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A B S T R A C T

The large modality gap between faces captured in different spectra makes heterogeneous face recognition

(HFR) a challenging problem. In this paper, we present a coupled generative adversarial network (CpGAN)

to address the problem of matching non-visible facial imagery against a gallery of visible faces. Our CpGAN

architecture consists of two sub-networks one dedicated to the visible spectrum and the other sub-network

dedicated to the non-visible spectrum. Each sub-network consists of a generative adversarial network (GAN)

architecture. Inspired by a dense network which is capable of maximizing the information flow among fea-

tures at different levels, we utilize a densely connected encoder-decoder structure as the generator in each

GAN sub-network. The proposed CpGAN framework uses multiple loss functions to force the features from

each sub-network to be as close as possible for the same identities in a common latent subspace. To achieve

a realistic photo reconstructionwhile preserving the discriminative information, we also added a perceptual

loss function to the coupling loss function. An ablation study is performed to show the effectiveness of dif-

ferent loss functions in optimizing the proposed method. Moreover, the superiority of the model compared

to the state-of-the-art models in HFR is demonstrated using multiple datasets.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, there has been significant interest in Heteroge-

neous Face Recognition (HFR) [1], where the objective is to match

visible facial imagery to facial imagery captured in another domain,

such as the infrared spectrum [2, 3], polarimetric [4], or millimeter

wave [5]. Since there is significantly less facial imagery available in

these alternative domains compared to the visible domain, robust-

ness to the variations in wavelength, texture, resolution, noise, and

etc., can be difficult to achieve.

The infrared portion of the electromagnetic spectrum can be

coarsely divided into reflection-dominated and emission-dominated

regions. The reflection-dominated region consists of the follow-

ing wavelengths: near infrared (NIR; 0.75–1 lm), and shortwave

infrared (SWIR; 1–2.5 lm). There has been significant performance

improvement in NIR-to-visible face recognition accuracy [6,2] and

to some extent, for SWIR-to-visible face recognition accuracy [7, 8].

In Ref. [9], the authors used Restricted Boltzmann Machine (RBM)

to learn a common representation for features extracted locally and

consequently removed the heterogeneity around each facial point,

* Corresponding author.
E-mail address: seiranmanesh@mix.wvu.edu (S.M. Iranmanesh).

utilizing Principle Component Analysis (PCA) to obtain the high level

features from the local features. In Ref. [10], a novel transductive sub-

space learning method was proposed for domain invariant feature

extraction for VIS-NIR matching problem. Klare et al. [11] used ker-

nel similarities for a set of training subjects as features. Juefei-Xu et

al. [12] used a dictionary learning approach to reconstruct images

between visible and NIR domains. A common weakness of the prior

methods is that they did not use deep non-linear features of face

images, which have been shown to produce better results in face

recognition problems [13].

The emission-dominated (i.e., thermal) region of infrared spec-

trum consists of the following wavelengths: midwave infrared

(MWIR; 3–5 lm), and longwave infrared (LWIR; 8–12 lm). Thermal

facial imagery can be passively acquired without any external illumi-

nation because thermal radiation is naturally emitted from facial skin

tissue, arising from the underlying vasculature, and other physiologi-

cal effects. This means MWIR or LWIR imagery is ideal for night-time

and low-light scenarios. However, the phenomenological differences

between visible and thermal imagery, and the trade-off between

wavelength and resolution (or pixel pitch) make matching visible

and thermal facial signatures a daunting task.

In recent years, there has been growing research on thermal-

to-visible face recognition [11,14-16] and thermal-to-visible detec-

tion [17]. Visible images contain rich textural and geometric details

https://doi.org/10.1016/j.imavis.2019.103861

0262-8856/© 2019 Elsevier B.V. All rights reserved.
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across key facial structures (i.e., mouth, eyes, and nose). However,

in conventional thermal facial imagery, though some edges around

the eyes and eyebrows do appear, but they suffer from significant

lack of contrast compared to the corresponding visible images, thus

highlighting the large domain gap.

Recently, via an emerging technology [18], the polarization state

information of thermal emissions has been exploited to provide

additional geometrical and textural details, especially around the

nose and the mouth, which complements the textural details of

the conventional intensity-based thermal images. This additional

information is not available in the conventional intensity-based ther-

mal imaging [18], and is utilized in recent algorithms to enhance

thermal-to-visible face recognition [18-20]. Fig. 1 shows a visible

face image and its corresponding conventional thermal and polari-

metric thermal images.

Algorithms for thermal-to-visible face recognition can be catego-

rized as cross-spectrum feature-based methods, or cross-spectrum

image synthesis methods. In cross-spectrum feature-based face

recognition a thermal probe is matched against a gallery of visible

faces corresponding to the real-world scenario [4], in a feature sub-

space. The second category synthesizes a visible-like image from a

thermal image which can then be used by any commercial visible

spectrum face recognition system. Researchers have also investi-

gated a variety of approaches to exploit the polarimetric LWIR

thermal images to improve the cross-spectrum face recognition

[18,19,21,22]. One of the first methods developed for polarimet-

ric thermal-to-visible face recognition combined the histogram of

oriented gradients (HOG) features from S0, S1, and, S2 and com-

bined them together and performed a one-versus-all support vector

machine (SVM) classifier to do the face recognition [23]. Another

work utilized similar approach to extract features [21]. However,

they used partial least square (PLS), on top of the extracted features

and learned a one-vs-all PLS discriminant analysis classifier.

Recent cross-spectrum feature based approaches learn a function

to explicitly map the polarimetric thermal features to the corre-

sponding visible feature domain representation. Riggan et al. [21]

employed deep perpetual mapping (DPM) and coupled neural net-

work (CpNN) [24] for polarimetric thermal-to-visible face recogni-

tion. The DPM technique [25] learns a direct mapping between the

scale invariant feature transform (SIFT) features from the thermal

imagery and the corresponding visible SIFT feature subspace using a

multilayer neural network. In contrast, CpNN [24] performs an indi-

rect mapping between thermal and visible SIFT features. The authors

in Ref. [24] developed a method to jointly learn two mappings in

order to extract the shared latent features. The authors also added

one-vs-all PLS classification on top of CpNN or DPM to enhance

the recognition accuracy. These two approaches are referred to as

PLS◦DPM [4] and PLS◦CpNN [21].

Recently, almost all the state-of-the-art techniques in face recog-

nition have applied deep convolutional neural networks (DCNN)

trained on large datasets to construct a compact discriminative

feature subspace. This approach also has been applied in other

applications such as pedestrian detection [17], and cross-modal

retrieval [26] to find a representative embedding subspace. In

Ref. [27], the authors trained a network on a private dataset con-

taining 4.4 million labeled images of 4030 different subjects. They

also fine-tuned their network with a Siamese network [28] for a face

verification task, and extended their work with an expanded dataset

which contained 500 million images from 10 million subjects. Sun

et al. [29-32] studied a deep neural network architecture employ-

ing a joint verification-identification loss function and Bayesian

metrics in their works. They used two different datasets, namely,

CelebFaces [29] (202,599 images of 10,177 different subjects) and

WDRef [33] (99,773 images of 2995 subjects) to train their deep net-

works. Schroff et al. [34] also trained a deep network using 200 mil-

lion images of 8 million different subjects. This network gained the

best performance on Labeled Faces in the Wild (LFW) [35] dataset,

which is a standard unconstrained face recognition benchmark.

The second category of approaches attempt to synthesize a

visible-like face image from another modality such as NIR, thermal,

or polarimetric thermal input. These methods are beneficial because

the synthesized image can be directly utilized by existing face recog-

nition systems developed (i.e., trained) specifically for visible-based

facial recognition. Therefore, using this approach one can leverage

existing commercial-off-the-shelf (COTS) and government-off-the-

shelf (GOTS) solutions. In addition, the synthesized images can be

used by human examiners for adjudication purposes. In Ref. [36],

the authors developed a method to synthesize a visible-like face

image from the polarimetric input. In order to perform synthe-

sis, they utilized DPM to map SIFT features to the corresponding

SIFT features in the visible domain, and then reconstructed the vis-

ible images from the mapped SIFT features. The authors extended

their work in Ref. [37] where they employed a multi-region based

approach to jointly optimize the global and local spatial informa-

tion during the reconstruction. In contrast to the two-step process of

Riggan et al. [36,37], Zhang et al. [38] proposed a generative adver-

sarial network (GAN) based approach to reconstruct a more photo-

realistic image usingmultiple loss functions. In additon to GANs opti-

mization, the other non-convex optimization methods have shown

great improvements [65]. While cross-spectrum synthesis methods

show significant promise, the face recognition performance achieved

with synthesis still lags behind the performance of cross-spectrum

Fig. 1. Visible spectrum and its corresponding conventional thermal (S0), and polarimetric state information (S1 and S2) of a thermal image of a subject.
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featurematching based approaches [39]. However, with the constant

advancement in GAN architectures and deep generative models, it is

expected that synthesis based methods will proceed to outperform

the feature-based cross-spectrum matching methods.

Motivated by recent advances in face recognition algorithms

using deep approaches and generative models, we propose a

novel Coupled Generative Adversarial Network (CpGAN) for cross-

spectrum face recognition, which utilizes non-visible modalities to

perform a cross-spectrum face recognition task. In Ref. [13], authors

used a coupled CNN-based architecture for their face recognition

system. However, they evaluated their framework only on near

infrared imagery which is visually similar to visible imagery, con-

taining more high frequency details than corresponding thermal

imagery. Here, we evaluate the proposed algorithm on different

regions of the electromagnetic spectrum from NIR to the more chal-

lenging bands such as midwave and longwave infrared. We compare

our proposed framework against several different state-of-the-art

techniques in the literature such as DPM [25], coupled neural net-

work (CpNN) [24], PLS [16], PLS◦DPM and PLS◦CpNN [4,21]. We

present a thorough evaluation using multiple datasets: Wright State

(WSRI), Notre Dame X1 (UND X1), Night Vision (NVESD), Polarimet-

ric thermal, and Casia NIR-VIS 2.0 datasets. Our results show that

our proposed CpGAN could outperform the existing methods for

heterogeneous face recognition.

2. Background

2.1. Polarimetric thermal imagery

In comparison to the conventional thermal imaging that captures

intensity-only in themidwave infrared (MWIR) or longwave infrared

(LWIR) bands, polarimetric thermal imaging acquires the polariza-

tion state information in the thermal infrared spectrum. Polarization

states are characterized using the Stokes parameters S0, S1, S2, and S3,

where S0 represents the conventional intensity-only thermal infor-

mation and S1, S2, and S3 convey polarization state information

(see Fig. 1). The polarimetric measurement are made using linear

and circular polarizers. The fourmentioned Stokes parameters which

completely define the polarization states are:

S0 = I◦0 + I◦90 , (1)

S1 = I◦0 − I◦90 , (2)

S2 = I◦45 + I◦−45 , (3)

S3 = I◦R + I◦L , (4)

where I◦0, I
◦
90, I

◦
45, and I◦−45 describe themeasured intensity of the light

after passing through a linear polarizer with angle of 0◦, 90◦, 45◦, and
−45◦ related to horizontal axes, respectively. IR and IL represent the

intensity of the right and left circularly polarized light. Since there is

no artificial illumination in passive imaging, there is almost no cir-

cularly polarized information in LWIR or MWIR spectrum. Therefore,

S3 is considered to be zero for most of the applications. To quantify

the portion of electromagnetic radiation that is linearly polarized,

the Degree of Linear Polarization (DoLP), is computed with the linear

combination of the Stokes as follows:

DoLP =

√

S21 + S22

S0
. (5)

2.2. DenseNets

Traditional convolutional feed-forward networks such as

VGG [40], connect the output of the lth layer as the input to the next

layer, which is equal to the following transition: xl = Hl(xl−1),

where Hl is the convolutional mapping from l − 1 to l. In Resnet [41],

authors made a change in this transition information by adding a

skip-connection which bypasses the non-linear transformation with

an identity function:

xl = Hl(xl−1) + xl−1 . (6)

A benefit of Resnet architecture is that through the identity func-

tion, the gradient of the cost function can progress directly from later

layers to the earlier layers. However, the combination of the identity

function and output of Hl might prevent the information flow in the

network [42].

In order to improve the information flow between different

layers, in Densenet [42] authors provided a different connectiv-

ity between different layers in which there is a direct connec-

tion between any layer and all the subsequent layers. Therefore,

the lth layer receives the feature maps of all the previous layers,

x0, x1, . . . , xl−1
as input:

xl = Hl([x0, x1, . . . , xl−1]) , (7)

where [x0, x1, . . . , xl−1
] represents the concatenation of the feature

maps produced from the previous layers 0, . . . , l − 1 [42] (see dense

block in Fig. 2).

2.3. Generative adversarial networks

The generative adversarial network consists of two sub-networks,

namely a generator and a discriminator which compete with each

other in a minimax game. For the generator to learn the distribution

pg over the data x, the authors consider a prior on the input noise

variables pz(z) [43]. Generator network G is a differentiable function

with a parameter hg which performs a mapping to the data space

G(z; hg). On the other hand, the discriminator network is also a dif-

ferentiable function D(.; hd) which performs a binary classification

between the real data x and the generated data G(z). At the same

time, network G tries to fool the discriminator by minimizing log(1−
D(G(z))). In other words, D and G play a two-player minimax game

which resembles minimizing the Jenson-Shannon divergence [43] as

follows:

min
G

max
D

Ex~Pdata(x) [logD(x)] + Ez~Pz [log(1 − D(G(z)))]. (8)

2.4. Conditional generative adversarial networks

Conditional adversarial networks is an extension of generative

adversarial networks in which both the generator and discriminator

are conditioned on some auxiliary information y. The extra informa-

tion y can be any kind of information such as class label or other

modalities data. The objective of the conditional GAN is the same

as the classical GAN. The only exception is that in the conditional

GAN both the discriminator and generator are conditioned on the

auxiliary information as follows [44]:

min
G

max
D

Ex~Pdata(x) [logD(x|y)] + Ez~Pz [log(1 − D(G(z|y)))], (9)

3. Proposed method

The proposed CpGAN is illustrated in Fig. 3. The proposed

approach consists of two generators and two discriminators which

are coupledwith each other. In the following subsections, we explain

these modules in detail.
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Fig. 2. An overview of the pyramid densely connected network.

3.1. Pyramid densely connected network

This network is a densely connected encoder-decoder structure

which utilizes the features from multi layers of a CNN [45]. In this

framework, a dense block [42] is used as the basic structure since it

can maximize the information flow and has better convergence by

connecting all the layers. The encoder part of the network consists of

three dense blocks with their corresponding down-sampling oper-

ations which shrinks the feature map to 1/32 of the input size. The

decoder part is responsible for reconstructing the original size image

from the embedding subspace and it stacks five dense blocks with

the refined up-sampling transition blocks [46,47].Moreover, the con-

catenations are performed on the feature maps with the same size.

Inspired by the use of global context information in classification and

segmentation, this network tries to capture more global information,

using multi-level pyramid pooling blocks [48,49]. This operation is

done to make sure that features from different scales are embedded

in the final result. Therefore, four different operations with pooling

sizes of 1/32, 1/16, 1/8, and 1/4 is selected. All the four level features

are up-sampled to the original size and are concatenated together.

Fig. 2 illustrates the overview of the pyramid densely connected

network.

3.2. Deep cross-modal face recognition

The overall objective of the proposed model is identification of

non-visible faces which were not seen in the training phase. For

this reason, we couple two pyramid densely connected networks

one dedicated to the visible spectrum (Vis-GAN) and the other one

to the non-visible spectrum (NVis-GAN). Each network performs a

non-linear transformation of the input space. The final objective of

our proposed CpGAN is to learn a joint, deep embedding that cap-

tures the interrelationship between the visible and non-visible facial

imagery for spectrally invariant face recognition. In order to find

a common latent embedding subspace between these two differ-

ent domains, we couple two pyramid densely connected networks

(Vis-GAN and NVis-GAN) via a contrastive loss function [28].

The contrastive loss function (�cont) encourages the genuine pairs

(i.e., visible and non-visible images with faces of corresponding sub-

jects) to be “close” in terms of some metric (usually the euclidean

Fig. 3. Proposed network using two GAN based sub-networks (Vis-GAN and NVis-GAN) coupled by contrastive loss function. Here, the input to NVIS-GAN is polarimetric data (S0 ,

S1 , S2). In the case of other non-visible modalities such as (NIR, MWIR, and LWIR), the framework remains the same and only the input to the NVIS-GAN is changed accordingly.
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distance) and the impostor pairs (i.e., visible and non-visible images

containing faces of different subjects) to be distant from each other

(see VisGAN and NVis-GAN networks at their bottlenecks in Fig. 3).

Similar to Ref. [28], our contrastive loss is of the form:

�cont(z1(y
i
vis), z2(y

j
nvis

), ycont) = (1 − ycont)Lgen(d(z1(y
i
vis), z2(y

j
nvis

))

+ ycontLimp(d(z1(y
i
vis), z2(y

j
nvis

)) , (10)

where yi
vis

is the input for the Vis-GAN (i.e., visible face image), and

y
j
nvis

is the input for the NVis-GAN (i.e., non-visible face images). ycont
is a binary label, Lgen and Limp represent the partial loss functions for

the genuine and impostor pairs, respectively, and d(z1(y
i
vis
), z2(y

j
nvis

))

indicates the Euclidean distance between the embedded data in the

embedded common feature subspace. z1(.) and z2(.) are the deep

convolutional neural network based embedding functions, which

transform yi
vis

and y
j
nvis

into a common latent embedding subspace,

respectively. The binary label, ycont, is assigned a value of 0 when

both modalities, i.e., visible and non-visible, form a genuine pair, or,

equivalently, the inputs are from the same class (cli = clj). On the

contrary, when the inputs are from different classes, which means

they form an impostor pair, ycont is equal to 1. In addition, Lgen and

Limp are defined as follows:

Lgen(d(z1(y
i
vis), z2(y

j
nvis

))) =
1

2
×

||z1(yivis) − z2(y
j
nvis

)||22 for cli = clj ,

(11)

and

Limp(d(z1(y
i
vis), z2(y

j
nvis

))) =
1

2
× (12)

max(0,m − ||z1(yivis) − z2(y
j
nvis

)||22) for cli �= clj,

wherem is the contrastive margin. The coupling loss function can be

written as:

Lcpl = 1/N2
N

∑

i=1

N
∑

j=1

�cont(z1(y
i
vis), z2(y

j
nvis

), ycont), (13)

where N is the number of samples. It should be noted that the con-

trastive loss function Eq. (13) considers the subjects’ labels implicitly.

Therefore, it has the ability to find a discriminative embedding space

by employing the data labels in contrast to some other metrics such

as the Euclidean distance. This discriminative embedding space is

useful in identifying a non-visible probe photo against a gallery of

visible photos.

3.3. Generative adversarial loss

Let Gvis and Gnvis denote the generators that synthesize a visible

image from an input visible and a non-visible image, respectively. To

synthesize the output and to make sure that the synthesized images

generated by the two generators are indistinguishable from the cor-

responding ground truth visible image, we utilized the GAN loss

function in Ref. [44]. As it is shown in Fig. 3, the first generator Gvis

is responsible to generate a visible image when the network is con-

ditioned on a visible image. On the other hand, the second generator

Gnvis tries to generate the same visible image from the non-visible

image which has a more challenging task compared to the first gen-

erator. Therefore, the total loss for the coupled GAN is as follows:

LGAN = Lvis + Lnvis, (14)

where the GAN loss function related to the Vis-GAN is given as:

Lvis =min
Gvis

max
Dvis

Exi~Pvis(x)
[logD(xi|yivis)]

+ Ez~Pz [log(1 − D(G(z|yivis)))], (15)

where yi
vis

is the visible image used as condition for the Vis-GAN and

xi is the real data. It should be noted that for the Vis-GAN the real

data xi and the condition yi
vis

are both visible. Similarly, the loss for

the NVis-GAN is given as:

Lnvis =min
Gnvis

max
Dnvis

Exj~Pvis(x)
[logD(xj|yj

nvis
)]

+ Ez~Pz [log(1 − D(G(z|yj
nvis

)))], (16)

where y
j
nvis

is the non-visible image used as condition for the NVis-

GAN and xj is the real data (which is visible). It should be noted that

xi is the same as xj if they refer to the same subject (cli = clj),

otherwise they are not the same.

3.4. Overall loss function

The proposed approach contains the following loss function: the

Euclidean LEvis and LEnvis losses which are enforced on the recovered

visible images from the Vis-GAN and NVis-GAN networks, respec-

tively, are defined as follows:

LEvis = ||Gvis(z|yivis) − xi||22, (17)

LEnvis = ||Gnvis(z|yjnvis) − xj||22, (18)

LE = LEvis + LEnvis . (19)

The LGAN (Eq. (14)) loss is also added to generate sharper images.

In addition, based on the success of perceptual loss in low-level

vision tasks [50,51], the perceptual loss is added to the NVis-GAN to

preserve more photo realistic details as follows:

LPnvis =
1

CpWpHp

Cp
∑

c=1

Wp
∑

w=1

Hp
∑

h=1

(20)

||V(Gnvis(z|yjnvis))
c,w,h − V(xj)c,w,h||,

where xj is the ground truth visible image, Gnvis(z|yjnvis) is the output

of NVis-GAN generator. V(.) represents a non-linear CNN transfor-

mation and Cp,Wp,Hp are the dimension of a particular layer in V. It

should be noted that the perceptual loss is just used in the NVis-GAN.

Finally, the contrastive loss function Eq. (13) is added to train both

networks Vis-GAN and NVis-GAN jointly to make the embedding

space of thementioned networks as close as possible and to preserve

a more discriminative and distinguishable shared space. Therefore,

the total loss function for the proposed CpGAN is as follows:

LT = Lcpl + k1LE + k2LGAN + k3LPnvis, (21)

where Lcpl is the coupling loss (Eq. (13)) termwhich is the contrastive

loss function, the second is the total L2 loss for the Vis-GAN andNVis-

GAN. LGAN and LPnvis are the GAN, and perceptual loss functions for the

Vis-GAN, respectively. k1, k2, and k3 are the hyper-parameters which

weight the Euclidean, the adversarial, and the perceptual losses,

respectively.

3.5. Testing phase

During the testing phase, only the NVis-GAN is used. For a given

test probe yt
nvis

, NVis-GAN is employed in the proposed CpGAN to
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synthesize the visible image Gnvis(z|ytnvis) = x̂t
vis
. Eventually, the

identification of face recognition is done, by calculating the mini-

mum Euclidean distance between the synthesized image and visible

gallery images as follows:

xt
∗
vis = argmin

xt
vis

||xtvis, x̂
t
vis|| , (22)

where x̂t
vis

is the synthesized probe face image and xt
∗
vis
is the selected

matching visible face image within the gallery of face images.

4. Experiments and results

4.1. Implementation details

The network is trained on a Nvidia Titan X GPU using the PyTorch

framework. We choose k3 = 0.5 and k1,2 = 1. For training, we

used the Adam optimizer [52] with a first-order momentum of 0.5

and a learning rate of 0.0002 and a batch size of 4. The perceptual

loss is assessed on relu3-1 layer of a pre-trained VGG [40] model for

the Imagenet dataset [53].

4.2. Heterogeneous face recognition datasets

In order to evaluate the proposed CpGAN model, we utilize six

different heterogeneous face recognition databases:

1) Wright State (WSRI) [54],

2) Notre Dame X1 (UND X1) [55],

3) Night Vision (NVESD) [56],

4) Casia NIR-VIS 2.0 [57],

5) Casia HFB [58],

6) Polarimetric thermal [4],

in order to test the NIR-to-visible, MWIR-to-visible, LWIR-to-

visible and polarimetric thermal-to-visible face recognition appli-

cations. Table 1 provides an overview of the datasets used in this

work — each database is briefly described below:

WSRI dataset consists of 1615 visible and 1615 MWIR images

from 64 different identities. There are approximately 25 images per

subject approximately with different facial expressions. The original

resolution of the visible images is 1004 × 1004, and 640 × 512 for the

MWIR modality. After preprocessing, the images from both modali-

ties are resized to 235 × 295 pixels. This database is split randomly

into a set of 10 subjects for training set and remaining 54 subjects for

testing set.

UND X1 dataset contains LWIR and visible images related to 241

subjects with different variations in lighting, expression and time

lapse. The original resolutions of the images are 1600 × 1200 pixels

for the visible modality and 320 × 240 pixels for the LWIR

modality. Both modalities are resampled to 150 × 110 pixels after

preprocessing.

The training set composed of 159 subjects captured in the vis-

ible and LWIR modalities with only one image per subject. On the

other hand, the test set contains the remaining 82 subjects with

multiple images per subject. This database is challenging due to the

Table 1

Summary of heterogeneous face recognition datasets used for comparing models.

Database Source Target # subjects Variations

WSRI Visible MWIR 64 E

UND X1 Visible LWIR 241 E

NVESD Visible MWIR & LWIR 50 E,D

Casia NIR-VIS 2.0 Visible NIR 725 P,E,G,D

Casia HFB Visible NIR 202 P,E,G,D

Polarimetric thermal Visible S0 , S1 , S2 60 E,D

low resolution and noise present in the LWIR imagery. This leads to

significant difference between the two modalities in this dataset.

NVESD dataset is collected by the U.S. Army CERDEC-NVESD in

2012 from 50 different subjects. The dataset composed of 450 images

in each modality. The images were captured simultaneously from

different identities with the original resolution of 640 × 480 pixels

for all of the modalities. After preprocessing as in Ref. [16], the image

resolution is resampled to 174 × 174 and dataset is split into training

and testing sets.

CASIA NIR-VIS 2.0 dataset contains the visible and NIR images

from 725 different identities. The images were not captured simul-

taneously. For each subject, there are 1–22 visible images and 5–50

NIR images with different expressions, poses, glasses, and distance to

camera/sensor. The original resolution of the images for both modal-

ities are 640 × 480 pixels. After preprocessing, the cropped image

sizes are 128 × 128. This database provides a part of data for the

sake of parameter tuning, and 10 remaining parts for reporting the

experimental results.

CASIA HFB dataset contains 202 subjects. Similar to the CASIA

NIR-VIS 2.0, this dataset has two views where the first view is for

parameter selection and View2 is for the sake of evaluation. This

dataset contains about 1000 visible images and 1500 NIR images for

training and similarly 1000 visible and 1500 NIR images for testing.

The resolution of the images before and after preprocessing is the

same as the NIR-VIS 2.0 dataset.

Polarimetric Thermal Face dataset [4] contains polarimetric

LWIR and visible face images of 60 subjects. Data was collected at

three different distances: Range 1 (2.5m), Range 2 (5m), and Range 3

(7.5 m). At each range, baseline and expressions data were collected.

In the baseline condition, the subject was asked to keep a neutral

expression looking at the polarimetric thermal sensor. On the other

hand, in the expression condition, the subject was asked to count

numerically upwards from one, resulting in different expressions in

the mouth to eye regions. Each subject has 16 images of visible and

16 polarimetric LWIR images inwhich four images are from the base-

line condition and the remaining 12 images are from the expression

condition.

4.3. WSRI and UND results

The network for the visible face images (Vis-GAN) and the net-

work for the non-visible face images (NVis-GAN) have the same

structure. These images are resized to 256 × 256 before pass-

ing to the network. To benefit from the pre-defined weights of the

DenseNet [42], the first convolutional layer and the first three Dense-

blocks have been leveraged from a pre-trained DenseNet 121 as the

encoder structure. At the end of the encoder part where the fea-

ture map size is 1/32 of the original input spatial dimensions, the

two sub-networks (Vis-GAN and NVis-GAN) are coupled together

via a contrastive loss function (see Fig. 3) to construct the CpGAN

framework.

To increase the correlation between the two modalities of visible

and LWIR (UND X1 and NVESD datasets), each modality was prepro-

cessed.We applied difference of Gaussians (DoG) filter, to emphasize

the edges in addition to removing high and low frequency noise.

The DoG filter which is the difference of two Gaussian kernels with

different standard deviations is defined as follows:

DG(I,s0,s1) = [g(x, y,s0) − g(x, y,s1)] ∗ I(x, y) , (23)

where DG is the DoG filtered image, * is the convolution operator,

and g is the Gaussian kernel which is defined in:

g(x, y,s) =
1√
2ps2

e
− x2+y2

2s2 . (24)
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The training set is used to transform the visible and non-visible

features to a shared latent embedding subspace. Also at the same

time, the network tries to synthesize visible modality from the

shared latent subspace in the GAN framework. To train the network,

the genuine and impostor pairs are constructed. The genuine pair is

constructed from the same subject images in two different modal-

ities. For the impostor pair, a different subject is selected for each

modality. In general, the number of the generated impostor pairs

are significantly larger than the genuine pairs. For the sake of bal-

ancing the training set, we consider the same number of genuine

and impostor pairs. After training the network, during the testing

phase, only the NVis-GAN sub-network is used for the evaluation. For

a given probe, the network is used to synthesize the visible image.

Afterwards, the Euclidean distance is used to match the synthesize

image to its closest image from the gallery. The ratio of the number

of correctly classified subjects and the entire number of subjects is

computed as the identification rate.

The identification rate of our proposed approach for both WSRI

and UND X1 datasets is reported in Table 2. In addition, we com-

pare the performance of our method with some state-of-the-art

methods in the literature such as CpNN [24], PLS [14], bilevel cou-

pled dictionary learning (BCDL) [59], and kernel bilevel coupled

dictionary learning (K-BCDL) [24]. The tabulated results show the

improved performance of the proposed method and its effectiveness

in synthesizing the visible modality from the non-visible modality.

4.4. NVESD results

We compare our proposed CpGAN with the reported results in

the literature on the NVESD dataset. For the sake of comparison,

we perform the same split as in Ref. [24] on the dataset for the

train and test set. Therefore, we train our proposed framework on

training set with 10 subjects and report the rank-1 classification per-

formance on the test set of 40 subjects. This database contains two

different non-visible modalities, namely, MWIR and LWIR. Table 3

shows the reported results of our proposedmethod and aswell as the

other state-of-the-art models. As it is shown in Table 3, our proposed

method performance surpasses the other methods in the literature

for both MWIR-to-visible and LWIR-to-visible face recognition.

4.5. CASIA results

In this experiment, we compare our results with the results

reported in Ref. [60]. For the sake of fair comparison, we perform the

same set of experiments as in Ref. [60]. The dataset has two views

Table 2

Rank-1 identification rates of the proposedmethod and the baselinemethods forWSRI

and UND X1 datasets.

Method WSRI UND X1

PLS 83.7% 41.0%

BCDL 93.1% 50.5%

K-BCDL 95.9% 52.0%

CpNN 97.2% 51.9%

CpGAN 97.8% 76.4%

Table 3

Rank-1 identification rates of the proposed method and the baseline methods for

MWIR and LWIR on NVESD dataset.

Method MWIR LWIR

PLS 82.4% 70.4%

BCDL 90.7% 90.6%

K-BCDL 93.3% 92.5%

CpNN 94.4% 89.1%

CpGAN 96.1% 93.9%

Table 4

Performance comparison to other baselines on View2 of CASIA NIR-VIS 2.0 dataset.

NIR-VIS 2.0 Rank 1 Std. Dev. FAR = 0.001

CpNN 33.1% 6.6 76.35

C-CBFD [61] 81.8% 2.3 47.3

[62] 85.9% 0.9 78.0

[9] 86.2% 0.98 81.3

[63] 95.74% 0.52 91.03

[60] 92.6% 0.64 81.6

CpGAN 96.63% 0.56 87.05

Table 5

Performance comparison to other baselines on View2 of CASIA HFB 2.0 dataset.

HFB Rank 1 FAR = 0.01 FAR = 0.001

CpNN 39.8% 84.4 72.49

IDNet [13] 80.9% 70.4 36.2

P-RS [11] 87.8% 98.2 95.8

C-DFD [64] 92.2% 85.6 65.5

THFM [10] 99.28% 99.66 98.42

[9] 99.38% – 92.25

[60] 99.52% 98.6 91.8

CpGAN 99.64% 98.4 89.7

in which View1 is used for parameter tuning and View2 with 10 dif-

ferent splits are used for testing. Number of images in HFB dataset

is about 1000 visible images and 1500 NIR images during the test-

ing phase. The CASIA NIR-VIS 2.0 restricts algorithms to one gallery

per subject during the testing phase. Therefore, there are only 358

gallery images for the comparison, while there are about 6000 probe

NIR images for testing.

In addition to the higher number of images in NIR-VIS 2.0, some

of the images in this dataset contain more challenging non-frontal

poses, while the HFB images were taken in a more controlled envi-

ronment. Moreover, the restriction of one image per gallery subject,

makes the NIR-VIS 2.0 dataset more challenging. Tables 4 and 5 show

the results of the proposed method compared to the other methods

in the literature for the NIR-VIS 2.0 and HFB datasets, respectively.

Following Ref. [60], the reported result is the average of 10 differ-

ent experimental setups. The results show that our method performs

Fig. 4. Overall CMC curves from testing PLS, DPM, CpNN, PLS◦DPM, PLS◦CpNN, GAN-
VFS, and CpGAN using polarimetric and thermal probe samples, matching against a

visible spectrum gallery.
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Table 6

Rank-1 identification rate for cross-spectrum face recognition using polarimetric thermal and conventional thermal (S0) probe imagery.

Scenario Rank-1 Identification Rate

Probe PLS DPM CpNN PLS◦DPM PLS◦CpNN GAN-VFS CpGAN

Overall Polar 0.5867 0.8054 0.8290 0.8979 0.9045 0.9382 0.9549

Therm 0.5305 0.7531 0.7872 0.8409 0.8452 0.8561 0.8905

Expressions Polar 0.5658 0.8324 0.8597 0.9565 0.9559 0.9473 0.9684

Therm 0.6276 0.7887 0.8213 0.8898 0.8907 0.8934 0.9176

Range 1 Baseline Polar 0.7410 0.9092 0.9207 0.9646 0.9646 0.9653 0.9867

Therm 0.6211 0.8778 0.9102 0.9417 0.9388 0.9412 0.9637

Range 2 Baseline Polar 0.5570 0.8229 0.8489 0.9105 0.9187 0.9263 0.9659

Therm 0.5197 0.7532 0.7904 0.8578 0.8586 0.8701 0.8993

Range 3 Baseline Polar 0.3396 0.6033 0.6253 0.6445 0.6739 0.8491 0.8987

Therm 0.3448 0.5219 0.5588 0.5768 0.6014 0.7559 0.7912

very well compared to the other methods on the NIR-VIR 2.0 dataset

which is more challenging. Moreover, since many other methods

have been developed for NIR and evaluated on the HFB dataset, the

improvement of 1% in Rank-1 identification performance achieved

by the proposed algorithm is significant.

4.6. Polarimetric thermal results

For the polarimetric thermal face dataset, we consider the same

CpGAN architecture. We pass S0, S1, and S2 to the NVis-GAN’s three

channels as the input as shown in Fig. 3.

In each experiment, the dataset is partitioned randomly into the

training and testing sets. The same set of training and testing data

is used to evaluate PLS, DPM, CpNN, PLS◦DPM, PLS◦CpNN, GAN-
VFS [38], and the proposed CpGAN network. Fig. 4 shows the overall

cumulative matching characteristics (CMC) curves for our proposed

method and the other state-of-the-art methods over all the three dif-

ferent data ranges as well as the expressions data at Range 1. For

the sake of comparison, in addition to the polarimetric thermal-to-

visible face recognition performance, Fig. 4 also shows the results for

the conventional thermal-to-visible face recognition for some of the

methods, namely PLS, PLS◦DPM, PLS◦CpNN, CpNN, and CpGAN. For

conventional thermal-to-visible face recognition, all the mentioned

methods follow the same procedure as before, except only using the

S0 Stokes image. Fig. 4 illustrates that exploiting the polarization

information of the thermal spectrum enhances the cross-spectrum

face recognition performance compared to using the conventional

intensity-only information alone. Fig. 4 also shows the superior per-

formance of our approach compared to the state-of-the-art methods.

In addition, ourmethod could achieve perfect accuracy at Rank-5 and

above.

Table 6 tabulates the Rank-1 identification rates for five different

scenarios: overall (which corresponds to Fig. 4), Range 1 expres-

sions, Range 1 baseline, Range 2 baseline, and Range 3 baseline. In

our proposed approach, exploiting polarization information enhance

the Rank-1 identification rate by 1.87%, 5.13%, 4.49%, and 5.92%

for Range 1 baseline, Range 1 expression, Range 2 baseline, and

Range 3 baseline compared to conventional thermal-to-visible face

recognition. This table reveals that using deep coupled generative

adversarial network technique with the contrastive loss function to

transform different modalities into a distinctive common embed-

ding subspace is superior to the other embedding techniques such

as PLS◦CpNN. It also shows the effectiveness of our method in

exploiting polarization information to improve cross-spectrum face

recognition performance.

5. Ablation study

In order to illustrate the effect of adding different loss functions

and their improvement in our proposed framework, we perform a

study with the following evaluations using the polarimetic dataset:

1) Polar-to-visible using the coupled framework with using only

Lcpl + LE loss, 2) Polar-to-visible using the proposed framework with

Lcpl + LE + LGAN loss functions, and 3) Polar-to-visible with all

the loss functions in the proposed framework (Eq. (21)). Fig. 5 shows

the reconstruction results for a random subject in this dataset. We

can conclude from Fig. 5 (c), that using Lcpl + LE loss results in a

blurry image with reduced high frequency details. However, adding

LGAN loss function (Eq. (14)) to the framework leads to a sharper and

more vivid images. Moreover, by adding the perceptual loss to the

NVis-GAN sub-network, the results become more visually pleasing

by removing some artifacts added by LGAN.

For better understanding of different loss functions and their

effect on the proposed framework results, we plot the receiver oper-

ation characteristic (ROC) curves corresponding to the mentioned

three different settings of the framework. As it is shown in Fig. 6

the LGAN has an important rule in the enhancement of our pro-

posed approach. Also, adding a perceptual loss enhances the face

recognition performance as well as generating visually more realistic

images.

Fig. 5. Comparison of visible face images synthesized with different experimental configurations. (a) Raw polarimetric image (S0 is just shown in here). (b) Ground truth visible

images. (c) Reconstructed images with Lcpl + LE . (d) Reconstructed images with Lcpl + LE + LGAN . (e) Reconstructed images with CpGAN (Eq. (21)).
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Fig. 6. The ROC curves corresponding to the ablation study.

6. Conclusion

In this work, we proposed a coupled generative adversarial net-

work to synthesize visible image from a non-visible image for

the heterogeneous face recognition task. The CpGAN contains two

GAN based sub-networks dedicated to visible and non-visible input

images. The proposed network is capable of transforming the visible

and non-visiblemodalities into a common discriminative embedding

subspace and subsequently synthesizing the visible images from that

subspace. In order to efficiently synthesize a realistic visible image

from the non-visiblemodality, a densely connected encoder-decoder

structure is used as the generator in each sub-network. An ablation

study was performed to demonstrate the enhancement obtained by

different losses in the proposed method. The experiments on differ-

ent HFR datasets with different range of electromagnetic spectrum

showed the effectiveness of the proposed method compared to the

other state-of-the-art methods. The results also revealed that the

proposed framework could exploit polarimetric thermal information

to enhance the thermal-to-visible face recognition performance.
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