Editor J. Lu upon evaluation of the reviewers’ comments.
(Fariborz Taherkhani and Veeru Talreja contributed equally to this work.)
(Corresponding author: Fariborz Taherkhani.)

The authors are with the Lane Department of Computer Science and
Electrical Engineering, West Virginia University, Morgantown, WV 26506
USA (e-mail: fariborztaherkhani @gmail.com).

Digital Object Identifier 10.1109/TBIOM.2020.2983467

, Student Member, IEEE, Veeru Talreja
, Fellow, IEEE, and Nasser M. Nasrabadi

, Student Member, IEEE,
, Fellow, IEEE

’ A Bald Man wearing Sunglasses (Q1) r

Fig. 1. Cross modal hashing for facial image retrieval: a bald man wearing
Sunglass.

its fast query speed and low storage cost [1], [2], [3], [4], [5],
[6], [7], [8], [9], [10]. The goal of hashing is to map high-
dimensional visual data to compact binary codes in Hamming
space, where the semantic similarity in the original space is
approximately preserved in Hamming space. The key princi-
ple in hashing functions is to maintain the semantic similarity
by mapping images of similar content to similar binary codes.

Additionally, corresponding data samples from heteroge-
neous modalities may establish semantic correlations, which
leads to cross-modal hashing (CMH). CMH returns rele-
vant information of one modality in response to a query of
another modality (e.g., retrieval of texts/images by using a
query image/text), where similar hash codes in a shared latent
Hamming space are generated for each individual modality. In
this paper, we utilize the cross-modal hashing framework for
a facial retrieval biometrics application in which the images
are retrieved based solely on semantic attributes. For exam-
ple, a user can give a query such as “A bald man wearing
sunglasses” to retrieve relevant face images from a large-scale
gallery. The idea of cross-modal hashing for image retrieval
applications is shown in Fig. 1. We can note that the gallery’s
relevant points G1, G2 and G3 are closer to the query Q1 in
the latent Hamming space than the points G4 and GS5.

There has been a surge in the development of CMH tech-
niques used for ANN search for retrieval on multi-modal
datasets. However, capturing the semantic correlation between
the heterogeneous data from divergent modalities [11], and
bridging the semantic gap between low-level features and
high-level semantics for an effective CMH is a challenge.
Deep learning techniques for CMH (or “deep cross-modal
hashing (DCMH)”) [12], [13], [14], [15], [16], [17], [18], [19]

2637-6407 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: West Virginia University. Downloaded on April 21,2021 at 23:54:17 UTC from IEEE Xplore. Restrictions apply.

280 IEEE TRANSACTIONS ON BIOMETRICS, BEHAVIOR, AND IDENTITY SCIENCE, VOL. 2, NO. 3, JULY 2020

integrate feature learning and hash coding into an end-to-end
trainable framework. DCMH frameworks minimize the quan-
tization error of hashing from continuous representation to
binary codes and provide the benefit of jointly learning the
semantic similarity preserving features.

The main goal in DCMH is to learn a set of hash codes
such that the content similarities between different modalities
is preserved in Hamming space. As such, a likelihood func-
tion [13], [20], [21] or margin-based loss function such as the
triplet loss function [22], [23] needs to be incorporated into
the DCMH framework to improve retrieval performance. In
triplet-based DCMH [22], the inter-modal triplet embedding
loss encourages the heterogeneous correlation across differ-
ent modalities, and the intra-modal triplet loss encodes the
discriminative power of the hash codes. Moreover, a reg-
ularization loss is used to apply adjacency consistency to
ensure that the hash codes can keep the original similarities
in Hamming space. However, in margin-based loss functions,
some of the instances of different modalities of the same sub-
ject may not be close enough in Hamming space to guarantee
all the correct retrievals. Therefore, it is important to bring the
different modalities of the same subject closer to each other
in Hamming space to improve the retrieval efficiency.

In this work, we observe that in addition to the regular
DCMH techniques [13], [24], [25], which exploit entropy
maximization and quantization losses in the objective func-
tion of the DCMH, an error-correcting code (ECC) decoder
can be used as an additional component to compensate for the
heterogeneity gap and reduce the Hamming distance between
the different modalities of the same subject in order to improve
the cross-modal retrieval efficiency. We presume that the hash
code generated by DCMH is a binary vector that is within a
certain distance from a codeword of an ECC. When the hash
code generated by DCMH is passed through an ECC decoder,
the closest codeword to this hash code is found, which can
be used as a final hash code for the retrieval process. In this
process, the attribute hash code and image hash code of the
same subject are forced to map to the same codeword, thereby
reducing the distance of the corresponding hash codes. This
brings more relevant facial images from the gallery closer
to the attribute query, which leads to an improved retrieval
performance.

Recent work has shown that the same kinds of neural
network architectures used for classification can also be used
to decode ECC codes [26], [27], [28]. Motivated by this, we
have used a neural error-correction decoder (NECD) [26] as an
ECC decoder to improve the cross-modal retrieval efficiency.
The NECD is a non-fully connected neural network architec-
ture based on the belief propagation (BP) algorithm, which is a
notable decoding technique applied for error-correcting codes.
We have equipped our “attribute-based deep cross-modal hash-
ing (ADCMH)” with the NECD to formulate our novel deep
neural decoder cross-modal hashing (DNDCMH) framework
for cross-modal retrieval (face image retrieval based on seman-
tic attributes), which, as we will demonstrate, performs better
than other state-of-the-art deep cross-modal hashing methods
for facial image retrieval.

Specifically, the DNDCMH contains a custom-designed
ADCMH network integrated with the NECD. The goal of
ADCMH network is to learn pairwise optimized intermediate
hash codes for both modalities, while the goal of NECD is
to refine the intermediate hash codes generated by ADCMH
to improve the cross-modal retrieval efficiency. The entire
DNDCMH network is trained end-to-end by implementing an
alternative minimization algorithm in two stages. Stage 1 is
split into parts 1(a) and 1(b). In Stage 1(a), ADCMH is trained
by using a novel cross-modal loss function that uses a margin-
based distance logistic loss (DLL). Stage 1(a) of the algorithm
generates intermediate cross-modal hash codes. In stage 1(b),
a NECD network is trained by relating the error correcting
capability e of the ECC used to create the NECD network
with margin m, which is employed in the DLL for training
the ADCMH parameters in stage 1 (a). In stage 2 of the
alternative minimization algorithm, intermediate hash codes
generated by the ADCMH network (i.e., from stage 1(a)) are
passed through the trained NECD network (i.e., from stage
1(b)) to find the closest correct codeword to the intermediate
hash codes. The cross-entropy loss between the correct code-
word and the intermediate codes is then back-propagated only
to the ADCMH network to update its parameters. It should be
noted that during the testing, only the ADCMH component of
the DNDCMH is used for image retrieval and not the NECD
component.

Specifically, We train neural error correcting decoder
(NECD), which is a neural implementation of ECC, such
that it has an error correcting capability greater than or equal
to the margin in the DCMH loss function and then use it
to correct the intermediate hash codes generated by DCMH
up to the Hamming distance of the margin. This allows us
to improve the retrieval efficiency by correcting the hashing
codes in the following ways: 1) if the intermediate image and
attribute hash codes obtained at the output of the ADCMH
belong to the same subject, the Hamming distance between
those intermediate hash codes will be less than the margin,
which means that the distance between them is within the
error correcting capability of the NECD. In this case, NECD
will force and push those intermediate hash codes to decode
to the same codeword. This helps to improve the retrieval effi-
ciency as attribute and image belonging to the same subject
will be pushed towards each other leading to more true posi-
tives. 2) Similarly, if the intermediate image and attribute hash
codes obtained at the output of ADCMH belong to different
subjects, the Hamming distance between the hash codes will
be greater than the margin, which means that the distance
between them will fall outside the error correcting capability
of the NECD and they will be decoded to different codewords,
which implies attribute and image belonging to different sub-
ject will be pushed away from each other leading to less false
positives.

To summarize, the main contributions of this paper include:

1) Attribute guided deep cross-modal hashing (ADCMH):
We utilize deep cross-modal hashing based on a margin-based
DLL for face image retrieval in response to a facial attribute

query.

Authorized licensed use limited to: West Virginia University. Downloaded on April 21,2021 at 23:54:17 UTC from IEEE Xplore. Restrictions apply.

TAHERKHANI et al.: ERROR-CORRECTED MARGIN-BASED DEEP CROSS-MODAL HASHING FOR FACIAL IMAGE RETRIEVAL 281

2) Correcting cross-modal hashing codes using a neural
error-correcting decoder (NECD): We exploit the error cor-
recting capability of an ECC and relate it to the margin
of DLL to integrate the NECD network into the ADCMH
network to learn error-corrected hash codes using an alterna-
tive minimization optimization algorithm.

3) Scalable cross-modal hash: The proposed DNDCMH
architecture performs facial image retrieval using point-wise
data without requiring pairs or triplets of training inputs, which
makes DNDCMH scalable to large scale datasets.

II. RELATED WORK
A. Retrieving Facial Images for an Attribute Query

Searching for facial images in response to a facial attribute
query has been investigated in the past [29], [30], [31].
FaceTracer, an image search engine that allows users to
retrieve face images based on queries involving multiple visual
attributes was built in [29] using a combination of support
vector machines and Adaboost. Owing to the challenges of
face recognition in surveillance scenarios, Vaquero et al. [31]
proposed to search for people in surveillance systems based
on a parsing of human parts and their attributes, including
facial hair, eyeglasses, clothing color, etc. However, in [29],
and [31], the correlation between attributes is not considered.
To overcome this problem, Siddiquie et al. [30] proposed a
ranking and image retrieval system for faces based on multi-
attribute queries, which explicitly modeled the correlations that
are present between the attributes.

B. Cross-Modal Hashing

Cross-modal hashing (CMH) can generally be divided into
two categories: unsupervised hashing and supervised hashing.
Unsupervised hashing [32], [33], [34], [35], [36], [37] relates
to learning hash codes from unlabeled data, while attempt-
ing to preserve semantic similarity between the data samples
in the original space. In collective matrix factorization hash-
ing (CMFH) [32], collective matrix factorization is used to
learn unified hash codes in a latent Hamming space shared by
both modalities. In fusion similarity hashing (FSH) [33], an
undirected asymmetric graph is leveraged to model the fusion
similarity among different modalities.

On the other hand, supervised hashing methods [38], [39],
[40], [41], [42] take full advantage of the label information
to mitigate the semantic gap and improve the hashing quality,
therefore attaining higher search accuracy than the unsuper-
vised methods. In semantic correlation maximization hashing
(SCMH) [39], semantic labels are merged into the hash learn-
ing procedure for large-scale data modeling. In co-regularized
hashing (CRH) [40], each bit of the hash codes are learned by
solving the difference of convex functions programs, while
the learning for multiple bits is performed by a boosting

procedure.
In recent years, deep learning methods have
shown impressive learning ability in image recogni-

tion [43], [44], [45], [46], object detection [47], [48], speech
recognition [49], [50] and many other computer vision tasks.
The application of deep learning to hashing methods improves

performance. There also exist methods (e.g., [13], [14]) which
adopt deep learning for cross-modal hashing (CMH) and give
improved performance over other CMH techniques that use
handcrafted features [39], [40]. Jiang and Li were the first to
propose an end-to-end deep cross-modal hashing framework
to learn the binary hash codes in DCMH [13]. However, they
just utilize the inter-modal relationship ignoring intra-modal
information. In contrast, Yang et al. exploit this intra-modal
information by using pairwise labels to propose Pairwise
Relationship Guided Deep Hashing (PRDH) [14].

C. Neural Error-Correcting Decoder

In addition to DCMH, the other deep learning network that
our system uses is neural error-correcting decoder (NECD).
In [26], the BP algorithm is formulated as a neural network
and it is shown that a weighted BP decoder implemented by
deep learning methods can improve the BP decoding of codes
by 0.9 dB in the high signal to noise ratio (SNR) region.
Later, Lugosch and Gross [28] proposed a neural network
architecture with reduced complexity by leveraging the off-
set min-sum algorithm and achieved similar results to [26].
Gruber et al. [51] used a fully connected architecture to pro-
pose a neural network decoder that gives performance close
to a maximum likelihood (ML) decoder for very small block
codes. Additionally, in [52], a communication system has been
formulated as an autoencoder for a small block code.

III. PROPOSED METHOD

In this section, we first formulate the problem; then, we
provide the details of our proposed method including the cross-
modal hashing framework, training of our proposed system,
and how it can be leveraged for out-of-sample data.

A. Problem Definition

We assume that there are two modalities for each sample,
i.e., facial attribute and image. Define X = {x;}}__; to represent
the image modality, in which X; is the raw pixels of image 7 in
a training set X of size n. In addition, we use Y = {y;}’_, to
represent the attribute modality, in which y; is the annotated
facial attributes vector related to image x;. S is a cross-modal
similarity matrix in which S;; = 1 if image x; contains a facial
attribute yj, and S;; = 0 otherwise.

Based on the given training information (i.e., X, Y and S),
the goal of our proposed method is to learn modality-specific
hash functions: 2™ (x) € {—1, 4+1}¢ for image modality, and
) (y) € {—1, +1)¢ for attribute modality to map the image x
and attribute feature vector y into a compact c-bit hash code.
Hash codes need to be learned such that the cross-modal sim-
ilarity in S is preserved in Hamming space. Specifically, if
S;j = 1, the Hamming distance between the binary codes
cfx") = h®(x;) and c;yj) = K (y;) should be small and if
S;j = 0, the corresponding Hamming distance should be large.
B. Deep Neural Decoder Cross-Modal Hashing

A schematic of our proposed DNDCMH is shown in
Fig. 2. The DNDCMH architecture consists of two important

Authorized licensed use limited to: West Virginia University. Downloaded on April 21,2021 at 23:54:17 UTC from IEEE Xplore. Restrictions apply.

282 IEEE TRANSACTIONS ON BIOMETRICS, BEHAVIOR, AND IDENTITY SCIENCE, VOL. 2, NO. 3, JULY 2020

Stage 1(a) e,

(S Stage 1(b
+ O Quantization Loss ge1(b) .)
10 Neural Error Correcting
\7 Decoder (NECD) with error
- correcting capabilitye = m Cross
1 Entropy Loss 0
#| Image-CNN
(1) 1 TETETET AP 0
» O Entropy-Maximization Loss e & 0
70 > & B B =
1 - >
Artribute-MLP (G(4,) 0 7S S % % 0
— ' 1 0
O | Noisy Codeword 0
o All Zeros Codeword
>
54 O/ Distance-Based LogisticLoss
(o) with margin parameter m
(o}

—— 1 Male
~) Moustach
¥ R 0 Strght Hair
Faciallmages y¢tribute Vector
v
> >
Trained Attribute-MLP (G(4,)
from Stepl
>
Trained NECD from Stage 2
Trained Image-CNN
from Stepl

Fig. 2.

Stage 2

Final Attribute

Trained Attribute-MLP (G(4,)
Hash Codes

Target Output

from Stepl
1 1 5
0 0
1 Male
\/ ’l !le < 0 Moustach
———— :
3 H 0 Strght Hair
3 !/ i > 9 '
0 1 1
1 1 2 Attribute Vector
¢ Cross
9 Entropy Loss
1 1 Cross
0 o EntropyLoss
P —>,
: age-CNN| -~
: »| @) B-‘I’ &
1 1 A
1 1

Trained Image-CNN

Final Image Target Output from Stepl

Hash Codes

Schematic illustration of our DNDCMH. It consists of two networks, the ADCMH and NECD. The ADCMH network consists of the Image CNN

and the Attribute-MLP. The training of the DNDCMH is performed in 2 stages. The first stage is divided into: Stage 1(a) and Stage 1(b). In Stage 1(a), the
Attribute-MLP and Image CNN of the ADCMH network are trained together with the quantization loss, entropy maximization and distance-based logistic
loss with margin m. In Stage 1(b), NECD with an error-correcting capability of e > m is trained using the cross-entropy loss. In Stage 2, the trained ADCMH
from Stage 1(a) and trained NECD from Stage 1(b) are used (this is indicated by the red arrows). In Stage 2, the same training data as used in Stage 1(a)
is passed through the trained ADCMH and the real-valued output of the ADCMH is then passed through the trained NECD to provide the final hash codes.
Next, these final hash codes are used as target outputs (final hash codes and target outputs are the same as indicated by the red arrows) to optimize the trained
ADCMH network. The optimization of the ADCMH network in this Stage is performed by using cross-entropy loss. The blue arrows indicates the inputs and
the connections between the network and the losses. This is only the training process, the testing process is shown in Fig. 5.

components: 1) An “attribute-based deep cross-modal hash-
ing” (ADCMH) architecture, which contains an image con-
volutional neural network (Image-CNN), and an attribute
multi-layer perceptron (Attribute-MLP). 2) A neural error-
correcting decoder (NECD). As shown in Fig. 2, the entire
DNDCMH network is trained end to end by implementing an
alternative minimization algorithm in two stages.

Stage 1 is split into parts 1(a) and 1(b) such that stage
1(a) of this algorithm, learns ADCMH parameters by using
a novel cross-modal loss function that uses margin-based dis-
tance logistic loss (DLL) to learn the ADCMH parameters.
Stage 1(a) of the algorithm generates intermediate cross-modal
hash codes. Stage 1(b) learns a NECD by relating the error cor-
recting capability e of the ECC used to create the NECD with
the margin m used in the distance logistic loss for training the
ADCMH parameters in stage 1(a). Specifically, in stage 1(b),
in order to force the attribute and image intermediate hash
codes of the same subject to be pushed closer and decoded to
the same codeword, we choose the ECC associated with the
NECD in such a way that the error correcting capability e is
greather than or equal to m, where m is the margin parame-
ter used in the distance logistic loss for training the ADCMH
parameters in stage 1(a).

In stage 2 of alternative minimization algorithm, we pass
the intermediate hash codes (real-valued vector) generated by
ADCMH (from stage 1(a)) to the trained NECD network (from
stage 1(b)) to find the closest correct codeword (binary) to
the intermediate hash codes. The cross-entropy loss between
the correct codeword and the intermediate codes is back-
propagated only to the ADCMH network to update its param-
eters. Stage 1(a) and stage 2 are done iteratively until there
is no longer a significant improvement in retrieval efficiency
with respect to the training.

1) Stage 1I(a): Learning Intermediate Hash Codes:
Training of ADCMH network to learn the intermediate hash
codes: In stage 1(a), the ADCMH network, which is a cou-
pled deep neural network (DNN), is trained to learn the
intermediate hash codes. The ADCMH has three main objec-
tives: 1) to learn a coupled DNN using distance-based logistic
loss to preserve the cross-modal similarity between different
modalities; 2) to secure a high retrieval efficiency, for each
modality, minimize the quantization error due to the hashing
of real-valued continuous output activations of the network to
binary codes; 3) to maximize the entropy corresponding to
each bit to obtain the maximum information provided by the
hash codes.

Authorized licensed use limited to: West Virginia University. Downloaded on April 21,2021 at 23:54:17 UTC from IEEE Xplore. Restrictions apply.

TAHERKHANI et al.: ERROR-CORRECTED MARGIN-BASED DEEP CROSS-MODAL HASHING FOR FACIAL IMAGE RETRIEVAL 283

We design the objective function for ADCMH to gener-
ate efficient hash codes. Our objective function for ADCMH
comprises of three parts: (1) margin-based distance logistic
loss; (2) quantization loss; and (3) entropy maximization loss.
The ADCMH is composed of two networks: An Image-CNN,
which is used to extract features for image modality and an
Attribute-MLP, which is used to extract features for facial
attribute modality. A tanh activation is used for the last layer
of both networks so that the network outputs are in the range
of [—1, 1]. Let p(w,, X;) € R4 denote the learned CNN fea-
tures for sample Xx; corresponding to the image modality, and
q(wWy, y;) denote the learned MLP features for sample y; cor-
responding to the attribute modality. w, and w,, are the CNN
network weights and the MLP network weights, respectively.
The total objective function for ADCMH is defined as follows:

)

i=1 j=I

9 n n
= | 2oIPal® + 3 1Qy1°
i=1 j=1

P*lv Q*]) SlJ)

.M

+ ZH(PT

+ZH QT

where P € R represents the image feature matrix con-
structed by placing the CNN features of the training samples
column-wise and P,; = p(wy, x;) is the CNN feature corre-
sponding to sample Xx;. (PT)*e is a column vector, representing
the e-th bit of all the training samples. Likewise, Q € R“*"
represents a facial attribute feature matrix and Q,; = g(wy, y;)
is the MLP feature for the attribute modality ¥i; (QT)*f is a
column vector, which represents the f-th bit of all the training
samples. The objective function in (1) needs to be minimized
with respect to parameters wy, wy.

The first term in the objective function is the margin-based
DLL, which tries to push modalities referring to the same
sample closer to each other, while pushing the modalities
referring to different samples away from each other. The term
PPy, Q) = 1 +ex;a;’:’((;:)H — represents the distance-based
logistic probability (DBLP) and defines the probability of the
match between the image modality feature vector P,; and
attribute modality feature vector Q,;, given their squared dis-
tance. The margin m determines the extent to which matched
or non-matched samples are attracted or repelled from each
other, respectively. The distance-based logistic loss is then
derived from the DBLP by using the cross-entropy loss sim-
ilar to the classification case: £.(r,s) = —slog(r) + (s —
D) log(1l—r).

Fig. 3 shows an illustration for the margin-based distance
logistic-loss for our application. The dotted circle indicates
the margin m to the boundary in terms of Hamming distance.
The anchor (black solid circle) indicates a fixed instance and
could either be an image hash code or an attribute hash code.
The green solid circles indicate the matched instances (i.e.,
image or attribute hash codes belonging to the same sub-
ject as the anchor) and the magenta solid circles indicate

Face
(xi)

Image

(W X))

Attributes (y) Z

Black hair | 1
Straight hair
Bald

Same Category (Match)
@ Different Category (Non-Match)
@ Anchor

Attnbute MLP
(g(Wy Yi)

Fig. 3. Diagram for the first stage showing the importance of margin-based
distance logistic loss.

non-matched instances (i.e., image or attribute hash codes
belonging to different subject than the anchor). The function
of margin-based DLL is two-fold. First, it pushes the matched
instances (green circles) away from the margin in the inward
direction, i.e., the Hamming distance between the image and
attribute hash codes of the same subject should be less than the
margin m. Second, the margin-based DLL also pushes the non-
matched instances (magenta circles) away from the margin in
the outward direction, i.e., the Hamming distance between the
image and attribute hash codes belonging to different subjects
should be larger than the margin m. It has to be noted that
after training the ADCMH network, the image hash codes and
the attribute hash codes belonging to the same subject have a
Hamming distance less than margin m. This margin is a very
important parameter in this framework and it will also affect
the training of NECD as is detailed in the description of stage
1(b) in Section III-B2.

The second term in the objective function is the quantization
loss that incentivizes the activations of the units in the hashing
layer to be closer to —1 or 1. The values of the elements of P,;
are in the range of [—1, 1] because they have been activated
by the tanh activation. To make the codes closer to either —1
or 1, we add a quantization constraint of maximizing the sum
of squared errors between the hashing layer activations and 0,
which is given by > 7, [Py — 0||%, where n is the number
of training images in a mini-batch and 0 is the c-dimensional
vector with all elements equal to 0. However, this is equivalent
to maximizing the square of the length of the vector formed
by the hashing layer activations, that is > [Py — 0> =
o) SIS

The third term, the entropy maximization loss, helps to
obtain hash codes with an equal number of —1’s and 1’s,
which maximizes the entropy of the discrete distribution and
results in hash codes with better discrimination. Precisely, the
number of +1 and —1 for each bit on all the training samples
should be almost the same.

Learning the ADCMH Parameters in Stage 1(a): We used
an alternating minimization algorithm to learn the ADCMH
network parameters Wy, and wy. In this algorithm, within each
epoch, we learn one parameter with other parameters fixed.

Learning (wy) Parameters for ADCMH: We use the back
propagation algorithm to first optimize the CNN parameters

Authorized licensed use limited to: West Virginia University. Downloaded on April 21,2021 at 23:54:17 UTC from IEEE Xplore. Restrictions apply.

284

Error Correcting

IEEE TRANSACTIONS ON BIOMETRICS, BEHAVIOR, AND IDENTITY SCIENCE, VOL. 2, NO. 3, JULY 2020

Capability margin,
y (m) \\error correcting

‘ ; % \ capability

! 9 W
_» e S

h
R , Attribute
Correct Codeword\ Image ¢ intermediate
~_ X intermediate '\ hash code
hash code Correct’

Recieved Codeword

(a) Error-Correcting capability

Fig. 4. Relating the error-correcting capability of ECC to the margin of DLL.

w, for the image modality by fixing the wy, and compute loss
function gradient with respect to the output of image modality
network as follows:

8\7 _ Xn: P*l ’ Q*j

23 (PT)
+ 21: *i
=
The gradient of the first term in Eq. 2 is calculated as:
3Le(p(Psi- Qu))- Syj)

Z(P*l)

2

—(I +exp(=m))

0P (1 + exp(IIPs — Qull — m))*
Sij 1—5;

X + .

(P(P*i, Q*]) 1 p(P*i’ Q*]))

3)

Next, we compute g—gx with 5~ by using the chain rule

(wa = ;;)I‘,Z l 9P, *’) based on Wthh the back propagation
is used to update the parameter wy.

Learning (wy) Parameters for ADCMH: Similar to the
previous optimization, we use the back propagation algorithm
to optimize the MLP network parameters w, for the facial
attribute modality by fixing w,, and compute the loss func-
tion gradient with respect to the output of the facial attribute
network as follows:

P(Psi: Q). Sy)

; 0Q,;
+ 2] ()

j .
3wy W1th

20

Q)

j=1

BQ*,

“4)

Next, we compute

(oy = 80()7* Q*’) based on Wthh the back propagation

algorithm is used to update the parameters wy.

The intermediate hash codes after training of the ADCMH
are obtained by c(X’) sign(p(wy, X;)) and cgy")
sign(q(wy, y;)) for image x; and attribute y;, respectively for
a new sample outside of the training set.

2) Stage 1(b): Training Neural Error Correcting Decoder:
As mentioned previously, there is room to improve the cross-
modal retrieval efficiency by reducing the Hamming distance
between the intermediate hash codes of different modalities

by using the chain rule

(b) Margin of DLL

Codeword

(c) Margin of DLL and the error-correcting
capability

for the same subject. This can be achieved by using an ECC
decoder. The concept of ECC decoder is illustrated in Fig. 4(a).
It is observed from the figure that if the received codewords or
the corrupted codewords (green solid circles) fall within the
error correcting capability e of the ECC, then the received
codeword is decoded to the correct codeword (black solid
circle) by the ECC decoder.

The image or the attribute intermediate hash codes gener-
ated by ADCMH can be considered to be corrupted codewords
within a certain distance d of a correct codeword of an ECC.
If this distance d is within the error-correcting capability e of
the ECC, then the ECC decoder will decode the intermediate
hash codes to corresponding correct codeword of the ECC.
However, decoding the intermediate hash codes to a correct
codeword does not assure an improvement in cross-modal
retrieval efficiency. For improving the retrieval efficiency, in
addition to the intermediate hash codes being decoded to the
correct codeword of the ECC, we also require facial and
attribute intermediate hash codes of the same subject to be
decoded to the same codeword.

For fulfilling the above requirement, we exploit the error-
correcting capability of the ECC decoder and relate it to
the margin m used in the DLL for training the ADCMH in
stage 1(a). Consider Fig. 4(b) which shows the circle repre-
senting the margin for the DLL loss in stage 1(a). The blue and
green circles on the margin represent the image intermediate
hash code and attribute intermediate hash code, respectively
of the same subject. Now consider Fig. 4(c), which shows the
margin circle (black dashed line) along with the Hamming
sphere of the ECC (red solid line) with error correcting capa-
bility of e. We notice that the blue and green circle (i.e.,
image intermediate hash code and attribute intermediate hash
code) fall within the error correcting capability of the ECC.
Consequently, the image and attribute intermediate hash codes
will be decoded to the same correct codeword (i.e., black small
circle in the center) by the ECC decoder. This scenario is feasi-
ble only when error correcting capability e of the ECC decoder
is at-least equal to the margin m used for DLL. Therefore, we
chose an ECC decoder in such a way that the error correcting
capability of the ECC e > m.

Recently, some excellent neural network based ECC
decoders have been proposed [26], [27], [28], which have
achieved close to the maximum likelihood (ML) performance
for an ECC. These methods can be leveraged to generate high-
quality and efficient hash codes. Thus, we can adapt such a

Authorized licensed use limited to: West Virginia University. Downloaded on April 21,2021 at 23:54:17 UTC from IEEE Xplore. Restrictions apply.

TAHERKHANI et al.: ERROR-CORRECTED MARGIN-BASED DEEP CROSS-MODAL HASHING FOR FACIAL IMAGE RETRIEVAL 285

neural network based ECC decoder, train it, and use it as
an ancillary component to refine the intermediate hash codes
generated by ADCMH. For more details about ECC and BP
decoding algorithm refer to Appendix V.

Neural error-correcting decoder: The NECD is a non fully-
connected neural network and can be considered as a trellis
representation of the BP decoder in which the nodes of the
hidden layer correspond to the edges in the Tanner graph. Let
N be the size of the codeword (i.e., the number of variable
nodes in the Tanner graph) and E be the number of the edges
in the Tanner graph. This implies that the input layer of our
NECD decoder consists of N nodes. The input to each of the
N nodes is the channel log-likelihood ratio (LLR) correspond-
ing to that particular variable node in the Tanner graph. All
the hidden layers of the NECD have size E. A node in each
hidden layer is associated with the message transmitted over
some edge in the Tanner graph. The output layer of the NECD
contains N nodes that output the final decoded codeword.

The number of hidden layers in the NECD depends upon
the number of iterations considered for the BP algorithm.
One iteration corresponds to message passing from the vari-
able node to the check node and again back from check node
to the variable node. Let us consider L iterations of the BP
decoder. Then the number of hidden layers in the NECD
would be equal to 2L. Consider the i-th hidden layer, where
i=1,2,...,2L. For odd (even, respectively) values of i, each
node in this hidden layer of the NECD corresponds to an
edge e = (v, ¢) connecting the variable node v (check node c,
respectively) to the check node ¢ (variable node v, respec-
tively) and the output of this node represents the message
transmitted by the BP decoder over that edge in the Tanner
graph.

Next, we will discuss the way the NECD node connections
are formed. A node in the first hidden layer (i.e., i = 1) cor-
responding to the edge e = (v, c¢) is connected to a single
node in the input layer, which is the variable node v associ-
ated with that edge. A processing node in the hidden layer i,
where i > 1 and i is odd (even, respectively), corresponds to
the edge e = (v, ¢), and is connected to all the nodes in the
layer i — 1 associated with the edges ¢ = (v,c’) for ¢’ # ¢
(¢/ = (V, ¢) for V' # v, respectively). For an odd node i, a pro-
cessing node in layer i, corresponding to the edge ¢ = (v, ¢)
is also connected to the vth input node. We denote by x; ., the
output of a processing node in the hidden layer i. In terms of
the BP decoder, for an odd (even, respectively) i, this is the
message produced after |(i — 1)/2] iterations, from variable
to check (check to variable, respectively) node. For odd i and
e = (v, c), we can use

1
Xie=(v,c) = tanh 5 Wiyl + Z Wiee'Xi—1,¢ s
e'=(,c),c'#c
(5)
under the initialization, x9, = 0 for all ¢ (there is no

information in the parity check nodes in the beginning). The
summation in (5) is over all the edges ¢ = (v, ¢’) with variable
node v except for the target edge e = (v, c). w corresponds
to the weight parameters of the neural network. Similarly, for

even i and e = (v, ¢), we use

[

e'=(,c),V#v

Xije=(v,c) = 2tanh_l Xi—1,¢ |- (6)

The final vth output of the network is given by

Oy =0 W2L+l,vlv+ Z WorL+1,v,e/X2L.¢ | @)

e'=,c")

where 6(x) = (1+e) Llisa sigmoid function and is added
so that the final network output is in the range [0, 1].

In stage 1(b), we build and train the NECD to be useful for
correcting the intermediate hash codes generated by ADCMH
in stage 1(a). In this regard, we select the ECC code to build
the NECD is such a way that the error correcting capability
e of the ECC is at-least equal to the margin m. Based on this
condition, we then train our NECD using a dataset of zeros
codeword.

3) Stage 2: Correcting the Intermediate Hash Codes: As
shown in Fig. 2, the trained ADCMH network and the trained
NECD from stage 1(a) and stage 1(b), respectively, are uti-
lized in stage 2 as shown by the red unidirectional arrows. In
stage 2, we use the same dataset used in stage 1(a) and gen-
erate the real-valued vector output of the trained Image-CNN
and trained Attribute-MLP (from stage 1(a)) without threshold-
ing using sign function. This output from both the networks is
then passed through the trained NECD from stage 1(b) to gen-
erate the corresponding image and attribute final binary hash
codes. Next, the corresponding image and attribute final hash
codes are used as target outputs (i.e., ground truths) to fine-
tune the Image-CNN and Attribute-MLP, respectively from
stage 1(a). As shown in Fig. 2, for fine-tuning the Image-CNN
and Attribute-MLP, we use the intermediate hash codes (real-
valued vector output of the trained Image-CNN and trained
Attribute-MLP) as our predicted outputs and use the corre-
sponding final hash codes (binary) as our ground truths. We
use cross-entropy as loss function to fine-tune the Image-CNN
and Attribute-MLP in stage 2.

N &k
1 . .
Lek.p) = =522y IOg(p;’))

i=1 j=1
+ (1 —y;i))log(l —p}i)), (8)

where y;i) is the final hash code value for the i-th training

sample and j-th element in the output layer. Similarly, p}l) is
the intermediate hash code value for the i-¢h training sample
and j-th element in the output layer. N signifies the number
of training samples in a mini-batch, k signifies the hash code
length, and Lc(y, p) defines the cross-entropy loss function
between the intermediate hash code vector p and final hash
code vector y.

In this stage of the training algorithm, the cross-entropy
loss between intermediate hash codes generated by ADCMH
and the corrected codewords obtained by NECD, is back-
propagated to the ADCMH network to update its parameters
(i.e., w, and wy). As mentioned earlier, intermediate hash

Authorized licensed use limited to: West Virginia University. Downloaded on April 21,2021 at 23:54:17 UTC from IEEE Xplore. Restrictions apply.

286 IEEE TRANSACTIONS ON BIOMETRICS, BEHAVIOR, AND IDENTITY SCIENCE, VOL. 2, NO. 3, JULY 2020

codes used in this stage are real valued for both modalities.
Here, we formulate stage 2 of the training algorithm, which
is used to update the ADCMH parameters to generate the
corrected codes.

As shown in Fig. 2, the NECD network is used to correct the
intermediate codes generated from both modalities. Assume
that tgx") is the output of the NECD network used to correct
the intermediate hash code c?x") associated with the sample
x; for image modality. The overall cross-entropy loss on all
the samples is calculated as: H, = LC(tl(X"), cEXi)). To back-
propagate the loss of the error-corrected code to the ADCMH
parameters related to the image modality (i.e., wy), we can use
the chain rule as discussed in the previous section to update
Wy, e, (G = 32 o WPur)

Likewise, the NECD network is used to update the ADCMH
network parameters that are related to the facial attribute
modality (i.e., wy). Therefore, we can formulate it as
Hy = Lc(tfy") , c?y’)). To back-propagate the loss of the
error-corrected code to update wy, we use the chain rule as
(%—Zj:f = % X %Lw*") Note that before back-propagating the
cross-entropy loss to update the ADCMH parameters, we scale
the obtained loss by a hyper-parameter y to create a bal-
ance between cross-entropy loss and the cross-modal hashing
loss (i.e., J in (1)) that is defined in step 1 of the training
algorithm.

Note that we utilize alternative optimization algorithm and
perform the stage 1(a) and stage 2 of the training algo-
rithm iteratively until there is not a significant improvement in
retrieval efficiency on the training set. Additionally, note that
we use the same trained NECD from stage 1(b) in stage 2
for both the Image-CNN and the Attribute-MLP. Therefore, if
the NECD in stage 1(b) has been created using ECC with an
error-correcting capability of e > m, where m is the margin
used for DLL in stage 1(a), then the final hash codes would
be the same for both the image and attribute modality at the
end of the training of the alternative optimization algorithm.
The complete algorithm is given in Fig. 2.

4) Out-of-Sample Extension: After training DNDCMH to
convergence (i.e., no improvement in accuracy on the training
set), for a new instance that is not in the training set, we
can easily generate its error-corrected hash code as long as
we can get one of its modalities. Given a query data point
with image modality x;, we directly use it as the input of
the Image-CNN part of the trained DNDCMH, then forward
propagate the query through the network to generate its hash
code as: tl(X") = sign(p(wy, X;)). Similarly, for the Attribute-
MLP, we generate the hash code of a data point with only
attribute modality y; as: t;y") = sign(q(wy, y;)).

For example, assume that we are provided with an attribute
query in the form of an binary vector specifying the presence
of certain facial attributes as it is shown in Fig. 5. Along with
the attribute query, we are also provided with a gallery of
facial images. We need to find all the faces in the given gallery
that contain the attributes given in the query. In this case, the
attribute query is passed through the trained Attribute-MLP
and the attribute hash code is generated. Similarly, each facial
image in the given gallery is passed through the Image-CNN to

’,r"'vGaIIery of test\'\‘

HD=2

; images ADCHH " Hash Codes of ™,
g . ' ' test images
/ - \ ' ' v
/ \ ' /
; A ' 1 ; __100111001
/ N7 | ' H /
ki Y | / HD=1
S— | ' 5 H ;
- 1 B Mo0111101 100111101
- | ' 5 /
¥ y 2 HD=0 HD=0
i 5 | 5
; = 3
H 2 7 A 100100101
: e
! 5]
z
z

% [1oor11001] [100000101 |/

HD=1 HD=3

\ ' H g
) ' | 100110101
B e ' ' HD=1

S ' '

Moustache

EyeGlasses
Smiling
Black Hair

FeMale Hash Code of the

'
:r/> 100111101
Attribute Query

Long Hair |- -

'
'
Pointy Nose: Trained Attribute MLP 1

Attribute Query

Fig. 5. Illustration of the testing process. The gallery of test images is
passed through the Image-CNN of the ADCMH network to generate the image
hash code. The attribute query binary vector is passed through the trained
Attribute-MLP to generate the attribute hash codes. The Hamming distance
(HD) between the attribute hash code and the image hash code is computed.
The HD between the each of the gallery image hash code and the attribute
hash code is shown under the corresponding image hash code. The green color
represents the lowest HD image hash code. The red color in the attribute query
indicates the three attributes that we are interested in. It is a triple attribute
query example.

generate a hash code for each image. All the facial images are
then ranked in order of increasing Hamming distance between
the image hash code and the attribute hash code.

IV. EXPERIMENTAL RESULTS

Implementation: As mentioned previously, our proposed
ADCMH is composed of two networks: An image convolu-
tional neural network (Image-CNN), which is used to extract
features for the image modality and an attribute multi-layer
perceptron (Attribute-MLP), which is used to extract features
for the facial attribute modality. We initialize our Image-CNN
parameters with a VGG-19 [45] network pre-trained on the
ImageNet [53] dataset. The original VGG-19 consists of five
convolutional layers (convl —conv5) and three fully-connected
layers (fc6 — fc8). We discard the fc8 layer and replace the fc7
layer with a new f; layer with ¢ hidden nodes, where c is
the required intermediate hash code length. For the convolu-
tional layers and fc6 layer we have used ReLU activation, for
the f., layer, we have used tanh activation. The size of the
intermediate hash length is equal to the size of the codeword
used in the NECD network.

The Attribute-MLP contains three fully connected layers to
learn the features for the facial attribute modality. To per-
form feature learning from the attributes, we first represent
the attributes of each training sample as a binary vector,
which indicates the presence or absence of corresponding
facial attribute. This binary vector serves as a facial attribute
vector and is used as an input to the Attribute-MLP. The first
and second layers in the MLP network contain 512 nodes with
ReLU activation and the number of nodes in the last fully con-
nected layer is equal to the intermediate hash code length ¢

Authorized licensed use limited to: West Virginia University. Downloaded on April 21,2021 at 23:54:17 UTC from IEEE Xplore. Restrictions apply.

TAHERKHANI et al.: ERROR-CORRECTED MARGIN-BASED DEEP CROSS-MODAL HASHING FOR FACIAL IMAGE RETRIEVAL 287

with tanh activation. The weights of the MLP network are
initialized by sampling randomly from N(0, 0.01) except for
the bias parameters that are initialized with zeros. We use the
Adam optimizer [54] with the default hyper-parameter values
(e = 1073, A1 = 0.9, X, = 0.999) to train all the parame-
ters using alternative minimization approach. The batch size
in all the experiments is fixed to 128. ADCMH is implemented
in TensorFlow with Python API and all the experiments are
conducted on two GeForce GTX TITAN X 12GB GPUs.

To train this NECD, it is sufficient to use training database
constructed using noisy versions of a single codeword [26]. For
convenience, we use noisy versions of zero codeword and our
training database for NECD contains different channel output
realization when the zero codeword is transmitted. The goal is
to train NECD to attain N dimensional output word, which is
as close as possible to the zero codeword. We have trained our
NECD on several codes including BCH(31, 21), BCH(63, 45),
and BCH(127, 92). This implies that the intermediate and the
target hash code length for our experiments is equal to 31, 63,
and 127. Note that the exact codeword size (N, k) depends on
the error correcting capability e required for the NECD. Again,
the error correcting capability e depends on the margin m of
the DLL function used to train the ADCMH, such that e > m.

Datasets: We evaluated our proposed DNDCMH frame-
work on three face datasets including the Labeled Faces in the
Wild (LFW) [55], Large-scale CelebFaces Attributes (CelebA)
Dataset [56], and YouTube faces (YTF) dataset [57].

LFW is a notable face database of more than 13,000
images of faces, created for studying the problem of uncon-
strained face recognition. The faces are collected from the
Web, detected and centered by the Viola Jones face detec-
tor. CelebA is a large-scale face attribute and richly annotated
dataset containing more than 200K celebrity images, each of
which is annotated with 40 facial attributes. CelebA has about
ten thousand identities with twenty images per identity on
average. For comparison purposes, we have been consistent
with the train and test split of these datasets as given on the
dataset webpage.

YTF [57] is a dataset based on the name list of LFW but
created for video based face recognition. All the videos in
YTF were downloaded from YouTube. YTF dataset contains
3,425 videos from 1,595 identities. Each video varies from
48 to 6,070 frames, with an average length as 181.3 frames.
We extract 60,300 frames for evaluation. Particularly, we use
40,000 frames with 420 identities for training and the other
remaining 20,300 images with 198 identities for testing. Since
YTF dataset has not been annotated by facial attributes, we
use a well-known attribute prediction model Mixed Objective
Optimization Network (MOON) [58] to annotate YTF with
the facial attributes and then use it in our model.

Baselines: We have compared the retrieval and ranking
performance of our system with some of the other state-of-
the-art face image retrieval and ranking approaches including
MARR [30], rankBoost [59], TagProp [60]. For fair compar-
ison, we have exploited the VGG-19 architecture pretrained
on Imagenet dataset, which is the same as the initial CNN
of the image modality in DNDCMH, to extract CNN fea-
tures. All the above baselines are trained based on these CNN

features. Additionally, we have also compared our algorithm
with the state-of-the-art deep cross modal hashing algorithms
DCMH [13], pairwise relationship guided deep hashing for
cross-modal retrieval (PRDH) [14], and triplet-based hashing
network (THN) [22]. We have also compared the DNDCMH
framework with only the ADCMH network; i.e., training using
only stage 1(a).

Evaluation Protocols: For hashing-based retrieval,
Hamming ranking is a widely used retrieval protocol
and we will also evaluate our DNDCMH method and com-
pare it with other baselines using this protocol. The Hamming
ranking protocol ranks the points in the database (retrieval
set) according to their Hamming distances to a given query
point, in an increasing order. Mean average precision (MAP)
is the widely used metric to measure the accuracy of the
Hamming ranking protocol.

Similarly, for ranking protocol we use normalized dis-
counted cumulative gain (NDCG) to compare ranking
performance of DNDCMH with other baselines. NDCG is a
standard single-number measure of ranking quality that allows
non-binary relevance judgments. It is defined as NDCG@k =
% Zf:l %, where rel(i) is the relevance of the i ranked
image ang Z 1s a normalization constant to ensure that the
correct ranking results in an NDCG score of 1.

Effect of relation between margin m and error correcting
capability e on the retrieval performance: Before extensive
performance evaluation of the proposed framework, it is
very important to understand how the relation between error-
correcting capability e of the NECD used in stage 1(b) and
the margin m of the margin-based distance logistic loss (DLL)
in stage 1(a) affects the overall retrieval performance for the
proposed framework. From Section III-B, we know that e > m.
For a given value of m we need to analyze the upper limit of
e that will give us a reasonable retrieval performance. We use
mean average-precision (MAP) as our metric to evaluate the
relation between e and m. Table I provides the MAP results
for three datasets. We have considered hash code length of 63
bits with margin values as m = 3,5,6,7. Table I also pro-
vides the different values of error correcting capability e we
have used for a given margin m. We have tried the values of
e in the range of m — 1 to m + 6 depending on the ECC word
(N, K) possible with hash code of 63 bits.

We can observe from Table I that for an given value of m,
the best MAP is achieved when e is equal to or slightly greater
than m. For example, when m = 5, we can observe that the
best MAP is achieved when e is either 5 or 6. It is interesting
to note that as e becomes greater and greater than m, the
MAP starts reducing. The reason for this reduction is that
as the error correcting capability e increases, more and more
impostors will fall within the Hamming sphere (error cor-
recting capability), leading to more false positives and lower
precision.

Retrieval Performance: MAP results using different num-
ber of attributes in the query for DNDCMH, ADCMH and
other baselines for the three datasets is given in Table II.
For this experiment, we have used a margin of m = 6 for
margin-based DLL. For the best results, we have trained our
NECD with BCH(63, 30) code, which implies that the hash

Authorized licensed use limited to: West Virginia University. Downloaded on April 21,2021 at 23:54:17 UTC from IEEE Xplore. Restrictions apply.

288 IEEE TRANSACTIONS ON BIOMETRICS, BEHAVIOR, AND IDENTITY SCIENCE, VOL. 2, NO. 3, JULY 2020

TABLE I
MAP COMPARISON TABULATING THE EFFECT OF THE ERROR CORRECTING CAPABILITY ¢
FOR A GIVEN MARGIN m AND HASH CODE LENGTH OF 63 BITS

Margin | Code - Word Size | Error Correcting Capability CelebA LFW YouTube
(m) (N,K) (e) Single [Double [Triple | Single | Double | Triple | Single | Double | Triple
(63,51) 2 63.215 | 61.779 57.349 | 60.239 | 58.322 | 56.115 | 59.334 | 57.976 | 56.254
(63,45) 3 71.831 | 68.335 | 66.131 | 67.117 | 65.383 | 64.118 66.1 64.579 | 62.215
3 (63,39) 4 72.10 68.11 66.63 65.135 | 64.446 | 63.988 | 64.653 | 64.091 | 63.561
(63,36) 5 66.543 | 64.671 62.156 61.90 57.783 55.9 60.117 | 59.098 59.22
(63,30) 6 61.10 | 58.831 54.665 56.35 53.139 | 50.952 | 54.871 | 53.813 | 53.178
(63,39) 4 70.55 68.116 66.312 | 67.515 | 65.213 | 63.111 | 65.334 | 63.578 62.11
(63,36) 5 76311 | 74.132 | 70.877 71.31 69.156 | 66.932 | 70.23 | 68.102 | 66.009
5 (63,30) 6 7719 | 72.066 | 69.992 | 70.482 | 67.354 | 67.131 | 69.998 | 67.521 | 66.217
(63,24) 7 72.634 | 71.135 68.820 | 67.111 | 65.090 | 63.865 64.43 62.491 | 59.089
(63,18) 10 60.225 | 58.113 | 56.622 58.35 56.751 | 54.322 | 54982 | 53.19 | 51.551
(63,36) 5 69.121 | 66.398 63.1 64.334 | 63.901 | 63.178 | 63.456 58.01 56.41
(63,30) 6 79.125 | 73.167 72913 | 74.873 | 71.242 | 70.643 | 71.998 68.01 65.389
6 (63,24) 7 76.339 | 73.842 | 70.190 72.1 70908 | 67.231 | 72.13 66.54 64.1
(63,18) 10 63.12 62.781 60.613 | 61.349 | 60.444 | 57.609 | 60.78 55.782 | 53.567
(63,16) 11 55.1 56.789 | 53.334 52.18 | 50.981 50.4 53.986 | 50.12 47.56
(63,30) 6 77.351 | 75.568 | 72.2211 | 73.181 | 71.362 71.61 72.367 69.08 66.890
(63,24) 7 83.131 | 79.354 77.116 | 77.335 | 74952 | 71.118 | 78.80 7547 70.721
7 (63,18) 10 76.541 | 73.396 | 70.751 | 69.117 | 66.354 | 62.182 | 71.389 | 69.903 66.56
(63,16) 11 72.225 | 69.181 66.192 | 67.111 | 65332 | 63.981 | 67.908 | 64.095 62.60
(63,10) 13 62.25 60.181 58.333 58.05 56.351 | 54.119 | 59.834 | 55.596 52.9
0.58 0.55
0.8 0.56 W
—e—DNDCMH | x @ 054 5 >
THN 3 07 g
—e—PRDH 8 o 052 a
ADCMH z Z 045
— e DCMH 06 W
MARR b
RankBoost 0 50 100 % ™ 50 100
TagProb K K K
(b) Single (c) Double (d) Triple

Fig. 6. Ranking performance on the CelebA dataset. Due to space restriction, the legend is shown in the box on the left.

TABLE 11
MAP COMPARISON FOR DNDCMH WITH OTHER BASELINES FOR THE
THREE DATASETS USING DIFFERENT NUMBER OF ATTRIBUTES IN THE
QUERY. THE BEST MAP 1S SHOWN IN BOLDFACE

[CelebA [LFW | YouTube |

Method | Single | Double [Triple | Single | Double | Triple | Single | Double | Triple |
TagProp 52.610 | 48.494 | 41.509 | 51.776 | 46.556 | 39.790 | 50.393 | 44.874 | 39.093
RankBoost | 55.116 | 51.354 | 50.672 | 53.320 | 50.198 | 48.259 | 54.67 52.39 | 49.074
MARR 61.334 | 57.890 | 56.098 | 59.343 | 54.266 | 55.334 | 58.670 | 55.712 53.84
DCMH 67.210 | 62.664 | 61.170 | 62.320 | 61.200 | 60.320 | 63.886 | 60.345 | 58.765
PRDH 72.100 | 68.550 | 66.110 | 66.764 | 65.776 6437 | 66.111 | 64.298 61.98
THN 74982 | 71.498 | 70.498 | 69.907 | 69.897 | 67.297 | 68.564 | 66.673 | 63.456
ADCMH 68.437 | 64.173 | 63.993 | 63.732 | 63.171 | 62.689 | 65.163 | 61.932 | 60.005
DNDCMH | 79.125 | 73.167 | 72.913 | 74.873 | 71.242 | 70.643 | 71.998 68.01 65.389

code length is equal to 63 bits and the error correcting capa-
bility e of the NECD is equal to 6, which implies e = m.
We can clearly see that our DNDCMH method clearly outper-
forms all the other baseline methods including the ADCMH.
An interesting observation is that our method ADCMH with
no NECD also outperforms DCMH, which shows that the
distance-based logistic loss used in our objective function
in (1) is better than the negative log-likelihood loss used in
DCMH. Also, the addition of NECD to ADCMH, which is
our proposed DNDCMH improves the retrieval performance
and outperforms the other state-of-the-art deep cross-modal
hashing methods PRDH and THN.

Ranking Performance: Comparison of the NDCG scores, as
a function of the ranking truncation level K, using different

number of attribute queries are given in Fig. 6, Fig. 7, and
Fig. 8 for the three datasets using hash code length of 63 and
BCH (63, 30) with ¢ = m = 6 for DNDCMH and ADCMH.
It is clear from the figures that our approach (DNDCMH) sig-
nificantly outperforms all the baseline methods for all three
types of queries, at all values of K. For example, for the LFW
dataset, at a truncation level of 20 (NDCG@20), for single,
double and triple attribute queries, DNDCMH is respectively,
2.1%, 2.1% and 2.0% better than THN, the best deep cross-
modal hashing method, and also DNDCMH is respectively,
11.2%, 7.3% and 8.0% better than MARR, the best shal-
low method for attribute-based image retrieval. The ranking
performance using intermediate hash codes generated by only
ADCMH with no NECD also outperforms the shallow meth-
ods MARR, RankBoost, and Tagprob, and also outperforms
DCMH for double and triple attribute queries and is very
close (may be slightly better) to DCMH performance for
single-attribute queries. The better performance of DNDCMH
when compared to other deep cross modal hashing method
demonstrates the effectiveness of NECD in improving the
performance for cross-modal retrieval. We can observe that
the NDCG values for the YTF dataset for all methods are
relatively lower when compared to the other two datasets.
This is due to the motion blur and high compression ratio
of downloading the videos from YouTube and extracting the
faces.

Authorized licensed use limited to: West Virginia University. Downloaded on April 21,2021 at 23:54:17 UTC from IEEE Xplore. Restrictions apply.

TAHERKHANI et al.: ERROR-CORRECTED MARGIN-BASED DEEP CROSS-MODAL HASHING FOR FACIAL IMAGE RETRIEVAL 289
0.8 0.55 05
07 05
——DNDCMH | & & 045 Nin sosstesctati oy &
—&—THN O 06 9] 9]
—s—PRDH g S o4 g
ADCMH 05
——DCMH 0.35
—*— MARR ‘ ‘
* 04 03
RankBoost 0 50 100 0 50 100
TagProb K K
(b) Single (c) Double (d) Triple
Fig. 7. Ranking performance on the LFW dataset. Due to space restriction, the legend is shown in the box on the left.
0.65 0.44 0.4
0.6 0.42 0.38
0.55 0.4 0.36
a ; 2
—&—DNDCMH & os & 038 Roptveseseed 2O-%- & 034
—&—THN [0} 9] [0}
. PRDH (g] 0.45 0 0.36 é 0.32
ADCMH 0.4 034 03
—&—DCMH
MARR. 0.35 0.32 0.28
—=*—RankBoost 03 o o oao‘ = o 0.26
TagProb K K
(b) Single (c) Double (d) Triple
Fig. 8. Ranking performance on the YouTube dataset. Due to space restriction, the legend is shown in the box on the left.
09
0.8
0.7
03
0.2
0.1
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 ‘)U 0.2 04 0.6 08 1
Recall Recall Recall
(a) P-R curve for 6 (b) P-R curve for A (c) P-R curve for ~
Fig. 9. Influence of Hyper-parameters on P-R curves for CelebA dataset.
e . TABLE III
Parameter Sensitivity: We explore the influence of the MAP COMPARISON FOR DNDCMH WiTH ADCMH
hyper-parameters 6, A, and y. Fig. 9, Fig. 10, and Fig. 11 show USING DIFFERENT # OF BITS
the precision-recall results on the three datasets, with different S - _—
. . Task Method e ou”tbe
values of 6, A, and Vv, where the code length is 63 bits and ! 3Thits [63 bits [127 bits | 31 bits | 63 bits [127 bits | 37 bits [63 bits [127 bits
. .. . ADCMH 68.158 | 68.437 | 68.513 63.325 | 63.732 | 63.917 | 66.009 | 65.163 65.13
e = m = 6. We can see that DNDCMH is not sensitive to 0, Single Auribute |- NN TR TT 79125 | 9565 | AT [TASTS [75052 | 2 00T [TT998 [Tres9
. - ADCMH | 64.121 | 64.173 | 64305 | 63.121 | 63.171 | 63.532 | 61480 | 61.932 | 60.801
X, and y with 0.1 <0 <5,0.1 <A <5, and 0.1 < y < 5. Double Atribute |-nerr 7 TS | 36T | 592 T TLIT [7L [72056 | 6838 | 6801 | 67901
. . . - - ADCMH | 34577 | 63093 | 64.63 | 62664 [62680 | 62750 | 6043 [60.005 | 5043
Eﬁectlveness Of NECD for Improvtng ADCMH Retrieval Triple Attribute S RN 72,152 [72913 [73.27T | 70216 | 70.683 | 70855 | 65.778 | 65389 | 64.998

Performance: To show the effectiveness of NECD combined
with the ADCMH network, we conducted experiments using
two different models: a) ADCMH, which indicates the case
where we train the model only using stage 1(a) optimization
without including NECD in the training, specifically this case
considers a cross-modal hashing based on entropy, quanti-
zation and distance-based logistic loss; b) DNDCMH indi-
cates our overall model where we include NECD and use
iterative alternate optimization to correct the generated codes
by ADCMH, qualitative results shown in Fig. 12 indicate that
the ADCMH retrieval performance is improved by integrating
together NECD and ADCMH.

In addition to the qualitative results, we have also com-
pared our DNDCMH with ADCMH using MAP by varying
the hash code length. Table III provides the MAP comparison

for DNDCMH and ADCMH for different hash code lengths
(31, 63, and 127). For hash code length of 31, 63, and 127
we have used e = m = 3, e m = 6, and e m = 11,
respectively. For ADCMH, we have used the same mar-
gin value as DNDCMH. The results in the Table show that
DNDCMH gives much better results than ADCMH, which
implies that additional optimization using NECD improves
retrieval performance for ADCMH. Additionally, the retrieval
performance does not change a lot with increase in the hash
code length. Consequently, even with low storage capacity of
31 bits, high retrieval performance is achieved.

Effect of Number of Attributes: From the experimental
results, we can see that the retrieval or the ranking performance

Authorized licensed use limited to: West Virginia University. Downloaded on April 21,2021 at 23:54:17 UTC from IEEE Xplore. Restrictions apply.

290

IEEE TRANSACTIONS ON BIOMETRICS, BEHAVIOR, AND IDENTITY SCIENCE, VOL. 2, NO. 3, JULY 2020

Precision

—e—p=5

02 04 0.6

Recall

(a) P-R curve for 6

0.8 1

(b) PR

04

0.6
Recall

0.8 1 04 06

Recall

0.8 1

curve for A (c) P-R curve for ~y

In this paper, we proposed a novel iterative two-step deep
cross-modal hashing method that takes facial attributes as
query and returns a list of images based on a Hamming dis-
tance similarity. In this framework, we leveraged a neural
network based decoder to correct the codes generated by the
facial attribute-based deep cross-modal hashing to improve
the retrieval performance. The experimental results show that the
neural network decoder significantly improves the retrieval
performance of the attribute-based deep cross-modal hash-
ing network. Moreover, the results indicate that the proposed
framework outperforms most of the other cross-modal hashing

ERROR-CORRECTING CODE AND DECODING

Error-Correcting Code: The function of the channel encoder

Fig. 10. Influence of Hyper-parameters on P-R curves for LFW dataset.
0.7 0.8 0.8
E
0
0 0.2 04 0.6 0.8 1 0 0.2 04 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Recall Recall Recall
(a) P-R curve for 6 (b) P-R curve for A (c) P-R curve for y
Fig. 11. Influence of Hyper-parameters on P-R curves for YouTube dataset.
Bald - V. CONCLUSION
(ADCMH) L. .
i = v
Bald
(DNDCMH)
v v v
Lipstick y
Black hair |}
(ADCMH) ||
P v v
Lipstick —
Black hair e
(DNDCMH) -
4 A v
Blond hair " -~
Smiling > o
Straight hair
(ADCMH) | BB Ry s
Blond hair E L
Smiling S [. . .
Straight hair | [ERE AN methods for attribute-based face image retrieval.
(DNDCMH) i\ Y
Y v A
Male
Smiling
Mustache
i s APPENDIX A
(ADCMH) W v YA VR
Male
Smiling s |
Mustache y
Black hair i i
(DNDCMH) | YYYY v = Y R

Fig. 12. Qualitative results: retrieved images using DNDCMH and ADCMH
by giving different combinations of facial attributes as a query. Tick and cross
symbols indicate the correct and wrong image retrieval from the testing set,
respectively.

for DNDCMH and also ADCMH decreases with the increase
in the number of facial attributes as query. This is evident from
the quantitative results in Fig. 12 and also quantitative results
in Fig. 6, and Fig. 7. The reason for this decrease is that as we
increase the number of facial attributes in a query, the number
of constraints to map the facial image modality into the same
Hamming space as the attribute modality, also gets inflated,
which leads to lower retrieval performance when compared to
only a small number of facial attribute in the query.

in a digital transmission system is to transform the information
sequence generated by the information source into a discrete
encoded sequence called a codeword. The function of chan-
nel decoder is to transform received sequence into a binary
sequence called the estimated information sequence. Ideally,
we want estimated information sequence to be the same as
transmitted information sequence, although the channel noise
may cause some decoding errors. Error-Correcting codes are
used to correct this channel noise such that the estimated
information sequence is as close as possible to the transmitted
information sequence.

Linear Block Codes: In a given code of length n and 2F
codewords, if the modulo-2 sum of two codewords is also a
codeword, then the given code is called a linear block code.
This implies that an (n, k) linear code C with 2% codewords

Authorized licensed use limited to: West Virginia University. Downloaded on April 21,2021 at 23:54:17 UTC from IEEE Xplore. Restrictions apply.

TAHERKHANI et al.: ERROR-CORRECTED MARGIN-BASED DEEP CROSS-MODAL HASHING FOR FACIAL IMAGE RETRIEVAL 291

forms a k-dimensional subspace of the vector space of all
binary n-tuples over the field GF(2). Based on this implica-
tion, it is possible to find k linearly independent codewords
(80, &1, ---»8—1) in C such that every codeword v in C is a
linear combination of these k codewords

vV =uo8y + u1g; + - + U—185_1, &)

where u; =0or 1 for 0 <i < k.
Let u = (ug, uy, ..., ux—1) represent the message to be
encoded, the corresponding codeword can be given as

VZUGZM()g0+I/I1g1+"'+Mk_]gk_l. (10)

The rows of G span the linear code C. For this reason, G
is called a generator matrix for the linear code C.

Another useful matrix associated with linear block code is
the parity-check matrix, which is generally denoted by H. H
is a (n — k) x n matrix formed by n — k linearly independent
rows, where any vector in the rows of H is orthogonal to the
row space of G and vice-versa. This implies that an n-tuple
v is a codeword in the code C generated by G if and only if
vHT = 0.

Minimum Distance and Error Correcting Capability of
a Block Code: Minimum distance is an important parame-
ter, which determines the error-detecting and error-correcting
capability of a code. Given a block code C, the minimum
distance of the code C, denoted by dmin is defined as the
minimum Hamming distance between any two codewords of
the code C

dmin = min{d(v,z) : v,z € C, v # z}. (11)

The relation between minimum Hamming distance and the
error correcting capability is given by the theorem: If dpyin >
2e 4 1, the standard decoding algorithm for C can correct up
to e errors. If dmin > 2e + 2, it can correct up to e errors and
detect e + 1 errors.

Belief Propagation Decoding: An effective graphical repre-
sentation of a parity check matrix H is a Tanner graph, which
provides complete representation of the code and also helps
to describe the decoding algorithm. Tanner graph is a bipar-
tite graph, where the nodes of the graph are separated into
two different sets and edges are only connecting nodes from
one set to the other set. The two different sets of nodes in a
Tanner graph are called variable nodes (v-nodes) and check
nodes (c-nodes).

Fig. 13 shows the Tanner graph of a code whose parity
check matrix is given as:

01 0 1 1 0 0 1
I 1 1.0 0 1 0 0

H=1o 0 1 0 0 1 1 1 (12)
1 00 1 1 0 1 0

Building a Tanner graph is very straight forward. The check
nodes (c-nodes) represent the number of parity bits (# of rows
in H) and the variable nodes (v-nodes) represent the number
of bits in a codeword (# of columns in H). Check node ¢; is
connected to variable node f; if the element hj;; of parity check
matrix H is a 1.

v-nodes

fo fa T f A A fo f

Fig. 13. Tanner Graph for the parity check matrix shown in (12).

C1 Cs

]

fo

O

T yo (channel sample)
fs A f;

fy

(a) c-node to v-node (b) v-node to c-node

Fig. 14. Tanner sub-graphs showing the transfer of information from c-node
to v-node and vice-versa.

The renowned belief propagation (BP) decoder can be
described clearly using a Tanner graph. Assume a binary code-
word (x1,x2,...,...,X,) is transmitted over an additive white
Gaussian noise (AWGN) channel and the received symbol is
»1,¥2,..-5...,yn). Let y = x + r where r is a noise added
by the channel. The n code bits must satisfy all parity checks
and this will be used to compute the posterior probability
Pr(x;/S;,y) and S; is the event that all parity checks associated
with x; have been satisfied.

The BP algorithm is an iterative algorithm based on Tanner
graph and is based on computation of Pr(x; = 1/y). The steps
in this iterative algorithm are:

1) In first step, each v-node f; processes its input message
received from the channel y; and passes its resulting
output message to neighboring c-node because in first
pass there is no other information to be passed.

2) In the second step, the c-node gets the input mes-
sages passed from the v-nodes and checks whether
the parity check equations are satisfied. And then
passes its resulting output messages to all the con-
nected v-nodes f; using the incoming messages from all
other v-nodes, but excluding the information from f;.
This can be seen in Fig. 14(a). Note that the
information passed to v-node f7 is all the information
available to c-node c¢p from the neighboring v-
nodes, excluding v-node f;. The information passed is
Pr(check equation is satisfied|input messages), i.e., the
probability that there is an even number of 1’s among
the variable nodes except the node f;. Such extrinsic
information is computed for each connected c-node/v-
node pair in this step.

3) In the third step, each v-node processes its input message
and passes its resulting output message to neighboring
c-nodes using channel samples and incoming messages
from all other c-nodes connected to v-node f;, except the

Authorized licensed use limited to: West Virginia University. Downloaded on April 21,2021 at 23:54:17 UTC from IEEE Xplore. Restrictions apply.

292

IEEE TRANSACTIONS ON BIOMETRICS, BEHAVIOR, AND IDENTITY SCIENCE, VOL. 2, NO. 3, JULY 2020

c-node ¢;. This is shown in Fig. 14(b). The information
passed is Pr(x; = b|input messages), where b € 0, 1.
Additionally, at this point the v-nodes also update their
current estimation y; of their variable y; by using the
channel information and messages from the neighbor-
ing c-nodes, without excluding any c-node information.
If the current estimated codeword fulfills now the par-
ity check equations the algorithm terminates. Otherwise
termination is ensured through a maximum number of
iterations.

4) Go to Step 2.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

REFERENCES

Y. Gong, S. Kumar, V. Verma, and S. Lazebnik, “Angular quantization-
based binary codes for fast similarity search,” in Proc. Adv. Neural Inf.
Process. Syst., Dec. 2012, pp. 1196-1204.

Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin, “Iterative quanti-
zation: A procrustean approach to learning binary codes for large-scale
image retrieval,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 12,
pp. 2916-2929, Dec. 2013.

V. E. Liong, J. Lu, G. Wang, P. Moulin, and J. Zhou, “Deep hashing
for compact binary codes learning,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), 2015, pp. 2475-2483.

J. Lu, V. E. Liong, and J. Zhou, “Deep hashing for scalable image
search,” IEEE Trans. Image Process., vol. 26, no. 5, pp. 2352-2367,
May 2017.

Z. Chen, C.-X. Li, X. Luo, L. Nie, W. Zhang, and X.-S. Xu, “SCRATCH:
A scalable discrete matrix factorization hashing framework for cross-
modal retrieval,” IEEE Trans. Circuits Syst. Video Technol., early access.
X. Fu, Y. Zhao, Y. Wei, Y. Zhao, and S. Wei, “Rich features embedding
for cross-modal retrieval: A simple baseline,” IEEE Trans. Multimedia,
early access.

Q.-Y. Jiang and W.-J. Li, “Discrete latent factor model for cross-modal
hashing,” IEEE Trans. Image Process., vol. 28, no. 7, pp. 3490-3501,
Jul. 2019.

L. Jin, K. Li, Z. Li, FE Xiao, G.-J. Qi, and J. Tang, “Deep semantic-
preserving ordinal hashing for cross-modal similarity search,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 30, no. 5, pp. 1429-1440,
May 2019.

J. Guo and W. Zhu, “Collective affinity learning for partial cross-modal
hashing,” IEEE Trans. Image Process., early access.

V. E. Liong, J. Lu, L.-Y. Duan, and Y.-P. Tan, “Deep variational and
structural hashing,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 42,
no. 3, pp. 580-595, Mar. 2020.

Z. Lin, G. Ding, M. Hu, and J. Wang, “Semantics-preserving hashing for
cross-view retrieval,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2015, pp. 3864-3872.

Z. Cao, M. Long, J. Wang, and Q. Yang, “Transitive hashing network
for heterogeneous multimedia retrieval,” in Proc. AAAI, Feb. 2017,
pp. 81-87.

Q.-Y. Jiang and W.-J. Li,
IEEE Conf. Comput. Vis. Pattern Recognit.
pp. 3232-3240.

E. Yang, C. Deng, W. Liu, X. Liu, D. Tao, and X. Gao, “Pairwise
relationship guided deep hashing for cross-modal retrieval,” in Proc.
AAAI Conf. Artif. Intell., Feb. 2017, pp. 1618-1625.

Y. Duan, Z. Wang, J. Lu, X. Lin, and J. Zhou, “GraphBit: Bitwise
interaction mining via deep reinforcement learning,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), 2018, pp. 8270-8279.

X. Liu, Z. Hu, H. Ling, and Y. Cheung, “MTFH: A matrix tri-
factorization hashing framework for efficient cross-modal retrieval,”
IEEE Trans. Pattern Anal. Mach. Intell., early access.

D. Wang, X. Gao, X. Wang, and L. He, “Label consistent matrix fac-
torization hashing for large-scale cross-modal similarity search,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 41, no. 10, pp. 24662479,
Oct. 2019.

X. Ma, T. Zhang, and C. Xu, “Multi-level correlation adversarial hashing
for cross-modal retrieval,” IEEE Trans. Multimedia, early access.

“Deep cross-modal hashing,” in Proc.
(CVPR), Jun. 2017,

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]
[28]

[29]

[30]

(31]

[32]

[33]

[34]

[35]

(36]

[37]

[38]

(39]

[40]

[41]

[42]

[43]

D. Xie, C. Deng, C. Li, X. Liu, and D. Tao, “Multi-task consistency-
preserving adversarial hashing for cross-modal retrieval,” IEEE Trans.
Image Process., vol. 29, pp. 3626-3637, Jan. 2020.

Z.-D. Chen, W.-J. Yu, C.-X. Li, L. Nie, and X.-S. Xu, “Dual deep neural
networks cross-modal hashing,” in Proc. 32nd AAAI Conf. Artif. Intell.,
2018, pp. 274-281.

V. E. Liong, J. Lu, Y.-P. Tan, and J. Zhou, “Cross-modal deep varia-
tional hashing,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), 2017,
pp. 4097-4105.

C. Deng, Z. Chen, X. Liu, X. Gao, and D. Tao, “Triplet-based deep
hashing network for cross-modal retrieval,” IEEE Trans. Image Process.,
vol. 27, no. 8, pp. 3893-3903, Aug. 2018.

Y. Cao, M. Long, J. Wang, Q. Yang, and P. S. Yu, “Deep visual-semantic
hashing for cross-modal retrieval,” in Proc. 22nd ACM SIGKDD Int.
Conf. Knowl. Disc. Data Min., 2016, pp. 1445-1454.

Y. Cao, M. Long, J. Wang, and S. Liu, “Collective deep quantization for
efficient cross-modal retrieval,” in Proc. AAAI Conf. Artif. Intell., vol. 1,
2017, p. 5.

K. Wang, Q. Yin, W. Wang, S. Wu, and L. Wang, “A compre-
hensive survey on cross-modal retrieval,” 2016. [Online]. Available:
arXiv:1607.06215.

E. Nachmani, Y. Be’ery, and D. Burshtein, “Learning to decode linear
codes using deep learning,” in Proc. 54th Annu. Allerton Conf. Commun.
Control Comput. (Allerton), Sep. 2016, pp. 341-346.

E. Nachmani, E. Marciano, D. Burshtein, and Y. Be’ery, “RNN decoding
of linear block codes,” 2017. [Online]. Available: arXiv:1702.07560.
L. Lugosch and W. J. Gross, “Neural offset min-sum decoding,” Proc.
IEEE Int. Symp. Inf. Theory, Jun. 2017, pp. 1361-1365.

N. Kumar, P. Belhumeur, and S. Nayar, “FaceTracer: A search engine
for large collections of images with faces,” in Proc. Eur. Conf. Comput.
Vis. (ECCV), Oct. 2008, pp. 340-353.

B. Siddiquie, R. S. Feris, and L. S. Davis, “Image ranking and retrieval
based on multi-attribute queries,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2011, pp. 801-808.

D. A. Vaquero, R. S. Feris, D. Tran, L. M. Brown, A. Hampapur, and
M. Turk, “Attribute-based people search in surveillance environments,”
in Proc. IEEE Winter Conf. Appl. Comput. Vis. (WACV), Dec. 2009,
pp. 1-8.

G. Ding, Y. Guo, and J. Zhou, “Collective matrix factorization hash-
ing for multimodal data,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2014, pp. 2083-2090.

H. Liu, R. Ji, Y. Wu, F. Huang, and B. Zhang, “Cross-modality binary
code learning via fusion similarity hashing,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 6345-6353.

K. Lin, J. Lu, C.-S. Chen, J. Zhou, and M.-T. Sun, “Unsupervised
deep learning of compact binary descriptors,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 41, no. 6, pp. 1501-1514, Jun. 2019.

S. Su, Z. Zhong, and C. Zhang, “Deep joint-semantics reconstructing
hashing for large-scale unsupervised cross-modal retrieval,” in Proc.
IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2019, pp. 3027-3035.

J. Zhang and Y. Peng, “Multi-pathway generative adversarial hashing for
unsupervised cross-modal retrieval,” IEEE Trans. Multimedia, vol. 22,
no. 1, pp. 174-187, Jan. 2020.

D. Li, C. Du, and H. He, “Semi-supervised cross-modal image genera-
tion with generative adversarial networks,” Pattern Recognit., vol. 100,
Apr. 2020, Art. no. 107085.

M. M. Bronstein, A. M. Bronstein, F. Michel, and N. Paragios, “Data
fusion through cross-modality metric learning using similarity-sensitive
hashing,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2010, pp. 3594-3601.

D. Zhang and W.-J. Li, “Large-scale supervised multimodal hashing
with semantic correlation maximization,” in Proc. 28th AAAI Conf. Artif.
Intell., Jul. 2014, pp. 2177-2183.

Y. Zhen and D.-Y. Yeung, “Co-regularized hashing for multimodal data,”
in Proc. Adv. Neural Inf. Process. Syst., Dec. 2012, pp. 1376-1384.

R. Xu, C. Li, J. Yan, C. Deng, and X. Liu, “Graph convolutional network
hashing for cross-modal retrieval,” in Proc. 28th Int. Joint Conf. Artif.
Intell. (IJCAI), 2019, pp. 10-16.

C. Li, C. Deng, N. Li, W. Liu, X. Gao, and D. Tao, “Self-
supervised adversarial hashing networks for cross-modal retrieval,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2018,
pp. 4242-4251.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770-778.

Authorized licensed use limited to: West Virginia University. Downloaded on April 21,2021 at 23:54:17 UTC from IEEE Xplore. Restrictions apply.

TAHERKHANI et al.: ERROR-CORRECTED MARGIN-BASED DEEP CROSS-MODAL HASHING FOR FACIAL IMAGE RETRIEVAL 293

[44] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classifica-
tion with deep convolutional neural networks,” in Proc. Adv. Neural Inf.
Process. Syst., Dec. 2012, pp. 1097-1105.

K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” 2014. [Online]. Available:
arXiv:1409.1556.

C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015, pp. 1-9.

D. Erhan, C. Szegedy, A. Toshev, and D. Anguelov, “Scalable object
detection using deep neural networks,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2014, pp. 2155-2162.

S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-
time object detection with region proposal networks,” in Proc. Adv.
Neural Inf. Process. Syst., Dec. 2015, pp. 91-99.

G. Hinton et al., “Deep neural networks for acoustic modeling in speech
recognition: The shared views of four research groups,” IEEE Signal
Process. Mag., vol. 29, no. 6, pp. 82-97, Nov. 2012.

A. Graves, A. Mohamed, and G. Hinton, “Speech recognition with deep
recurrent neural networks,” in Proc. IEEE Int. Conf. Acoust. Speech
Signal Process., May 2013, pp. 6645-6649.

T. Gruber, S. Cammerer, J. Hoydis, and S. ten Brink, “On deep
learning-based channel decoding,” Jan. 2017. [Online]. Available:
arxiv.abs/1701.07738.

T. O’Shea and J. Hoydis, “An introduction to deep learning for the
physical layer,” IEEE Trans. Cogn. Commun. Netw., vol. 3, no. 4,
pp. 563-575, Dec. 2017.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), 2009, pp. 248-255.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014. [Online]. Available: arXiv:1412.6980.

G. B. Huang, M. Mattar, T. Berg, and E. Learned-Miller, “Labeled faces
in the wild: A database for studying face recognition in unconstrained
environments,” in Proc. Workshop Faces Real Life Images Detection
Alignment Recognition, 2008, pp. 1-11.

[56] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes
in the wild,” in Proc. Int. Conf. Comput. Vis. (ICCV), Dec. 2015,
pp. 3730-3738.

L. Wolf, T. Hassner, and 1. Maoz, “Face recognition in unconstrained
videos with matched background similarity,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), 2011, pp. 529-534.

E. M. Rudd, M. Giinther, and T. E. Boult, “MOON: A mixed objective
optimization network for the recognition of facial attributes,” in Proc.
Eur. Conf. Comput. Vis. (ECCV), 2016, pp. 19-35.

Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer, “An efficient boost-
ing algorithm for combining preferences,” J. Mach. Learn. Res., vol. 4,
pp- 933-969, Nov. 2003.

M. Guillaumin, T. Mensink, J. Verbeek, and C. Schmid, “TagProp:
Discriminative metric learning in nearest neighbor models for image
auto-annotation,” in Proc. IEEE 12th Int. Conf. Comput. Vis. (ICCV),
Sep. 2009, pp. 309-316.

[45]

[46]

(471

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[57]

[58]

(591

[60]

Fariborz Taherkhani (Student Member, IEEE)
received the B.Sc. degree in computer engineering
from the National University of Iran, Tehran, Iran,
and the M.Sc. degree in computer engineering from
the Sharif University of Technology, Tehran. He is
currently pursuing the Ph.D. degree with the Lane
Department of Computer Science and Electrical
Engineering, West Virginia University, Morgantown,
WYV, USA. His research interests include machine
learning, computer vision, biometrics, and image
retrieval.

Veeru Talreja (Student Member, IEEE) received the
B.Eng. degree from Osmania University, Hyderabad,
India, and the M.S.E.E. degree from West Virginia
University, Morgantown, WV, USA, where he is
currently pursuing the Ph.D. degree. From 2010 to
2013, he worked as a Geospatial Software Developer
with West Virginia University Research Corporation.
His research interests include applied machine learn-
ing, deep learning, coding theory, multimodal bio-
metric recognition and security, and image retrieval.

Matthew C. Valenti (Fellow, IEEE) received the

M.S.E.E. degree from the Johns Hopkins University,

Baltimore, MD, USA, and the B.S.E.E. and Ph.D.

~ degrees from Virginia Tech, Blacksburg, VA, USA.

' ’ He has been a Faculty Member with West Virginia

- J University since 1999, where he is currently a

" Professor and the Director of the Center for

4 Identification Technology Research. His research

interests are in wireless communications, cloud com-

puting, and biometric identification. He was a recip-

ient of the 2019 MILCOM Award for Sustained

Technical Achievement. He is active in the organization and oversight of

several ComSoc sponsored IEEE conferences, including MILCOM, ICC,

and Globecom. He was the Chair of the ComSoc Communication Theory

Technical committee from 2015 to 2016 and was a TPC Chair for

MILCOM’17. He was an Electronics Engineer with the U.S. Naval Research

Laboratory, Washington, DC, USA. He is registered as a Professional Engineer

of the State of West Virginia. He is the Chair of the Globecom/ICC Technical

Content Committee from 2018 to 2019 and is a TPC Co-Chair for ICC’21,
Montreal.

Nasser M. Nasrabadi (Fellow, IEEE) received the
B.Sc. (Eng.) and Ph.D. degrees in electrical engi-
neering from the Imperial College of Science and
Technology, University of London, London, UK.,
in 1980 and 1984, respectively. In 1984, he was
with IBM, UK., as a Senior Programmer. From
1985 to 1986, he was with the Philips Research
Laboratory, New York, NY, USA, as a Member
of the Technical Staff. From 1986 to 1991, he
was an Assistant Professor with the Department
of Electrical Engineering, Worcester Polytechnic
Institute, Worcester, MA, USA. From 1991 to 1996, he was an Associate
Professor with the Department of Electrical and Computer Engineering,
State University of New York at Buffalo, Buffalo, NY, USA. From 1996
to 2015, he was a Senior Research Scientist with the U.S. Army Research
Laboratory. Since 2015, he has been a Professor with the Lane Department of
Computer Science and Electrical Engineering, West Virginia University. His
current research interests are in image processing, computer vision, biomet-
rics, statistical machine learning theory, sparsity, robotics, and neural networks
applications to image processing. He has served as an Associate Editor for the
IEEE TRANSACTIONS ON IMAGE PROCESSING, the IEEE TRANSACTIONS
ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, and the IEEE
TRANSACTIONS ON NEURAL NETWORKS. He is a fellow of ARL and SPIE.

Authorized licensed use limited to: West Virginia University. Downloaded on April 21,2021 at 23:54:17 UTC from IEEE Xplore. Restrictions apply.

