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The objective for this work is to develop a data-driven surrogate to high-fidelity numerical flow simu-
lations using digital images of porous media. The proposed model can capture the pixel-scale velocity
vectors in a large verity of digital porous media created by random two-dimensional (2D) circle packs. To
develop the model, images of the 2D media (binary images of solid grains and void spaces) along with
their corresponding velocity vectors at the pixel level computed using lattice Boltzmann simulation runs
are used to train and to predict the solutions with a high accuracy in much less computational time. The
velocity vector predictions made by the surrogate models are used to compute the permeability tensor
for samples that have not been used in the training. The results show high accuracy in the prediction of
both velocity vectors and permeability tensors. The proposed methodology harness the enormous amount
of generated data from high-fidelity flow simulations to decode the often under-utilized patterns in sim-
ulations and to accurately predict solutions to new cases. The developed model can truly capture the
physics of the problem and enhance the prediction capabilities of the simulations at a much lower cost.
These predictive models, in essence, do not spatially reduce the order of the problem. They, however,
possess the same numerical resolutions as their Lattice Boltzmann simulations equivalents do with the
great advantage that their solutions can be achieved by a significant reduction in computational costs

(speed and memory).

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction
1.1. Image-based flow simulations

Darcy’s principles [7] describe the fluid flow of single-phase flu-
ids in porous media at low Reynolds numbers, which is of signif-
icant importance in earth sciences, hydrology, and petroleum en-
gineering. According to the Darcy equation, pressure gradients are
linearly proportional to the fluid rate; the proportionality constant
is permeability, which is merely a function of pore space topol-
ogy of porous media irrespective of the fluid type. In numerical
flow simulators for porous media, permeability values are obtained
based on the data collected from the field and experiments. An
accurate quantification of permeability is difficult due to the vari-
ations in pore space morphology characteristics. Permeability has
been obtained from experiments and also from analytical and em-
pirical expressions that relate permeability to some attributes of
the porous media, such as porosity and pore size distribution. The
analytical expressions are, however, only approximations for ideal

* Corresponding author.
E-mail address: altakbiri@mix.wvu.edu (A. Takbiri-Borujeni).

https://doi.org/10.1016/j.compfluid.2020.104475
0045-7930/© 2020 Elsevier Ltd. All rights reserved.

cases while the empirical expressions have utility only in media
similar to scenarios for which they were obtained and thus, are
inaccurate when applied to a wide range of other media. Experi-
mental approaches are generally preferred when it is not possible
to account for all relevant physics by an equation or model; how-
ever, they tend to be time consuming and expensive. Furthermore,
they do not capture the effect of pore space morphology charac-
teristics on the flow field and thus, on permeability.

For certain properties, such as permeability, hydraulic tor-
tuosity, and inertial factors of the porous media, high-fidelity
numerical simulations using digital images have become a credible
alternative, enabled by improvements of imaging techniques,
numerical methods, and computing power [38,51]. Appealing
aspects of this approach include the ability to probe pore-scale
physics at a level not possible with traditional experiments and
the ability to perform an endless set of numerical tests without
degrading or altering the sample. There are considerations that
can limit this digital approach including whether the imaging
technique can resolve all relevant characteristic scales in the pore
space and whether numerical algorithms can accurately model
the physical processes. Higher resolution, however, mandates
higher computation power. In high-fidelity numerical simulation



2 A. Takbiri-Borujeni, H. Kazemi and N. Nasrabadi/Computers and Fluids 201 (2020) 104475

models, the expensive computational costs, the intensive memory
requirements, and the poor scaling performances have traditionally
prevented their applications beyond toy or small-scale problems,
even using the modern high-performance computing systems.

In image-based pore-scale modeling, the domain is discretized
into nodes, voxels, or volume elements, and the resulting grid is
used to numerically approximate the relevant partial differential
equations for flow, namely computational fluid dynamics (CFD).
There is a group of numerical modeling techniques that can utilize
the voxel data from X-ray tomography or similar methods as the
numerical grid. This gridding approach has become widely used in
porous media studies in conjunction with the lattice Boltzmann
(LB) simulations and has been proved to be highly effective for
simulating fluid flow through porous media [51].

LB simulations have been applied to flow simulations of real-
istic porous media to compute permeability [9,18,45] with the ad-
vantage of being flexible in the specification of variables on the
complex boundaries in terms of simple particle bounce back and
reflection. This flexibility has opened up the potential in its use for
modeling and simulating flow in complex media, such as porous
rocks. Challenges for applying LB to real problems include finite-
size effects and relaxation time dependence of no-flow boundaries.
In image-based simulations, the accuracy of the calculated macro-
scopic properties depends on the spatial resolution of the rock
image [11,28]. However, there is always a trade-off between im-
age resolution and computational power. Furthermore, in all digital
samples, there is a resolution threshold, below which certain flow
characteristics, such as re-circulation, are not resolved [25].

An extensive research has been performed to study LB mod-
eling of fluid flow in the porous media [1,2,10,27-29,32]. Addi-
tionally, Pan et al. [30,31] and Stewart et al. [43] studied the ef-
fect of sphere size, spatial discretization, and fluid viscosity (relax-
ation parameter) on the computed permeability of random-sphere
packs and Maier et al. [26] investigated flow of single-phase fluid
through a column of glass beads. Takbiri Borujeni [48] studied the
applicability of Ib simulations in porous media for a wide range
of Re and verified the results against experimental and other CFD
methods. Their computed permeability tensor and non-Darcy fac-
tors were validated experimental flow measurements. They also
showed that for Re < 1 permeability is not a function of topol-
ogy of porous media (not a function of pressure gradient and flow
velocity), i.e., can be described by the Darcy equation.

The main advantage of pore-scale flow simulations is that ex-
plicit influence of each impacting factor can be studied by isolating
the effect of other parameters. Attempts of this tabulation of all
these impacts have not been manageable yet since such a multi-
dimensional parametric study requires comprehensive efforts and
time. In this respect, this work aspires to change the status quo
and make a transformative leap by combining pore-scale modeling
with physics-based ML [34-36,49,50] to develop surrogate mod-
els, which can be used to determine the flow fields at very little
additional cost. It is also important to note that, using a trained
and validated data-driven surrogate model will give us a luxury
of performing pore-scale flow simulations, in which computational
expenses are not restrictive.

Recently, there have been numerous studies of the application
of ML in CFD, most of which are limited to building interpretable
reduced-order models (ROMs) [14,15,47,54]. In ROMs, where the
number of variables is reduced to simplify the governing equations
and the relationships between inputs and outputs, some details are
inevitably overlooked. On the other hand, the widespread success
of ML-based predictive modeling in other disciplines, such as au-
tonomous cars, suggests a great opportunity to advances in the
state-of-the-art by combining conventional CFD simulation tech-
niques with predictive capabilities of data-driven surrogate models
to truly capture the physics of the problem and enhance prediction

capabilities of the simulations at a much lower cost. They, however,
possess the same numerical resolutions as their CFD equivalents
do with the great advantage that their solutions can be achieved
by a significant reduction in computational costs (speed and mem-
ory). Essentially, the predictive models learn the nature of com-
munications among grid cells and decode the spatial correlations
between them (auto- and cross-correlations) in the entire compu-
tational domain and can accurately predict solutions to completely
new sets of simulation runs, from beginning to end.

Recently, Convolutional Neural Networks (CNNs) with hierarchi-
cal feature learning capability has outperformed the state of the
art in many computer vision tasks, including image classification
[41], segmentation [24], and synthesis [13]. Despite in classifica-
tion tasks, where the network predicts a single class label for an
input image, in many visual tasks, the desired output could be a
class label, or a continuous value, assigned to each pixel of the in-
put image [59].

Ciresan et al. [6] predicted the class label of each pixel by train-
ing a network in a sliding-window fashion which takes a patch
around each pixel. This network, then, is able to localize and also is
more robust to overfitting the training data, i.e., generated patches,
is much larger than the number of training images. However, this
framework is quite slow due to the separate processing of each
patch, which results in a lot of redundancy on overlapping patches.
Moreover, such networks should deal with the trade-off between
the localization and context. Large patches need many pooling
layers that can reduce the localization performance, while small
patches only incorporate little context information in the final de-
cision. More recent studies [24,39] proposed to fuse the fine to
coarse features from multiple layers in different depth. This en-
ables the network to achieve an accurate localization while hav-
ing a large receptive field (context) at the same time. In the work
performed by Ronneberger et al. [37], the authors introduced U-
Net which employed contracting path in its Auto-Encoder archi-
tecture to capture context and enable precise localization. Further-
more, training a very deep neural network is quite a challenging
task. More specifically, it is hard for a deep network to find an
optimal solution compared to shallower counterparts. One of the
main issues in training a deep network is the vanishing gradient
problem, making it difficult to tune the parameters of the early
layers in the network [12]. In the past couple of years, multiple
training strategies have been proposed to train a deep neural net-
work effectively, including deep supervision in hidden layers [23],
initialization scheme [12], and batch normalization [17]. He et al.
[16] introduced residual connections in which they employ addi-
tive merging of signals to improve the training speed, and gradient
flow through the networks.

For clarification, the terminology used in the remainder of the
paper is the following. The term input is used to denote the bi-
nary (zeros and ones) images of porous media, where 0 denotes
the void spaces and 1 denotes the solid grains. The term pixel and
numerical grids are used interchangeably due to the fact that the
numerical method, LB, use image pixels as the numerical grid. The
term output refers to the velocity vectors computed at each pixel
of each input using LB simulations.

1.2. Application of data-driven modeling in engineering problems

Applications of ML have gained lots of popularity in the past
few years throughout various industries. The application of ML
in CFD has gained considerable interest recently, mostly to build
ROMs. However, in such applications of ML in CFD, it is inevitable
to overlook some details. On the other hand, predictive ML tech-
niques suggest a greater opportunity, when the conventional CFD
simulation techniques are combined with predictive capabilities of
data-driven models. Such approaches can truly capture the physics
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of the problem and enhance the prediction capabilities of the sim-
ulations at a much lower cost.

Unlike the automotive industry, the application of Artificial In-
telligence (Al) in CFD has been limited to interpretable models
from data [21,40,53], and predictive models are yet to be em-
ployed. The widespread success of predictive modeling in complex
problems suggests a great opportunity to advances in the state-of-
the-art by combining conventional CFD simulation techniques with
ML predictive modeling to truly capture the physics of the problem
and enhance prediction capabilities of the simulations at a much
lower cost. This can be achieved by developing physically inter-
pretable spatio-temporal simulations of complex CFD problems and
introducing a significant reduction in computational cost (speed
and memory).

2. Lattice Boltzmann Mmethod

The Boltzmann equation is

0fu _
W+ea.Vfa—Qa, (1)

where fy (x,t) is the fraction of fluid particles that have traveled in
the «-direction in the phase space directions, e, is the particle ve-
locity in the «-direction, and €2, is the collision operator [3]. The
LB simulation method is a discrete form of the continuous Boltz-
mann equation in which time and space are discretized with ve-
locity limited to a finite set of admissible directions in which the
particles can travel [5,46]. The basic LB algorithm consists of two
steps; particle streaming and collision. In the streaming step, the
transfer of the particles between nodes along a particular velocity
direction occurs. In the collisions step, momentum exchange be-
tween the particles takes place due to collision with each other at
a particular node. Bhatnagar-Gross-Krook (BGK) [33,44] and Multi-
ple Relaxation Time (MRT) [8] models have been proposed to ap-
proximate the collision term. In the BGK approximation, particle
distribution evolves due to collision tending toward an equilibrium
distribution function which is defined by the macroscopic veloc-
ity at that particular point. The collision term in the BGK model is
given by

_ féq
ZM )

in which 7 is the relaxation time that measures the rate at which
the distribution functions tend towards equilibrium and also is a
tuning parameter that controls the fluid kinematic viscosity,

2t -1
V=" 3)

and fZ9 are the equilibrium distributions calculated in terms of u¢
that incorporates external forces, Fj, [46]

(eq.u)
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ul=u+ (E)Fb,
I
4/9, a=0
We=11/9, «=1,234

1/36 «=5,6,7,8

where w, are weight factors specific to different directions, c¢s =
1/+/3 is the speed of sound in the fluid in the lattice unites [5], u€d
and u are equilibrium flow velocity and fluid velocity, respectively,
and p is the fluid density. In LB simulations, parameterized values
of the lattice constants and fluid in lattice units are used in sim-
ulation while correspondence between the physical systems being
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Fig. 2. Depiction of the periodic boundary conditions.

simulated and the parameterized simulation is achieved through
Reynold‘s number [4].

The macroscopic quantities, such as density and momentum
density, are defined as velocity moments of the distribution func-
tion as follows,

P = Zfou
pu =" feey. (5)

In this work, the D,Qg model (two dimensions and nine directions
of fluid movement) is used (Fig. 1). Velocity vectors for this model
are described below,

ey = [cos (271(0; 1)), sin (27[(0; 1)>:|,

a=1,2,...8. (6)

Periodic boundary conditions are applied to all the external
faces in x- and y-direction (Fig. 2). For nodes on a boundary, neigh-
boring points are on the opposite boundary. For instance, com-
ponents of the particle distribution functions coming out of one
boundary (directions 1, 5, and 8 at the outlet on the right side of
Fig. 2) enter into the opposite boundary (at the inlet on the left
side of Fig. 2).

The bounce-back boundary scheme is used to implement the
no-flow boundary conditions at the void-solid interfaces [5,48]. In
this scheme, the distribution function traveling from a fluid node
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(a) LB simulations in x-direction

(b) LB simulations in y-direction

Fig. 3. Schematic of flow simulations in (a) x-direction and (b) y-direction.

to a neighboring solid node is bounced back along the same link.
This ensures a zero velocity vector on the bounce back node as
obtained in real fluid flows. LB simulations in this study are per-
formed using the Parallel Lattice Boltzmann Solver (PALABOS) [22].
Permeability is calculated from the Darcy equation,

K
(u) = ﬁFb’ (7)
or,
(ux) | _ l Kx Ky\(h,
(w) ] — u\Ky Ky Fby
where,

1
(u) = v . udV

in which K is the permeability tensor of the porous medium, (u)
is the average velocity vector of the fluid in the domain, u is the
viscosity of the fluid, and F, is the body force exerted. The rela-
tionship between the intrinsic average velocity ((u)P = V]—p fvp udV)
and average velocity is (u) = e(u)P, where € =V,/V is the poros-
ity of the media and p denotes the pore [55]. Velocity values in
each grid are computed in all directions using the LB simulations
to determine the permeability tensor.

All the simulations are tested to verify that they have reached
steady-state conditions, where the kinetic energy of the system be-
comes constant. A body force approach, which is an alternative to
specifying pressure values at the inlet and outlet of the domain,
is used [48]. A body force of 1.0e~7 in lattice units [5] is used in
x-direction (F, = (F,,.0)) and y-directions (F, = (0, Fby)) for simu-
lating fluid flow in x- and y-directions, respectively (Fig. 3).

The relaxation time is set to be 1.0 for all the simulations, re-
sulting in a kinematic viscosity of 1/6 according to Eq. 3. Hav-
ing reasonably large pore sizes in the input images (more than 10
grids in general), calculation of the permeability is done without
substantial numerical errors (finite-size errors and relaxation-time
dependence of the no-flow boundaries) [51,52]. Reynolds number
resulting from this choice of the body force ranges from 0.002 to
0.017 with an average of 0.007, which shows that the flow is in the
Darcy flow regime (Re < 1) [48].

3. Methodology

In LB simulations, the solutions, u(s, x(s)), are obtained at spa-
tial locations s, where the pixels of the binary input image x(s)
and S = {sq, ..., Sp,} are the index set for the spatial grid locations,
seS cR%(ds=1,2,3) are the spatial locations. The simulations
can be considered as a mapping of x € {0, 1} c R%" to its corre-
sponding solution u € & c R%"s,

n:{0,1} - u, (8)

where u = n(x). The purpose for building the surrogate model is to
develop a new mapping function, @ = F(x, #), to be trained using
a limited number of simulation data, D = {x', u'}}\ | with  as the
model parameters and N as the number of simulation runs in the
training, to approximate the predictions made by n mapping.

LB simulations are performed over computer-generated 2D
porous media consisting of random circle packs, which provide a
number of advantages for testing pore-scale modeling algorithms.
The most intuitive advantage is the ability to fully control the pore
structure. Another advantage related to image-based modeling is
that the geometric-based data, e.g., locations and sizes of solid
grains in a random packing can be converted to voxel data at any
desired image resolution without segmentation error. Computer-
generated packings have been widely used to simulate granular
materials. In some cases, unconsolidated sphere packs have been
modified using procedures that mimic diagenetic processes, thus
producing consolidated materials [2,19,58].

We generated two-dimensional random circle pack images of
size 128 x 128 pixels (ns = H x W, where H = W = 128), consist-
ing of 5 to 10 grains (circles) with 15 to 36 pixels diameter with
random positions. A total of 2000 images are generated for LB sim-
ulation runs to determine the permeability.

4. Deep convolutional neural network

Neural networks and specially CNNs, are known for being a
powerful tool with the ability to process high dimensional data
and vast data sets. The universal approximation theorem indicates
that NNs can approximate any arbitrary functions on compact sub-
spaces. NNs comprise a set of vector-valued functions known as
layers of neurons. Each layer learns a linear transformation of the
input vector, x(s), through its matrix of weights, 8, and vector of
biases, b. A non-linear activation function, F, is then applied to the
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Fig. 4. U-ResNet architecture.

result and yields the velocity vector,
u=F(0x+b). 9)

The rectified linear unit (ReLU) activation function was used for all
the layers but the last layer which is tanh to limit the output be-
tween -1 and 1. The weights and biases of the network are trained
by minimizing an error metric between the predicted output by
the network and the corresponding ground truth in the training
set.

CNNs, on the other hand, can be considered as a locally con-
strained form of neural networks, inspired by the structure of
the visual cortex. They are highly employed for data like images
which have hierarchical local structure. Their superiority in such
data comes from eliminating the redundant parameters in the neu-
ral networks model. Each convolutional layer comprises a certain
number of filters (aka kernels), which are locally connected neu-
rons with fewer sizes than input. Then the filters can be convolved
with the input to produce output. Since the weight matrices are
shared across the whole input, the number of parameters in a
convolutional model is significantly reduced compared to a sim-
ple feed-forward neural network. Generally, several filters are em-
ployed in a single layer, which form the depth of the output, where
each filter extract different types of feature from their inputs. Con-
sequently, the output of a convolutional layer is a 3D tensor (aka
feature maps). Convolutional layers are able to distill structure and
improve the robustness of the neural networks.

In order to achieve an accurate and efficient model, we em-
ploy a deep CNN (DCNN) based on contracting paths and residual
blocks. CNNs have been proven successful in geometry representa-
tion learning and per-pixel prediction in images. The other motiva-
tion for adopting CNNs is its memory efficiency. Memory require-
ment is a bottleneck to build whole velocity field surrogate mod-
els for large geometry shapes. The sparse connectivity and weight-
sharing property of CNNs reduce the GPU memory cost greatly.

Since the network consists of only convolutional layers, it can
take any arbitrary-sized image as input and generate an output
of a similar size. For down-sampling, we use convolutional lay-
ers with increased stride instead of pooling layers. After a series
of successive strided convolution, the spatial size of feature maps
becomes much smaller than that of the input image. To increase
the computational capacity of the network, the generated feature
maps by the last strided convolution is followed by multiple resid-
ual blocks before upscaling to the same size as the input image.
The residual connections improve the gradients flow at the train-
ing time. Finally, to rescale the feature maps to the size of the
input image, we exploit Nearest Neighbor (NN) up-sampling fol-
lowed by a convolutional layer, instead of deconvolutional layers
[57] to prevent checker-board artifacts. Generally, as we go deeper
into a DCNN, the size of receptive field increases, which means the

learned feature maps represent more abstract and global contex-
tual features. However, the information about the exact local struc-
ture of the image may be lost. On the other hand, the feature maps
in early layers, which have smaller the receptive fields, preserve
the local structure information. This information is critical for ef-
fective velocity field predictions. Consequently, to preserve the lo-
cal structure information, high resolution features from the con-
tracting path (down-sampling) are combined with the output of
the NN up-sampling layer. Then, the subsequent convolution learns
to produce a more precise output based on this information. Ex-
ploiting the learned discriminative features by the proposed DCNN,
we can produce an accurate prediction of velocity fields.

4.1. Architecture set-up

To infer the velocity maps, we use a CNN architecture, whose
input is the 2D images of the porous media geometry, where solid
circles represent the solid grains. The CNN model is parameterized
by its weights and biases. Fig. 4 shows the architecture of the pro-
posed network. It consists of 6 strided convolutions which reduce
the size of input by a factor of 64, followed by four residual blocks.
At each layer, features are generated from local interactions of in-
puts and these local interactions combine to capture higher-level
global behavior in the deeper layers of the network. However, a
single resolution network would have limited context which limits
the network's ability to model long-range dynamics resulting from
the periodic boundary conditions chosen for this problem. As such,
we add multi-resolution features to enable modeling long range
physical phenomenon by downsampling the first hidden layer six
times, processing resolutions in parallel then upsampling the re-
sultant low-resolution features before accumulating them.

Employing strided convolutions can significantly reduce the
amount of computation that has to be done by the network in the
subsequent layers. It compresses multiple 3 x 3 convolution into
one 7 x 7 convolution, to make sure that it has exactly the same
receptive field. Each residual block consists of two 3x3 convolu-
tional layers. Finally, In order to obtain the final prediction map,
we add six subsequent up-sampling blocks on top of the residual
blocks. Neural nets typically use multiple layers of deconvolution
when creating images, iteratively building a larger image out of
a series of lower resolution descriptions. While it is possible for
these stacked deconvolutions to cancel out artifacts, they often
compound, creating artifacts on a variety of scales. To avoid these
artifacts, we separate out upsampling to a higher resolution from
convolution to compute features, i.e.,, we resize the image (using
nearest-neighbor (NN) interpolation) and then apply a convolu-
tional layer. The input to each up-sampling block is the feature
maps of the previous layer concatenated in depth with those of
the contracting down-sampling path. As mentioned earlier each



6 A. Takbiri-Borujeni, H. Kazemi and N. Nasrabadi/Computers and Fluids 201 (2020) 104475

0

64

96 1

128

96
P &

0
¥ L L]
1 e N gl
e -
FY o @

0

T
32

T
64

96

128

Py

128

0

32

T
64

T
96

128

64 -

96 -

128

04 Qe *
. l
1 128 u.

‘i

2

128

4

8e-05

6e-05

4e-05

2e-05

0e+00

2e-05

0e+00

-2e-05

N
.

(a) Original sample (b) horizontal flip

"

£

-4e-05

(c) vertical flip (d) horizontal and vertical

flip

Fig. 5. Sample augmentation. Original samples in (a) are flipped (b) horizontally, (c) vertically, and (d) horizontally and vertically.

up-sampling block comprises successive NN-upsampling and 3x3
convolution with unit stride. Note that all the convolutions are
followed by a Batch Normalization and rectified linear unit (ReLU)
activation function. Since our input (geometry input image) is
the simulated velocity fields we employ reflection 1x1 padding
for all the convolutions. Note that since our network is fully-
convolutional, the size of the domain can be modified at inference
time.

Usually, a deep learning model learns the mapping from an in-
put x to an output u. When the network depth increases, its accu-
racy starts getting saturated and then degrades very quickly. Un-
expectedly, overfitting is not the reason for such degradation, and
adding more layers to a suitably deep model leads to higher train-
ing error. In fact, this problem appears as a result of gradient van-
ishing. One solution to this problem was proposed by Zagoruyko
and Komodakis [56] to use Resnet blocks, which connect the out-
put of one layer with the input of an earlier layer. Instead of learn-
ing a direct mapping, the residual function R(i) learns the differ-
ence between the applied mapping to i and the original input, i.
Residual blocks are basically a special case of highway networks
[42] without any gates in their skip connections. Essentially, resid-
ual blocks allow the flow of memory (or information) from initial
layers to the last layers. Despite the absence of gates in their skip
connections, residual networks perform as good as any other high-
way network in practice. The idea of skipping connections between
the layers was first introduced in Highway Networks. Highway net-
works had skip connections with gates that controlled how much
information is passed through them and these gates can be trained
to open selectively.

To train the network, we first normalize the velocity maps. To
train the surrogate model, sample augmentation (increasing the
number of data samples by performing transformations on the
existing ones) was performed by flipping the maps horizontally

and/or vertically (Fig. 5). As can be seen, any single input-output
data sample pair can be transformed to generate three new sam-
ples, which restricts the need for using new input-output sample
pairs.

We have considered £; regularized mean absolute error (MAE)
training loss function. The input and the corresponding velocity
vector maps are used to update the parameters of the network
minimizing the L; norm error,

l n
Li(8((x.0), w) =~ 3 [ & —uj [l +282(6), (10)
i=1

where (@) =|| 0 ||; for £; regularization, n is the number of sam-
ples in the training data in A/ simulation runs, and A is the regular-
ization strength. The £; regularization has the intriguing property
that it leads the weight vectors to become sparse during optimiza-
tion (i.e. very close to exactly zero). In other words, neurons with
L1 regularization end up using only a sparse subset of their most
important inputs and become nearly invariant to the noisy inputs.
Adam optimization technique [20] is used with a learning rate of
le —3, and an £ regularization parameter of 2e — 5. The network
was implemented in Pytorch running on an NVIDIA TITAN Xp GPU.
The network is trained for 500 epochs and the model with the
minimum error on validation is selected.

4.2. Evaluation metrics

We also used several metrics to quantitatively evaluate the
trained models on the test data. In particular, we consider the fol-
lowing:

Pearson Correlation coefficient

The similarity of the predicted velocity maps and their corre-
sponding ground truth maps are quantified using the Pearson cor-
relation coefficient (PCC) averaged over all the pixels of test data
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where oy and oy are the standard deviations of f and y. PCC is
a measure of how the normalized variables tend to have the same
sign and magnitude. A value of -1 indicates total disagreement and
+1 total agreement. The correlation coefficient is O for completely
random predictions.
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Normalized Mean Squared Error (NMSE)

We calculate per-pixel NMSE which is an estimator of the over-
all deviations between predicted and measured values. The nor-
malization of the MSE by the product of the observed and pre-
dicted means assures that the NMSE will not be biased towards
models that tend to over predict or under predict. Note that,
smaller values of NMSE denote better model performance. The
NMSE is defined as:

1 la - |3
NMSE=-Y —— 2 (12)
T,; a.a

where 1= YT, @'/T and a = Y7, u/T.
Fractional Bias
This fractional bias (FB) is normalized mean error and is dimen-
sionless. It can vary between +2 and -2 and has an ideal value of
zero for an ideal model. It is defined as:
Fp—29"Y (13)
u+i

5. Results

To develop the model, velocity values for the entire output set
are normalized between zero and one (the minimum value of the
velocity values is transformed linearly into zero, the maximum
value is transformed into one, and every other value is transformed
into a decimal between 0 and 1). All the simulation cases are di-
vided into two sections; the first section with 12.8% of the data is
used to train the model while the remaining data are used as test
data. For the training, only x-direction flow, F, = (F,,.,0), is used.
The test portion of the data, which is not used in the training pro-
cess, is only used to examine the predictive capabilities and the
robustness of the model. All the data samples for y-direction flow,
Fy = (0, F;,), are used as test data.

The surrogate model was trained with different number of
training data (Fig. 6). By increasing the number of training sam-
ples from 8 to 512, L; loss decreases from 2.23e~2 to 7.31e73. As
the number of training data increases, the training error increases
and validation error decreases; the gap between the training and
validation error losses decrease, which signifies the reduction in
the model variance. There are negligible differences (gap) between
the training and validation errors, which show that the model ben-
efits from both low bias and low variance errors.

For the remainder of the paper, the model trained by 12.8% of
the data (256 out of 2000 total images) is used to evaluate the

()
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Fig. 8. Side-by-side comparison of the x-direction velocity values in x-direction flow predicted by the surrogate model vs. LB simulations results for two the training cases.
(a) input images used for simulations; (b) model predictions; (c) LB simulation results; (d) absolute error percentage between (b) and (c); and (e) distribution of error

percentage. Velocities are in lattice units, [lu].
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model robustness in predicting the velocity values for the test data.
The training and validation loss curve for the training process is
depicted in Fig. 7.

The performance of the surrogate model in predicting the grid-
level velocity in the leading directions (x-direction velocity in x-
direction flow and y-diction velocity in y-direction flow) is demon-
strated in Figs. 8 and 9, respectively. The binary images are used
for the LB simulations are shown in Figs. 8a and 9a. The regions
away from the solid-pore interfaces exhibit higher velocity values
(both in x- and y-directions) compared to the ones adjacent to the
interfaces. Contour plots of the velocities for the developed model
(Figs. 8b and 9b, respectively) and those computed using the LB
simulations (Figs. 8c and 9c, respectively) show similar behavior.
The velocity values within the solid circles (zero-velocity valued
grids in Figs. 8c and 9c) are accurately predicted (Figs. 8b and 9b).

& —ui|
imaX7 inin o
shown in Figs. 8d and 9d. Distributions of the error, ,“l%‘:,
max i
dicted are bound within 20% for almost all the cases, cogﬁrming
the plausibility of the approach to accurately replicate numerical
simulations (Figs. 8e and 9e).

The performance of the surrogate model in predicting the grid-
level velocity in the secondary directions (y-direction velocity in x-
direction flow and x-diction velocity in y-direction flow) is demon-

The absolute values of the error, , for it" test sample are

strated in Figs. 10 and 11, respectively. The binary images are used
for the LB simulations are shown in Figs. 10a and 11a. Contour
plots of the velocities for the developed model (Figs. 10b and
11b, respectively) and those computed using the LB simulations
(Figs. 10c and 11c, respectively) show similar behavior. The ve-
locity values within the solid circles (zero-velocity valued grids in
Figs. 10c and 11c) are accurately predicted (Figs. 10b and 11b). The
absolute values of the error in the samples are shown in Figs. 10d
and 11d. The error distribution predicted is bound within 20% for
almost all the cases. (Figs. 10e and 11e).

A grid-by-grid comparison of the predicted velocity values in
the leading direction (x-direction velocity in x-direction flow) us-
ing the surrogate model and the LB simulations is performed
(Fig. 12). Velocity profiles in a vertical (Fig. 12b) and horizontal
(Fig. 12¢) cross-sections are depicted for the simulation domain for
one of the test cases. By inspection of these plots, one can see that
the surrogate model mimics the LB simulation results with negli-
gible errors (less than 15%).

A grid-by-grid comparison of the predicted velocity values in
the secondary direction (y-direction velocity in x-direction flow)
using the surrogate model and the LB simulations is performed
(Fig. 13). Velocity profiles in a vertical (Fig. 13b) and horizontal
(Fig. 13c) cross-sections are depicted for the simulation domain for
one of the test cases. By inspection of these plots, one can see that
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the surrogate model mimics the LB simulation results with negli-
gible errors (less than 15%).

The predicted elements of the permeability tensor values for all
test cases are shown in Fig. 14. All the points are along the unit-
slope line, which shows that predicted values are fairly close to the
LB simulation results.

As was expected, based on the cross-plots of the predicted per-
meability values for test images vs. ground truth, the surrogate
model has high PCC of 0.986 and 0.949 for uy and uy, respectively.
The NMSE for uyx and uy are 0.019 and 0.026, respectively. The FB
for uy and uy are 0.022 and 0.28, respectively. Based on the re-
sults, the predicted permeability results for the 2D domains are
predicted using the surrogate model with high accuracy.

The LB simulations of 2000 samples takes approximately 19,856
seconds (330.93 mins) on 4 processors. The implemented algo-
rithm runs on a single NVIDIA Xp GPU, which requires about 8
minutes for training 500 epochs with 256 training samples. The
training mini-batch size is 16. The predictions made by the surro-

gate model take less 2 seconds on a single GPU, which results in a
significant amount of speed-up.

6. Performance of surrogate models trained with less data

In this section, the performance of the approach presented is
evaluated using the models trained with fewer number of data
samples. X-direction velocity profile for flow in the x-direction is
plotted along a vertical line is depicted in Fig. 15. It can be seen
that as the number of the training data increases, the velocity pro-
files tend to become closer to the LB simulation results (shown
by the dashed red line in the right figure in Fig. 15). It should
be pointed out that even for the smallest number of training data
used (32), the x-direction velocity values are within %20 of the LB
velocity values and their prediction is very close to those of LB
simulations in the solid grains (zero velocity).

Cross-plot of the predicted Ky for surrogate models developed
by 32, 64, 128, and 256 data samples and LB simulation results are
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Fig. 16. Cross-plots of the predicted Ky for surrogate models trained using 32, 64,
128, and 256 image pairs.

depicted in Fig. 16. The predicted permeability values using a sur-
rogate model developed by 256 data samples are more condensed
along the unit-slope line, showing that the predicted values are
close to the LB predicted permeability values. For the models de-
veloped by less number of training data, the predictions are less
accurate, but they show a fairly accurate permeability values for
practical applications (within %10 of the ground truth).

7. Conclusions

A data-driven surrogate to high-fidelity numerical flow simula-
tions is presented by employing a deep convolutional neural net-
work based on contracting paths and residual blocks. The network
consists of only convolutional layers and can take any arbitrary-
sized image as input and generate an output of a similar size. The
developed model captures the flow fields at the grid level for sam-
ples that had not been used in the development of the model.
Permeability tensor for the samples of porous media can be de-

termined with a high accuracy at much lower computational costs
using the presented approach. This work aspires to make a trans-
formative leap by combining fluid flow modeling with ML to de-
velop surrogate models, which can be used to determine the flow
fields at very little additional cost.

Our work serves as a proof-of-concept study for determining
microscopic (pore-scale) flow fields in porous media for determin-
ing macroscopic (the scales at which physical flow experiments are
performed, usually larger than Representative Elemental Volumes
(REVs), at which the properties of porous media, such as poros-
ity and permeability, are defined (orders of inches, feet, and tens
of feet)) hydrodynamic properties, e.g., permeability and hydraulic
tortuosity, using lattice Boltzmann simulations.
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