
IEEE TRANSACTIONS ON BIOMETRICS, BEHAVIOR, AND IDENTITY SCIENCE, VOL. 2, NO. 3, JULY 2020 279

Error-Corrected Margin-Based Deep Cross-Modal

Hashing for Facial Image Retrieval
Fariborz Taherkhani , Student Member, IEEE, Veeru Talreja , Student Member, IEEE,

Matthew C. Valenti , Fellow, IEEE, and Nasser M. Nasrabadi , Fellow, IEEE

Abstract—Cross-modal hashing facilitates mapping of hetero-
geneous multimedia data into a common Hamming space, which
can be utilized for fast and flexible retrieval across differ-
ent modalities. In this paper, we propose a novel cross-modal
hashing architecture-deep neural decoder cross-modal hashing
(DNDCMH), which uses a binary vector specifying the presence
of certain facial attributes as an input query to retrieve relevant
face images from a database. The DNDCMH network consists of
two separate components: an attribute-based deep cross-modal
hashing (ADCMH) module, which uses a margin (m)-based loss
function to efficiently learn compact binary codes to preserve sim-
ilarity between modalities in the Hamming space, and a neural
error correcting decoder (NECD), which is an error correcting
decoder implemented with a neural network. The goal of NECD
network in DNDCMH is to error correct the hash codes gener-
ated by ADCMH to improve the retrieval efficiency. The NECD
network is trained such that it has an error correcting capability
greater than or equal to the margin (m) of the margin-based
loss function. This results in NECD can correct the corrupted
hash codes generated by ADCMH up to the Hamming distance
of m. We have evaluated and compared DNDCMH with state-
of-the-art cross-modal hashing methods on standard datasets to
demonstrate the superiority of our method.

Index Terms—Cross-modal hashing, attributes, facial images,
error-correcting code, decoder, deep learning.

I. INTRODUCTION

D
UE TO the rapid development of the Internet and

increasing usage of social media over the last decade,

there has been a tremendous volume of multimedia data,

which is generated from different heterogeneous sources and

includes modalities like images, videos, and text. The approx-

imate nearest neighbor (ANN) search has attracted significant

attention from machine learning and computer vision com-

munities as it guarantees retrieval quality and computing

efficiency for content based image retrieval (CBIR) in large-

scale multimedia datasets. As a fast and advantageous solution,

hashing has been employed in ANN search for CBIR due to
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Fig. 1. Cross modal hashing for facial image retrieval: a bald man wearing
Sunglass.

its fast query speed and low storage cost [1], [2], [3], [4], [5],

[6], [7], [8], [9], [10]. The goal of hashing is to map high-

dimensional visual data to compact binary codes in Hamming

space, where the semantic similarity in the original space is

approximately preserved in Hamming space. The key princi-

ple in hashing functions is to maintain the semantic similarity

by mapping images of similar content to similar binary codes.

Additionally, corresponding data samples from heteroge-

neous modalities may establish semantic correlations, which

leads to cross-modal hashing (CMH). CMH returns rele-

vant information of one modality in response to a query of

another modality (e.g., retrieval of texts/images by using a

query image/text), where similar hash codes in a shared latent

Hamming space are generated for each individual modality. In

this paper, we utilize the cross-modal hashing framework for

a facial retrieval biometrics application in which the images

are retrieved based solely on semantic attributes. For exam-

ple, a user can give a query such as “A bald man wearing

sunglasses” to retrieve relevant face images from a large-scale

gallery. The idea of cross-modal hashing for image retrieval

applications is shown in Fig. 1. We can note that the gallery’s

relevant points G1, G2 and G3 are closer to the query Q1 in

the latent Hamming space than the points G4 and G5.

There has been a surge in the development of CMH tech-

niques used for ANN search for retrieval on multi-modal

datasets. However, capturing the semantic correlation between

the heterogeneous data from divergent modalities [11], and

bridging the semantic gap between low-level features and

high-level semantics for an effective CMH is a challenge.

Deep learning techniques for CMH (or “deep cross-modal

hashing (DCMH)”) [12], [13], [14], [15], [16], [17], [18], [19]
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integrate feature learning and hash coding into an end-to-end

trainable framework. DCMH frameworks minimize the quan-

tization error of hashing from continuous representation to

binary codes and provide the benefit of jointly learning the

semantic similarity preserving features.

The main goal in DCMH is to learn a set of hash codes

such that the content similarities between different modalities

is preserved in Hamming space. As such, a likelihood func-

tion [13], [20], [21] or margin-based loss function such as the

triplet loss function [22], [23] needs to be incorporated into

the DCMH framework to improve retrieval performance. In

triplet-based DCMH [22], the inter-modal triplet embedding

loss encourages the heterogeneous correlation across differ-

ent modalities, and the intra-modal triplet loss encodes the

discriminative power of the hash codes. Moreover, a reg-

ularization loss is used to apply adjacency consistency to

ensure that the hash codes can keep the original similarities

in Hamming space. However, in margin-based loss functions,

some of the instances of different modalities of the same sub-

ject may not be close enough in Hamming space to guarantee

all the correct retrievals. Therefore, it is important to bring the

different modalities of the same subject closer to each other

in Hamming space to improve the retrieval efficiency.

In this work, we observe that in addition to the regular

DCMH techniques [13], [24], [25], which exploit entropy

maximization and quantization losses in the objective func-

tion of the DCMH, an error-correcting code (ECC) decoder

can be used as an additional component to compensate for the

heterogeneity gap and reduce the Hamming distance between

the different modalities of the same subject in order to improve

the cross-modal retrieval efficiency. We presume that the hash

code generated by DCMH is a binary vector that is within a

certain distance from a codeword of an ECC. When the hash

code generated by DCMH is passed through an ECC decoder,

the closest codeword to this hash code is found, which can

be used as a final hash code for the retrieval process. In this

process, the attribute hash code and image hash code of the

same subject are forced to map to the same codeword, thereby

reducing the distance of the corresponding hash codes. This

brings more relevant facial images from the gallery closer

to the attribute query, which leads to an improved retrieval

performance.

Recent work has shown that the same kinds of neural

network architectures used for classification can also be used

to decode ECC codes [26], [27], [28]. Motivated by this, we

have used a neural error-correction decoder (NECD) [26] as an

ECC decoder to improve the cross-modal retrieval efficiency.

The NECD is a non-fully connected neural network architec-

ture based on the belief propagation (BP) algorithm, which is a

notable decoding technique applied for error-correcting codes.

We have equipped our “attribute-based deep cross-modal hash-

ing (ADCMH)” with the NECD to formulate our novel deep

neural decoder cross-modal hashing (DNDCMH) framework

for cross-modal retrieval (face image retrieval based on seman-

tic attributes), which, as we will demonstrate, performs better

than other state-of-the-art deep cross-modal hashing methods

for facial image retrieval.

Specifically, the DNDCMH contains a custom-designed

ADCMH network integrated with the NECD. The goal of

ADCMH network is to learn pairwise optimized intermediate

hash codes for both modalities, while the goal of NECD is

to refine the intermediate hash codes generated by ADCMH

to improve the cross-modal retrieval efficiency. The entire

DNDCMH network is trained end-to-end by implementing an

alternative minimization algorithm in two stages. Stage 1 is

split into parts 1(a) and 1(b). In Stage 1(a), ADCMH is trained

by using a novel cross-modal loss function that uses a margin-

based distance logistic loss (DLL). Stage 1(a) of the algorithm

generates intermediate cross-modal hash codes. In stage 1(b),

a NECD network is trained by relating the error correcting

capability e of the ECC used to create the NECD network

with margin m, which is employed in the DLL for training

the ADCMH parameters in stage 1 (a). In stage 2 of the

alternative minimization algorithm, intermediate hash codes

generated by the ADCMH network (i.e., from stage 1(a)) are

passed through the trained NECD network (i.e., from stage

1(b)) to find the closest correct codeword to the intermediate

hash codes. The cross-entropy loss between the correct code-

word and the intermediate codes is then back-propagated only

to the ADCMH network to update its parameters. It should be

noted that during the testing, only the ADCMH component of

the DNDCMH is used for image retrieval and not the NECD

component.

Specifically, We train neural error correcting decoder

(NECD), which is a neural implementation of ECC, such

that it has an error correcting capability greater than or equal

to the margin in the DCMH loss function and then use it

to correct the intermediate hash codes generated by DCMH

up to the Hamming distance of the margin. This allows us

to improve the retrieval efficiency by correcting the hashing

codes in the following ways: 1) if the intermediate image and

attribute hash codes obtained at the output of the ADCMH

belong to the same subject, the Hamming distance between

those intermediate hash codes will be less than the margin,

which means that the distance between them is within the

error correcting capability of the NECD. In this case, NECD

will force and push those intermediate hash codes to decode

to the same codeword. This helps to improve the retrieval effi-

ciency as attribute and image belonging to the same subject

will be pushed towards each other leading to more true posi-

tives. 2) Similarly, if the intermediate image and attribute hash

codes obtained at the output of ADCMH belong to different

subjects, the Hamming distance between the hash codes will

be greater than the margin, which means that the distance

between them will fall outside the error correcting capability

of the NECD and they will be decoded to different codewords,

which implies attribute and image belonging to different sub-

ject will be pushed away from each other leading to less false

positives.

To summarize, the main contributions of this paper include:

1) Attribute guided deep cross-modal hashing (ADCMH):

We utilize deep cross-modal hashing based on a margin-based

DLL for face image retrieval in response to a facial attribute

query.

Authorized licensed use limited to: West Virginia University. Downloaded on April 21,2021 at 23:54:17 UTC from IEEE Xplore.  Restrictions apply. 



TAHERKHANI et al.: ERROR-CORRECTED MARGIN-BASED DEEP CROSS-MODAL HASHING FOR FACIAL IMAGE RETRIEVAL 281

2) Correcting cross-modal hashing codes using a neural

error-correcting decoder (NECD): We exploit the error cor-

recting capability of an ECC and relate it to the margin

of DLL to integrate the NECD network into the ADCMH

network to learn error-corrected hash codes using an alterna-

tive minimization optimization algorithm.

3) Scalable cross-modal hash: The proposed DNDCMH

architecture performs facial image retrieval using point-wise

data without requiring pairs or triplets of training inputs, which

makes DNDCMH scalable to large scale datasets.

II. RELATED WORK

A. Retrieving Facial Images for an Attribute Query

Searching for facial images in response to a facial attribute

query has been investigated in the past [29], [30], [31].

FaceTracer, an image search engine that allows users to

retrieve face images based on queries involving multiple visual

attributes was built in [29] using a combination of support

vector machines and Adaboost. Owing to the challenges of

face recognition in surveillance scenarios, Vaquero et al. [31]

proposed to search for people in surveillance systems based

on a parsing of human parts and their attributes, including

facial hair, eyeglasses, clothing color, etc. However, in [29],

and [31], the correlation between attributes is not considered.

To overcome this problem, Siddiquie et al. [30] proposed a

ranking and image retrieval system for faces based on multi-

attribute queries, which explicitly modeled the correlations that

are present between the attributes.

B. Cross-Modal Hashing

Cross-modal hashing (CMH) can generally be divided into

two categories: unsupervised hashing and supervised hashing.

Unsupervised hashing [32], [33], [34], [35], [36], [37] relates

to learning hash codes from unlabeled data, while attempt-

ing to preserve semantic similarity between the data samples

in the original space. In collective matrix factorization hash-

ing (CMFH) [32], collective matrix factorization is used to

learn unified hash codes in a latent Hamming space shared by

both modalities. In fusion similarity hashing (FSH) [33], an

undirected asymmetric graph is leveraged to model the fusion

similarity among different modalities.

On the other hand, supervised hashing methods [38], [39],

[40], [41], [42] take full advantage of the label information

to mitigate the semantic gap and improve the hashing quality,

therefore attaining higher search accuracy than the unsuper-

vised methods. In semantic correlation maximization hashing

(SCMH) [39], semantic labels are merged into the hash learn-

ing procedure for large-scale data modeling. In co-regularized

hashing (CRH) [40], each bit of the hash codes are learned by

solving the difference of convex functions programs, while

the learning for multiple bits is performed by a boosting

procedure.

In recent years, deep learning methods have

shown impressive learning ability in image recogni-

tion [43], [44], [45], [46], object detection [47], [48], speech

recognition [49], [50] and many other computer vision tasks.

The application of deep learning to hashing methods improves

performance. There also exist methods (e.g., [13], [14]) which

adopt deep learning for cross-modal hashing (CMH) and give

improved performance over other CMH techniques that use

handcrafted features [39], [40]. Jiang and Li were the first to

propose an end-to-end deep cross-modal hashing framework

to learn the binary hash codes in DCMH [13]. However, they

just utilize the inter-modal relationship ignoring intra-modal

information. In contrast, Yang et al. exploit this intra-modal

information by using pairwise labels to propose Pairwise

Relationship Guided Deep Hashing (PRDH) [14].

C. Neural Error-Correcting Decoder

In addition to DCMH, the other deep learning network that

our system uses is neural error-correcting decoder (NECD).

In [26], the BP algorithm is formulated as a neural network

and it is shown that a weighted BP decoder implemented by

deep learning methods can improve the BP decoding of codes

by 0.9 dB in the high signal to noise ratio (SNR) region.

Later, Lugosch and Gross [28] proposed a neural network

architecture with reduced complexity by leveraging the off-

set min-sum algorithm and achieved similar results to [26].

Gruber et al. [51] used a fully connected architecture to pro-

pose a neural network decoder that gives performance close

to a maximum likelihood (ML) decoder for very small block

codes. Additionally, in [52], a communication system has been

formulated as an autoencoder for a small block code.

III. PROPOSED METHOD

In this section, we first formulate the problem; then, we

provide the details of our proposed method including the cross-

modal hashing framework, training of our proposed system,

and how it can be leveraged for out-of-sample data.

A. Problem Definition

We assume that there are two modalities for each sample,

i.e., facial attribute and image. Define X = {xi}
n
i=1 to represent

the image modality, in which xi is the raw pixels of image i in

a training set X of size n. In addition, we use Y = {yi}
n
i=1 to

represent the attribute modality, in which yi is the annotated

facial attributes vector related to image xi. S is a cross-modal

similarity matrix in which Sij = 1 if image xi contains a facial

attribute yj, and Sij = 0 otherwise.

Based on the given training information (i.e., X, Y and S),

the goal of our proposed method is to learn modality-specific

hash functions: h(x)(x) ∈ {−1,+1}c for image modality, and

h(y)(y) ∈ {−1,+1}c for attribute modality to map the image x

and attribute feature vector y into a compact c-bit hash code.

Hash codes need to be learned such that the cross-modal sim-

ilarity in S is preserved in Hamming space. Specifically, if

Sij = 1, the Hamming distance between the binary codes

c
(xi)
i = h(x)(xi) and c

(yj)

j = h(y)(yj) should be small and if

Sij = 0, the corresponding Hamming distance should be large.

B. Deep Neural Decoder Cross-Modal Hashing

A schematic of our proposed DNDCMH is shown in

Fig. 2. The DNDCMH architecture consists of two important
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Fig. 2. Schematic illustration of our DNDCMH. It consists of two networks, the ADCMH and NECD. The ADCMH network consists of the Image CNN
and the Attribute-MLP. The training of the DNDCMH is performed in 2 stages. The first stage is divided into: Stage 1(a) and Stage 1(b). In Stage 1(a), the
Attribute-MLP and Image CNN of the ADCMH network are trained together with the quantization loss, entropy maximization and distance-based logistic
loss with margin m. In Stage 1(b), NECD with an error-correcting capability of e ≥ m is trained using the cross-entropy loss. In Stage 2, the trained ADCMH
from Stage 1(a) and trained NECD from Stage 1(b) are used (this is indicated by the red arrows). In Stage 2, the same training data as used in Stage 1(a)
is passed through the trained ADCMH and the real-valued output of the ADCMH is then passed through the trained NECD to provide the final hash codes.
Next, these final hash codes are used as target outputs (final hash codes and target outputs are the same as indicated by the red arrows) to optimize the trained
ADCMH network. The optimization of the ADCMH network in this Stage is performed by using cross-entropy loss. The blue arrows indicates the inputs and
the connections between the network and the losses. This is only the training process, the testing process is shown in Fig. 5.

components: 1) An “attribute-based deep cross-modal hash-

ing” (ADCMH) architecture, which contains an image con-

volutional neural network (Image-CNN), and an attribute

multi-layer perceptron (Attribute-MLP). 2) A neural error-

correcting decoder (NECD). As shown in Fig. 2, the entire

DNDCMH network is trained end to end by implementing an

alternative minimization algorithm in two stages.

Stage 1 is split into parts 1(a) and 1(b) such that stage

1(a) of this algorithm, learns ADCMH parameters by using

a novel cross-modal loss function that uses margin-based dis-

tance logistic loss (DLL) to learn the ADCMH parameters.

Stage 1(a) of the algorithm generates intermediate cross-modal

hash codes. Stage 1(b) learns a NECD by relating the error cor-

recting capability e of the ECC used to create the NECD with

the margin m used in the distance logistic loss for training the

ADCMH parameters in stage 1(a). Specifically, in stage 1(b),

in order to force the attribute and image intermediate hash

codes of the same subject to be pushed closer and decoded to

the same codeword, we choose the ECC associated with the

NECD in such a way that the error correcting capability e is

greather than or equal to m, where m is the margin parame-

ter used in the distance logistic loss for training the ADCMH

parameters in stage 1(a).

In stage 2 of alternative minimization algorithm, we pass

the intermediate hash codes (real-valued vector) generated by

ADCMH (from stage 1(a)) to the trained NECD network (from

stage 1(b)) to find the closest correct codeword (binary) to

the intermediate hash codes. The cross-entropy loss between

the correct codeword and the intermediate codes is back-

propagated only to the ADCMH network to update its param-

eters. Stage 1(a) and stage 2 are done iteratively until there

is no longer a significant improvement in retrieval efficiency

with respect to the training.

1) Stage 1(a): Learning Intermediate Hash Codes:

Training of ADCMH network to learn the intermediate hash

codes: In stage 1(a), the ADCMH network, which is a cou-

pled deep neural network (DNN), is trained to learn the

intermediate hash codes. The ADCMH has three main objec-

tives: 1) to learn a coupled DNN using distance-based logistic

loss to preserve the cross-modal similarity between different

modalities; 2) to secure a high retrieval efficiency, for each

modality, minimize the quantization error due to the hashing

of real-valued continuous output activations of the network to

binary codes; 3) to maximize the entropy corresponding to

each bit to obtain the maximum information provided by the

hash codes.
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We design the objective function for ADCMH to gener-

ate efficient hash codes. Our objective function for ADCMH

comprises of three parts: (1) margin-based distance logistic

loss; (2) quantization loss; and (3) entropy maximization loss.

The ADCMH is composed of two networks: An Image-CNN,

which is used to extract features for image modality and an

Attribute-MLP, which is used to extract features for facial

attribute modality. A tanh activation is used for the last layer

of both networks so that the network outputs are in the range

of [−1, 1]. Let p(wx, xi) ∈ R
d denote the learned CNN fea-

tures for sample xi corresponding to the image modality, and

q(wy, yj) denote the learned MLP features for sample yj cor-

responding to the attribute modality. wx and wy are the CNN

network weights and the MLP network weights, respectively.

The total objective function for ADCMH is defined as follows:

J =

n
∑

i=1

n
∑

j=1

�c

(

p
(

P∗i, Q∗j

)

, Sij

)

−
θ

c

⎛

⎝

n
∑

i=1

‖P∗i‖
2 +

n
∑

j=1

‖Q∗j‖
2

⎞

⎠

+ λ

⎛

⎝

c
∑

e=1

∥

∥

∥

(

PT
)

∗e

∥
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+

c
∑

f =1

∥

∥

∥

∥

(

QT
)

∗f

∥

∥

∥

∥

2
⎞

⎠, (1)

where P ∈ R
c×n represents the image feature matrix con-

structed by placing the CNN features of the training samples

column-wise and P∗i = p(wx, xi) is the CNN feature corre-

sponding to sample xi. (PT)∗e is a column vector, representing

the e-th bit of all the training samples. Likewise, Q ∈ R
c×n

represents a facial attribute feature matrix and Q∗j = q(wy, yj)

is the MLP feature for the attribute modality yj; (QT)∗f is a

column vector, which represents the f -th bit of all the training

samples. The objective function in (1) needs to be minimized

with respect to parameters wx, wy.

The first term in the objective function is the margin-based

DLL, which tries to push modalities referring to the same

sample closer to each other, while pushing the modalities

referring to different samples away from each other. The term

p(P∗i, Q∗j) =
1+exp(−m)

1+exp(‖P∗i−Q∗j‖−m)
represents the distance-based

logistic probability (DBLP) and defines the probability of the

match between the image modality feature vector P∗i and

attribute modality feature vector Q∗j, given their squared dis-

tance. The margin m determines the extent to which matched

or non-matched samples are attracted or repelled from each

other, respectively. The distance-based logistic loss is then

derived from the DBLP by using the cross-entropy loss sim-

ilar to the classification case: �c(r, s) = −s log(r) + (s −

1) log(1 − r).

Fig. 3 shows an illustration for the margin-based distance

logistic-loss for our application. The dotted circle indicates

the margin m to the boundary in terms of Hamming distance.

The anchor (black solid circle) indicates a fixed instance and

could either be an image hash code or an attribute hash code.

The green solid circles indicate the matched instances (i.e.,

image or attribute hash codes belonging to the same sub-

ject as the anchor) and the magenta solid circles indicate

Fig. 3. Diagram for the first stage showing the importance of margin-based
distance logistic loss.

non-matched instances (i.e., image or attribute hash codes

belonging to different subject than the anchor). The function

of margin-based DLL is two-fold. First, it pushes the matched

instances (green circles) away from the margin in the inward

direction, i.e., the Hamming distance between the image and

attribute hash codes of the same subject should be less than the

margin m. Second, the margin-based DLL also pushes the non-

matched instances (magenta circles) away from the margin in

the outward direction, i.e., the Hamming distance between the

image and attribute hash codes belonging to different subjects

should be larger than the margin m. It has to be noted that

after training the ADCMH network, the image hash codes and

the attribute hash codes belonging to the same subject have a

Hamming distance less than margin m. This margin is a very

important parameter in this framework and it will also affect

the training of NECD as is detailed in the description of stage

1(b) in Section III-B2.

The second term in the objective function is the quantization

loss that incentivizes the activations of the units in the hashing

layer to be closer to −1 or 1. The values of the elements of P∗i

are in the range of [−1, 1] because they have been activated

by the tanh activation. To make the codes closer to either −1

or 1, we add a quantization constraint of maximizing the sum

of squared errors between the hashing layer activations and 0,

which is given by
∑n

i=1 ‖P∗i − 0‖2, where n is the number

of training images in a mini-batch and 0 is the c-dimensional

vector with all elements equal to 0. However, this is equivalent

to maximizing the square of the length of the vector formed

by the hashing layer activations, that is
∑n

i=1 ‖P∗i − 0‖2 =
∑n

i=1 ‖P∗i‖
2.

The third term, the entropy maximization loss, helps to

obtain hash codes with an equal number of −1’s and 1’s,

which maximizes the entropy of the discrete distribution and

results in hash codes with better discrimination. Precisely, the

number of +1 and −1 for each bit on all the training samples

should be almost the same.

Learning the ADCMH Parameters in Stage 1(a): We used

an alternating minimization algorithm to learn the ADCMH

network parameters wx, and wy. In this algorithm, within each

epoch, we learn one parameter with other parameters fixed.

Learning (wx) Parameters for ADCMH: We use the back

propagation algorithm to first optimize the CNN parameters
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Fig. 4. Relating the error-correcting capability of ECC to the margin of DLL.

wx for the image modality by fixing the wy, and compute loss

function gradient with respect to the output of image modality

network as follows:

∂J
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The gradient of the first term in Eq. 2 is calculated as:
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(

‖P∗i − Q∗j‖ − m
))2

×

(

Sij

p
(

P∗i, Q∗j

) +
1 − Sij

1 − p
(

P∗i, Q∗j

)

)

.

(3)

Next, we compute ∂J
∂wx

with ∂J
∂P∗i

by using the chain rule

( ∂J
∂wx

= ∂J
∂P∗i

× ∂P∗i

∂wx
), based on which the back propagation

is used to update the parameter wx.

Learning (wy) Parameters for ADCMH: Similar to the

previous optimization, we use the back propagation algorithm

to optimize the MLP network parameters wy for the facial

attribute modality by fixing wx, and compute the loss func-

tion gradient with respect to the output of the facial attribute

network as follows:

∂J

∂Q∗j

=

n
∑

i=1

∂�c

(

p
(

P∗i, Q∗j

)

, Sij

)

∂Q∗j

−
2θ

c

n
∑

j=1

(

Q∗j

)

+ 2λ

c
∑

j=1

(

QT
)

∗j
. (4)

Next, we compute ∂J
∂wy

with ∂J
∂Q∗j

by using the chain rule

( ∂J
∂wy

= ∂J
∂Q∗j

×
∂Q∗j

∂wy
), based on which the back propagation

algorithm is used to update the parameters wy.

The intermediate hash codes after training of the ADCMH

are obtained by c
(xi)
i = sign(p(wx, xi)) and c

(yi)

i =

sign(q(wy, yi)) for image xi and attribute yi, respectively for

a new sample outside of the training set.

2) Stage 1(b): Training Neural Error Correcting Decoder:

As mentioned previously, there is room to improve the cross-

modal retrieval efficiency by reducing the Hamming distance

between the intermediate hash codes of different modalities

for the same subject. This can be achieved by using an ECC

decoder. The concept of ECC decoder is illustrated in Fig. 4(a).

It is observed from the figure that if the received codewords or

the corrupted codewords (green solid circles) fall within the

error correcting capability e of the ECC, then the received

codeword is decoded to the correct codeword (black solid

circle) by the ECC decoder.

The image or the attribute intermediate hash codes gener-

ated by ADCMH can be considered to be corrupted codewords

within a certain distance d of a correct codeword of an ECC.

If this distance d is within the error-correcting capability e of

the ECC, then the ECC decoder will decode the intermediate

hash codes to corresponding correct codeword of the ECC.

However, decoding the intermediate hash codes to a correct

codeword does not assure an improvement in cross-modal

retrieval efficiency. For improving the retrieval efficiency, in

addition to the intermediate hash codes being decoded to the

correct codeword of the ECC, we also require facial and

attribute intermediate hash codes of the same subject to be

decoded to the same codeword.

For fulfilling the above requirement, we exploit the error-

correcting capability of the ECC decoder and relate it to

the margin m used in the DLL for training the ADCMH in

stage 1(a). Consider Fig. 4(b) which shows the circle repre-

senting the margin for the DLL loss in stage 1(a). The blue and

green circles on the margin represent the image intermediate

hash code and attribute intermediate hash code, respectively

of the same subject. Now consider Fig. 4(c), which shows the

margin circle (black dashed line) along with the Hamming

sphere of the ECC (red solid line) with error correcting capa-

bility of e. We notice that the blue and green circle (i.e.,

image intermediate hash code and attribute intermediate hash

code) fall within the error correcting capability of the ECC.

Consequently, the image and attribute intermediate hash codes

will be decoded to the same correct codeword (i.e., black small

circle in the center) by the ECC decoder. This scenario is feasi-

ble only when error correcting capability e of the ECC decoder

is at-least equal to the margin m used for DLL. Therefore, we

chose an ECC decoder in such a way that the error correcting

capability of the ECC e ≥ m.

Recently, some excellent neural network based ECC

decoders have been proposed [26], [27], [28], which have

achieved close to the maximum likelihood (ML) performance

for an ECC. These methods can be leveraged to generate high-

quality and efficient hash codes. Thus, we can adapt such a
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neural network based ECC decoder, train it, and use it as

an ancillary component to refine the intermediate hash codes

generated by ADCMH. For more details about ECC and BP

decoding algorithm refer to Appendix V.

Neural error-correcting decoder: The NECD is a non fully-

connected neural network and can be considered as a trellis

representation of the BP decoder in which the nodes of the

hidden layer correspond to the edges in the Tanner graph. Let

N be the size of the codeword (i.e., the number of variable

nodes in the Tanner graph) and E be the number of the edges

in the Tanner graph. This implies that the input layer of our

NECD decoder consists of N nodes. The input to each of the

N nodes is the channel log-likelihood ratio (LLR) correspond-

ing to that particular variable node in the Tanner graph. All

the hidden layers of the NECD have size E. A node in each

hidden layer is associated with the message transmitted over

some edge in the Tanner graph. The output layer of the NECD

contains N nodes that output the final decoded codeword.

The number of hidden layers in the NECD depends upon

the number of iterations considered for the BP algorithm.

One iteration corresponds to message passing from the vari-

able node to the check node and again back from check node

to the variable node. Let us consider L iterations of the BP

decoder. Then the number of hidden layers in the NECD

would be equal to 2L. Consider the i-th hidden layer, where

i = 1, 2, . . . , 2L. For odd (even, respectively) values of i, each

node in this hidden layer of the NECD corresponds to an

edge e = (v, c) connecting the variable node v (check node c,

respectively) to the check node c (variable node v, respec-

tively) and the output of this node represents the message

transmitted by the BP decoder over that edge in the Tanner

graph.

Next, we will discuss the way the NECD node connections

are formed. A node in the first hidden layer (i.e., i = 1) cor-

responding to the edge e = (v, c) is connected to a single

node in the input layer, which is the variable node v associ-

ated with that edge. A processing node in the hidden layer i,

where i > 1 and i is odd (even, respectively), corresponds to

the edge e = (v, c), and is connected to all the nodes in the

layer i − 1 associated with the edges e′ = (v, c′) for c′ �= c

(e′ = (v′, c) for v′ �= v, respectively). For an odd node i, a pro-

cessing node in layer i, corresponding to the edge e = (v, c)

is also connected to the vth input node. We denote by xi,e, the

output of a processing node in the hidden layer i. In terms of

the BP decoder, for an odd (even, respectively) i, this is the

message produced after 	(i − 1)/2
 iterations, from variable

to check (check to variable, respectively) node. For odd i and

e = (v, c), we can use

xi,e=(v,c) = tanh

⎛

⎝

1

2

⎛

⎝wi,vlv +
∑

e′=(v,c′),c′ �=c

wi,e,e′xi−1,e′

⎞

⎠

⎞

⎠,

(5)

under the initialization, x0,e′ = 0 for all e′ (there is no

information in the parity check nodes in the beginning). The

summation in (5) is over all the edges e′ = (v, c′) with variable

node v except for the target edge e = (v, c). w corresponds

to the weight parameters of the neural network. Similarly, for

even i and e = (v, c), we use

xi,e=(v,c) = 2tanh−1

⎛

⎝

∏

e′=(v′,c),v′ �=v

xi−1,e′

⎞

⎠. (6)

The final vth output of the network is given by

ov = σ

⎛

⎝w2L+1,vlv +
∑

e′=(v,c′)

w2L+1,v,e′x2L,e′

⎞

⎠, (7)

where σ(x) = (1 + e−x)−1 is a sigmoid function and is added

so that the final network output is in the range [0, 1].

In stage 1(b), we build and train the NECD to be useful for

correcting the intermediate hash codes generated by ADCMH

in stage 1(a). In this regard, we select the ECC code to build

the NECD is such a way that the error correcting capability

e of the ECC is at-least equal to the margin m. Based on this

condition, we then train our NECD using a dataset of zeros

codeword.

3) Stage 2: Correcting the Intermediate Hash Codes: As

shown in Fig. 2, the trained ADCMH network and the trained

NECD from stage 1(a) and stage 1(b), respectively, are uti-

lized in stage 2 as shown by the red unidirectional arrows. In

stage 2, we use the same dataset used in stage 1(a) and gen-

erate the real-valued vector output of the trained Image-CNN

and trained Attribute-MLP (from stage 1(a)) without threshold-

ing using sign function. This output from both the networks is

then passed through the trained NECD from stage 1(b) to gen-

erate the corresponding image and attribute final binary hash

codes. Next, the corresponding image and attribute final hash

codes are used as target outputs (i.e., ground truths) to fine-

tune the Image-CNN and Attribute-MLP, respectively from

stage 1(a). As shown in Fig. 2, for fine-tuning the Image-CNN

and Attribute-MLP, we use the intermediate hash codes (real-

valued vector output of the trained Image-CNN and trained

Attribute-MLP) as our predicted outputs and use the corre-

sponding final hash codes (binary) as our ground truths. We

use cross-entropy as loss function to fine-tune the Image-CNN

and Attribute-MLP in stage 2.

LC(y, p) = −
1

N

N
∑

i=1

k
∑

j=1

y
(i)
j log

(

p
(i)
j

)

+
(

1 − y
(i)
j

)

log
(

1 − p
(i)
j

)

, (8)

where y
(i)
j is the final hash code value for the i-th training

sample and j-th element in the output layer. Similarly, p
(i)
j is

the intermediate hash code value for the i-th training sample

and j-th element in the output layer. N signifies the number

of training samples in a mini-batch, k signifies the hash code

length, and LC(y, p) defines the cross-entropy loss function

between the intermediate hash code vector p and final hash

code vector y.

In this stage of the training algorithm, the cross-entropy

loss between intermediate hash codes generated by ADCMH

and the corrected codewords obtained by NECD, is back-

propagated to the ADCMH network to update its parameters

(i.e., wx and wy). As mentioned earlier, intermediate hash
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codes used in this stage are real valued for both modalities.

Here, we formulate stage 2 of the training algorithm, which

is used to update the ADCMH parameters to generate the

corrected codes.

As shown in Fig. 2, the NECD network is used to correct the

intermediate codes generated from both modalities. Assume

that t
(xi)
i is the output of the NECD network used to correct

the intermediate hash code c
(xi)
i associated with the sample

xi for image modality. The overall cross-entropy loss on all

the samples is calculated as: Hp = LC(t
(xi)
i , c

(xi)
i ). To back-

propagate the loss of the error-corrected code to the ADCMH

parameters related to the image modality (i.e., wx), we can use

the chain rule as discussed in the previous section to update

wx, i.e., (
∂Hp

∂wx
=

∂Hp

∂P∗i
× ∂P∗i

∂wx
).

Likewise, the NECD network is used to update the ADCMH

network parameters that are related to the facial attribute

modality (i.e., wy). Therefore, we can formulate it as :

Hq = LC(t
(yi)

i , c
(yi)

i ). To back-propagate the loss of the

error-corrected code to update wy, we use the chain rule as

(
∂Hq

∂wy
=

∂Hq

∂Q∗i
×

∂Q∗i

∂wy
). Note that before back-propagating the

cross-entropy loss to update the ADCMH parameters, we scale

the obtained loss by a hyper-parameter γ to create a bal-

ance between cross-entropy loss and the cross-modal hashing

loss (i.e., J in (1)) that is defined in step 1 of the training

algorithm.

Note that we utilize alternative optimization algorithm and

perform the stage 1(a) and stage 2 of the training algo-

rithm iteratively until there is not a significant improvement in

retrieval efficiency on the training set. Additionally, note that

we use the same trained NECD from stage 1(b) in stage 2

for both the Image-CNN and the Attribute-MLP. Therefore, if

the NECD in stage 1(b) has been created using ECC with an

error-correcting capability of e ≥ m, where m is the margin

used for DLL in stage 1(a), then the final hash codes would

be the same for both the image and attribute modality at the

end of the training of the alternative optimization algorithm.

The complete algorithm is given in Fig. 2.

4) Out-of-Sample Extension: After training DNDCMH to

convergence (i.e., no improvement in accuracy on the training

set), for a new instance that is not in the training set, we

can easily generate its error-corrected hash code as long as

we can get one of its modalities. Given a query data point

with image modality xi, we directly use it as the input of

the Image-CNN part of the trained DNDCMH, then forward

propagate the query through the network to generate its hash

code as: t
(xi)
i = sign(p(wx, xi)). Similarly, for the Attribute-

MLP, we generate the hash code of a data point with only

attribute modality yi as: t
(yi)

i = sign(q(wy, yi)).

For example, assume that we are provided with an attribute

query in the form of an binary vector specifying the presence

of certain facial attributes as it is shown in Fig. 5. Along with

the attribute query, we are also provided with a gallery of

facial images. We need to find all the faces in the given gallery

that contain the attributes given in the query. In this case, the

attribute query is passed through the trained Attribute-MLP

and the attribute hash code is generated. Similarly, each facial

image in the given gallery is passed through the Image-CNN to

Fig. 5. Illustration of the testing process. The gallery of test images is
passed through the Image-CNN of the ADCMH network to generate the image
hash code. The attribute query binary vector is passed through the trained
Attribute-MLP to generate the attribute hash codes. The Hamming distance
(HD) between the attribute hash code and the image hash code is computed.
The HD between the each of the gallery image hash code and the attribute
hash code is shown under the corresponding image hash code. The green color
represents the lowest HD image hash code. The red color in the attribute query
indicates the three attributes that we are interested in. It is a triple attribute
query example.

generate a hash code for each image. All the facial images are

then ranked in order of increasing Hamming distance between

the image hash code and the attribute hash code.

IV. EXPERIMENTAL RESULTS

Implementation: As mentioned previously, our proposed

ADCMH is composed of two networks: An image convolu-

tional neural network (Image-CNN), which is used to extract

features for the image modality and an attribute multi-layer

perceptron (Attribute-MLP), which is used to extract features

for the facial attribute modality. We initialize our Image-CNN

parameters with a VGG-19 [45] network pre-trained on the

ImageNet [53] dataset. The original VGG-19 consists of five

convolutional layers (conv1−conv5) and three fully-connected

layers (fc6− fc8). We discard the fc8 layer and replace the fc7

layer with a new fch layer with c hidden nodes, where c is

the required intermediate hash code length. For the convolu-

tional layers and fc6 layer we have used ReLU activation, for

the fch layer, we have used tanh activation. The size of the

intermediate hash length is equal to the size of the codeword

used in the NECD network.

The Attribute-MLP contains three fully connected layers to

learn the features for the facial attribute modality. To per-

form feature learning from the attributes, we first represent

the attributes of each training sample as a binary vector,

which indicates the presence or absence of corresponding

facial attribute. This binary vector serves as a facial attribute

vector and is used as an input to the Attribute-MLP. The first

and second layers in the MLP network contain 512 nodes with

ReLU activation and the number of nodes in the last fully con-

nected layer is equal to the intermediate hash code length c
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with tanh activation. The weights of the MLP network are

initialized by sampling randomly from N (0, 0.01) except for

the bias parameters that are initialized with zeros. We use the

Adam optimizer [54] with the default hyper-parameter values

(ε = 10−3, λ1 = 0.9, λ2 = 0.999) to train all the parame-

ters using alternative minimization approach. The batch size

in all the experiments is fixed to 128. ADCMH is implemented

in TensorFlow with Python API and all the experiments are

conducted on two GeForce GTX TITAN X 12GB GPUs.

To train this NECD, it is sufficient to use training database

constructed using noisy versions of a single codeword [26]. For

convenience, we use noisy versions of zero codeword and our

training database for NECD contains different channel output

realization when the zero codeword is transmitted. The goal is

to train NECD to attain N dimensional output word, which is

as close as possible to the zero codeword. We have trained our

NECD on several codes including BCH(31, 21), BCH(63, 45),

and BCH(127, 92). This implies that the intermediate and the

target hash code length for our experiments is equal to 31, 63,

and 127. Note that the exact codeword size (N, k) depends on

the error correcting capability e required for the NECD. Again,

the error correcting capability e depends on the margin m of

the DLL function used to train the ADCMH, such that e ≥ m.

Datasets: We evaluated our proposed DNDCMH frame-

work on three face datasets including the Labeled Faces in the

Wild (LFW) [55], Large-scale CelebFaces Attributes (CelebA)

Dataset [56], and YouTube faces (YTF) dataset [57].

LFW is a notable face database of more than 13,000

images of faces, created for studying the problem of uncon-

strained face recognition. The faces are collected from the

Web, detected and centered by the Viola Jones face detec-

tor. CelebA is a large-scale face attribute and richly annotated

dataset containing more than 200K celebrity images, each of

which is annotated with 40 facial attributes. CelebA has about

ten thousand identities with twenty images per identity on

average. For comparison purposes, we have been consistent

with the train and test split of these datasets as given on the

dataset webpage.

YTF [57] is a dataset based on the name list of LFW but

created for video based face recognition. All the videos in

YTF were downloaded from YouTube. YTF dataset contains

3,425 videos from 1,595 identities. Each video varies from

48 to 6,070 frames, with an average length as 181.3 frames.

We extract 60,300 frames for evaluation. Particularly, we use

40,000 frames with 420 identities for training and the other

remaining 20,300 images with 198 identities for testing. Since

YTF dataset has not been annotated by facial attributes, we

use a well-known attribute prediction model Mixed Objective

Optimization Network (MOON) [58] to annotate YTF with

the facial attributes and then use it in our model.

Baselines: We have compared the retrieval and ranking

performance of our system with some of the other state-of-

the-art face image retrieval and ranking approaches including

MARR [30], rankBoost [59], TagProp [60]. For fair compar-

ison, we have exploited the VGG-19 architecture pretrained

on Imagenet dataset, which is the same as the initial CNN

of the image modality in DNDCMH, to extract CNN fea-

tures. All the above baselines are trained based on these CNN

features. Additionally, we have also compared our algorithm

with the state-of-the-art deep cross modal hashing algorithms

DCMH [13], pairwise relationship guided deep hashing for

cross-modal retrieval (PRDH) [14], and triplet-based hashing

network (THN) [22]. We have also compared the DNDCMH

framework with only the ADCMH network; i.e., training using

only stage 1(a).

Evaluation Protocols: For hashing-based retrieval,

Hamming ranking is a widely used retrieval protocol

and we will also evaluate our DNDCMH method and com-

pare it with other baselines using this protocol. The Hamming

ranking protocol ranks the points in the database (retrieval

set) according to their Hamming distances to a given query

point, in an increasing order. Mean average precision (MAP)

is the widely used metric to measure the accuracy of the

Hamming ranking protocol.

Similarly, for ranking protocol we use normalized dis-

counted cumulative gain (NDCG) to compare ranking

performance of DNDCMH with other baselines. NDCG is a

standard single-number measure of ranking quality that allows

non-binary relevance judgments. It is defined as NDCG@k =
1
Z

∑k
i=1

2rel(i)−1
log(i+1)

, where rel(i) is the relevance of the ith ranked

image and Z is a normalization constant to ensure that the

correct ranking results in an NDCG score of 1.

Effect of relation between margin m and error correcting

capability e on the retrieval performance: Before extensive

performance evaluation of the proposed framework, it is

very important to understand how the relation between error-

correcting capability e of the NECD used in stage 1(b) and

the margin m of the margin-based distance logistic loss (DLL)

in stage 1(a) affects the overall retrieval performance for the

proposed framework. From Section III-B, we know that e ≥ m.

For a given value of m we need to analyze the upper limit of

e that will give us a reasonable retrieval performance. We use

mean average-precision (MAP) as our metric to evaluate the

relation between e and m. Table I provides the MAP results

for three datasets. We have considered hash code length of 63

bits with margin values as m = 3, 5, 6, 7. Table I also pro-

vides the different values of error correcting capability e we

have used for a given margin m. We have tried the values of

e in the range of m − 1 to m + 6 depending on the ECC word

(N, K) possible with hash code of 63 bits.

We can observe from Table I that for an given value of m,

the best MAP is achieved when e is equal to or slightly greater

than m. For example, when m = 5, we can observe that the

best MAP is achieved when e is either 5 or 6. It is interesting

to note that as e becomes greater and greater than m, the

MAP starts reducing. The reason for this reduction is that

as the error correcting capability e increases, more and more

impostors will fall within the Hamming sphere (error cor-

recting capability), leading to more false positives and lower

precision.

Retrieval Performance: MAP results using different num-

ber of attributes in the query for DNDCMH, ADCMH and

other baselines for the three datasets is given in Table II.

For this experiment, we have used a margin of m = 6 for

margin-based DLL. For the best results, we have trained our

NECD with BCH(63, 30) code, which implies that the hash
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TABLE I
MAP COMPARISON TABULATING THE EFFECT OF THE ERROR CORRECTING CAPABILITY e

FOR A GIVEN MARGIN m AND HASH CODE LENGTH OF 63 BITS

Fig. 6. Ranking performance on the CelebA dataset. Due to space restriction, the legend is shown in the box on the left.

TABLE II
MAP COMPARISON FOR DNDCMH WITH OTHER BASELINES FOR THE

THREE DATASETS USING DIFFERENT NUMBER OF ATTRIBUTES IN THE

QUERY. THE BEST MAP IS SHOWN IN BOLDFACE

code length is equal to 63 bits and the error correcting capa-

bility e of the NECD is equal to 6, which implies e = m.

We can clearly see that our DNDCMH method clearly outper-

forms all the other baseline methods including the ADCMH.

An interesting observation is that our method ADCMH with

no NECD also outperforms DCMH, which shows that the

distance-based logistic loss used in our objective function

in (1) is better than the negative log-likelihood loss used in

DCMH. Also, the addition of NECD to ADCMH, which is

our proposed DNDCMH improves the retrieval performance

and outperforms the other state-of-the-art deep cross-modal

hashing methods PRDH and THN.

Ranking Performance: Comparison of the NDCG scores, as

a function of the ranking truncation level K, using different

number of attribute queries are given in Fig. 6, Fig. 7, and

Fig. 8 for the three datasets using hash code length of 63 and

BCH (63, 30) with e = m = 6 for DNDCMH and ADCMH.

It is clear from the figures that our approach (DNDCMH) sig-

nificantly outperforms all the baseline methods for all three

types of queries, at all values of K. For example, for the LFW

dataset, at a truncation level of 20 (NDCG@20), for single,

double and triple attribute queries, DNDCMH is respectively,

2.1%, 2.1% and 2.0% better than THN, the best deep cross-

modal hashing method, and also DNDCMH is respectively,

11.2%, 7.3% and 8.0% better than MARR, the best shal-

low method for attribute-based image retrieval. The ranking

performance using intermediate hash codes generated by only

ADCMH with no NECD also outperforms the shallow meth-

ods MARR, RankBoost, and Tagprob, and also outperforms

DCMH for double and triple attribute queries and is very

close (may be slightly better) to DCMH performance for

single-attribute queries. The better performance of DNDCMH

when compared to other deep cross modal hashing method

demonstrates the effectiveness of NECD in improving the

performance for cross-modal retrieval. We can observe that

the NDCG values for the YTF dataset for all methods are

relatively lower when compared to the other two datasets.

This is due to the motion blur and high compression ratio

of downloading the videos from YouTube and extracting the

faces.
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Fig. 7. Ranking performance on the LFW dataset. Due to space restriction, the legend is shown in the box on the left.

Fig. 8. Ranking performance on the YouTube dataset. Due to space restriction, the legend is shown in the box on the left.

Fig. 9. Influence of Hyper-parameters on P-R curves for CelebA dataset.

Parameter Sensitivity: We explore the influence of the

hyper-parameters θ , λ, and γ . Fig. 9, Fig. 10, and Fig. 11 show

the precision-recall results on the three datasets, with different

values of θ , λ, and γ , where the code length is 63 bits and

e = m = 6. We can see that DNDCMH is not sensitive to θ ,

λ, and γ with 0.1 < θ < 5, 0.1 < λ < 5, and 0.1 < γ < 5.

Effectiveness of NECD for Improving ADCMH Retrieval

Performance: To show the effectiveness of NECD combined

with the ADCMH network, we conducted experiments using

two different models: a) ADCMH, which indicates the case

where we train the model only using stage 1(a) optimization

without including NECD in the training, specifically this case

considers a cross-modal hashing based on entropy, quanti-

zation and distance-based logistic loss; b) DNDCMH indi-

cates our overall model where we include NECD and use

iterative alternate optimization to correct the generated codes

by ADCMH, qualitative results shown in Fig. 12 indicate that

the ADCMH retrieval performance is improved by integrating

together NECD and ADCMH.

In addition to the qualitative results, we have also com-

pared our DNDCMH with ADCMH using MAP by varying

the hash code length. Table III provides the MAP comparison

TABLE III
MAP COMPARISON FOR DNDCMH WITH ADCMH

USING DIFFERENT # OF BITS

for DNDCMH and ADCMH for different hash code lengths

(31, 63, and 127). For hash code length of 31, 63, and 127

we have used e = m = 3, e = m = 6, and e = m = 11,

respectively. For ADCMH, we have used the same mar-

gin value as DNDCMH. The results in the Table show that

DNDCMH gives much better results than ADCMH, which

implies that additional optimization using NECD improves

retrieval performance for ADCMH. Additionally, the retrieval

performance does not change a lot with increase in the hash

code length. Consequently, even with low storage capacity of

31 bits, high retrieval performance is achieved.

Effect of Number of Attributes: From the experimental

results, we can see that the retrieval or the ranking performance
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Fig. 10. Influence of Hyper-parameters on P-R curves for LFW dataset.

Fig. 11. Influence of Hyper-parameters on P-R curves for YouTube dataset.

Fig. 12. Qualitative results: retrieved images using DNDCMH and ADCMH
by giving different combinations of facial attributes as a query. Tick and cross
symbols indicate the correct and wrong image retrieval from the testing set,
respectively.

for DNDCMH and also ADCMH decreases with the increase

in the number of facial attributes as query. This is evident from

the quantitative results in Fig. 12 and also quantitative results

in Fig. 6, and Fig. 7. The reason for this decrease is that as we

increase the number of facial attributes in a query, the number

of constraints to map the facial image modality into the same

Hamming space as the attribute modality, also gets inflated,

which leads to lower retrieval performance when compared to

only a small number of facial attribute in the query.

V. CONCLUSION

In this paper, we proposed a novel iterative two-step deep

cross-modal hashing method that takes facial attributes as

query and returns a list of images based on a Hamming dis-

tance similarity. In this framework, we leveraged a neural

network based decoder to correct the codes generated by the

facial attribute-based deep cross-modal hashing to improve

the retrieval performance. The experimental results show that the

neural network decoder significantly improves the retrieval

performance of the attribute-based deep cross-modal hash-

ing network. Moreover, the results indicate that the proposed

framework outperforms most of the other cross-modal hashing

methods for attribute-based face image retrieval.

APPENDIX A

ERROR-CORRECTING CODE AND DECODING

Error-Correcting Code: The function of the channel encoder

in a digital transmission system is to transform the information

sequence generated by the information source into a discrete

encoded sequence called a codeword. The function of chan-

nel decoder is to transform received sequence into a binary

sequence called the estimated information sequence. Ideally,

we want estimated information sequence to be the same as

transmitted information sequence, although the channel noise

may cause some decoding errors. Error-Correcting codes are

used to correct this channel noise such that the estimated

information sequence is as close as possible to the transmitted

information sequence.

Linear Block Codes: In a given code of length n and 2k

codewords, if the modulo-2 sum of two codewords is also a

codeword, then the given code is called a linear block code.

This implies that an (n, k) linear code C with 2k codewords
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forms a k-dimensional subspace of the vector space of all

binary n-tuples over the field GF(2). Based on this implica-

tion, it is possible to find k linearly independent codewords

(g0, g1, . . . , gk−1) in C such that every codeword v in C is a

linear combination of these k codewords

v = u0g0 + u1g1 + · · · + uk−1gk−1, (9)

where ui = 0 or 1 for 0 ≤ i < k.

Let u = (u0, u1, . . . , uk−1) represent the message to be

encoded, the corresponding codeword can be given as

v = uG = u0g0 + u1g1 + · · · + uk−1gk−1. (10)

The rows of G span the linear code C. For this reason, G

is called a generator matrix for the linear code C.

Another useful matrix associated with linear block code is

the parity-check matrix, which is generally denoted by H. H

is a (n − k) × n matrix formed by n − k linearly independent

rows, where any vector in the rows of H is orthogonal to the

row space of G and vice-versa. This implies that an n-tuple

v is a codeword in the code C generated by G if and only if

vHT = 0.

Minimum Distance and Error Correcting Capability of

a Block Code: Minimum distance is an important parame-

ter, which determines the error-detecting and error-correcting

capability of a code. Given a block code C, the minimum

distance of the code C, denoted by dmin is defined as the

minimum Hamming distance between any two codewords of

the code C

dmin = min{d(v, z) : v, z ∈ C, v �= z}. (11)

The relation between minimum Hamming distance and the

error correcting capability is given by the theorem: If dmin ≥

2e + 1, the standard decoding algorithm for C can correct up

to e errors. If dmin ≥ 2e + 2, it can correct up to e errors and

detect e + 1 errors.

Belief Propagation Decoding: An effective graphical repre-

sentation of a parity check matrix H is a Tanner graph, which

provides complete representation of the code and also helps

to describe the decoding algorithm. Tanner graph is a bipar-

tite graph, where the nodes of the graph are separated into

two different sets and edges are only connecting nodes from

one set to the other set. The two different sets of nodes in a

Tanner graph are called variable nodes (v-nodes) and check

nodes (c-nodes).

Fig. 13 shows the Tanner graph of a code whose parity

check matrix is given as:

H =

⎡

⎢

⎢

⎣

0 1 0 1 1 0 0 1

1 1 1 0 0 1 0 0

0 0 1 0 0 1 1 1

1 0 0 1 1 0 1 0

⎤

⎥

⎥

⎦

. (12)

Building a Tanner graph is very straight forward. The check

nodes (c-nodes) represent the number of parity bits (# of rows

in H) and the variable nodes (v-nodes) represent the number

of bits in a codeword (# of columns in H). Check node cj is

connected to variable node fi if the element hji of parity check

matrix H is a 1.

Fig. 13. Tanner Graph for the parity check matrix shown in (12).

Fig. 14. Tanner sub-graphs showing the transfer of information from c-node
to v-node and vice-versa.

The renowned belief propagation (BP) decoder can be

described clearly using a Tanner graph. Assume a binary code-

word (x1, x2, . . . , . . . , xn) is transmitted over an additive white

Gaussian noise (AWGN) channel and the received symbol is

(y1, y2, . . . , . . . , yn). Let y = x + r where r is a noise added

by the channel. The n code bits must satisfy all parity checks

and this will be used to compute the posterior probability

Pr(xi/Si, y) and Si is the event that all parity checks associated

with xi have been satisfied.

The BP algorithm is an iterative algorithm based on Tanner

graph and is based on computation of Pr(xi = 1/y). The steps

in this iterative algorithm are:

1) In first step, each v-node fi processes its input message

received from the channel yi and passes its resulting

output message to neighboring c-node because in first

pass there is no other information to be passed.

2) In the second step, the c-node gets the input mes-

sages passed from the v-nodes and checks whether

the parity check equations are satisfied. And then

passes its resulting output messages to all the con-

nected v-nodes fi using the incoming messages from all

other v-nodes, but excluding the information from fi.

This can be seen in Fig. 14(a). Note that the

information passed to v-node f7 is all the information

available to c-node c0 from the neighboring v-

nodes, excluding v-node f7. The information passed is

Pr(check equation is satisfied|input messages), i.e., the

probability that there is an even number of 1’s among

the variable nodes except the node fi. Such extrinsic

information is computed for each connected c-node/v-

node pair in this step.

3) In the third step, each v-node processes its input message

and passes its resulting output message to neighboring

c-nodes using channel samples and incoming messages

from all other c-nodes connected to v-node fi, except the
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c-node cj. This is shown in Fig. 14(b). The information

passed is Pr(xi = b|input messages), where b ∈ 0, 1.

Additionally, at this point the v-nodes also update their

current estimation ŷi of their variable yi by using the

channel information and messages from the neighbor-

ing c-nodes, without excluding any c-node information.

If the current estimated codeword fulfills now the par-

ity check equations the algorithm terminates. Otherwise

termination is ensured through a maximum number of

iterations.

4) Go to Step 2.
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