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a b s t r a c t 

The objective for this work is to develop a data-driven surrogate to high-fidelity numerical flow simu- 

lations using digital images of porous media. The proposed model can capture the pixel-scale velocity 

vectors in a large verity of digital porous media created by random two-dimensional (2D) circle packs. To 

develop the model, images of the 2D media (binary images of solid grains and void spaces) along with 

their corresponding velocity vectors at the pixel level computed using lattice Boltzmann simulation runs 

are used to train and to predict the solutions with a high accuracy in much less computational time. The 

velocity vector predictions made by the surrogate models are used to compute the permeability tensor 

for samples that have not been used in the training. The results show high accuracy in the prediction of 

both velocity vectors and permeability tensors. The proposed methodology harness the enormous amount 

of generated data from high-fidelity flow simulations to decode the often under-utilized patterns in sim- 

ulations and to accurately predict solutions to new cases. The developed model can truly capture the 

physics of the problem and enhance the prediction capabilities of the simulations at a much lower cost. 

These predictive models, in essence, do not spatially reduce the order of the problem. They, however, 

possess the same numerical resolutions as their Lattice Boltzmann simulations equivalents do with the 

great advantage that their solutions can be achieved by a significant reduction in computational costs 

(speed and memory). 

© 2020 Elsevier Ltd. All rights reserved. 

1. Introduction 

1.1. Image-based flow simulations 

Darcy’s principles [7] describe the fluid flow of single-phase flu- 

ids in porous media at low Reynolds numbers, which is of signif- 

icant importance in earth sciences, hydrology, and petroleum en- 

gineering. According to the Darcy equation, pressure gradients are 

linearly proportional to the fluid rate; the proportionality constant 

is permeability, which is merely a function of pore space topol- 

ogy of porous media irrespective of the fluid type. In numerical 

flow simulators for porous media, permeability values are obtained 

based on the data collected from the field and experiments. An 

accurate quantification of permeability is difficult due to the vari- 

ations in pore space morphology characteristics. Permeability has 

been obtained from experiments and also from analytical and em- 

pirical expressions that relate permeability to some attributes of 

the porous media, such as porosity and pore size distribution. The 

analytical expressions are, however, only approximations for ideal 
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cases while the empirical expressions have utility only in media 

similar to scenarios for which they were obtained and thus, are 

inaccurate when applied to a wide range of other media. Experi- 

mental approaches are generally preferred when it is not possible 

to account for all relevant physics by an equation or model; how- 

ever, they tend to be time consuming and expensive. Furthermore, 

they do not capture the effect of pore space morphology charac- 

teristics on the flow field and thus, on permeability. 

For certain properties, such as permeability, hydraulic tor- 

tuosity, and inertial factors of the porous media, high-fidelity 

numerical simulations using digital images have become a credible 

alternative, enabled by improvements of imaging techniques, 

numerical methods, and computing power [38,51] . Appealing 

aspects of this approach include the ability to probe pore-scale 

physics at a level not possible with traditional experiments and 

the ability to perform an endless set of numerical tests without 

degrading or altering the sample. There are considerations that 

can limit this digital approach including whether the imaging 

technique can resolve all relevant characteristic scales in the pore 

space and whether numerical algorithms can accurately model 

the physical processes. Higher resolution, however, mandates 

higher computation power. In high-fidelity numerical simulation 

https://doi.org/10.1016/j.compfluid.2020.104475 
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models, the expensive computational costs, the intensive memory 

requirements, and the poor scaling performances have traditionally 

prevented their applications beyond toy or small-scale problems, 

even using the modern high-performance computing systems. 

In image-based pore-scale modeling, the domain is discretized 

into nodes, voxels, or volume elements, and the resulting grid is 

used to numerically approximate the relevant partial differential 

equations for flow, namely computational fluid dynamics (CFD). 

There is a group of numerical modeling techniques that can utilize 

the voxel data from X-ray tomography or similar methods as the 

numerical grid. This gridding approach has become widely used in 

porous media studies in conjunction with the lattice Boltzmann 

(LB) simulations and has been proved to be highly effective for 

simulating fluid flow through porous media [51] . 

LB simulations have been applied to flow simulations of real- 

istic porous media to compute permeability [9,18,45] with the ad- 

vantage of being flexible in the specification of variables on the 

complex boundaries in terms of simple particle bounce back and 

reflection. This flexibility has opened up the potential in its use for 

modeling and simulating flow in complex media, such as porous 

rocks. Challenges for applying LB to real problems include finite- 

size effects and relaxation time dependence of no-flow boundaries. 

In image-based simulations, the accuracy of the calculated macro- 

scopic properties depends on the spatial resolution of the rock 

image [11,28] . However, there is always a trade-off between im- 

age resolution and computational power. Furthermore, in all digital 

samples, there is a resolution threshold, below which certain flow 

characteristics, such as re-circulation, are not resolved [25] . 

An extensive research has been performed to study LB mod- 

eling of fluid flow in the porous media [1,2,10,27–29,32] . Addi- 

tionally, Pan et al. [30,31] and Stewart et al. [43] studied the ef- 

fect of sphere size, spatial discretization, and fluid viscosity (relax- 

ation parameter) on the computed permeability of random-sphere 

packs and Maier et al. [26] investigated flow of single-phase fluid 

through a column of glass beads. Takbiri Borujeni [48] studied the 

applicability of lb simulations in porous media for a wide range 

of Re and verified the results against experimental and other CFD 

methods. Their computed permeability tensor and non-Darcy fac- 

tors were validated experimental flow measurements. They also 

showed that for Re < 1 permeability is not a function of topol- 

ogy of porous media (not a function of pressure gradient and flow 

velocity), i.e., can be described by the Darcy equation. 

The main advantage of pore-scale flow simulations is that ex- 

plicit influence of each impacting factor can be studied by isolating 

the effect of other parameters. Attempts of this tabulation of all 

these impacts have not been manageable yet since such a multi- 

dimensional parametric study requires comprehensive efforts and 

time. In this respect, this work aspires to change the status quo 

and make a transformative leap by combining pore-scale modeling 

with physics-based ML [34–36,49,50] to develop surrogate mod- 

els, which can be used to determine the flow fields at very little 

additional cost. It is also important to note that, using a trained 

and validated data-driven surrogate model will give us a luxury 

of performing pore-scale flow simulations, in which computational 

expenses are not restrictive. 

Recently, there have been numerous studies of the application 

of ML in CFD, most of which are limited to building interpretable 

reduced-order models (ROMs) [14,15,47,54] . In ROMs, where the 

number of variables is reduced to simplify the governing equations 

and the relationships between inputs and outputs, some details are 

inevitably overlooked. On the other hand, the widespread success 

of ML-based predictive modeling in other disciplines, such as au- 

tonomous cars, suggests a great opportunity to advances in the 

state-of-the-art by combining conventional CFD simulation tech- 

niques with predictive capabilities of data-driven surrogate models 

to truly capture the physics of the problem and enhance prediction 

capabilities of the simulations at a much lower cost. They, however, 

possess the same numerical resolutions as their CFD equivalents 

do with the great advantage that their solutions can be achieved 

by a significant reduction in computational costs (speed and mem- 

ory). Essentially, the predictive models learn the nature of com- 

munications among grid cells and decode the spatial correlations 

between them (auto- and cross-correlations) in the entire compu- 

tational domain and can accurately predict solutions to completely 

new sets of simulation runs, from beginning to end. 

Recently, Convolutional Neural Networks (CNNs) with hierarchi- 

cal feature learning capability has outperformed the state of the 

art in many computer vision tasks, including image classification 

[41] , segmentation [24] , and synthesis [13] . Despite in classifica- 

tion tasks, where the network predicts a single class label for an 

input image, in many visual tasks, the desired output could be a 

class label, or a continuous value, assigned to each pixel of the in- 

put image [59] . 

Ciresan et al. [6] predicted the class label of each pixel by train- 

ing a network in a sliding-window fashion which takes a patch 

around each pixel. This network, then, is able to localize and also is 

more robust to overfitting the training data, i.e., generated patches, 

is much larger than the number of training images. However, this 

framework is quite slow due to the separate processing of each 

patch, which results in a lot of redundancy on overlapping patches. 

Moreover, such networks should deal with the trade-off between 

the localization and context. Large patches need many pooling 

layers that can reduce the localization performance, while small 

patches only incorporate little context information in the final de- 

cision. More recent studies [24,39] proposed to fuse the fine to 

coarse features from multiple layers in different depth. This en- 

ables the network to achieve an accurate localization while hav- 

ing a large receptive field (context) at the same time. In the work 

performed by Ronneberger et al. [37] , the authors introduced U- 

Net which employed contracting path in its Auto-Encoder archi- 

tecture to capture context and enable precise localization. Further- 

more, training a very deep neural network is quite a challenging 

task. More specifically, it is hard for a deep network to find an 

optimal solution compared to shallower counterparts. One of the 

main issues in training a deep network is the vanishing gradient 

problem, making it difficult to tune the parameters of the early 

layers in the network [12] . In the past couple of years, multiple 

training strategies have been proposed to train a deep neural net- 

work effectively, including deep supervision in hidden layers [23] , 

initialization scheme [12] , and batch normalization [17] . He et al. 

[16] introduced residual connections in which they employ addi- 

tive merging of signals to improve the training speed, and gradient 

flow through the networks. 

For clarification, the terminology used in the remainder of the 

paper is the following. The term input is used to denote the bi- 

nary (zeros and ones) images of porous media, where 0 denotes 

the void spaces and 1 denotes the solid grains. The term pixel and 

numerical grids are used interchangeably due to the fact that the 

numerical method, LB, use image pixels as the numerical grid. The 

term output refers to the velocity vectors computed at each pixel 

of each input using LB simulations. 

1.2. Application of data-driven modeling in engineering problems 

Applications of ML have gained lots of popularity in the past 

few years throughout various industries. The application of ML 

in CFD has gained considerable interest recently, mostly to build 

ROMs. However, in such applications of ML in CFD, it is inevitable 

to overlook some details. On the other hand, predictive ML tech- 

niques suggest a greater opportunity, when the conventional CFD 

simulation techniques are combined with predictive capabilities of 

data-driven models. Such approaches can truly capture the physics 
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of the problem and enhance the prediction capabilities of the sim- 

ulations at a much lower cost. 

Unlike the automotive industry, the application of Artificial In- 

telligence (AI) in CFD has been limited to interpretable models 

from data [21,40,53] , and predictive models are yet to be em- 

ployed. The widespread success of predictive modeling in complex 

problems suggests a great opportunity to advances in the state-of- 

the-art by combining conventional CFD simulation techniques with 

ML predictive modeling to truly capture the physics of the problem 

and enhance prediction capabilities of the simulations at a much 

lower cost. This can be achieved by developing physically inter- 

pretable spatio-temporal simulations of complex CFD problems and 

introducing a significant reduction in computational cost (speed 

and memory). 

2. Lattice Boltzmann Mmethod 

The Boltzmann equation is 

∂ f α

∂t 
+ e α . ∇ f α = �α , (1) 

where f α( x , t ) is the fraction of fluid particles that have traveled in 

the α-direction in the phase space directions, e α is the particle ve- 

locity in the α-direction, and �α is the collision operator [3] . The 

LB simulation method is a discrete form of the continuous Boltz- 

mann equation in which time and space are discretized with ve- 

locity limited to a finite set of admissible directions in which the 

particles can travel [5,46] . The basic LB algorithm consists of two 

steps; particle streaming and collision. In the streaming step, the 

transfer of the particles between nodes along a particular velocity 

direction occurs. In the collisions step, momentum exchange be- 

tween the particles takes place due to collision with each other at 

a particular node. Bhatnagar-Gross-Krook (BGK) [33,44] and Multi- 

ple Relaxation Time (MRT) [8] models have been proposed to ap- 

proximate the collision term. In the BGK approximation, particle 

distribution evolves due to collision tending toward an equilibrium 

distribution function which is defined by the macroscopic veloc- 

ity at that particular point. The collision term in the BGK model is 

given by 

�α = 
f α(x , t) − f eq α (x , t) 

τ
, (2) 

in which τ is the relaxation time that measures the rate at which 

the distribution functions tend towards equilibrium and also is a 

tuning parameter that controls the fluid kinematic viscosity, 

ν = 
2 τ − 1 

6 
, (3) 

and f eq α are the equilibrium distributions calculated in terms of u eq 

that incorporates external forces, F b , [46] 

f eq α = w αρ

[

1 + 
( e α . u eq ) 

c s 2 
+ 

(e α . u eq ) 2 

2 c s 4 
−

(u 
eq 

) 2 

2 c s 2 

]

, (4) 

where, 

u 
eq = u + 

(

τ

ρ

)

F b , 

w α = 

{ 
4 / 9 , α = 0 
1 / 9 , α = 1 , 2 , 3 , 4 
1 / 36 α = 5 , 6 , 7 , 8 

} 

. 

where w α are weight factors specific to different directions, c s = 

1 / 
√ 
3 is the speed of sound in the fluid in the lattice unites [5] , u eq 

and u are equilibrium flow velocity and fluid velocity, respectively, 

and ρ is the fluid density. In LB simulations, parameterized values 

of the lattice constants and fluid in lattice units are used in sim- 

ulation while correspondence between the physical systems being 

Fig. 1. Depiction of the D 2 Q 9 model. 

Fig. 2. Depiction of the periodic boundary conditions. 

simulated and the parameterized simulation is achieved through 

Reynold‘s number [4] . 

The macroscopic quantities, such as density and momentum 

density, are defined as velocity moments of the distribution func- 

tion as follows, 

ρ = 

∑ 

α

f α , 

ρu = 

∑ 

α

f αe α . (5) 

In this work, the D 2 Q 9 model (two dimensions and nine directions 

of fluid movement) is used ( Fig. 1 ). Velocity vectors for this model 

are described below, 

e α = 

[

cos 

(

2 π (α − 1) 

8 

)

, sin 

(

2 π (α − 1) 

8 

)]

, 

α = 1 , 2 , . . . , 8 . (6) 

Periodic boundary conditions are applied to all the external 

faces in x- and y-direction ( Fig. 2 ). For nodes on a boundary, neigh- 

boring points are on the opposite boundary. For instance, com- 

ponents of the particle distribution functions coming out of one 

boundary (directions 1, 5, and 8 at the outlet on the right side of 

Fig. 2 ) enter into the opposite boundary (at the inlet on the left 

side of Fig. 2 ). 

The bounce-back boundary scheme is used to implement the 

no-flow boundary conditions at the void-solid interfaces [5,48] . In 

this scheme, the distribution function traveling from a fluid node 
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Fig. 3. Schematic of flow simulations in (a) x-direction and (b) y-direction. 

to a neighboring solid node is bounced back along the same link. 

This ensures a zero velocity vector on the bounce back node as 

obtained in real fluid flows. LB simulations in this study are per- 

formed using the Parallel Lattice Boltzmann Solver (PALABOS) [22] . 

Permeability is calculated from the Darcy equation, 

〈 u 〉 = 
K 

μ
F b , (7) 

or, 

(

〈 u x 〉 
〈 u y 〉 

)

= 
1 

μ

(

K xx K xy 
K xy K yy 

)(

F b x 
F b y 

)

where, 

〈 u 〉 = 
1 

V 

∫ 

V p 

u dV 

in which K is the permeability tensor of the porous medium, 〈 u 〉 
is the average velocity vector of the fluid in the domain, μ is the 

viscosity of the fluid, and F b is the body force exerted. The rela- 

tionship between the intrinsic average velocity ( 〈 u 〉 p = 
1 
V p 

∫ 

V p 
u dV ) 

and average velocity is 〈 u 〉 = ε〈 u 〉 p , where ε = V p /V is the poros- 

ity of the media and p denotes the pore [55] . Velocity values in 

each grid are computed in all directions using the LB simulations 

to determine the permeability tensor. 

All the simulations are tested to verify that they have reached 

steady-state conditions, where the kinetic energy of the system be- 

comes constant. A body force approach, which is an alternative to 

specifying pressure values at the inlet and outlet of the domain, 

is used [48] . A body force of 1 . 0 e −7 in lattice units [5] is used in 

x-direction ( F b = (F b x , 0) ) and y-directions ( F b = (0 , F b y ) ) for simu- 

lating fluid flow in x- and y-directions, respectively ( Fig. 3 ). 

The relaxation time is set to be 1.0 for all the simulations, re- 

sulting in a kinematic viscosity of 1/6 according to Eq. 3 . Hav- 

ing reasonably large pore sizes in the input images (more than 10 

grids in general), calculation of the permeability is done without 

substantial numerical errors (finite-size errors and relaxation-time 

dependence of the no-flow boundaries) [51,52] . Reynolds number 

resulting from this choice of the body force ranges from 0.002 to 

0.017 with an average of 0.007, which shows that the flow is in the 

Darcy flow regime ( Re < 1) [48] . 

3. Methodology 

In LB simulations, the solutions, u ( s , x ( s )) , are obtained at spa- 

tial locations s , where the pixels of the binary input image x ( s ) 

and S = { s 1 , . . . , s n s } are the index set for the spatial grid locations, 
s ∈ S ⊂ R d s (d s = 1 , 2 , 3) are the spatial locations. The simulations 

can be considered as a mapping of x ∈ { 0 , 1 } ⊂ R d x n s to its corre- 

sponding solution u ∈ U ⊂ R d u n s , 

η : { 0 , 1 } → U , (8) 

where u = η(x ) . The purpose for building the surrogate model is to 

develop a new mapping function, ˆ u = F(x, θ) , to be trained using 

a limited number of simulation data, D = { x i , u i } N 
i =1 with θ as the 

model parameters and N as the number of simulation runs in the 

training, to approximate the predictions made by η mapping. 

LB simulations are performed over computer-generated 2D 

porous media consisting of random circle packs, which provide a 

number of advantages for testing pore-scale modeling algorithms. 

The most intuitive advantage is the ability to fully control the pore 

structure. Another advantage related to image-based modeling is 

that the geometric-based data, e.g., locations and sizes of solid 

grains in a random packing can be converted to voxel data at any 

desired image resolution without segmentation error. Computer- 

generated packings have been widely used to simulate granular 

materials. In some cases, unconsolidated sphere packs have been 

modified using procedures that mimic diagenetic processes, thus 

producing consolidated materials [2,19,58] . 

We generated two-dimensional random circle pack images of 

size 128 × 128 pixels ( n s = H ×W, where H = W = 128 ), consist- 

ing of 5 to 10 grains (circles) with 15 to 36 pixels diameter with 

random positions. A total of 20 0 0 images are generated for LB sim- 

ulation runs to determine the permeability. 

4. Deep convolutional neural network 

Neural networks and specially CNNs, are known for being a 

powerful tool with the ability to process high dimensional data 

and vast data sets. The universal approximation theorem indicates 

that NNs can approximate any arbitrary functions on compact sub- 

spaces. NNs comprise a set of vector-valued functions known as 

layers of neurons. Each layer learns a linear transformation of the 

input vector, x ( s ) , through its matrix of weights, θ, and vector of 

biases, b . A non-linear activation function, F , is then applied to the 



A. Takbiri-Borujeni, H. Kazemi and N. Nasrabadi / Computers and Fluids 201 (2020) 104475 5 

Fig. 4. U-ResNet architecture. 

result and yields the velocity vector, 

u = F( θx + b) . (9) 

The rectified linear unit (ReLU) activation function was used for all 

the layers but the last layer which is tanh to limit the output be- 

tween -1 and 1. The weights and biases of the network are trained 

by minimizing an error metric between the predicted output by 

the network and the corresponding ground truth in the training 

set. 

CNNs, on the other hand, can be considered as a locally con- 

strained form of neural networks, inspired by the structure of 

the visual cortex. They are highly employed for data like images 

which have hierarchical local structure. Their superiority in such 

data comes from eliminating the redundant parameters in the neu- 

ral networks model. Each convolutional layer comprises a certain 

number of filters (aka kernels), which are locally connected neu- 

rons with fewer sizes than input. Then the filters can be convolved 

with the input to produce output. Since the weight matrices are 

shared across the whole input, the number of parameters in a 

convolutional model is significantly reduced compared to a sim- 

ple feed-forward neural network. Generally, several filters are em- 

ployed in a single layer, which form the depth of the output, where 

each filter extract different types of feature from their inputs. Con- 

sequently, the output of a convolutional layer is a 3D tensor (aka 

feature maps). Convolutional layers are able to distill structure and 

improve the robustness of the neural networks. 

In order to achieve an accurate and efficient model, we em- 

ploy a deep CNN (DCNN) based on contracting paths and residual 

blocks. CNNs have been proven successful in geometry representa- 

tion learning and per-pixel prediction in images. The other motiva- 

tion for adopting CNNs is its memory efficiency. Memory require- 

ment is a bottleneck to build whole velocity field surrogate mod- 

els for large geometry shapes. The sparse connectivity and weight- 

sharing property of CNNs reduce the GPU memory cost greatly. 

Since the network consists of only convolutional layers, it can 

take any arbitrary-sized image as input and generate an output 

of a similar size. For down-sampling, we use convolutional lay- 

ers with increased stride instead of pooling layers. After a series 

of successive strided convolution, the spatial size of feature maps 

becomes much smaller than that of the input image. To increase 

the computational capacity of the network, the generated feature 

maps by the last strided convolution is followed by multiple resid- 

ual blocks before upscaling to the same size as the input image. 

The residual connections improve the gradients flow at the train- 

ing time. Finally, to rescale the feature maps to the size of the 

input image, we exploit Nearest Neighbor (NN) up-sampling fol- 

lowed by a convolutional layer, instead of deconvolutional layers 

[57] to prevent checker-board artifacts. Generally, as we go deeper 

into a DCNN, the size of receptive field increases, which means the 

learned feature maps represent more abstract and global contex- 

tual features. However, the information about the exact local struc- 

ture of the image may be lost. On the other hand, the feature maps 

in early layers, which have smaller the receptive fields, preserve 

the local structure information. This information is critical for ef- 

fective velocity field predictions. Consequently, to preserve the lo- 

cal structure information, high resolution features from the con- 

tracting path (down-sampling) are combined with the output of 

the NN up-sampling layer. Then, the subsequent convolution learns 

to produce a more precise output based on this information. Ex- 

ploiting the learned discriminative features by the proposed DCNN, 

we can produce an accurate prediction of velocity fields. 

4.1. Architecture set-up 

To infer the velocity maps, we use a CNN architecture, whose 

input is the 2D images of the porous media geometry, where solid 

circles represent the solid grains. The CNN model is parameterized 

by its weights and biases. Fig. 4 shows the architecture of the pro- 

posed network. It consists of 6 strided convolutions which reduce 

the size of input by a factor of 64, followed by four residual blocks. 

At each layer, features are generated from local interactions of in- 

puts and these local interactions combine to capture higher-level 

global behavior in the deeper layers of the network. However, a 

single resolution network would have limited context which limits 

the network‘s ability to model long-range dynamics resulting from 

the periodic boundary conditions chosen for this problem. As such, 

we add multi-resolution features to enable modeling long range 

physical phenomenon by downsampling the first hidden layer six 

times, processing resolutions in parallel then upsampling the re- 

sultant low-resolution features before accumulating them. 

Employing strided convolutions can significantly reduce the 

amount of computation that has to be done by the network in the 

subsequent layers. It compresses multiple 3 × 3 convolution into 

one 7 × 7 convolution, to make sure that it has exactly the same 

receptive field. Each residual block consists of two 3x3 convolu- 

tional layers. Finally, In order to obtain the final prediction map, 

we add six subsequent up-sampling blocks on top of the residual 

blocks. Neural nets typically use multiple layers of deconvolution 

when creating images, iteratively building a larger image out of 

a series of lower resolution descriptions. While it is possible for 

these stacked deconvolutions to cancel out artifacts, they often 

compound, creating artifacts on a variety of scales. To avoid these 

artifacts, we separate out upsampling to a higher resolution from 

convolution to compute features, i.e., we resize the image (using 

nearest-neighbor (NN) interpolation) and then apply a convolu- 

tional layer. The input to each up-sampling block is the feature 

maps of the previous layer concatenated in depth with those of 

the contracting down-sampling path. As mentioned earlier each 
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Fig. 5. Sample augmentation. Original samples in (a) are flipped (b) horizontally, (c) vertically, and (d) horizontally and vertically. 

up-sampling block comprises successive NN-upsampling and 3x3 

convolution with unit stride. Note that all the convolutions are 

followed by a Batch Normalization and rectified linear unit (ReLU) 

activation function. Since our input (geometry input image) is 

the simulated velocity fields we employ reflection 1x1 padding 

for all the convolutions. Note that since our network is fully- 

convolutional, the size of the domain can be modified at inference 

time. 

Usually, a deep learning model learns the mapping from an in- 

put x to an output u . When the network depth increases, its accu- 

racy starts getting saturated and then degrades very quickly. Un- 

expectedly, overfitting is not the reason for such degradation, and 

adding more layers to a suitably deep model leads to higher train- 

ing error. In fact, this problem appears as a result of gradient van- 

ishing. One solution to this problem was proposed by Zagoruyko 

and Komodakis [56] to use Resnet blocks, which connect the out- 

put of one layer with the input of an earlier layer. Instead of learn- 

ing a direct mapping, the residual function R ( i ) learns the differ- 

ence between the applied mapping to i and the original input, i . 

Residual blocks are basically a special case of highway networks 

[42] without any gates in their skip connections. Essentially, resid- 

ual blocks allow the flow of memory (or information) from initial 

layers to the last layers. Despite the absence of gates in their skip 

connections, residual networks perform as good as any other high- 

way network in practice. The idea of skipping connections between 

the layers was first introduced in Highway Networks. Highway net- 

works had skip connections with gates that controlled how much 

information is passed through them and these gates can be trained 

to open selectively. 

To train the network, we first normalize the velocity maps. To 

train the surrogate model, sample augmentation (increasing the 

number of data samples by performing transformations on the 

existing ones) was performed by flipping the maps horizontally 

and/or vertically ( Fig. 5 ). As can be seen, any single input-output 

data sample pair can be transformed to generate three new sam- 

ples, which restricts the need for using new input-output sample 

pairs. 

We have considered L 1 regularized mean absolute error (MAE) 

training loss function. The input and the corresponding velocity 

vector maps are used to update the parameters of the network 

minimizing the L 1 norm error, 

L 1 
(

ˆ u (( x , θ) , u ) 
)

= 
1 

n 

n 
∑ 

i =1 

‖ ˆ u i − u i ‖ 1 + λ�( θ) , (10) 

where �( θ) = ‖ θ ‖ 1 for L 1 regularization, n is the number of sam- 

ples in the training data in N simulation runs, and λ is the regular- 

ization strength. The L 1 regularization has the intriguing property 

that it leads the weight vectors to become sparse during optimiza- 

tion (i.e. very close to exactly zero). In other words, neurons with 

L 1 regularization end up using only a sparse subset of their most 

important inputs and become nearly invariant to the noisy inputs. 

Adam optimization technique [20] is used with a learning rate of 

1 e − 3 , and an L 1 regularization parameter of 2 e − 5 . The network 

was implemented in Pytorch running on an NVIDIA TITAN Xp GPU. 

The network is trained for 500 epochs and the model with the 

minimum error on validation is selected. 

4.2. Evaluation metrics 

We also used several metrics to quantitatively evaluate the 

trained models on the test data. In particular, we consider the fol- 

lowing: 

Pearson Correlation coefficient 

The similarity of the predicted velocity maps and their corre- 

sponding ground truth maps are quantified using the Pearson cor- 

relation coefficient (PCC) averaged over all the pixels of test data 
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Fig. 6. Test L 1 error calculated for different numbers of training data used. 

Fig. 7. Training and validation loss curve. 

samples: 

P CC = 
cov ( ̂  u , u ) 

σ ˆ u .σu 
(11) 

where σˆ y and σ y are the standard deviations of f and y . PCC is 

a measure of how the normalized variables tend to have the same 

sign and magnitude. A value of -1 indicates total disagreement and 

+1 total agreement. The correlation coefficient is 0 for completely 

random predictions. 

Normalized Mean Squared Error (NMSE) 

We calculate per-pixel NMSE which is an estimator of the over- 

all deviations between predicted and measured values. The nor- 

malization of the MSE by the product of the observed and pre- 

dicted means assures that the NMSE will not be biased towards 

models that tend to over predict or under predict. Note that, 

smaller values of NMSE denote better model performance. The 

NMSE is defined as: 

NMSE = 
1 

T 

T 
∑ 

i =1 

‖ ˆ u 
i − u i ‖ 2 2 

¯̂ u . ̄u 
(12) 

where ¯̂ u = 
∑ T 

i =1 ˆ u 
i 
/T and ū = 

∑ T 
i =1 u 

i /T . 

Fractional Bias 

This fractional bias (FB) is normalized mean error and is dimen- 

sionless. It can vary between +2 and -2 and has an ideal value of 

zero for an ideal model. It is defined as: 

F B = 2 
ū − ¯̂ u 

ū + ¯̂ u 
(13) 

5. Results 

To develop the model, velocity values for the entire output set 

are normalized between zero and one (the minimum value of the 

velocity values is transformed linearly into zero, the maximum 

value is transformed into one, and every other value is transformed 

into a decimal between 0 and 1). All the simulation cases are di- 

vided into two sections; the first section with 12.8% of the data is 

used to train the model while the remaining data are used as test 

data. For the training, only x-direction flow, F b = (F b x , 0) , is used. 

The test portion of the data, which is not used in the training pro- 

cess, is only used to examine the predictive capabilities and the 

robustness of the model. All the data samples for y-direction flow, 

F b = (0 , F b y ) , are used as test data. 

The surrogate model was trained with different number of 

training data ( Fig. 6 ). By increasing the number of training sam- 

ples from 8 to 512, L 1 loss decreases from 2 . 23 e −2 to 7 . 31 e −3 . As 

the number of training data increases, the training error increases 

and validation error decreases; the gap between the training and 

validation error losses decrease, which signifies the reduction in 

the model variance. There are negligible differences (gap) between 

the training and validation errors, which show that the model ben- 

efits from both low bias and low variance errors. 

For the remainder of the paper, the model trained by 12.8% of 

the data (256 out of 20 0 0 total images) is used to evaluate the 

Fig. 8. Side-by-side comparison of the x-direction velocity values in x-direction flow predicted by the surrogate model vs. LB simulations results for two the training cases. 

(a) input images used for simulations; (b) model predictions; (c) LB simulation results; (d) absolute error percentage between (b) and (c); and (e) distribution of error 

percentage. Velocities are in lattice units, [ lu ]. 
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Fig. 9. Side-by-side comparison of the y-direction velocity values in y-direction flow predicted by the surrogate model vs. LB simulations results for two test samples. 

(a) input images used for simulations; (b) model predictions; (c) LB simulation results; (d) absolute error percentage between (b) and (c); and (e) distribution of error 

percentage. Velocities are in lattice units, [ lu ]. 

Fig. 10. Side-by-side comparison of the y-direction velocity values in x-direction flow predicted by the surrogate model vs. LB simulations results for two test samples. 

(a) input images used for simulations; (b) model predictions; (c) LB simulation results; (d) absolute error percentage between (b) and (c); and (e) distribution of error 

percentage. Velocities are in lattice units, [ lu ]. 

model robustness in predicting the velocity values for the test data. 

The training and validation loss curve for the training process is 

depicted in Fig. 7 . 

The performance of the surrogate model in predicting the grid- 

level velocity in the leading directions (x-direction velocity in x- 

direction flow and y-diction velocity in y-direction flow) is demon- 

strated in Figs. 8 and 9 , respectively. The binary images are used 

for the LB simulations are shown in Figs. 8 a and 9 a. The regions 

away from the solid-pore interfaces exhibit higher velocity values 

(both in x- and y-directions) compared to the ones adjacent to the 

interfaces. Contour plots of the velocities for the developed model 

( Figs. 8 b and 9 b, respectively) and those computed using the LB 

simulations ( Figs. 8 c and 9 c, respectively) show similar behavior. 

The velocity values within the solid circles (zero-velocity valued 

grids in Figs. 8 c and 9 c) are accurately predicted ( Figs. 8 b and 9 b). 

The absolute values of the error, | ̂ u i −u i | 
u i max −u i 

min 
, for i th test sample are 

shown in Figs. 8 d and 9 d. Distributions of the error, ˆ u i −u i 

u i max −u i 
min 

, pre- 

dicted are bound within 20% for almost all the cases, confirming 

the plausibility of the approach to accurately replicate numerical 

simulations ( Figs. 8 e and 9 e). 

The performance of the surrogate model in predicting the grid- 

level velocity in the secondary directions (y-direction velocity in x- 

direction flow and x-diction velocity in y-direction flow) is demon- 

strated in Figs. 10 and 11 , respectively. The binary images are used 

for the LB simulations are shown in Figs. 10 a and 11 a. Contour 

plots of the velocities for the developed model ( Figs. 10 b and 

11 b, respectively) and those computed using the LB simulations 

( Figs. 10 c and 11 c, respectively) show similar behavior. The ve- 

locity values within the solid circles (zero-velocity valued grids in 

Figs. 10 c and 11 c) are accurately predicted ( Figs. 10 b and 11 b). The 

absolute values of the error in the samples are shown in Figs. 10 d 

and 11 d. The error distribution predicted is bound within 20% for 

almost all the cases. ( Figs. 10 e and 11 e). 

A grid-by-grid comparison of the predicted velocity values in 

the leading direction (x-direction velocity in x-direction flow) us- 

ing the surrogate model and the LB simulations is performed 

( Fig. 12 ). Velocity profiles in a vertical ( Fig. 12 b) and horizontal 

( Fig. 12 c) cross-sections are depicted for the simulation domain for 

one of the test cases. By inspection of these plots, one can see that 

the surrogate model mimics the LB simulation results with negli- 

gible errors (less than 15%). 

A grid-by-grid comparison of the predicted velocity values in 

the secondary direction (y-direction velocity in x-direction flow) 

using the surrogate model and the LB simulations is performed 

( Fig. 13 ). Velocity profiles in a vertical ( Fig. 13 b) and horizontal 

( Fig. 13 c) cross-sections are depicted for the simulation domain for 

one of the test cases. By inspection of these plots, one can see that 
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Fig. 11. Side-by-side comparison of the x-direction velocity values in y-direction flow predicted by the surrogate model vs. LB simulations results for two test samples. 

(a) input images used for simulations; (b) model predictions; (c) LB simulation results; (d) absolute error percentage between (b) and (c); and (e) distribution of error 

percentage. Velocities are in lattice units, [ lu ]. 

Fig. 12. Grid-by-grid comparison of the x-direction velocity in x-direction flow predicted by the surrogate model vs. LB simulations results for a test sample. (a) depiction 

of the velocity contour plots and the vertical and horizontal cross-sections; (b) velocity profiles along the vertical cross-section of the simulation domain; and (c) velocity 

profiles along the horizontal cross-section of the simulation domain. Velocities are in lattice units, [ lu ]. 

Fig. 13. Grid-by-grid comparison of the y-direction velocity in x-direction flow predicted by the surrogate model vs. LB simulations results for a test sample. (a) depiction 

of the velocity contour plots and the vertical and horizontal cross-sections; (b) velocity profiles along the vertical cross-section of the simulation domain; and (c) velocity 

profiles along the horizontal cross-section of the simulation domain. Velocities are in lattice units, [ lu ]. 
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Fig. 14. Cross-plot of the predicted (a) K xx , (b) K xy , and (c) K yx , and (d) K yy , for test images vs. ground truth in [ lu 2 ]. 

the surrogate model mimics the LB simulation results with negli- 

gible errors (less than 15%). 

The predicted elements of the permeability tensor values for all 

test cases are shown in Fig. 14 . All the points are along the unit- 

slope line, which shows that predicted values are fairly close to the 

LB simulation results. 

As was expected, based on the cross-plots of the predicted per- 

meability values for test images vs. ground truth, the surrogate 

model has high PCC of 0.986 and 0.949 for u x and u y , respectively. 

The NMSE for u x and u y are 0.019 and 0.026, respectively. The FB 

for u x and u y are 0.022 and 0.28, respectively. Based on the re- 

sults, the predicted permeability results for the 2D domains are 

predicted using the surrogate model with high accuracy. 

The LB simulations of 20 0 0 samples takes approximately 19,856 

seconds (330.93 mins) on 4 processors. The implemented algo- 

rithm runs on a single NVIDIA Xp GPU, which requires about 8 

minutes for training 500 epochs with 256 training samples. The 

training mini-batch size is 16. The predictions made by the surro- 

gate model take less 2 seconds on a single GPU, which results in a 

significant amount of speed-up. 

6. Performance of surrogate models trained with less data 

In this section, the performance of the approach presented is 

evaluated using the models trained with fewer number of data 

samples. X-direction velocity profile for flow in the x-direction is 

plotted along a vertical line is depicted in Fig. 15 . It can be seen 

that as the number of the training data increases, the velocity pro- 

files tend to become closer to the LB simulation results (shown 

by the dashed red line in the right figure in Fig. 15 ). It should 

be pointed out that even for the smallest number of training data 

used (32), the x-direction velocity values are within %20 of the LB 

velocity values and their prediction is very close to those of LB 

simulations in the solid grains (zero velocity). 

Cross-plot of the predicted K xx for surrogate models developed 

by 32, 64, 128, and 256 data samples and LB simulation results are 
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Fig. 15. Predicted velocity profiles along the vertical line (depicted on the contour maps of the left figure) for surrogate models trained using 32, 64, 128, and 256 image 

pairs. 

Fig. 16. Cross-plots of the predicted K xx for surrogate models trained using 32, 64, 

128, and 256 image pairs. 

depicted in Fig. 16 . The predicted permeability values using a sur- 

rogate model developed by 256 data samples are more condensed 

along the unit-slope line, showing that the predicted values are 

close to the LB predicted permeability values. For the models de- 

veloped by less number of training data, the predictions are less 

accurate, but they show a fairly accurate permeability values for 

practical applications (within %10 of the ground truth). 

7. Conclusions 

A data-driven surrogate to high-fidelity numerical flow simula- 

tions is presented by employing a deep convolutional neural net- 

work based on contracting paths and residual blocks. The network 

consists of only convolutional layers and can take any arbitrary- 

sized image as input and generate an output of a similar size. The 

developed model captures the flow fields at the grid level for sam- 

ples that had not been used in the development of the model. 

Permeability tensor for the samples of porous media can be de- 

termined with a high accuracy at much lower computational costs 

using the presented approach. This work aspires to make a trans- 

formative leap by combining fluid flow modeling with ML to de- 

velop surrogate models, which can be used to determine the flow 

fields at very little additional cost. 

Our work serves as a proof-of-concept study for determining 

microscopic (pore-scale) flow fields in porous media for determin- 

ing macroscopic (the scales at which physical flow experiments are 

performed, usually larger than Representative Elemental Volumes 

(REVs), at which the properties of porous media, such as poros- 

ity and permeability, are defined (orders of inches, feet, and tens 

of feet)) hydrodynamic properties, e.g., permeability and hydraulic 

tortuosity, using lattice Boltzmann simulations. 
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