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Abstract: Externally bonded fiber-reinforced polymer composites have been in use in civil infrastruc-
ture for decades, but their long-term performance is still difficult to predict due to many knowledge
gaps in the understanding of degradation mechanisms. This paper summarizes critical durability
issues associated with the application of fiber-reinforced polymer (FRP) composites for rehabilitation
of concrete structures. A variety of factors that affect the longevity of FRP composites are discussed:
installation, quality control, material selection, and environmental conditions. Critical review of
design approaches currently used in various international design guidelines is presented to identify
potential opportunities for refinement of design guidance with respect to durability. Interdisciplinary
approaches that combine materials science and structural engineering are recognized as having
potential to develop composites with improved durability.

Keywords: FRP; composites; durability; degradation; civil infrastructure; concrete; repair; retrofit;
strengthening

1. Introduction

Externally bonded (EB) fiber-reinforced polymer (FRP) composites are one of the most
economical technologies showing promise to recover deteriorated concrete structures as
well as improve the resilience of critical infrastructure across the world. EB FRP can be
used to upgrade columns, beams, and walls in a variety of concrete structures ranging from
residential and commercial buildings to critical infrastructure (e.g., roads, bridges, tunnels,
and marine structures, etc.) [1]. FRP composites consist of fibers that are embedded in a
polymer matrix (resin). The fibers provide strength and stiffness to the material, while
the resin ensures fiber alignment, transfers stress between the fibers, and provides envi-
ronmental protection for the fibers. The composites are externally bonded to a structural
member’s surface with a resin similar to that used to form the composite matrix.

Even though composites have been in use in civil engineering for close to 30 years [2,3],
EB FRP composite strengthening systems are still a relatively unknown practice in the civil
engineering community at large. Potential limiting factors to their widespread adoption
are the lack of comprehensive design standards and long-term test data warranting the
durability of these systems. Since the very early EB FRP applications, concerns have been
raised about the long-term durability of these materials, especially when faced with a
combined effect of sustained load, fatigue, and environmental factors—typical for outdoor
applications (Figure 1).
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remove any dirt, laitance, debris, oil, etc., and is usually performed by pressure washing
and blowing by compressed air.

Following concrete surface preparation, the epoxy primer is applied to the concrete
surface (Figure 4b). The primer can be the same epoxy used to saturate the dry fiber
fabric, or it can be specifically formulated to promote adhesion between EB FRP and the
concrete substrate. Presence of water on the concrete surface can significantly affect the
adhesion between the primer and concrete [22]. Thus, NCHRP 514 recommends that
concrete surface moisture at primer application should be below 0.05% (as measured by
surface moisture meter). Although water-resistant primers exist on the market, limited
experimental evidence suggests that they are not entirely successful at mitigating adhesion
loss due to moisture present in the substrate [22]. The existing installation guidelines
furthermore suggest that if a concrete surface is subjected to moisture vapor transmission,
EB FRP should not be installed as vapor transmission can cause blistering along the EB
FRP-concrete bondline [19,23].

(a) Surface grinding (b) Epoxy saturation of concrete  (c) Applying shear CFRP

Figig 4 4215 BEB R stallationdqpeprndel o e k).

Before application to a primed concrete surface, dry fiber fabric is impregnated with a
resin either by hand (using a special saturating roller) or via resin impregnation machine.
Impregnated EB FRP fabric can be applied directly to the primed surface (Figure 4c), or it
can be preceded by application of a putty layer to even out the surface and remove any
geometric imperfections. Special care should be taken to achieve proper fiber orientation
while ensuring FRP is spread without creases and entrapped air bubbles.

After installation, EB FRP is allowed to cure according to the manufacturer’s speci-
fication. Given that the resin cure is dependent on the ambient temperature, the proper
cure may require severgl day. In certain situations, it is prudent to apply an appropriate
coating to cured EB FRP $rfale for aesthetic purposes and as protection from ultra-violet
(UV) exposure and 6the ymental factors. While the ability of the protective coating
RP is often assumed, experimental evidence proving their

effectivepé_sfs/fﬁat er scarce. o/\%_, R H R
< Y70 HNT NN,
2.3. Qualitfp Control 10" L o

Following installati} and initial cure, the current st(ame of practice in the U.S. is to

Figeré®riipasyisdakinsperitarsdes ) Bisigrenol Alelgndityg @hdindoGHHAN epsitdetmeyiphich
migkedloived bynarpdbd(bresapeletesii-bigbdhfFignee-blieGpleneiviapine tlRE T o accept
(aneiste grotpp nldbEdswrithatbgereebding 1.4 MPa (200 psi) with a failure within the concrete

substrate (Failure Mode G per Figure 6) [25]. ACI 440.2R further recommends that test
results below 1.4 MPa (200 psi) or failure mode other than “G” be submitted to a licensed
design professional for evaluation and acceptance. The quality control guidance usually
recognizes that proper bonding may not be as important in contact-critical applications.
However, the authors of this article encourage enforcement of the same evaluation crite-
ria in contact-critical applications for the overall promotion of quality (and consequent
longevity) in such EB FRP applications.

Conducting pull-off tests is expensive and time-consuming while also not being
entirely non-destructive. Therefore, there is a need to develop rapid non-destructive test
methods to facilitate evaluation of the adhesive bond. In addition, concerns have been
raised about stress concentrations introduced by the tested locations [26]. Accordingly,
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substrate, as well as the fiber-epoxy interphases, can govern the durability performance of
the bonded system [34,35]. Evaluation of durability of FRP-concrete bonded joint is not
as simple as studying the durability of each of the system components (concrete, epoxy,
FRP) separately. The problem, instead, requires an evaluation of durability at both the
component and system levels given the complexity of the system.
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(amine groups marked with a square).




Polymers 2021, 13, 765

8 of 24

the resin matrix. High level of sustained loading, undercured resin, and higher service
temperature increase creep deformation which can lead to excessive deformation at the
level of structural component [57,58]. FRP reinforced structures are susceptible to impact
damage during their service life (collision with vehicles and flying objects). Impact may
cause damage to (1) the fiber, which will significantly affect its capacity to carry loads;
(2) the matrix, affecting its ability to transfer stresses to the fibers (it was measured that FRP
coupons with damaged epoxy retain 80% of the initial strength); and (3) the substrate, when
penetration through the composite occurs leading to the reduction of local mechanical
properties [59,60].

3.1. Resins and Adhesives

Commonly utilized resins and adhesives in infrastructure applications are thermoset-
ting polymers such as polyesters, vinyl esters, and epoxies. Although polyester and vinyl
ester resins can be formulated to exhibit good mechanical properties, they can display
excessive shrinkage during curing and are often susceptible to accelerated deterioration
under moisture [61]. Additionally, it has been noted that these resins can also exhibit poor
resistance to creep under sustained loading [61].

Modern wet-layup EB FRP systems almost exclusively utilize ambient-cured epoxy as
a Comp051te matrix as well as an adhesive between EB FRP and concrete. When properly
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rings open and react with active functional groups of the hardener to form permanent
covalent bonds, also known as crosslinks. The degree of cure of epoxy is often expressed in
terms of conversion which represents the percentage of reacted epoxide functional groups.
The density of the crosslinked network affects the adhesive’s mechanical properties and
the temperature defining its transition from a glassy to a rubbery state (also known as
glass transition temperature, or Tg). Besides the monomer and hardener, epoxy adhesives
often contain additives that can modify adhesive’s properties. Common types of addi-
tives in epoxy are accelerators (or curing promoters), coupling agents, antioxidants, and
toughening agents.
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Durability properties of epoxy adhesives are not only affected by their service environ-
ment but also by the processing and curing conditions characteristic for in situ wet-layup
applications [62-64]. Since epoxy adhesives are cured under ambient conditions, the prop-
erties of the adhesive are impacted by the environment in which it cures. For example,
experimental evidence shows that epoxy adhesives cured under standard lab conditions
often achieve less than 85% cure [65,66], while increasing the curing temperature (even
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under hygrothermal conditions) can significantly accelerate the conversion (Figure 9). The
consequence of “slow” cure in ambient conditions is that long curing times may be nec-
essary (especially in colder climates) [67,68] for the resin to achieve sufficient mechanical
properties. It is, thus, strongly advisable that epoxy not be applied in ambient and concrete
surface temperatures below 10 °C [18] to facilitate proper curing of the resin. Moreover,
given that curing reaction is a temperature-dependent and diffusion-limited reaction, the
full cure is usually never reached under ambient conditions, which results in adhesives
whose T remains relatively low during the service life of EB FRP (usually between 55 and
75 °C) [66]. Given that concrete surface temperatures during summer months can be in the
vicinity of 60 °C [69] or higher in many parts of the world, there is, thus, a possibility of
service temperature exceeding the epoxy Tg. This can lead to loss of resin’s mechanical
properties, ultimately compromising the integrity of EB FRP/concrete adhesive bonding
and stress transfer between the fibers and matrix.

Besides affecting epoxy’s mechanical and thermal properties, the incomplete cure may
also render epoxy more vulnerable to certain deterioration mechanisms. Unreacted polar
sites can “attract” water molecules into the cross-linked epoxy network that results in an
onset of plasticization, which leads to a reduction in elastic modulus (by up to 50%), reduc-
tion in strength, and significant depression of Ty (as shown in Figure 9). Depending on the
service temperature, plasticization (depressing Ty;) and post-cure (improving crosslinking
density and increasing T¢) are two competing mechanisms [66]. As can be seen in Figure 9,
depending on the conditioning temperature, hygrothermal conditioning can result in either
the depression or increase of Ty in the same resin. Further complicating the complexity of
the problem, the effects of plasticization can be partially or fully recoverable [70-72].

In addition to their susceptibility to degradation under moisture, epoxy resins were
also found to be sensitive to UV exposure, which leads to oxidation of the ether and ni-
trogen groups [73,74]. Oxidation is often accompanied by characteristic yellowing of the
transparent resin as well as surface scaling and microcracking. UV exposure combined
with hygrothermal conditioning was found to lead to hydrolysis [75,76]. Deterioration
of adhesive and matrix resin in the FRP-reinforced structures due to long-term chloride
exposure is also a concern, as it decreases the elastic modulus, tensile strength, and ultimate
strain [77]. According to some studies, reduction of elastic modulus and tensile strength is
larger in distilled water compared to saltwater [78]. However, the deterioration mechanism
is still not clear and needs further research [79]. The effect of alkaline and salt solutions
on adhesive durability was a subject of an extensive review by Yang et al. [80] Usually,
exposure to deicing salts is accompanied with freeze-thaw cycles, which are major consid-
eration when it comes to FRP composite and bond performance due to differential thermal
expansion. In a study by Al-Mahmoud, epoxy resin was analyzed under SEM to better
understand degradation of the bond between the FRP and concrete during freeze-thaw
cycles. SEM images did not display any differences between the control sample and the
samples exposed to freeze-thaw cycles. However, it has been reported in other studies
that mechanical properties (tensile strength, ultimate strain, shear strength) of the resin
after exposure to freeze-thaw cycles can reduce by 28%, 30%, and 60%, respectively [81].
When FRP composites are used in wastewater treatment plants, pipelines, or storage plants,
resin matrices are exposed to acids. The durability of a resin in this case depends on the
its chemical composition—vinyl ester resins show better resistance to acids than epoxy
resins [82]. All of these deterioration mechanisms can significantly compromise epoxy’s
strength, modulus of elasticity, fracture toughness, or adhesion properties.
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with hydroxide ions (OH™) as well as hydrolysis of the glass network by OH™ [92]. It is
also well-established that typical glass fibers and their composites are susceptible to stress
corrosion cracking [93,94]. In the design of EB GFRDP, the stress level under service loads is
usually limited to avoid creep-rupture failure of the composite (e.g., ACI 440.2R).

Corrosion-resistant (ECR-Glass) and alkali-resistant (AR-Glass) grades of glass fibers
can alleviate some of the observed durability issues. While ECR- and AR-Glass offer
better durability characteristics than E- and S-Glass, these fibers are still characterized
by a low modulus of elasticity (in comparison to carbon) which limits their applicability
in situations where EB FRP is used to address the serviceability (e.g., deflections and
stiffness) concerns. When compared to CFRP, GFRP composites are more susceptible
to environmental degradation especially when immersed in solutions and they are not
adequate for application in aggressive environment [79]. When it comes to the effect of
freeze-thaw, a small decrease in tensile strength was measured in GFRP coupons-only 3%
by Sheikh et al. [95]. In the same study, tensile strength decrease of CFRP coupons was
about 12%. Observed differences are not explained, but possible reason for the poorer
performance of CFRP exposed to freeze-thaw cycles may be due to a mismatch in coefficient
of thermal expansion (CTE) between the fiber and resin. CTE of carbon fibers has low
negative value in the axial direction and high positive value in the radial direction, while
resins have positive CTE. As a result of differential deformation during thermal stresses,
CTE induced defects like cracking can lead to premature failure.

When EB FRP is employed in harsh environmental conditions in infrastructure, carbon
fibers are utilized almost exclusively. Carbon fibers are inert to all environments typically
experienced by civil infrastructure. They also offer superior mechanical properties and
high resistance to creep-rupture. Carbon fibers possess better resistance to chemical attack
than glass and aramid fiber. However, degradation of the outer layer of the fiber, which
involves ion exchange reaction between the fiber and metal ions in the acid, results in the
degradation of the interphase [82].

Many studies that were performed to assess the longevity of wet-layup carbon fiber re-
inforced polymer (CFRP) composites confirmed their excellent durability properties [84,96].
These studies agree that deterioration of composite’s performance under accelerated con-
ditioning in a variety of environmental conditions (alkaline solution, fresh water, acidic,
seawater, UV radiation) is negligible. Deterioration in the composite properties is attributed
to degradation of the matrix and fiber-matrix interface rather than the fibers. However,
the mechanical properties of CFRP composites may be compromised at elevated tempera-
tures [97,98] due to the matrix “softening” effect (particularly when their T is exceeded).
Exposure to freeze-thaw cycling can result in reduced mechanical properties as a result of
thermal incompatibility of constituent materials, as explained above [81,99]. Effect of salts
and acids solutions has been reported by many authors [82,100,101]. As a conclusion, this
type of exposure results in degradation of matrix-dominated properties, while degradation
of fiber-controlled properties (tensile strength and modulus) is negligible.

3.3. EB FRP Bond to Concrete

Though EB CFRP composites show excellent durability under accelerated condition-
ing, the same cannot be said for the EB FRP-concrete adhesively bonded joints. Accelerated
conditioning studies on EB FRP bonded to concrete have revealed varying levels of bond de-
terioration depending on the conditioning environment, conditioning time, and stress state
(tensile vs. shear stress). Multiple researchers evaluated the durability of bond between EB
FRP and concrete under moisture [12,102], dry heat [103], freeze-thaw cycles [104], alkaline
environment [96], salt and moisture [105], wet/dry cycles [106], UV radiation [107], etc.
Tatar and Hamilton [13] compiled a database of over 600 data points on bond strength
deterioration from 25 studies. The dataset considered varying conditioning times, exposure
conditions, composite manufacturers, adhesives, bond test methods, etc. The average
loss in bond properties for the entire dataset was 15% with a standard deviation of 24%.
The variation in data is quite significant as different levels of bond degradation were
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As can be gleaned from the previous discussion, deterioration of EB FRP/concrete bond
region is a complex phenomenon that is not well understood. As such, EB FRP/concrete
bond service life estimation based on the accelerated conditioning data is a daunting task.
Accelerated conditioning procedures are not directly related to real-world environmental
conditioning and can, thus, result in either underestimation of durability, or overly conservative
estimation of materials’ durability properties. To correlate laboratory accelerated conditioning
data to realistic deterioration in the field conditions, one needs to understand the relationships
between the service environment, deterioration mechanisms, rate of reactions, and property
change—such relationships are currently elusive due to the complexity of possible degradation
mechanisms and very few long-term durability data from the field [41,47,48,116,117].
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showed that addition of nanoparticles, partlcularly core-shell rubber nanoparticles, to the

3.4. Materials Development
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phene [122], nanosilica t123,124j, and core-shell fubiaer hanoparticles [125,1&6], 'to n;mue a
few, to the base resin can result in adhesives and FRP composites with enhanced proper-
ties.

For instance Aboubakr and Kandil [119] demonstrated that addition of nanoclays to
the base epoxy can significantly improve the performance of FRP-steel bonde3tnts un-
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der sustained loading by reducing the creep compliance of the adhesive. A recent study
by [125] showed that addition of nanoparticles, particularly core-shell rubber nanoparti-
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4. Design Guidelines

4.1. Overview of Design Guidance

To date, there are no prescriptive design codes that specify the requirement for the
design of EB FRP in concrete structures which is thought to be one of the one of the barriers
to a more widespread adoption of EB FRP systems. There are, however, various design
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guidelines that were developed in different countries. Some of the notable documents
providing design guidance are the following:

*  United States: American Concrete Institute (ACI) 440.2R-08: “Guide for the Design
and Construction of Externally Bonded FRP Systems for Strengthening Concrete
Structures”; American Association of State and Highway Transportation Officials
(AASHTO) FRPS-1, [132]: “Guide Specifications for Design of Bonded FRP Systems
for Repair and Strengthening of Concrete Bridge Elements”.

e Canada: Intelligent Sensing for Innovative Structures (ISIS) [133] Design Manual 4,
FRP Rehabilitation of Reinforced Concrete Structures.

¢  Japan: Japan Society of Civil Engineers (JSCE) [134]. “Recommendations for Upgrad-
ing of Concrete Structures with use of Continuous Fiber Sheets”.

e United Kingdom: United Kingdom Concrete Society Technical Report 55 (TR55) [135].
“Design Guidance for Strengthening Concrete Structures Using Fibre Composite
Materials”.

e  Italy: Italian National Research Council Technical Document 200 (CNR-DT200) [136].
“Guide for the Design and Construction of Externally Bonded FRP Systems”.

Given that the focus of this paper is mainly on the environmental durability of EB FRP
in bond-critical applications, pertinent information regarding environmental reduction
factors and maximum usable strain in EB FRP for flexure design is summarized in Table 1.
It can be noted that only ACI 440.2R and CNR-DT 200 explicitly specify environmental
reduction factors for different fibers and environmental conditions. These factors are used
to reduce the EB FRP design rupture strain to account for the effects of FRP composites
deterioration. The source of the proposed environmental reduction factors is not clear.
Anecdotal evidence suggests they were selected to reflect the comparative differences
in durability between different fibers, rather than being calibrated by a substantial ex-
perimental database. Neither design guideline suggests an explicit consideration of EB
FRP/concrete bond durability.

ISIS and TR55, while not providing explicit environmental reduction factors, differ-
entiate between the performance of different types of EB FRP based on the fiber material
and manufacturing procedure by implementing the material safety factors. It is believed
that these factors account for variations in durability between different types of EB FRP. In
that regard, ISIS is a bit more explicit in that it provides a different set of material safety
factors for buildings and bridges. The maximum usable strain in EB FRP in flexural design
is limited to 0.006 and 0.008 in ISIS and TR55, respectively.

AASHTO FRPS-1 guide specification does not propose explicit environmental reduc-
tion factors. However, it is specified that EB FRP composite shall retain at least 85% of
glass transition temperature (Tg) determined per ASTM E1640, and characteristic strain
determined per ASTM D3039 [137] following accelerated conditioning in four specified
environments: (i) water, (ii) alternating ultraviolet light and condensation humidity, (iii) al-
kali, and (iv) freeze-thaw. AASHTO FRPS-1 also suggests that EB FRP composites should
achieve a minimum strain of 1% to qualify for bridge applications. For flexural EB FRP
strengthening design, AASHTO FRPS-1 recommends a maximum usable strain of 0.005
which is based on the available experimental evidence. While EB FRP/concrete bond dura-
bility is not explicitly accounted for by the design factors, AASTO FRPS-1 has a requirement
that EB FRP/ concrete bond shall retain a minimum strength of 200 psi or 0.171,/f7_ (f',
is specified compressive strength of concrete in MPa), whichever is greater, following
conditioning in the specified accelerated conditioning protocols. The test method used to
determine the bond strength is to be specified by the licensed design professional.

Mechanical anchorage of EB FRP can increase the effective usable strain in the com-
posites in bond-critical applications [138,139]. Effective use of anchoring devices can lead
to a change in failure mode from debonding to composite rupture [140]. Many design
guidelines recognize anchorage as an effective tool for improving the performance of
bond-critical EB FRP; however, specific design guidance of anchorage systems is lacking at
this time.
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Table 1.

Summary of flexural design guidance for EB FRP.

Maximum Usable Strain in FRP

Design Guideline Environmental Reduction Factors .
for Flexure

Exposure condition Fiber Cg”
Carbon 0.95
Interior Exposure Glass 0.75

Aramid 0.85 &y =

ACT440.2R Exterior Exposure (bridges, piers CGaf:SoSn 822 min{s d =041,/ 7,,{;(;3 T 0.9Cgef, }

and unclosed parking garages) Aramid 075
Aggressive environment (chemical Carbon 0.85
plants and wastewater treatment Glass 0.50
plants) Aramid 0.70

AASHTO FRPS-1

No environmental reduction factors proposed. Specified that composite shall retain at least 85% of glass transition
temperature (Tg) determined per ASTM E1640 and characteristic strain determined per ASTM D3039 following
accelerated conditioning in four specified environments: (i) water, (ii) alternating ultraviolet light and condensation
humidity, (iii) alkali, and (iv) freeze-thaw.

gy = 0.005

ISIS

No explicit environmental reduction factors proposed. Material safety factors that account for fiber type and
composite manufacturing procedure are explicitly specified. The material safety factors make a differentiation
between buildings and bridges to account for the environmental effects.

gy = 0.006

JSCE

Environmental reduction factors not explicitly specified. Suggested to use a protective layer (coating, mortar, or
concrete) in outdoor applications, unless it can be demonstrated by suitable numerical simulation and accelerated
conditioning tests that protection is not necessary. The designer is referred to JSCE “Standard Specifications for
Design and Construction of Concrete Structures (Design)” for selection of material safety factors.

. /| G
&y = mm{sfd = ﬁ,eﬂ,}

TR55

Environmental reduction factors not explicitly proposed. Material safety factors depending on fiber type (carbon,
aramid, and glass) and manufacturing procedure are specified.

&y = min{sf”, 0.008}

CNR-DT 200

Same as ACI 440.2R; however, it is stated that: “Designer shall use these values when more information on test
evidence for the material in use and expected environmental condition are missing.”

&y =

min{sfd =0.373 kb f,(fd, Cngu}

n Ef tf
(typical design case)

" Variables and units: Cg, environmental reduction factor; € Fus design rupture strain of EB FRP; & fd debonding strain; f’ ., specified compressive strength of concrete (MPa); f.1, tensile strength of concrete (MPa);
n, number of EB FRP plies; E fs modulus of elasticity of EB FRP (MPa); t Iz nominal thickness of a single EB FRP ply (mm); G iz interfacial fracture energy between EB FRP and concrete determined based on JSCE-E

543-2000 [141] standard test method, or taken as 0.5 N/mm in absence of experimental data; k;, is geometrical correction factor computed as kj, = \/ (2 —b i / b) / (l +b i / b) >1.0forb f/ b>025(fb i /b < 0.25

then k, = 1.18) where by is the width of EB FRP sheet, and b is the width of concrete section.
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test (ASTM C78, [144]) with a notch at the midspan (Figure 19). Notch is introduced to
simulate cracked concrete while also allowing for a predetermined debonding path. This
test was standardized (ASTM D7958) [145] and implemented in the recent American Con-
crete Institute durability evaluation guide — ACI 440.9R [25]. This document is likely the
only of its kind that provides specific guidance for durability evaluation of EB FRP/con- 18 of 24
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Informed by the research findings, ACI 440.9R also specifies a standard accelerated
conditioning protocol for notched beams with EB FRP consisting of 3000-hour conditioning
by water immersion at 50 £ 3 °C. The durability of the bond is quantified via bond strength
retention (Ry), as follows:

Pacp
Ry =5 )

SLC
where Pg; ¢ is the average strength of specimens kept in standard laboratory conditions, and
P, cp is the average strength of specimens subjected to the accelerated conditioning protocol.

5. Concluding Remarks

As the existing infrastructure is aging worldwide, there is an immense need to develop
and implement novel strengthening methods to prolong the service life thereof. EB FRP
composites represent one of the most economical solutions. However, the long-term
durability of EB FRP in harsh environments may limit the efficacy of these systems. As it
was demonstrated in this article, there are multiple competing degradation mechanisms
in the epoxy resins, fibers, fiber—epoxy interface, and epoxy—concrete interface that can
affect the performance of EB FRP. Recent research on nanomodified resins demonstrates
potential to develop improved materials capable of withstanding harsh environmental and
loading conditions.

While design guidelines consider the durability of EB FRP an important factor, there is
quite a lot of variability in how the durability concerns are addressed. Some design guide-
lines provide explicit environmental reduction factors, while in others either material’s
qualification criteria are proposed, or durability is accounted for through material safety
factors. Probably the most inconsistent between the guidelines is the maximum usable
strain in FRP for flexural EB FRP design—some guidelines propose specific strain limits
while others offer debonding strain equations that compute maximum usable strain in EB
FRP based on the substrate and composite properties.

6. Future Perspectives and Recommendations
Based on the review of relevant research, the authors offer the following insights:

1. The complexity of the involved deterioration mechanisms limits our ability to mecha-
nistically model the EB FRP deterioration under realistic environmental exposures
and develop accurate service life prediction models from the short-term accelerated
conditioning test data. This is one of the top research priorities. Progress in EB FRP
service life estimation will lead to refined durability design guidelines that will allow
for economical yet safe EB FRP strengthening.

2. Interestingly, even though the durability of the bond between EB FRP and concrete is a
critical factor, explicit treatment of EB FRP/concrete bond durability is not suggested
by any of the available design guidelines. It is, thus, imperative that these concerns be
addressed either through qualification testing requirements, bond durability design
factors, or both.

3. Advancements in materials for EB FRP applications are necessary to meet the per-
formance requirements imposed on EB FRP strengthening systems in harsh environ-
ments. Future progress in composites for construction likely lies at an intersection
between classical structural engineering and materials science. With the emerging
materials and technologies, an interdisciplinary approach to addressing the problems
in the next-generation infrastructure will be paramount.
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